Pre prints.org

Article Not peer-reviewed version

Functional Donoho-Elad-Gribonval-
Nielsen-Fuchs Sparsity Theorem

K. Mahesh Krishna *

Posted Date: 5 August 2025
doi: 10.20944/preprints202508.0241.v1

Keywords: Compressed sensing; Frame; Schauder frame; sparse solution

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/2340204

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2025 d0i:10.20944/preprints202508.0241.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Functional Donoho-Elad-Gribonval-Nielsen-Fuchs
Sparsity Theorem

K. Mahesh Krishna

School of Mathematics and Natural Sciences, Chanakya University Global Campus, NH-648, Haraluru Village, Devanahalli
Taluk, Bengaluru North District, Karnataka State 562 110 India; kmaheshak@gmail.com

Abstract: Celebrated breakthrough sparsity theorem obtained independently by Donoho and Elad
[Proc. Natl. Acad. Sci. USA, 2003] and Gribonval and Nielson [IEEE Trans. Inform. Theory, 2003] and
Fuchs [IEEE Trans. Inform. Theory, 2004] says that unique sparse solution to NP-Hard {yp-minimization
problem can be obtained using unique solution to P-Type ¢;-minimization problem. In this paper, we
extend their result to abstract Banach spaces using 1-approximate Schauder frames. We notice that
the ‘normalized’ condition for Hilbert spaces can be generalized to a larger extent when we consider
Banach spaces.
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1. Introduction

Let ‘H be a finite dimensional Hilbert space over K (C or R). Recall that [2,28] a finite collection
{Tj};?:l in H is said to be a frame (also known as dictionary) for # if it spans H. A frame {Tj};?zl for
H is said to be normalized if ||7j|| = 1 forall 1 < j < n. Given a frame {77};7:1 for H, we define the
analysis operator

O : " > h e 0ch = ((h, 1)), € K"

Adjoint of the analysis operator is known as the synthesis operator whose equation is

n
9; K" 3 (aj)7:1 = 9;(‘1]');'1:1 = Zaf’L—j €H.
j=1

Given d € K", let ||d||o be the number of nonzero entries in d. Central problem which occurs in
everyday life is the following £yp-minimization problem:

Problem 1.1. Let {T; ]7.’:1 be a frame for H. Given h € H, solve
minimize ||d||g subject to  67d = h.
dekn

Recall that ¢ € K" is said to be a unique solution to Problem 1.1 if it satisfies following two
conditions.

i) 0ic=h.
(i) Ifd € K" satisfies 0:d = h, then

lldllo > llello-

Unfortunately, in 1995, Natarajan showed that Problem 1.1 is NP-Hard [23,33]. Therefore solution to
Problem 1.1 has to be obtained using other means. Entire body of work which is built around Problem
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1.1 is known as sparseland (term due to Elad [19]) or compressive sensing or compressed sensing
[1,4-10,14-23,27,32,34,37,38]. We note that as the operator 05 is surjective, for a given h € H, there is
always d € K" such that 6:d = h. Thus the central problem is when solution to Problem 1.1 is unique.
It is well-known that (see [3,13,18]) following problem is the closest convex relaxation problem to
Problem 1.1.

Problem 1.2. Let {Tj};?zl be a frame for H. Given h € H, solve
minimize ||d||; subject to  0;d = h.
deKn

There are several linear programmings available to obtain solution of Problem 1.2 and it is a
P-problem [35,36,39].

Most important result which shows by solving Problem 1.2 we also get a solution to Problem 1.1,
obtained independently by Donoho and Elad [17] and Gribonval and Nielsen [27] and Fuchs [25,26], is
the following.

Theorem 1.3. [17,19,25-27,31] (Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem) Let {17}7:1
be a normalized frame for a Hilbert space H. If h € H can be written as h = ;¢ for some ¢ € K" satisfying

1 1
—|1
e N [ ]
1<) k<n,j#k

then c is the unique solution to Problem 1.2 and Problem 1.1.

We naturally ask for (both finite and infinite dimensional) Banach space version Theorem 1.3.
More than this natural question, many spaces occurring in functional analysis and in applications
are Banach and there is no Hilbert space structure associated with them. As frame theory for Hilbert
spaces has been successfully extended to Banach spaces which also found applications, we believe that
generalization of Theorem 1.3 will have applications. It is interesting to note that a noncommutative
version of Theorem 1.3 has been recently derived [29].

2. Functional Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem

In the paper, K denotes C or R and & denotes a Banach space (need not be finite dimensional)
over K. Dual of & is denoted by X*. We need the notion of 1-approximate Schauder frames for Banach
spaces which is a subclass of Schauder frames [11,12,24].

Definition 2.1. [30] Let X be a Banach space over K. Let {f,} | be a sequence in X* and {1,}5"_; bea
sequence in X. The pair ({fn}5 1, {Tn};-q) is said to be a 1-approximate Schauder frame (we write 1-ASF)
for X if the following conditions are satisfied.

(i)  The map (analysis operator)
0f: X 3 x s 0px = {fu(x)}iy € H(N)

is a well-defined bounded linear operator.
(ii)  The map (synthesis operator)

0 : (L(N) 3 {a}>; — 0 {a}, = Y o e X

n=1

is a well-defined bounded linear operator.
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1. The map (frame operator)

SfriX3x—Spxi=) fulX)Tn €X

n=1

is a well-defined bounded invertible operator.
We the notion of 1-ASF, we generalize Problems 1.1 and 1.2.
Problem 2.2. Let ({fn}5 1, {tn}1) be an 1-ASF for X. Given x € X, solve

minimize ||d||g  subject to  0rd = x.
del1(N)

Problem 2.3. Let ({fu}5 1, {Tu};) bean 1-ASF for X. Given x € X, solve

minimize ||d||; subject to  0:d = x.
del}(N)

A very important property used to show Theorem 1.3 is the notion of null space property (see
[14,31]). We now define the same property for Banach spaces. We use following notations. Let {e, }_;
be the canonical Schauder basis for ¢1(N). Given M C Nand d = {d,}>_; € (*(N), we define

dy =Y dpen.
neM

Definition 2.4. An 1-ASF ({fu}5> 1, {Tu}>_q) for X is said to have the null space property (we write NSP)
of order k € N if for every M C N with o(M) < k, we have

1
||dM||1 < EHd”l/ Vd € ker(GT),d #0.
Following characterization relates NSP with Problem 2.3.

Theorem 2.5. Let ({fu}5 1, {Tu}iq) be an 1-ASF for X and let k € N. The following are equivalent.

(i) Ifx € X can be written as x = 6c for some ¢ € ¢} (N) satisfying ||c||o < k, then c is the unique solution
to Problem 2.3.
(i) ({fu}Sq, {Tn} ) satisfies the NSP of order k.

Proof. (i) = (ii) Let M C Nwitho(M) < kand letd € ker(6r),d # 0. Then we have
0= 07d = 0 (dm +dme) = 0z(dm) + 07 (dme)
which gives
Oc(dp) = Oc(—dpe).
Define c := dj; € £1(N) and x := 6;(d);). Then we have ||c|[p < o(M) < k and
X = 0rc = O (—dppe).
By assumption (i), we then have

llelly = lldamlls < I = dumelly = [ldasellr-
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Rewriting previous inequality gives
1
ldmlls < lldlly = lldmls = lldmlle < Slld]ls-

Hence ({fn}5 1, {tn}$ ;) satisfies the NSP of order k.
(i) == (i) Let x € X can be written as x = 6c for some ¢ € ¢!(N) satisfying ||c||o < k. Define
M = supp(c). Then o(M) = ||c||p < k. By assumption (ii), we then have

1
Il < 5]l Vd € ker(8c),d # 0. 1)

Let b € 1 (N) be such that x = 6:b and b # c. Definea := b — c € ¢! (N). Then 6a = 6:b — .c =
x —x = 0 and hence a € ker(6),a # 0. Using Inequality (1), we get
1 1
lanmll < Sllalh = Namlls < 5 lamlls + llanell) = llamlls < llame]s. €
Using Inequality (2) and the information that c is supported on M, we get
1Bllx = llells = Nbaally + Nbasell = lleanlls = Nemelle = Noally + 1oasell = llemlls
= [lbmllr + 1(0 = c)melly = llemlls = [1bally + llanell = llemll

> [[bmlls + llamlls = llemlls = [[bamlly + 116 = ) mlls = llemlly
2 [[bmlls = [lbmllx + llemllr = llemllr = 0.

Hence c is the unique solution to Problem 2.3.
O

Using Theorem 2.5 we obtain Banach space version of Theorem 1.3. We do this by relating
Problem 2.3 to Theorem 2.5 and then Problem 2.2 to Theorem 2.5.

Theorem 2.6. Let ({fu}5 1, {Tu}i_q) be an 1-ASF for X such that
|fu(te)| >1, VneN. 3)

If x € X can be written as x = 0c for some ¢ € (' (N) satisfying

1 1
< |1+ , 4

nmeNn#£m

then c is the unique solution to Problem 2.3.

Proof. We show that ({fu}5 1, {Tn};) satisfies the NSP of order k := ||c||o. Then Theorem 2.5 says
that c is the unique solution to Problem 2.3. Let x € X can be written as x = 6c for some ¢ € ¢!(N)
satisfying ||c|lo < k. Let M C N with o(M) < k and letd € ker(6;),d # 0. Then we have

Gfe-rd - O.
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By writing d = {d,}°°_, € (!(N), above equation gives

0= GfQT{dm}fnozl = 9f< dm918m>
1

m=

= 6f< mem> = Z def(Tm) = Z dm ka(’fm)ek
m=1 m=1 m=1 k=1

50f8

Let {Z,}5°_; be the coordinate functionals associated with the canonical Schauder basis {e,}?> ; for

¢'(N). Let n € N. By evaluating previous equation at {,,, we get

0=2, ( ildm :21 fk<rm>ek> - il s :il Feltn)in(er)

= ildmfn("fm) = dnfn(Tn) + i dmfn(Tm).

m=1,m#n
Therefore
di’lf}’l(Ti’l) = - 2 dmfn(Tm), Vn c N
m=1,m#n
By using Inequality (3),
|dn| < |dnl|fn(Ta)| = '— Z A fn(Tin)
m=1,m#n
< Z |dm fn(Tm)| < ( sup |fn<7m)|> Z |dm|
m=1,m#n meN,n#m m=1,m#n

IN

nmeNn#m m=1,m#n nmeNn#m

:< sup |fn<rm>|><||d||1—|dn|>, Vi € N.

nmeN,n#£m

By rewriting above inequality we get

1
1+ du| < ||d]j1, VmeN.
sip (o] [dn] < [ld]lx
n,meNn#m
Summing Inequality (5) over M leads to
1 1
1+ dpulli= 11+
sp TaCa)] |1 swp [l
nmeN,n#m nmeNn#m
< lldll ) 1= [ldllo(M).
neM

( sup |fn<rm>|> 3 |dm|=< sup |fn<rm>|)(il|dm—|dn|>

(5)

Y [l

neM
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Finally using Inequality (4)

—1 -1
1 1
dmlr < |1+ dllijo(M) < |1+ dll1k
lldnmll sip (o)) [ d[[10(M) sip T (o) (4]l
nmeN,n#m n,meN,n#m
-1
1 1
=11+ d|l1]lcllo < = |4||1-
soo T | 1l < 5ldlh
nmeNn#£m

Hence ({fn} 1, {Tn}$ ;) satisfies the NSP of order k which completes the proof. [

Theorem 2.7. (Functional Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem)
Let ({fu}o 1, {tu}sq) be an 1-ASF for X such that

|fu(te)] >1, VneN.

If x € X can be written as x = 6c for some ¢ € £*(N) satisfying

1 1
flelo< 5|1+ ,
2 sup | fu(Tm)|

nmeNn#m

then c is the unique solution to Problem 2.2.

Proof. Theorem 2.6 says that c is the unique solution to Problem 2.3. Let d € ¢!(N) be such that
x = 0d. We claim that ||d||o > ||c||o. If this fails, we must have ||d||g < ||c||o- We then have

1 1
dlo< =11+
Idllo < 3 sup (o)

n,meN,n#m

Theorem 2.6 again says that d is also the unique solution to Problem 2.3. Therefore we must have
llcll < ||d]]x and ||c|ly > ||4||; which is a contradiction. Therefore claim holds and we have ||d||o >
llcllo- O

Corollary 2.8. Theorem 1.3 follows from Theorems 2.6 and 2.7.

Proof. Let {T;}" , be a normalized frame for a Hilbert space H. For each 1 < j < n, define
jJj=1 P J

fitHohw fi(h) = (h7) €K

Then
fi(t)l =1, Vi<j<n
and
felt) = (1, %), V1<jk<n.
O
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