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Abstract: The profound duality between the distribution of prime numbers and the non-trivial zeros
of the Riemann zeta function, {(s), is a cornerstone of analytic number theory. This paper introduces
a novel analytical framework, inspired by the principles of signal processing and systems theory,
to derive a new product-sum identity that makes this duality explicit. Starting from the second
Chebyshev function, §(x), we employ a sequence of transforms, complex analysis techniques, and
functional manipulations to construct a new function, ¥(z). We prove that this function admits two
distinct but equivalent representations: (i) an infinite product whose zeros are located precisely at
the logarithmic prime powers, z = +kIn p, and (ii) an exponential sum whose argument is explicitly
determined by the ordinates of the non-trivial zeros of {(s). This identity provides a new analytical
tool for studying the prime distribution and offers a fresh perspective on the spectral interpretation of
the zeta zeros. The derivation serves as a case study in applying systems-theoretic thinking to classical
problems in number theory, with potential implications for the development of new computational
algorithms.
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1. Introduction

The distribution of prime numbers, though seemingly erratic at a local scale, is governed by deep
and subtle laws. The seminal work of Riemann [1] established an intrinsic connection between the
prime-counting function and the complex zeros of the Riemann zeta function, (s). This connection is
most sharply formulated through explicit formulas, which relate sums over primes to sums over the
zeta zeros. The most famous of these, the Riemann-von Mangoldt formula, demonstrates that the fine
structure of the prime distribution is dictated by an oscillatory "noise" term composed of contributions
from each non-trivial zero of {(s) [2]. This establishes a duality that is conceptually analogous to the
relationship between a time-domain signal and its frequency spectrum in Fourier analysis.

This analogy has inspired a rich tradition of viewing number-theoretic problems through the lens
of physics and systems theory, where the zeta zeros are interpreted as the resonant frequencies or
energy levels of a hypothetical quantum system [3] and [4]. While this perspective has been highly
influential, it is often presented as a metaphorical or heuristic guide. In this paper, we take this
analogy as a formal guiding principle for derivation. We treat the prime distribution as an aperiodic,
event-driven signal and apply standard tools from systems theory, primarily the Laplace transform, to
analyze its structure.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Our primary contribution is the rigorous derivation of a novel identity for a newly constructed
Chebyshev-type function, denoted ¥(z). This identity takes the form of a product-sum equivalence:

¥ (z) = Product over Primes = Exponential Sum over Zeta Zeros.

The product side explicitly encodes the locations of prime powers as its zeros, while the sum side is
constructed directly from the ordinates of the non-trivial zeros of {(s). This result is not a restatement
of existing explicit formulas but a new representation derived through a systematic sequence of
transformations. The derivation itself serves to demystify the prime-zero duality by casting it as a
concrete problem in transform theory, where the zeros emerge as the spectral signature of the prime
signal.

This new formulation has several potential implications. It provides a new analytical object whose
properties may be studied to yield further insight into the statistical behavior of primes. Furthermore,
the explicit product-sum equivalence may offer a foundation for novel numerical algorithms for prime
counting or zero localization.

This new formulation of a Chebyshev-type function offers a unique analytical lens into the
long-standing prime-zero duality. It provides a compact and potentially computationally tractable
framework for analyzing prime number distribution, opening avenues for deeper analytical investi-
gations into the Riemann Hypothesis, and inspiring the development of novel numerical algorithms
for prime counting or zero localization. The structure of this paper is as follows: Section 2 provides
necessary preliminaries. Section 3 details the step-by-step derivation of ¥(z). Section 4 provides a
focused discussion of the signal-processing perspective and its implications. Section 5 discusses the
properties and implications of the derived function. Finally, Section 6 concludes with a summary of
the results and directions for future work.

2. Preliminaries and Background

The second Chebyshev function, i(x), sums the Von Mangoldt function A(n), defined as In p if
n = p* for a prime p and integer k > 1, and 0 otherwise. It can be conveniently expressed using the
Heaviside step function H(t) (where H(t) = 1fort > 0 and H(t) = 0 for t < 0), as:

P(x):=) Y H(nx—kinp)Inp. (1)

keN p

The Riemann zeta function, {(s), initially defined for R(s) > 1 by Y7 ; n~*, can be analytically
continued to the entire complex plane, having a simple pole at s = 1. Its non-trivial zeros are the focus
of the Riemann Hypothesis. For analytical convenience, the completed Riemann zeta function, ¢(s), is
defined as

E(5) = 55(s — 1) */0(5/2)4()

The function £(s) is an entire function, and its zeros correspond precisely to the non-trivial zeros of
¢(s)-

Cauchy’s Argument Principle is a powerful tool in complex analysis for counting zeros and poles
of a meromorphic function. For an entire function ¢(s) and a simple closed contour ® that does not
pass through any zeros of &(s), the principle states that:

&'(s)
2 ¢(s)

Finally, the Laplace transform

ds = 27ti x (number of zeros of {(s) inside the contour).

L)} (z) = /0 " f(u)edu.

Plays a crucial role in transforming sums over functions into forms amenable to analytical manipula-
tion.
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3. Derivation of the z-domain Chebyshev Function

This section details the step-by-step derivation of the novel z-domain Chebyshev function ¥(z),
starting from the classical Chebyshev function and employing a sequence of analytical transformations.

3.1. Laplace Transform

We begin by taking the Laplace transform of the second Chebyshev function ¢(x), defined in (1).
We define its Laplace transform as

¥(s) = Z{y(e")}- (2)

Using the linearity of the Laplace transform and the transform of a Heaviside step function (specifically,
Z{H(u—a)}(s) = &), we evaluate the transform of each term:

219} = § D #{Hu—kinp)inp= T CYnpe, ©)
eN p € P

This leads to the relationship between ¥ (s) and a sum over prime powers:

s¥(s)=) ) Inp e kslnp R > 1. (4)
keN p

This sum is a well-known Dirichlet series, which is also precisely equal to the negative logarithmic
derivative of the Riemann zeta function [9]. Thus, we identify the relationship:

7'(s) _ Z Zlnp e kstnp _ —s¥(s). (5)

g(s) keN p

The s-domain function ¥ (s) has poles at s = 0 (from 1/s), s = 1, s = —2m (from the pole of {'(s) /{(s)),
and at the non-trivial zeros of {(s).

3.2. Inverse Laplace Transform
¢'(s)
&(s)

Lemma 3.1 (Contour closure). Let F(s) = — . Forany u > 0and ¢ > 1, the inverse Laplace transform

1 c+ioo

e U (u) = —/C F(s)e™ ds

27 Je—ico
can be evaluated by closing the contour to the left and summing residues at the poles of F(s).

Proof. From the classical bound

{'(o+it)
Z—= = O(log |t t| — o0

Lt = OllogH) (1]~ )
uniformly for ¢ in bounded intervals, we have for fixed o and large |t|:

F(o + it)el"+* = O(log |¢]) ™.

Thus the horizontal integrals on the large rectangle of height T decay as T — oo, and the vertical
integral on the far left is exponentially small as ¢ — —oc. Since u > 0, Jordan’s lemma ensures that the
contribution from the left semicircle vanishes, allowing the contour to be closed to the left. O

Definition 3.1 (Symmetric truncation). For any function g of the zeros of {, define

Y, 8(p)=1im ) g(p),

T2 0 |Spl<T
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where the zeros p are counted with multiplicity and summed in symmetric order with respect to the real axis.

/
Theorem 3.1. Let ¥(s) be defined by s¥(s) = — % ((SS)) . For u > 0 and assuming all zeros of {(s) are simple,

the inverse Laplace transform is given by the symmetric truncation identity

) 1) = - E (o) - L e ©

where the sum Y, runs over all non-trivial zeros p of {(s) and the last sum is over the trivial zeros s = —2m.
Equivalently,
LHsY(s) () =e" — ) (esmu " +e_2mu)l
m=1

with the pairwise sum over conjugate non-trivial zeros taken in the symmetric truncation sense.

Proof. By Lemma 3.1, we may close the Bromwich contour for F(s) = — %/((ss)) to the left when u > 0.

The poles of F(s) are:
1.  Atthe pole s = 1 (simple pole of {(s)):

7@% — —¢* . Res g’(s):7u_ 1) —
Ress_l{ g(S)e ]— e" - Resg—q ) e’ (—=1) =é".

2. Atnon-trivial zeros s = p: Since p is simple, {’(s)/{(s) has residue 1 at s = p, hence

!
Ress—p [— gC((sS)) esu} = —ef¥,
3. Attrivial zeros s = —2m: Similarly,
!
ReSs— _om |:_ %((:)) esu:| _ _672mu'

Summing all residues in the closed contour and interpreting the sum over non-trivial zeros in the
symmetric truncation sense gives

S (s) () = ¢ — Y e — milezmu,

which is Equation (6). O

Remark: The symmetric truncation in Theorem 3.1 is essential because the raw series ), e does
not converge in the usual sense for fixed u > 0.

1. Divergence without regularization. Writing a non-trivial zero as p = ¢ + i7, each term has modulus
le?"| = e“™. Since 0 < ¢ < 1, these magnitudes do not tend to zero; under the Riemann
Hypothesis (¢ = 1), each term has modulus /2. Thus the partial sums cannot converge
absolutely and will generally diverge unless a summation procedure is specified. Symmetric
truncation balances contributions from zeros with positive and negative imaginary parts, often
producing a conditional or distributional limit.

2. Relation to more convergent explicit formulas. Classical explicit formulas (e.g., the Riemann-von
Mangoldt formula for the Chebyshev function ¢(x)) involve sums Yo xP /p rather than Yo xP;
the factor 1/p improves convergence because |1/p| — 0 as |Jp| — oo. In the Laplace inversion
setting, similar convergence improvement occurs if one differentiates or integrates with respect
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to u, or pairs the residue expansion with a smooth test function in u. Alternatively, one can insert
ey . . . .
a factor e~¢I5¢| and remove it after summation, which corresponds to smoothing.

Thus Theorem 3.1 is an algebraically correct residue expansion, but must be interpreted via
symmetric truncation or another regularization to define the sum over non-trivial zeros rigorously.
Whereas, the inverse Laplace transform of the term involving e ¥I"?, is given by:

Y. Y Inp 2_1{e_k51“”}(u): Y. Y Inps(u—kinp). 7)

keN p keN p
Thus, we have
1 > .
ZZlnpé(u—klnp):e”—w— Yo et et > 0. (8)
keN p m=1

Also, integrating Equation (8) and rearranging with # = In x, we obtain:

cos(t Inx) 4+ 2t sin(ty, Inx)]
412 +1 '

o0

1p(x):x—1n27'c—%ln(1—xl—2)—4x% ) [ )
m=1

Note that Equation (9) was proved by Hans Carl Friedrich von Mangoldt ([2] p. 294 Equ.58) in 1895.

We can think of F(s) = — %;’)) as a transfer function. In this view, the logarithmic derivative of
the Riemann zeta function is reinterpreted as the transfer function F(s) of a linear system. It encodes
how the system responds to inputs, transforming a purely theoretical object into a dynamic model
with physical intuition of prime powers as impulse train signal. Resonant frequencies at the poles: The
poles of F(s) correspond to the system’s natural modes, frequencies at which it naturally oscillates
when excited. This reframes each pole as a physical resonance. Thus, the pole at s = 1: Represents
an unstable exponential mode, ¢”. Poles at non-trivial zeros s = p = ¢ + it;;, these define damped
oscillatory modes; t;, is the oscillation frequency, whereas ¢ is the damping factor. Here, the Riemann
Hypothesis gains a striking physical interpretation: if all ¢ = 1, then every oscillatory mode decays at
the same rate. This enforces a uniform damping structure, turning what could be chaotic decay into
a coherent harmonic spectrum: the "music of the primes."In essence, it recasts a central problem in
number theory through the lens of system dynamics, bridging abstract mathematics with the language
of engineering and physics.

Equation (8) is the positive part of the explicit formulas established by Weil [8]. The derivation
above provides a powerful illustration of the deep connection between prime numbers and the zeros
of the Riemann zeta function from both theoretical and physical interpretation. The transformation
technique can be summarized in four conceptual steps.

1.  Encoding: The raw, discrete distribution of prime powers is first encoded as a series of spikes
(delta functions) on a logarithmic scale.

2. Transformation: The Laplace transform acts as a bridge, converting this discrete distribution into
a single analytic function in the complex plane, as: —'(s)/{(s).

3. Spectral Decomposition: In this new domain, complex analysis allows this same function to be
re-expressed not in terms of primes, but as a sum over its fundamental poles, which are precisely
determined by the zeros of {(s).

4.  Inverse Transform: The final inverse Laplace transform translates this "spectral data" of the zeros
back into the original domain, revealing that the prime distribution is composed of a main growth
term (from the pole at s = 1) plus oscillatory "correction" terms dictated by the non-trivial zeros.

This process provides an explicit duality, demonstrating that the distribution of prime numbers is
governed by the harmonic structure of the zeros of the zeta function.

The novelty of this approach lies not in discovering a new mathematical truth, but in a powerful
translation that makes a classic result conceptually clear and accessible. While the explicit formula is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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traditionally derived using the abstract machinery of complex contour integration, this methodology
reframes the entire problem in the language of signal processing. By treating the prime distribution as
a "signal" and applying the Laplace transform, the derivation becomes a familiar exercise in systems
theory. This conceptual shift demystifies the process, revealing the zeros of the zeta function to be
the fundamental "resonant frequencies” that govern the seemingly chaotic structure of the primes.
The true innovation is therefore explanatory: it recasts an obscure theorem into an intuitive spectral
decomposition, bridging the gap between pure number theory and the world of applied science and
engineering.

3.3. Explicit Formula from Contour Integration

We invoke Cauchy’s Argument Principle to relate the counting function for non-trivial zeros to
a contour integral involving the completed Riemann zeta function ¢(s). Let N(7) = ¥, H(T — tn)
denote the number of non-trivial zeros of {(s) with positive imaginary parts t,, < 7. The closed
contour D is chosen to encompass the critical strip [0 < R(s) < 1] from imaginary part —7 to 7. The
integral of the logarithmic derivative of ¢(s) over this contour counts all zeros within ®. Given the
symmetry of non-trivial zeros about the real axis, the total number of zeros enclosed by © is 2N(7).

Hence, ( )
. _ Z'(s) 1 1 IS 1
ZXZHl;H(T—tm) _f@[g(s) + Go1) +§+2F(2%) —Elnn ds. (10)

The integrand on the right-hand side (RHS) is exactly # By Cauchy’s Argument Principle, the RHS

S

evaluates to 271i X (2N(7)) = 47iN(7), which is consistent with the left-hand side (LHS).
The number of zeros N(7) is also famously related to the argument of the ¢-function evaluated

on the critical line. Specifically, by applying the Argument Principle over a contour enclosing the
critical strip and utilizing the symmetry properties of ¢(s), one derives the standard result (see, e.g.,
Titchmarsh [5, Chapter IX]):

nN(t) = arg&(3 +i1),

where the argument is defined by continuous variation from a reference point on the real axis (e.g.,
s = 2) where arg §(2) = 0. This formula holds precisely if T is not the ordinate of a zero. The term
arg &(1 + i) is the imaginary part of InZ(1 + iT). Since &(s) is real for real s, we have &(1 — i) =

¢ (% +i7). Consequently, the difference of logarithms becomes:

In¢(1+it) —In¢(} —it) =In&(} +it) —In&(} +i1)

(11)
=2i Im[In&(} +it)] = 2iarg &(} +it).
Therefore, we can express the counting function as:
(g (d+it) ~meg (3 —ir)]. (12)

We now evaluate the term on the RHS using the definition of In ¢(s):

In¢(s) =Inl+Ins+In(s—1)— %1n7r+lnf(%> +1In{(s).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Evaluating this difference at s = % +itands = % —iT, we have:

27i Y "H(T — tw) =[In{(3 +i1) —In (3 —i1)]

InT(} +i%) —InT (1 —i%)]
(L4+it—1)—In(} —it—1)] (13)
In(3 +it) —In(} — i7)]
~[3+im) - (G-l
For large T, we use the asymptotic behavior of complex logarithms and the Stirling approximation for

the Gamma function. The terms involving Ins and In(s — 1) simplify using In(z) — In(z) = 2iarg(z)
for arguments near 7v/2 or —7r/2. Thus, we have:

[1n(;+ir—1) —1r1<; —iT—l)] - {m(; —I—iT> —ln(; —iT)] ~2im+0( %)

Additionally, Stirling’s approximation for the Gamma function logarithm yields (see, e.g., [10]):

(3 +if) ~InT(} =) ~i(vin g -7 - 7) +0(1). (14)

Substituting these approximations into the equation for 27ti )", H(T — t,,) and simplifying, we obtain:

2mti Y H(T — ty) =[Ing(} +i1) —In (3 —i1)]

. T s . 1 (15
+1<Tln§ - T— Z) +2imr —itln .
Further simplification leads to:
27 Y H(T — ty) =[InZ(} + i) ~Ing(y — im)] +i( tin = — 74 7). (16)
—~ 2 21 4

Thus, we can define the exact explicit Riemann-von Mangoldt zeta zeros count function formula
in the T-domain [11], as

v(w)i= DH —tw) = flngf + §+ 2 [Ing(3 +it) —Ing(3 —iv)|. (17)

The derivation of explicit formulas using contour integrals, can be conceptually viewed as a
form of inverse transform. This method effectively "inverts" a Dirichlet series (like —Z'(s)/{(s)) by
integrating along specific contours in the complex plane, akin to inverse Laplace transforms with finite
limits instead of infinite limits.

Now, the logarithm of the Riemann zeta function can be expressed through its Euler product [9,
Chapter 4], as:

Ing(s) = Y iP(ks) = Y ) Lekshnp, (18)

keN keN p

Substituting this expansion into the difference term for In (), we obtain:

[lné( +itT) — lng s—in)]=)_) e —3Inpl [ e~ikTinp _ Zkﬂ“”]. (19)

P keN
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Combining these results, we obtain an explicit formula for the zero-counting function in terms of the
prime power harmonics, as:

7 .
ZHZZH T_tm) —l(TlnT+47:T> _|_2 e %h'lp%{ *llenp_ellenp:|. (20)
P

3.4. The Delta-function Density

We differentiate Equation (20) with respect to 7. The Heaviside sum on the LHS transforms into a
sum of Dirac delta functions, representing the density of zeros along the imaginary axis.

2 ;5(7 ~ty) =iln % - i;;pg Inp [P 4 gmitkInp], 1)

Rearranging terms and dividing by i, we obtain a precise explicit formula for the density of non-trivial
Zeros:

1 T —1 n 1 n
V’(T):Zé(r—tm)zz—l E——Zzp Pnp[e-TTkInp 4 eitkinp), (22)

m

The relationship between Equation (8) and Equation (22) represents a profound duality, forming
the mathematical core of the connection between primes and zeta zeros. The first formula, a "prime-
centric" view, expresses the distribution of prime numbers as a sum over the zeros of the zeta function.
It answers the question, "Where are the primes?” by using the "spectral data" of the zeta zeros. In stark
contrast, the second formula provides the dual "zero-centric" view: it expresses the distribution of the
heights of the zeta zeros as a sum over the prime numbers. It answers the question, "Where are the
zeta zeros?" using the primes as the fundamental frequencies. This elegant reciprocity implies that the
two sets of numbers—the primes and the zeta zeros—are inextricably locked together, like a signal
and its Fourier transform. All the information about one set is perfectly encoded in the other. This
duality is the basis for the modern perspective of number theory through physics, suggesting that the
zeros are like the resonant energy levels of a quantum system whose structure is determined by the
primes, which act like a classical potential.

3.5. Transformation to the z-domain

We now apply the Laplace transform with respect to T to Equation (22). Let z be the Laplace
variable. The Laplace transform of 6(T — t,,) is e ?'». Thus, we have:

—zt,, 'y+ln (2mz) Inp 1 1
27(;6 N ;kzlpkﬂ z—iklnp+z+iklnp ’ @3)

To uncover a product form, we perform a manipulation by considering z as a complex variable.
Replacing z by iz and —iz in the above equation, we obtain two related expressions:

IR g (] 1
271;6 = ZZ pk/2 izfiklnp+i2+ikh’lp ' e
and
‘ + In(—27iz) o Inp 1 1
) izt — ’Y— ’ 2
n;e ;I;lpk/Z(_iz—iklnp+—iz+iklnP> >

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1066.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 August 2025 d0i:10.20944/preprints202507.1066.v2

90f18

Subtracting the first of these two equations from the second, we obtain:

2y + In(—2miz) + In(271iz)
iz

Inp 1 1
+222 P72 <iz—iklnp + iz—l—iklnp)'
Noting that In(—27iz) + In(27tiz) = In(—2271%%2%) = In(—227%(—1)z?) = 2In(271z) by assuming

R(z) > 0. Thus, simplifying the logarithmic term on the RHS, and multiplying the entire equation by i
and dividing throughout by 2, we obtain:

27T eiztm . e—iztm _
3
(26)

. ; _i + In(27z) = Inp 1 1
i) eFtm — pTiEm — 77 + ( + > (27)
; ;k  pk/2\z—klnp ~ z+kInp
Finally, using the identity (¢’* — e~™*) = 2isinx and i*> = —1, the LHS can be expressed in terms of
sine, as:
B . v+ In(27z) Inp 1 1
27‘[;511‘1(21‘"1)_ ZZ pk/2 z—klnp+z—|— kinp ) )

3.6. Log-Product Form
We integrate Equation (28) with respect to z. The integral of the LHS is

. B cos(ztm)
/ Zn;sm(ztm)dz = 271; —

m

For the RHS:

/ %Wdz =vlnz+ 1(h‘(ZTCZ))Z‘

For the sum term, we use the integration rule [(;1 + - + -)dz = In(z — a) + In(z + a), which can be

expressed as In(1 — z/a) + In(1 + z/a) when appropriate branch cuts are chosen and assuming the
integration constant is zero. Thus, we have:

27y Coslfizfm) =yInz + }(In(272))?
m

m
+ ——=|In{1- +In 1+7
Zkzl pk/2 kl np kIn p

(29)

3.7. Exponentiation and Definition

We now exponentiate both sides of Equation (29) to obtain a product representation. We define
the z-domain second Chebyshev function ¥(z) as

Inp

N i k72 cos(ztm)
Y (z) := zez(n2m2)? [( ) (1 + z >] et o (30)
(2) = I;Ig klnp klnp

This product form for ¥(z) reveals a fascinating property: its zeros are precisely located at z = +kIn p
for all prime numbers p and positive integers k. These are the logarithmic prime powers, demonstrating
a direct encoding of prime number information.

Noting that the identity for ¥(z) was derived under the condition %(z) > 0. To justify its validity
across the entire complex plane, we invoke the principle of analytic continuation. Both the product
representation of ¥(z) and its exponential sum form define functions that are analytic on the complex
plane. Since these two analytic functions have been proven to be equal on the open right half-plane, a
domain which contains limit points, the Identity Theorem for analytic functions guarantees that they
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must be identical everywhere. This rigorously extends the equality from the right half-plane to the
entire complex plane, confirming that the function’s zeros are indeed located at z = £kIn p.

3.8. The x-domain Representation

Finally, by substituting z = In x into the definition of ¥(z), we obtain its representation in the
x-domain:

Inp
& _ 9,4 (In(27In x))? = _ In x In x pk/2
$(Inx) =(Inx)7ed 1;[1‘[[(1 iy ) (1 25

k=1 (31)

cos(tm Inx)
:gzn Lo Tt

The zeros of ¥ (In x) are thus at x = p¥ and x = p~* (for k € N), which is consistent with the zeros at
z = tklnp.
The exponential form on the RHS of (31), given by

¥(Inx) = >(n) (32)

where |
S(inx) = 27‘(ZCOS(tm nx)
m

tm !

yields a real-valued function for real x. This implies that ¥ (In x) is always real. Its positivity depends

on the sum S(Inx). The product form clearly shows that ¥(Inx) = 0if 1 — (ln—x)zz = 0 for some
(kInp)

prime p and integer k. This occurs when Inx = +kInp, leading to x = p* or x = p~*. At these

(In¥) to zero. This

specific points, the sum S(In x) in the exponent must diverge to —co, driving e°
behavior is clearly illustrated in Figure 1, showing sharp dips towards zero at prime power values of x.
The corresponding plot of In ¥ (In x) = S(In x) in Figure 2 confirms these divergences as sharp poles

towards —oo.

15 |

U(lnz)

0.5

0.0 Eo e e e e e e

Figure 1. Plot of ¥ (In x) illustrating its positivity and sharp dips towards zero at x = p*.
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—0.2

Figure 2. Plot of In ¥ (In x) illustrating its sharp poles towards —co at x = p*.

4. A Signal-Processing Perspective

The apparently irregular distribution of the prime numbers can be viewed through the lens of
signal processing. In this language the prime-counting “signal” and the “spectrum” defined by the
non-trivial zeros of the Riemann zeta-function, {(s), are dual objects, exactly as a time-domain signal
and its frequency response are related by a transform. We have proved the relationships between the
three functions, Equations (5), (9) and (30), via employing fundamental tools from complex analysis,
Laplace transforms, Cauchy’s Argument Principle. The technique demonstrates transparently the
duality between the prime numbers and the ordinate of the zeta non-trivial zeros.

4.1. The Prime-Counting Signal

A natural signal that records the location of prime powers is the Chebyshev function

p(x)=)_) H(nx—klnp)lnp

keN p
I ©  oSmlnx  pSuInx

__ ,inXx

=e —In27 — m;l Sm Sm (33)

- In2m—dxd 3 108Ut IN0) & 2t sin(t In )]

m=1 4 t%n +1 :
where term due to zeta trivial zeros, s = —2m, is negligible and has been omitted from the above
glg

expressions.

From a signal-processing viewpoint 1(x) is an aperiodic, stair-case function, see Figure 3, and the
differential of this function, yields an impulse train event-driven signal ¢’(x): an impulse of weight,
In p, occurs at each prime power p¥. Understanding the structure of this irregular signal is the central
analytic-number-theoretic problem.
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Figure 3. Plot of ¢(x) showing a step function at x = p*.
The Laplace transform of the derivative ¢’(x), the underlying impulse train, gives:
U
s
s¥(s) = _86) Y Y inpefsinr, (34)

os) =25

The sum runs over all non-trivial zeros s,, = o + it;; of {(s). Interpreting the terms in Equation
(33) yields the following signal-processing elements:
e  Signal ¢(x): the prime-counting staircase.

e DC component x: the average (linear) trend, i.e. the Prime Number Theorem.
xom x7 : .
* AC components = S—elt”’ l05x; complex exponentials. The ordinates ¢, act as fundamen-
m

tal frequencies, while the real parts o control growth; (¢ > 1/2) or decay (o < 1/2) of the
corresponding mode.

If the Riemann hypothesis holds, then o = % for every non-trivial zero; in the signal language this
means that all spectral modes are undamped (pure tones), and the fine structure of the prime signal is a
superposition of lossless oscillations. The sharp nulls in Figure 4 at t,, = 14.13, 21.02, 25.01, ... are
precisely the fundamental frequencies t,,.

Consequently the poles of this transform, i.e. the zeros of {(s), play the role of characteristic
frequencies of the prime-distribution system. In Figure 4, which can be interpreted as the magnitude
of the system’s frequency response evaluated on the critical line s = 1 + it.
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Figure 4. Plot of [s¥(s)| along the imaginary axis s = % + it, showing resonant frequencies at t,,, the ordinate of

the zeta zeros.

4.2. Zeta Zero-Counting Signal

The duality becomes precise through the Riemann-von Mangoldt exact explicit zeta zeros count
function formula in the T-domain, obtained via the contour integral, Equation (17), as:

v(T) = LH(T —tn) = 5 In g% + § + ok [Ing (4 +i7) —Ing(} - i7) . (35)

k . .
v(t) =Y H(t—ty) = £ In,m + 2+, Y Y pal [p_lkT - pl’“] (36)
P

with the differential, as:

1 T 1 k . ‘
/ —5 —itk itk
vVi(t)=) d(t—ty) =—INn——— — 21n .
(1) = Lo(r—tn) = 52 In o 271;;” Pl ™+ (37)
Here, we observe that from a signal-processing viewpoint the function v/(7) is an aperiodic,
event-driven signal: an impulse of one, occurs at each t;, the ordinate of the zeta zeros.
The sum runs over all prime powers p*. Interpreting the terms in Equation (36) yields the
following signal-processing elements:
e Signal v(7): the zeta zero-counting staircase.
* DC component 5~ In 57— + %: the average trend; i.e. the Riemann—-von Mangoldt approximate
formula.
e AC components p=¥*: complex exponentials. The prime powers p¥ act as fundamental frequen-

cies.
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Figure 5. Plot of v(7) .

The Laplace transform of the zero-density signal /() i.e. the underlying impulse train, see
Section 3.5, leads to the function ¥(z) as follows:

Inp
2

$(z) = 27ez(In2m2)* T111 [(1 - L) (1 + L)] P T, (38)
kol klInp klnp

Figure 6 shows the plot of Equation (38) along z = Inx, , in the Figure we observe the resonant
frequencies at x = pF.

gf ot X
T

—— Y(Inx)=e"

ma1

1.75 1

1.50 4

1.25 1

1.00 4

W(lnx)

~

0.75 A

0.50 A

0.25 +

0.00

Figure 6. Plot of ¥(In x) illustrating its sharp nulls (zeros) at the logarithmic prime powers x = p¥; i.e. resonant
frequencies.
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4.3. Remark

Viewing the prime-counting function as a signal and the zeros of {(s) as its spectral content
provides a compact and intuitive framework for many classical results (e.g., the Prime Number
Theorem, error terms, and the Riemann hypothesis). This duality suggests that techniques from
harmonic analysis and system theory can be imported into analytic number theory, and conversely
that number-theoretic phenomena may inspire new signal-processing concepts. Table 1 summarizes
the correspondence between the two domains.

Table 1. Number-theoretic concepts versus signal-processing analogues.

Number Theory Signal Processing

Prime-counting staircase §(x) Aperiodic, event-driven signal

Non-trivial zeros p = o + it Complex frequencies (poles) of the system
Ordinates ¢, Fundamental frequencies of the signal
Explicit formula (33) Spectral decomposition / inverse transform
Riemann hypothesis (¢ = 1/2) All spectral modes are undamped (lossless)

5. Discussion and Implications

The derived identity for ¥(z) (Equation (30)) stands as a powerful testament to the profound
duality between prime numbers and the non-trivial zeros of the Riemann zeta function. On one side,
we have a product whose zeros are explicitly defined by the logarithmic prime powers, kIn p. On the
other, we have an exponential sum directly involving ¢,, the ordinate of the zeta zeros. This duality
is a cornerstone of analytic number theory, and this novel representation offers a fresh analytical
perspective.

This new formulation of a Chebyshev-type function opens several avenues for further theoretical
and computational exploration:

¢  Computational Algorithms: This identity might inspire novel numerical algorithms for:

- Prime Counting Functions: The direct appearance of prime powers as zeros of ¥(In x)
could lead to new methods for evaluating or approximating prime-counting functions more
efficiently, perhaps by analyzing the local behavior of ¥(In x) around its zeros.

-  Numerical Stability: Comparative studies of the numerical stability and convergence rates
of evaluating ¥(z) (or its x-domain counterpart) via its product form versus its exponential
sum form could be highly valuable for practical applications.

*  Generalizations: The methodology employed, a sequence of Laplace transforms, differentiation,
integration, and exponentiation of explicit formulas, could potentially be generalized to derive
similar product-sum identities for other arithmetic functions or for L-functions associated with
different number fields. This suggests a broader framework for understanding the interplay
between number-theoretic objects and the spectral properties of their associated L-functions.

e  Bridging Disciplines: The explicit connection shown by ¥(z) between number theory and
the analysis of generalized functions (Dirac delta) and integral transforms underscores the
interdisciplinary nature of mathematical research.

Finally, it is remarkable that the final expression for ¥(z) is decorated with the fundamental
constants 7, e, and <. Their appearance is not coincidental but rather a profound signature of the
underlying mathematical structure. The constant 7t arises from the geometry of the complex plane and
the periodicity inherent in the zeta function’s functional equation. The constant e is the bedrock of
continuous growth and analysis, underpinning the entire framework of logarithms and exponentials.
Finally, the Euler-Mascheroni constant y emerges as an intrinsic fingerprint of the Gamma function,
which is essential for the analytic continuation of {(s). The presence of this trio confirms that ¥(z)
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is a natural object, intrinsically linking the discrete world of primes to the fundamental constants of
continuous analysis.

6. Conclusion

In this paper, I have rigorously derived a novel product-sum identity for a Chebyshev-type
function, ¥(z). The identity directly equates a product whose zeros are determined by the prime
numbers to an exponential sum constructed from the non-trivial zeros of the Riemann zeta function.
The derivation was systematically guided by a signal-processing framework, treating the prime
distribution as a signal and the zeta zeros as its spectral content. This approach not only yields a new
and elegant mathematical formula but also serves as a powerful pedagogical tool for illuminating the
profound duality that lies at the heart of analytic number theory.

The result, ¥(z), stands as a new analytical object whose structure explicitly encodes the relation-
ship between these two fundamental sets of numbers. This work opens several avenues for future
research. Theoretically, the properties of ¥(z) could be further investigated to study the statistical
nature of primes. Computationally, the dual representation may inspire the development of new
numerical methods for prime-counting or for analyzing the distribution of zeta zeros. By framing
a classical problem in the language of systems theory, this work underscores the value of interdis-
ciplinary approaches and provides a concrete example of how transform methods can be used to
uncover and elucidate deep mathematical structures.
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Appendix G Python Code

import numpy as np
1 import matplotlib.pyplot as plt
from mpmath import zetazero

from math import exp, pi

d # Parameters
1N, X_MIN, X_MAX, N_PTS = 900, 1.25, 10, 1000

d # Get Riemann zeta zeros

i try:

] t_m = [float(zetazero(n).imag) for n in range(l, N + 1)]
11 except Exception as e:

] print (f"Error computing zeta zeros: {el}")

4 exit ()

{ print (f"First/last 5 ordinates: {t_m[:5]}, {t_m[-5:1}")

| # Calculate sum S(z) = sum cos(t_m * ln(z)) / t_m

4 x = np.linspace (X_MIN, X_MAX, N_PTS)

» t_m = np.array(t_m)

o ys = np.sum(np.cos(t_m[:, Nonel] * np.log(x)) / t_m[:, Nonel, axis=0)

'y = np.exp(2 * np.pi * ys)

4 # Plot

24 plt.figure(figsize=(12, 7))

o{ plt.plot(x, y, label=f’Sum over first {N} zeta zeros’)

2 plt.title(r’$ e~ {2\pi\sum_{m=1}"{%d} \frac{\cos(t_m \1ln x)}{t_m}}$’ % N,
fontsize=16)

»{ plt.xlabel(’x’, fontsize=14)

o plt.ylabel(’${\Psi}(\1ln x)$’, fontsize=14)

3] plt.legend ()

3| plt.grid(True, linestyle=’--’, alpha=0.7)
3 plt.axhline (0, color=’black’, linewidth=0.5)
plt.show ()

Listing 1: Python Code For Plotting ¥(z).

References

1.  B. RIEMANN, Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsberichte der Berliner
Akademie, (1859), pp. 671-680.

2. H.VON MANGOLDT, Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse”,
J. Reine Angew. Math., 114 (1895), pp. 255-305.

3. M. V. BERRY AND J. P. KEATING, The Riemann zeros and eigenvalue asymptotics, SIAM Rev., 41 (1999), pp. 236—
266.

4. A. CONNES, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math.
(N.S.), 5(1999), pp. 29-106. Also available as arXiv:math/9811068.

5. E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, 2nd ed., D. R. Heath-Brown, ed., Oxford
University Press, New York, 1986.

6. G.H. HARDY AND J. E. LITTLEWOOD, Contributions to the theory of the Riemann zeta-function and the theory of
the distribution of primes, Acta Math., 41 (1918), pp. 119-196.

7. A.SELBERG, An elementary proof of the prime-number theorem, Ann. of Math., 50 (1949), pp. 305-313.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1066.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 August 2025 d0i:10.20944/preprints202507.1066.v2

18 of 18

8. A. WEIL, Sur les formules explicites de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund [Medd.
Lunds Univ. Mat. Sem.], Tome Supplémentaire (1952), pp. 252-265.

9.  H. DAVENPORT, Multiplicative Number Theory, 3rd ed., H. L. Montgomery, ed., vol. 74 of Graduate Texts in
Mathematics, Springer-Verlag, New York, 2000.

10. H. M. EDWARDS, Riemann’s Zeta Function, Academic Press, New York, 1974.

11. F. ALHARGAN, An elegant exact explicit formula for Riemann zeta zero-counting function, preprint, 2022, OSF
Preprints, https:/ /osf.io/preprints/osf/9su2b.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://osf.io/preprints/osf/9su2b
https://doi.org/10.20944/preprints202507.1066.v2
http://creativecommons.org/licenses/by/4.0/

