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Abstract

Human Activity Recognition (HAR) is widely used for healthcare, but few works focus on Manual
Material Handling (MMH) activities, despite their diffusion and impact on the workers’ health. We
propose four Deep Learning algorithms for HAR in MMH: Bidirectional Long Short-Term Memory
(BiLSTM), Sparse Denoising Autoencoder (Sp-DAE), Recurrent Sp-DAE; and Recurrent Convolutional
Neural Network (RCNN). We explored different hyperparameter combinations to maximize the
classification performance (F1-score) using wearable sensors’ data gathered from 14 subjects. We
investigated the best three-parameter combinations for each network using the full dataset to select
the two best-performing networks, that were then compared using 14 datasets with increasing subject
numerosity, 70%-30% split and Leave-One-Subject-Out (LOSO) validation, to evaluate whether they
may perform better with a larger dataset. The benchmarking network DeepConvLSTM was tested on
the full dataset. BILSTM performs best in classification and complexity (95.7% 70%-30% split, 90.3%
LOSO). RCNN performed similarly (95.9%, 89.2%) with a positive trend with subject numerosity.
DeepConvLSTM achieves similar classification performance (95.2%, 90.3%) requiring more than
100 greater Multiply and ACcumulate and Multiplication and Addition operations, which measure
the networks’ complexity. The BILSTM and RCNN perform close to DeepConvLSTM while being
much computationally lighter, fostering their use in embedded systems. Such lighter algorithms can
be readily used in the automatic ergonomic and biomechanical risk assessment systems, enabling
personalization of risk assessment and easing the adoption of safety measures in industrial practices
involving MMH.

Keywords: Autoencoder; Convolutional Neural Network (CNN); Human Activity Recognition (HAR);
Manual Material Handling (MMH); Recurrent Neural Network (RNN); Wearable Sensor Network
(WSN)

1. Introduction

Human Activity Recognition (HAR) is the task of classifying agents” actions based on sensor data.
The knowledge of human behaviors has potential applications in many fields, such as ambient-assisted
living [1], rehabilitation [2], industrial tasks safety [3], and Human-Robot Interaction (HRI) [4]. In
the view of Industry 4.0, smart automation is permeating traditional industrial practices aiming at
increasing productivity while improving operators” working conditions. In this context, humans
and robots collaborate on the same tasks in a shared workplace [5] and Manual Material Handling
(MMH) activities are expected to remain dominant in many industrial fields. These occupations expose
workers to high biomechanical risks that frequently induce Work-related Musculoskeletal Disorders
(WMSDs) [6]. Therefore, the automatization of the WMSDs risk assessment is the key to guaranteeing
workers” health.

To this end, HAR algorithms, determining which action led to specific measures in the sensor
data streams, allow automatizing the workplace ergonomics and biomechanical evaluation processes
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[7]. Sensor data classified by HAR algorithms can come from external devices, such as cameras,
or wearable sensors. The latters are generally preferred because of their flexibility, portability, and
unobtrusiveness [8,9]. In particular, Inertial Measurement Units (IMUs) are commonly used since
they are small, affordable, and available in many commercial goods. Superficial Electromyography
(sEMG) signals are valuable complements of IMUs, as they provide many parameters regarding
muscle contractions and contain information on the movement intentions of the subject wearing the
device [10]. Moreover, sEMG signals allow recognizing movements [11], evaluating muscle forces, and
predicting handled loads [12], desirable features for both ergonomic assessment and robot control in
human-robot shared tasks.

Many Machine Learning (ML) techniques, such as Support Vector Machine, K-Nearest Neighbour,
Hidden Markov Models, Gaussian Mixture Model, Decision Tree, and Bayes Network have been
employed in HAR [13]. One of the main challenges that ML techniques need to face is the complexity
of the extraction of the more discriminative features especially because various actions can be very
similar to each other (inter-activity similarity), the same action can be performed differently from person
to person (intra-activity variability), the sensors types and their placements highly influence the data
streams obtained (sensor variability), and often the activities can be considered as composite or concurrent.
Despite the notable evolution of ML methods, there is no universal approach for selecting the best
feature set representing human activities, and this process is highly demanding and time-consuming.
To solve this issue, Deep Learning (DL) methods have the potential to model high-level abstraction
from complex data, reducing the workload of feature selection [9]. In HAR applications, DL proved its
ability to solve the problems of intra-activity variability and inter-activity similarity [14]. Various deep
neural network structures have been used to highlight different characteristics of the input sequences
[15], which include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and Feedforward Neural Networks (FNNs) such as Autoencoders.

Nowadays, most ML and DL research applied to HAR regards locomotion or Activities of Daily
Living (ADLs) [16]. State-of-the-Art (SoA) HAR studies in industrial applications mainly focus on
assembling and packaging activities [17], whereas only a few works regard MMH activities. In
addition, most of these works adopt ML methods [18,19] instead of DL. This may be due to the
scarcity of available datasets regarding MMH activities, that can provide a significant amount of data
to let DL methods avoid overfitting. Therefore, we propose to explore DL algorithms’ potential in
achieving a highly accurate HAR in MMH to make it reliably usable both for biomechanical overload
risk assessment and human-robot shared tasks. The main contributions are hence a comparison of DL
algorithms on an MMH dataset that is suitable for both goals and the selection of the best algorithm in
terms of trade-off between performance and complexity.

In this work, we used the fully labeled dataset of wearable sensor data (kinematic and sEMG
data), acquired during MMH activities [20] to compare DL frameworks in the ability to recognize
MMH activities. In particular, we considered four network models:

1. BiLSTM;

2. Sparse Denoising Autoencoder (Sp-DAE);
3. Recurrent Sp-DAE;

4.  Recurrent CNN (RCNN).

For each model, we first evaluate the effects of different hyperparameters on the network’s classifica-
tion performances in addressing the HAR of MMH activities problem and select their best combination.
Then, we compare the classification ability of the different network frameworks and evaluate the
performances of the best network architectures adopting the Leave-One-Subject-Out (LOSO) valida-
tion technique. Finally, we compare the selected neural networks with the DeepConvLSTM [21], a
recurrent network already used as a benchmark [22], in terms of recognition ability and computational
complexity.

The paper is organized as follows: Section 2 presents the background, including the descriptions
of the DL approaches most used in HAR; Section 3 presents the input data along with their processing
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steps and the proposed network architectures; Section 4 presents the results obtained; Section 5
discusses the results; and finally Section 6 closes the paper.

2. Background
2.1. Recurrent Neural Network

RNNSs are designed to model time series data. They are composed of Hidden Units (HUs)
connected with a feedback loop that passes the previous hidden state information to itself with a certain
delay and weight providing a memory to the network. In this way, the network’s output depends on
the current and the previous inputs. Traditional RNN structures are not good at learning temporal
relations on long-time scales because of the vanishing gradient problem [23]. This can be solved by
Gated Recurrent Unit (GRU) [24] or LSTM unit [25]. They implement gating mechanisms, creating
paths through time where the gradient can flow, and consequently, longer sequential time series can
be modelled. These RNNs compute the current output considering only the previous information.
However, continuous human movements can be better predicted if successive states are considered.
Therefore, BILSTMs [26], considering the input both in forward and backward directions, provide
more information that can improve the network performance in classifying time sequences. These
characteristics make RNNs architectures particularly suitable for HAR applications. Murad and Pyun
[27] proposed one of the first uses of LSTM networks for HAR. They tested unidirectional, bidirectional,
and cascade architectures on some benchmark datasets, one of which regarding assembling activities,
and they found that LSTM models outperformed both ML approach and CNN architectures. Porta et
al. [28] employed a BiLSTM network to classify MMH activities comparing the classification accuracy
using a single IMU and the Full-Body (FB) configuration. Arab et al. [29] compared 4 deep neural
networks to classify 10 logistic-oriented activities using 3 IMUs placed on different body positions
and found that BiLSTM network structures reach higher performances than Feed Forward Neural
Network (FFNN) and CNN.

2.2. Autoencoder

Autoencoders are a fascinating architecture because of their unsupervised characteristic. They
are commonly used as a pre-training method for feature extraction and dimensionality reduction in
DL networks. They are FFNNs composed of an encoder and a decoder modules. The first encodes
the inputs in a latent space and the latter decodes the hidden features representation back to the
original signals. The input and output layers have the same number of nodes, instead the hidden
layer, having fewer neurons, allows obtaining a low-dimensional feature set that can be used as input
of a classification layer. Autoencoders are used individually [30] or in Stacked AutoEncoder (SAE)
architectures in which autoencoders are the building blocks. Almaslukh et al. [31] applied an SAE
to publicly available datasets to enhance recognition accuracy. They stacked two autoencoders and
a softmax layer to classify data generated by the sensors embedded in the smartphone. Vincent et
al. [32] tried out a modified version of SAE, the Stacked Denoising AutoEncoder (SDAE), to extract
more robust features from corrupted data. Gu et al. [33] used the SDAE stacked with a softmax layer
to classify smartphone sensors’ data for Locomotion Activity Recognition. SDAE has been used as
a feature extraction method in HAR for ADLs, but their ability to recognize MMH activities has not
been investigated yet.

2.3. Convolutional Neural Networks

Deep CNNs have been applied to the recognition of ADLs with good performances [34], and, in
recent years, some researchers have applied them to MMH activities. CNNs include a variable number
of stacked hidden layers that can hierarchically extract characteristic features representing temporal
and spatial dependencies. The first layers detect local connected features (feature maps) performing
convolution operations on the raw sensor data through filters with shared weights; then pooling layers
(often max-pooling) fuse similar features reducing the number of the parameters and introducing scale
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invariance; fully connected layers build stronger features; and finally an inference layer, composed
of a softmax function and a cross-entropy loss function classify the input. Since time series have
one dimension, some researchers used 1D-CNNs to capture local dependencies along the temporal
dimension. Yoshimura et al. [22] used the acceleration data of a sensor placed on the worker’s wrist
and compared 6 DL methods to classify picking and packaging activities. Arab et al. [29] compared
the single sensor modality with two different sensor fusion techniques and found that 1D-CNN
underperforms compared to BILSTM networks with multisensory input. Indeed, since multiple sensor
signals are generally available, extracting spatial correlation among the different sensor data, besides
the temporal dependencies, is advisable. Niemann et al. [35] vertically stacked motion data and
used a temporal 2D-CNN to classify 7 handling activities and Syed et al. [36] compared 4 CNNs on
IMU data to recognize warehouse activities. However, CNNs underperform at extracting long-term
dependencies compared to RNNs. Thus, they are frequently combined with other architectures with
complementary modeling functionalities.

2.4. Hybrid Networks

Deep hybrid networks attract the attention of many researchers aiming at exploiting the different
abilities of the various network architecture models.

2.4.1. Recurrent Convolutional Neural Networks

One of the most interesting combinations is CNN plus RNN to extract local and long-term
dependencies in the time series data. Different research groups combined CNN with LSTM in various
ways and obtained good performances on publicly available ADLs datasets [37,38]. Ordéiiez and
Roggen [21] were the first researchers to propose a CNN-LSTM architecture (DeepConvLSTM) for
HAR of assembling activities proving their higher performances compared both to shallow and deep
CNNSs. More recently, He et al. [38] developed a model that integrates a temporal CNN, a bidirectional
GRU, and an attention mechanism to classify ADLs. Yoshimura et al. [22] used DeepConvLSTM
network as a benchmark to compare their architecture’s performance to classifty MMH activities in a
logistics environment. Thus, further investigation into the ability of RCNNSs to classify MMH activities
is needed.

2.4.2. Recurrent Autoencoder Networks

Even if autoencoders showed a high aptitude to extract low-dimensional features and denoise raw
sensor data, few studies combine them with other architectures in wearable sensors-based HAR. Gao
et al. [39] proposed a HAR algorithm based on inertial data of smartphones composed of a Stacking
Denoising Autoencoder (SDAE) and a LightGBM (LGB) classifier. They compared its performance
with those of a single SDAE, XGBoost, and CNN concluding that the SDAE-LGB combination reaches
higher accuracy and is more generic and robust than the other algorithms. Li et al. [40] compared
three different unsupervised learning techniques: the Sparse AutoEncoder (SpAE), the DAE, and PCA,
for HAR based on accelerometer and gyroscope sensor data. They found that the SpAE performed
better than the others. However, as for autoencoders, at the best of our knowledge, no researchers
have investigated the ability of recurrent autoencoder networks to recognize MMH activities.

2.5. Selected Architectures

Among the aforementioned network architectures, some are more suitable to HAR giving more
chances to obtain higher recognition accuracies on MMH activities. The BILSTM outperforms other
RNNs when dealing with time sequences and DAE is generally able to extract more robust features
in an unsupervised manner. Thus, it is interesting to explore both their single implementations and
their combination. In addition, since CNNs proved their ability in feature extraction for classification
tasks, but lack in detecting long-term dependencies in time series data, the CNN-RNN combination is
a promising option for HAR. Therefore, the network architectures to classify MMH activities proposed
in this study are the BiLSTM, a Sp-DAE, a Recurrent Sp-DAE, and a RCNN.
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3. Methods and Materials
3.1. Dataset and Networks Input

The publicly MMH dataset used in this work has been presented in our previous paper [20]. It
has been collected on 14 subjects in a laboratory environment and comprises 2 activity sets: an MMH
activity set and an isokinetic activity set. The former contains lifting and carrying activities of different
loads placed at various heights and performed in bimanual and one-handed modes. The latter includes
one-handed load lift actions of different weights and at different velocities. In particular, the seven
activities included in the dataset are the: N-pose (N), Lifting from the Floor (LF), Keeping lifted (K),
Placing on the Table (PT), Lifting from the Table (LT), carrying (W), and Placing on the Floor (PF). This
dataset includes labeled FB motion data measured by the commercial device Xsens MVN suit (Xsens
Technologies B.V., Enschede, Netherlands) and sEMG signals of arm and forearm muscles measured
with a device previously developed by our team [41].

In this work, we adopted an input composed of 10 signals: eight motion and two sEMG signals.
Selected motion data can be gathered with other sensing technologies to enhance the generalizability
of the proposed approach. These include the flexion of the chest, shoulder, elbow, and knee; the hand
position and acceleration in the front direction relative to the pelvis; the velocity on the transversal
plane and the position on the global vertical direction of the pelvis. Root Mean Square (RMS) sEMG of
the biceps brachii and the brachioradialis muscles complete the input. The sEMG signals were included
as they can provide insights on held loads and muscular effort that are useful for both biomechanical
overload estimation and robot control in human-robot shared tasks [42]. Moreover, multiple sensing
modalities can provide higher performances in HAR, since they supply complementary information to
recognize actions[43]. When using multimodal data, a challenging task is the choice of the sensing
modality fusion technique: Early Fusion (EF) combines the inputs at the beginning of the training
phase; Late Fusion (LF) employs classifier ensembles combining the classifiers” outputs. In this study,
for the sake of simplicity, we chose to adopt the EF technique, vertically stacking the data into a 2D
matrix.

After input data preprocessing, the time series are segmented by a sliding window of a fixed
length to obtain data segments as inputs for the HAR algorithm. Ideally, each segment should contain
one activity, therefore the segment length is key to optimize the recognition accuracy. Wider windows
contain more information about the activity but increase the chance of having an activity transition
inside the windows. On the contrary, narrower windows increase the risk of not having enough
information about the activity. Various research groups face this issue. Most of them attempt fixed
window sizes [33], while others use random length and position frames [44]. In this study, we found
a good compromise using short intervals of 1s length. This also allows the implementation of light
networks, thus limiting the computational cost and making the network portable.

The class imbalance issue must be tackled [45]. The network tends to better classify classes with
many training samples and ignore those with fewer examples. This is a common issue when dealing
with short activities such as falls. To face this problem, we down-sampled the largest class (N-pose) and
augmented the classes with fewer examples. In particular, we replicate the class segments adding white
Gaussian noise to prevent overfitting and enhancing the models’ robustness. This data augmentation
technique proved its effectiveness in many applications ranging from image classification [46] to HAR
in manufacturing [47].

3.2. Network Architectures
3.2.1. BiLSTM

The BiLSTM is the simplest architecture proposed. As shown in Figure 1(a), it consists of 5 layers.
Firstly, the sequence input layer with a size equal to the number of inputs (10), then the input is fed
into the BiLSTM layer with a variable number of HUs and maximum number of Epochs (EpS). The
output features set produced by the BILSTM layer is then provided to the fully connected layer that
learns non-linear combinations of these features. Then the softmax layer computes the probability
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distribution over the predicted output classes and the classification layer computes the cross-entropy
loss for the classification with mutually exclusive classes. We performed 200 trainings to find the
best three Eps-HUs numbers pairs. The values of the hyperparameters used in these trainings are
summarized in Table 1.

Table 1. Hyperparameters used in the BILSTM trainings.

Hyperparameter Value
Input size 10
Optimizer Adam

Maximum epochs

100, 300, 500, 700, 1000, 1500, 2000, 2500, 3000,

3500
Hidden units 100, 300, 500, 700, 900
Batch size 128
Initial Learning rate 1%103
Learning rate drop factor 0.1
Learning rate drop period 10
L2 regularization 1x1074

Loss function

Cross-entropy loss

Sequence input layer:
Raw sensor data

Input layer:
Raw sensor data

BiLSTM layer Encoder
3 |
]
Fully Connected layer g [ Hidden layer ]——v[ Features ]
5
<
! |
Softmax layer Decoder Softmax layer ]

Classification layer:
Human activities

(b)

Output layer:
Human activities

Sequence input layer:
Raw sensor data

Sequence unfolding
Iayer

Input layer:
Raw sensor data

:

Encoder

Sequence folding

Flatten layer
Iayer

=

BiLSTM layer

Normalization layer Fully Connected layer

I )
1 )

Autoencoder

[ Hidden layer

Convolutional block

Decoder Softmax layer RelU layer Softmax layer

[ I
[ J||
= ] (
[ )|
[ J||

)
)
)
)

I
Classification layer: Classification layer:
Human activities Human activities
(o) (d)

Figure 1. The graphical representation of the network architectures: (a) BILSTM; ((b)) Sp-DAE; ((c)) Recurrent
Sp-DAE; ((d)) RCNN.
3.2.2. Autoencoder

The autoencoder implemented is a Sp-DAE (Figure 1(b)). It consists of three layers and is trained
to reconstruct the original raw sensors’” data, with a variable number of HUs and Eps. After the
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first unsupervised training, the decoder is discarded and the learned features are fed into a softmax
classifier that computes the cross-entropy loss in a supervised fashion. To select the best three Eps-HUs
numbers pairs of the Sp-DAE, we performed 512 trainings. The values of the hyperparameters used in
these trainings are summarized in Table 2.

Table 2. Hyperparameters used in the SpDAE trainings.

Hyperparameter Value

Input size 10

100, 300, 500, 700, 1000, 1300, 1500, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500

100, 300, 500, 700, 900, 1100, 1300, 2000, 2500,

Maximum epochs

Hidden units 3000, 3500
Training algorithm Conjugate gradient descent
Sparsity Regularization
Sparsity proportion 0.05
L2 regularization 11074
Transfer function log-sigmoid
Loss function Sparse mse

3.2.3. Recurrent Sp-DAE

The Recurrent Sp-DAE (Figure 1(c)) is implemented by stacking the BILSTM architecture (Section
3.2.1) on the encoder (Section 3.2.2). In this way, the BiLSTM, learning the temporal dependencies,
should provide better recognition performances than the single Sp-DAE. We performed 48 trainings
in two steps to select the optimal Sp-DAE and BiLSTM architecture combinations. First, we used the
best three Eps-HUs pairs selected for the BILSTM and the Sp-DAE. Then, we added five more BiLSTM
hyperparameter combinations: 300 HUs and from 3000 to 5000 Eps with 500 increments.

3.2.4. RCNN

Lastly, the proposed RCNN (Figure 1(d)) consists of 14 layers: the sequence input layer; the
sequence folding layer; two convolution blocks that in turn are composed of three layers: the 2D
convolution layers, the normalization layer, and the ReLU layer; the sequence unfolding layer; the
flatten layer; the GRU layer; the fully connected layer; the softmax layer; and the classification layer.
The sequence input layer, differently from the BiLSTM network (Section 3.2.1), has a 2D input size
equal to the number of inputs per the sample number of the windows (10 x 240). Thus, the segmented
time series inputs are considered as images. Then, the sequence folding layer, converting the sequences
of images to an array of images, allows applying convolutional operations independently to each time
step. As a result, after the convolution block operations, the sequences are restored by the sequence
unfolding layer. The 2D convolution layer applies sliding local receptive fields (filters) to the 2D input
and thus learns the local features on the regions covered reducing the model size compared to the 1D
filters. In this study, we used filters with the most popular size choice 3x3 for both the 2D convolutional
layers. After having performed some trainings to evaluate the classification performances obtained
with different hyperparameters, we set the filters number to 32 and the padding to 0 for both the 2D
convolutional layers. Instead, we left the default values both for the stride and the dilation factor (1x1)
for the first convolutional layer, but we set to 1x4 the stride and 2x2 the dilation factor for the second
convolutional layer.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 3. Values of hyperparameters used in the RCNN trainings.

Hyperparameter Value
Input size 10x240
Filter size 3x3
Filter dimension 32
Padding 0
1° CNN layer stride 1x1
2° CNN layer stride 1x4
1° CNN layer dilation factor 1x1
2° CNN layer dilation factor 2x2
Maximum epochs 100, 300, 500, 700, 1000
Hidden units 100, 300, 500, 700, 900

The use of a dilation factor allows the exponential expansion of the receptive field without
changing the size of the field map and without the need for pooling layers that cause information losses
in the feature representation since they down-sample the feature maps. After the convolutional layer,
we used an instance normalization layer that normalizes the data for each observation independently
and, compared to the batch normalization layer that normalizes each channel independently, improves
the training convergence besides reducing the sensitivity to network hyperparameters. Then, the
ReLU layer speeds up learning compared to sigmoid or tanh non-linear functions. After the two
2D convolutional blocks and after the sequences are restored by the sequence unfolding layer, the
flatten layer converts the images to feature vectors that are fed as input in the recurrent layer. In
this architecture, we chose to use the GRU layer because it demonstrated comparable recognition
accuracies compared to the BILSTM layer while reducing the network complexity. Finally, the fully
connected layer, the softmax layer, and the classification layer, operating on the extracted features,
determine the human activity classes. We performed 100 trainings to select the best three Eps-HUs
pairs. The hyperparameters used in the implementation of the RCNN are summarized in Table 3.

3.3. Networks Training and Testing

Training and testing of networks followed three steps. The first aimed at selecting the architectures
with the best classification performance. In the second step, we analyze the performance trend of
the best two networks with an increasing number of subjects to evaluate whether classification
performance stabilizes or it might icrease with a larger dataset. Then, we adopted the Leave-One-
Subject-Out (LOSO) technique to assess the classification performances for each subject numerosity,
ranging from 1 to 13, on data acquired on the subject not considered during training. The latter two
steps were applied to the DeepConvLSTM (Section 2.4.1)) network, used as a benchmark in terms of
both classification performance and computational complexity.

More in detail, in the first step, for each network model previously depicted (Section 2) we run
a large amount of trainings to select the best hyperparameters for each structure. In particular, we
investigated the best number of Eps and HUs that trigger higher performances. The best three Eps-HUs
pairs are estimated with the grid search approach optimizing the classification performance. For every
test, we considered the dataset composed of all the 14 subjects and we took 70% of the dataset for
training and the rest 30% for testing. For the second step, we organized the data in 14 different datasets
composed of an increasing number of subjects Thus, for each of the three hyperparameters pairs
selected, we performed three different trainings for each subject numerosity, for a total of 126 trainings.

Training and testing are performed in Matlab (R2021b, MathWorks, Natick, Massachussetts, USA),
using the Deep Learning Toolbox™ that provides a framework to design and implement deep neural
networks, on a machine with an Intel 19-12900K CPU @ 3.20 GHz, 64 GB RAM and NVIDIA GeForce
RTX 4090.
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3.3.1. Metrics

Many performance assessment metrics to compare the aforementioned architectures are available:
the accuracy, the precision, the recall, the F1-score, the confusion matrix, and the Area under ROC
curve [9]. Among them, the most used are the accuracy and the Fl-score. In this study, we used the
F1-score because it is generally more trustworthy than the accuracy when having a class imbalance
problem. Thus, it helped us to countercheck that this issue had been solved. The computational
complexity can be assessed with different metrics, but no "universal" measure exists [48]. In this study,
we used the number of Multiply and ACcumulate (MAC) and the total number of Multiplication and
Addition (MA) operations because they allow us to evaluate the memory usage and the computational
cost of the network for a large variety of computing architectures.

4. Results
4.1. Best parameters selection

The performance of the network architectures obtained with the different Eps-HUs pairs are
reported as checkerboard plots in Figures 2, 3, and 5, where colors are associated to Fl-score. This
visualization eases the observation of the best-performing parameters in terms of F1-score and how
moving from these values deteriorates the network scores.

4.1.1. BiLSTM

The BiLSTM network classification performance converges to the maximum with 300 HUs and
different values of Eps (Figure 2). The best Eps-HUs pair is 300HUs - 2500Eps with 95.7%, followed by
300HUs - 2000Eps and 300HUs - 1000Eps with 95.3%.

F1-score
96
3500 95.5
3000
I .
2500
» 2000 945
e
8
8 1500 94
I
E=3
1000 93.5
700
93
500
300 92.5
100 92
100 300 500 700 900

# Hidden Units

Figure 2. F1-score of the BILSTM netoworks trained with different Eps - HUs pairs. Selected pairs are marked
with black diamonds.

4.1.2. Sp-DAE

In Section 3.2.2, we introduced a large number of combinations of Eps-HUs pairs for the Sp-DAE.
For the sake of clarity, we report only the subset of parameters that performed better, excluding
combinations that provided limited F1-scores (Figure 3). The Sp-DAE shows a stronger convergence in
the middle of the checkerboard plot area. The best Eps-HUs pair is 2000HUs - 5500Eps with 94.7%,
followed by 1100HUs - 5500Eps and 2000HUs - 5000Eps with 94.5%. Although the hyperparameters of
Sp-DAE are strongly higher than BiLSTM, the loss of one percentage point of the F1-score compared to
the BILSTM suggests that the Recurrent Sp-DAE could improve the classification performance.
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Figure 3. Fl-score of the Sp-DAE trained with different Eps-HUs pairs. Selected pairs are marked with black
diamonds.

4.1.3. Recurrent Sp-DAE

As reported in Section 3.2.3, we trained 48 combinations of Sp-DAE and BiLSTM. Figure 4 shows
the checkerboard plot of the F1-scores obtained and the Sp-DAE with 1300 HUs and 3500 Eps showed
to be the best in extracting input features for BILSTM. The best BiLSTM has 300 HUs and 2500 Eps
followed by 4000 and 4500 Eps. All these Recurrent Sp-DAE have Fl-scores close to 94.3%. Differently
from SP-DAE, where the softmax layer better recognizes the different activities with features extracted
by encoders with higher dimensions, in the Recurrent Sp-DAE, the features extracted by an encoder
with smaller Eps and HUs perform better.

F1-score

96
95.5
2000HU-5500Ep
95
& 2000HU-5000Ep
° 94.5
8
§ 2000HU-3500Ep 94
2 93.5
+£ 2000HU-3000Ep
93
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o beQY\ %QQY\ 300\)\ %QQY\ %“Q\)\ %00\)\ o
# BiLSTM

Figure 4. Fl-score of the Recurrent Sp-DAE trained with different Sp-DAE-BiLSTM combinations. The best-
performing combination is marked with a black diamond.

4.1.4. RCNN

Figure 5 shows the F1-scores of the RCNN trained with the proposed Eps-HUs pairs. Differently
from the BiLSTM and the Sp-DAE networks, the RCNN exhibits higher classification performances
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with lower HUs and Eps keeping the Fl-scores at the same level of the BILSTM network. The best
Eps-HUs pair is 100HUs - 300Eps with 95.9%, followed by 100HUs - 100Eps with 95.8%, and 300HUs -

100Eps with 95.7%.
F1-score
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# Hidden Units

Figure 5. F1-score of the RCNN trained with different Eps-HUs pairs. The best-performing combinations are
marked with black diamonds.

4.2. Network architectures comparison

Training outcomes of the four different neural networks show that the Sp-DAE underperforms
compared to the other two network architectures, regardless of the BiLSTM layers. Sp-DAEs are indeed
stuck at an F1-score of more than one percentage less than the other architectures. Therefore, BILSTM
(95.7%) and RCNN (95.9%) are preferred to recognize MMH activities exploiting wearable sensors’
data and are further analyzed.

Figure 6 shows the Fl-scores of these networks with the best three Eps-HUs pairs while varying
the number of subjects in the training dataset. Dotted lines represent the overall average of F1-score.
Regarding the BiLSTM, all the three hyperparameters pairs show great recognizing performances and,
since the network complexity does not change, we decided to use the 300 HUs - 2500 Eps pair for the
LOSO comparison (Section 4.3) since it has higher F1-score when trained with 14 subjects. In addition,
the trend of the average Fl-score shows a convergence to 95% with increasing subject numerosity
and does not drop under the 95% threshold from the 11% subject. The RCNNs show almost the same
overall means (94.9%). Thus, we used the 100 HUs - 300 Eps pair for the LOSO comparison (Section
4.3), since it has a lower complexity and higher F1-score when trained with 14 subjects. In this case,
the average F1-score shows a slightly increasing trend with increasing subject numbers.

4.3. Performance of the selected networks with LOSO validation

In the LOSO validation, we considered the BiLSTM with 300HUs-2500Eps and the RCNN with
100HUs-300Eps trained with subject numerosity ranging from 1 to 13. Figure 7 reports the F1-scores
obtained for the two network architectures. Both show a convergent trend, but the maximum value,
reached with 13 subjects, is 90.3% for the BiLSTM, while the RCNN stopped one percentage point
below (89.2%).

The Fl-scores for each activity class obtained in the LOSO validation, considering 13 subjects
in the training dataset, are reported (Table 4). The score is higher than or close to 90% for each class,
except for the PT actions.
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Figure 6. F1-score for each subject numerosities of the different architectures with the best epochs number - hidden

units pairs.

Table 4. Fl-score for each action.

Action BiLSTM RCNN

N-pose (N) 89.1% 90.1%

Lifting from the Table (LT) 94.5% 92.4%
Placing on the Table (PT) 84% 85.1%
Lifting from the Floor (LF) 90.3% 88.7%
Placing on the Floor (PF) 88.8% 86.7%
Keeping lifted (K) 92.3% 91.4%
Carrying (W) 93.4% 90.2%

4.4. Comparison of the selected networks with SoA

Table 5 reports the Fl-score, the MAC, and the MA operations of the BiLSTM with 300HUs-
2500Eps and the RCNN with 100HUs-300Eps and the DeepConvLSTM with 128HUs as reported by
Ordoéiiez and Roggen [21] and 300Eps as our RCNN. The network classification performances are
reported for the 70% — 30% split of the complete dataset and for the LOSO validation.

Table 5. Comparison among BiLSTM, RCNN, and DeepConvLSTM.

F1-score 70-30

Neural network split F1-score LOSO MAC MA
BiLSTM 95.7% 90.3% 1492200 1532400
RCNN 95.9% 89.2% 2724028 5448056

DeepConvLSTM 95.2% 90.3% 327027584 543762176

5. Discussion

Results presented in section 4 show that BILSTM and RCNN perform better than networks based
on autoencoders, though being simpler in terms of parameters and epochs needed to achieve peak
performance. In fact, the Sp-DAE, even if stacked with the BILSTM architecture, reported the worst
classification performances and they achieved higher scores only increasing the HUs number up to
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Figure 7. Fl-score for each subject numerosities with the LOSO test of the (a) BILSTM with 300 HUs and 2500 Eps
and (b) RCNN with 100 HUs and 300 Eps.

2000. Surprisingly, adding the BiLSTM deteriorated the algorithm performance compared to softmax,
suggesting that the extracted features canceled the potential benefits of time recursion.

In the training, BILSTM and RCNN performed similarly, but RCNN showed an increasing trend
of Fl-score as the number of subjects in the dataset increased, suggesting that it could result in
higher classification performances with more subjects. However, the addition of convolutional layers
notably increases the network complexity compared to the BILSTM. Also in the LOSO analysis, these
networks performed similarly. However, the BILSTM achieved a slightly better F1 score though being
simpler than RCNN. Therefore, for this dataset, BILSTM proved to be the best choice both in terms
of classification performance maximization and optimization of the network complexity. However,
the RCNN Fl-score is close to BILSTM's, and it shows a slightly increasing trend of Fl-score with the
subject number, which makes it potentially perform better than BiLSTM. The potential improvement
might justify the bigger complexity of the network and the consequent computational burden, but this
trend should be confirmed and evaluated with a larger dataset.

The LOSO validation confirmed that both BiLSTM and RCNN have the potential to achieve high
Fl-scores when data comes from a new subject increasing the reasons to further investigate in this
direction. This result is consistent with a similar BILSTM architecture that has been implemented in
[28] to classify MMH tasks. The authors obtained comparable F1-scores (91%) to ours but at the cost of
using the FB configuration, composed of the 3-axis accelerations and angular velocities of all the 17
IMUs of the Xsens suit, resulting in 102 network inputs. This makes their network more complex and
the method less flexible and generalizable since the users are forced to wear an FB suit equipped with
IMUs to have suitable motion data. Conversely, the proposed BiLSTM network is much lighter, as the
input is composed of only 10 variables. Moreover, using joint angles, velocity, and acceleration data
opens the way to test and enhance the network with motion data gathered with other technologies
such as RGB camera-based motion capture. This is a crucial point for HAR because the purchase and
use of a FB suit can be unaffordable in MMH activities. Indeed, nowadays, many researchers exploit
signals acquired with IMUs embedded in smartphones or even smartwatches for HAR of ADLs [49]
and even MMH activities [50], but still with low classification performances.

The proposed RCNN is, to the best of our knowledge, a novel proposal for HAR, as the existing
RCNN is much more complex. DeepConvLSTM [21] has four convolutional layers instead of our two
layers and uses two LSTM layers instead of one GRU. The comparison with our proposed networks
showed that DeepConvLSTM has similar (even lower) recognition performance despite its consistently
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Figure 8. Confusion matrices of the test data for the BILSTM and RCNN network architectures.

higher computational cost. This may be intepreted with an unnecessary complexity of this network in
relation to the classification task. This is confirmed by the application of this network in other datasets
[22,50,51]. Considering the supposed target applications, the classification performance achieved on
most classes allows using the proposed network. The most critical class was PT (placing the object on
the table), which is mainly confused with the N-pose static position, maybe for its little variation of
joint flexions especially when handling light loads (Figure 8). In the evaluation of the biomechanical
overload due to MMH, which causes WMSDs, newly developed methods rely more and more on
quantitative data instead of visual inspection of videos [52,53]. Both the proposed HAR networks
enable automatic segmentation, thus drastically reducing the time that the rater needs for manual
segmentation. However, if higher recognition performances are desired, the raters can review the
network output and correct it, providing valuable new data to train the network and increase its
classification ability.

6. Conclusion

This work has been motivated by the scarcity of research on HAR systems for MMH activities
given its potential impact on the automatization of ergonomic risk assessment and human-robot
collaboration in shared tasks. In this study, we compared different DL algorithms to classify MMH
tasks and proposed the BiLSTM and the RCNN as the best choices. In fact, they achieve a similar
(even better) classification performance with regards to the SoA with a significantly lower complexity.
BiLSTM is preferable for network complexity, whereas RCNN should be taken into consideration for
larger datasets. These networks require a limited set of motion and sEMG data and can be used in
ecological settings in both logistics and industry. The abstraction from raw data encourages us to test
these networks with motion data gathered with depth/stereo cameras, which would limit the number
of wearable sensors and improve the feasibility of its pervasive use in MMH activities performed in
spatially limited workplaces. Moreover, we plan to reduce the network input to minimize the sensors
that the user needs to wear to obtain segmentation with comparable F1-score, thus enlarging possible
applications of the proposed networks.
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