Pre prints.org

Article Not peer-reviewed version

Automated Code Generation for
Industrial Applications Based on
Configurable Programming
Models

Alexios Lekidis
Posted Date: 23 August 2023
doi: 10.20944/preprints202308.1644 V1

Keywords: Industry 4.0; Programming Model; Automated Code Generation; Ethernet Powerlink; CANopen;
Fault-Tolerance

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/744597

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Automated Code Generation for Industrial
Applications Based on Configurable
Programming Models

Alexios Lekidis
Public Power Corporation S.A., Chalkokondili 22, Athens, 10432, Greece, a.lekidis@dei.gr

Abstract: As the demands in reliability and high-degree of automation in industrial applications
are increasing exponentially, the current Industry 4.0 trend lies in migrating towards smarter
technologies that increase flexibility and provide autonomous operation. To tackle this, manufacturers
shifted towards Real-Time Ethernet communication which supports autonomous operation, faster
sensor/actuator configuration and high degree of determinism. Nevertheless, the uninterrupted
operating principle of legacy industrial systems as well as the system complexity and heterogeneity
constitutes the transition to Real-Time Ethernet very challenging. This article proposes a novel method
allowing to automate the generation of executable code for Real-Time Ethernet architectures based
on high-level programming models. The method is based on a programming model and modular
code artifacts for the hardware architecture, employing Real-Time Ethernet communication. Through
an tool-supported algorithm the high-level model is linked to the architecture’s communication
primitives and interfaces. The tool-support reduces significantly the development and debugging
effort for Real-Time Ethernet applications and increases the application reliability, since the generated
code is based on verified programming models. Additionally, the tool creates dedicated files, which
allow automated industrial network configuration without any human intervention. Finally, by
embedding firewall policies into the code generation process, the method guarantees cyber-resilience
for the Real-Time Ethernet architecture. We demonstrate the proposed method in Programmable
Logic Controllers (PLCs) of a Public Power Corporation’s Hydroelectric Power Plant, which control
the temperature and rotor speed of a power generator. The results demonstrate the method’s ability
to generate rapidly trustworthy and fault-tolerant code for the autonomous plant operation. The
hurdles in time and effort for developing, configuring and debugging Real-Time Ethernet applications
can be minimized through a high-level programming model that allows automated generation of
executable code that is reusable for similar applications. Such time and effort reduction may pave the
way towards the Industry 4.0 area.

Keywords: Industry 4.0; programming model; automated code generation; ethernet powerlink;
CANopen; fault-Tolerance

1. Introduction

Industrial systems have undergone four stages of revolution, starting from the mechanical phase
in the end of 18th century to the first production lines in the beginning of the 20th century. The
third stage from 1970 and onward introduced the first electronic devices as the Programmable Logic
Controllers (PLCs) for automating parts of the manufacturing process. Over the latest years, the
systems have become fully automated and gradually require no human intervention as they begin
to operate autonomously. This introduced a new area in manufacturing called Industry 4.0 allowing
significant improvements in performance and decision-making, which makes production lines more
efficient [1].

A significant drawback of automation though is that it increases the system’s complexity as well
as its heterogeneity. This increases the development and maintenance effort for control engineers.
Moreover, another challenge for industrial manufacturers lies on the inability of traditional TCP/IP

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-8243-7075
https://doi.org/10.20944/preprints202308.1644.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

2 of 25

protocols to satisfy deterministic, real-time demands of industrial applications [2]. On top of that,
the risks in safety and reliability of the industrial system are ever-growing [3], especially when
considering that industrial machinery is taking decisions autonomously based on input from its
external environment.

To tackle these challenges, device vendors have introduced proprietary Real-Time Ethernet
technologies to allow real-time communication and determinism characteristics. Such characteristics
allow industrial applications to meet their tight deadlines as opposed to the traditional Ethernet.
Moreover, Real-Time Ethernet technologies provide high degree of parameterization in the control
devices, thus making them reasonably intelligent. Towards the direction of Real-Time Ethernet
technologies each vendor started to define different communication profiles for each application
domain, which established a heterogeneity not only in terms of protocols, but also in operating systems
and drivers for the proprietary hardware that is specific by each vendor [3].

The presence of multiple vendor solutions, made industrial plant manufacturers hesitant for the
adoption of Real-Time Ethernet, due to the time and effort needed for the integrating the solutions
into their legacy production lines. Instead many production lines nowadays employ serial or electrical
connections for the communication within the factory [4]. A solution towards this direction is to
provide standardized protocols and profiles that will be used by all the industrial device vendors to
build and configure their devices, such as Ethernet Powerlink [5,6] and CANopen [7]. Nevertheless,
even with the presence of standardization, the challenge of developing rapidly reliable applications is
still present for industrial plant manufacturers.

Another important challenge for industrial architectures towards the Industry 4.0 area is the
cyber-security, indicating the ability of an infrastructure to remain resilient against cyber-attacks.
Cyber-security is strongly connected to safety and reliability requirements of a system [8]. Towards this
direction, many industrial platforms started to include security mechanisms, as the Netfilter firewall
that uses the iptables rules and policies [9].

However, the presence of these mechanisms does not increase the security level of industrial
architectures. This is due to the fact that they are either 1) not used due to implementation effort
that is required or 2) use simplified rules and policies for their firewalls that allow all inbound
as well as outbound communications [10]. The use of simplified rules is explained by the desire
of industrial manufacturers to not cause any degradation on the industrial process. Nevertheless,
Ethernet Powerlink networks require a high-level of determinism, which is at risk if traditional Ethernet
messages are transmitted to the Ethernet Powerlink network. The reasoning is that such messages
may introduce conflicts or extended processing delays.

In this paper, we propose a novel method allowing to automate the generation of verified
executable code based on a high-level programming models for industrial applications. Apart from
the functional code, our method provides the additive ability of defining firewall rules for each process
to protected the Ethernet Powerlink network against unauthorized access.

The method is demonstrated through case-study on a safety-critical system that allows
fault-tolerance for power production plants. Specifically, the generated code is deployed in
Programmable Logic Controllers (PLCs) [4] that control the power generator of a Hydroelectric
Power Plant, used by the Public Power Corporation in Greece to produce electricity. The case-study
illustrates the reliability of the power generator under both normal as well as error-prone operating
conditions. Specifically, this article has the following concrete contributions:

¢ Definition of a high-level programming model for industrial applications

* Development of reusable code templates for automated generation of executable code for
industrial applications

¢ Implementation of mapping procedures and deployment configuration for industrial applications
on Real-Time Ethernet architectures using Ethernet Powerlink

* Specification of firewall policies to produce rules that ensure cyber-resilience for the industrial
architecture

* Application of the method to a Hydroelectric Power Plant of the Public Power Corporation

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

3 0f25

The rest of the article is organized as follows. Section 2 provides a brief introduction to industrial
automation networks, such as Ethernet Powerlink as well as the programming model that is used
for modeling networked embedded applications. Section 3 demonstrates the proposed method by
applying the programming model on industrial applications and Section 4 evaluate the demonstrated
method on a safety-critical system of an industrial plant. Then, Section 5 presents the main benefits
and limitations of the proposed method as well as compares it with similar work. Finally, Section 6
provides conclusions and perspectives for future work.

2. Background

2.1. Industrial automation networks

In this section we provide a brief introduction to Real-Time Ethernet protocols that are used in the
scope of our method.

2.1.1. Ethernet Powerlink (EPL)

EPL [6] is a commercial protocol for industrial automation systems based on the Fast Ethernet
IEEE 802.3. One of protocol’s major advantages is that it can operate with either the use of Ethernet
switches or hubs, depending on the temporal constraints of the application. To overcome the effect of
collisions occurring in standard Ethernet systems, EPL uses a TDMA technique (deployed in the data
link layer), which is based on a mixed polling and time slicing mechanism, called Slot Communication
Network Management (SCNM) (Figure 1). This technique uses a special node, referred as Managing
Node (MN), to grant the slave devices, referred as Controlled Nodes (CN’s), access to the medium
only when they are polled. The use of SCNM hampers the direct deployment of standard Ethernet
devices in the network, as they would corrupt the access mechanism. To overcome this limitation
dedicated gateway are connected to control the communication traffic of standard Ethernet devices.
The supported topologies in EPL are the line and star topology.

Start Phase Isochronous Phase Asynchronous Phase | Idle Phase

sl [ma] (]

Figure 1. EPL cycle.

Controlled Node Managing Node

EPL supports periodic and event-based data exchange during a cyclic period of fixed duration.
This period is divided in four phases, the starting, the isochronous, the asynchronous and the idle
phase. The synchronized transition between phases is done through broadcast frames initiated by
the MN device. More specifically, the reception of the Start of Cycle (SoC) frame by the slave devices
ends the starting phase and accordingly begins the isochronous (cyclic) phase. During this phase
the MN polls progressively every CN through a PReg unicast frame, in order to receive their data
responses through the subsequent PRes frames. The PRes frames are also broadcasted, in order to
facilitate data distribution amongst all the remaining nodes. Having polled all the CN devices in the
EPL network, the MN broadcasts the Start of Asynchronous (SoA) frame, to indicate the beginning of
the asynchronous period. This period allows a single asynchronous transaction (Send in Figure 1) to
be performed. This transaction might be an asynchronous EPL data frame (ASnd frame), detection
of active stations (IdentRequest frame), or even a standard Ethernet data frame. All the asynchronous
transactions are enqueued in the MN, in order to be transmitted according to their priority. As the

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

4 of 25

asynchronous period is used for the exchange of large frames, the EPL cycle includes the idle phase to
ensure that the ongoing transaction has ended.

2.1.2. Integration with CANopen communication profiles

Even though Real-Time Ethernet technologies are widely used for industrial automation systems,
application development is still challenging, due to their low level complexity as well as their high
expertise needed for their configuration. Therefore, a higher layer of abstraction is required, which
is typically found in application-layer protocols. An increasingly popular application-layer fieldbus
protocol is CANopen [7], as it provides a vast variety of communication mechanisms, such as time or
event-driven, synchronous or asynchronous as well as additional support for time synchronization
and network management. Furthermore, it offers a high-degree of configuration flexibility, requires
limited resources and has therefore been deployed on many existing embedded devices.

EPL is fully integrated with the CANopen protocol as well as its communication and device
profiles [7]. As a result of the integration, CANopen’s objects are encapsulated into lower-layer
EPL frames. Initially, during the isochronous phase of the EPL cycle (Figure 1), data relevant to the
application are stored and exchanged through Process Data Objects (PDOs). To this regard, the MN
sends a real-time data transfer frame, or Transfer Process Data Object (TPDO) as it is referred in
CANopen specifications, to each CN via a PReq frame. In turn, each CN stores the data in one or more
RPDOs and responds with a TPDO encapsulated in a PRes frame. Moreover, in the asynchronous
phase configuration data are exchanged through Service Data Objects (SDOs), used for the transmission
of configuration data in CANopen. SDOs are encapsulated in ASnd frames. EPL also uses the Object
Dictionary (OD) of CANopen as a node database for storing all the network-accessible data. It may
also contain a maximum of 65536 entries as well distinguished in the communication, manufacturer
and device specific categories. The OD entries are described by the generic description of a device type,
or so-called in CANopen XML Device Description (XDD), as well as the configuration for a specific
device, or so-called XML Device Configuration (XDC), file formats.

Even though the CANopen communication profile is fully integrated in EPL, there are also
minor differences between them as with the SDO channels, which are defined and configured during
initialization in CANopen, but instead EPL allows a dynamical configuration of these channels.
Another difference lies on the transmission of unconfirmed segment frames during the segmented
data transfer in EPL, whereas CANopen segments are always confirmed [7]. A method for confirming
the transmission when large amounts of configuration data need to be exchanged is through the use of
multiple expedited SDO transfers.

2.1.3. Application development with openPOWERLINK

To facilitate application development with Ethernet Powerlink (EPL) a tool was developed, named
openPOWERLINK [11]. openPOWERLINK is an open source (BSD Licence) Real-Time Ethernet stack
provided by SYSTEC electronic !. openPOWERLINK is developed using a layered approach, which
segments the system in a hierarchical way, namely the user and the kernel part. The former implements
the application layer of the EPL protocol and provides an API for the development of EPL applications.
It contains an implementation for the OD, as well as the PDO, SDO, Error Handler and Event Handling
modules. The latter implements the Data Link Layer (DLL) of the EPL protocol and the necessary
drivers to communicate with the hardware. It also contains an Event Handling module as well as
implementations for an Ethernet and a time-critical driver (for the time slicing mechanism). The Event
Handling module is responsible for delivering events, which are related to object dictionary accesses,
completion of SDO transfers, configuration and stack errors etc. The two parts interact with each other

1 http:/ /www.systec-electronic.com

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

5o0f 25

by message passing through the Communication Abstraction Layer (CAL). All the processes defined
above the CAL have a high-priority in the stack, whereas the ones below have a low-priority.

The overall architecture of the openPOWERLINK stack is illustrated in Figure 2. Following
the integration with CANopen profiles, openPOWERLINK also supports Management (NMT)
functionalities related to CANopen [12], to allow operational state changes for each node of the
EPL architecture. Operational states in openPOWERLINK are managed through the NMT module that
is included in each Managing Node. With this module the Managing Node can manage the NMT state
machine of the Controlled Nodes. Specifically, the Managing Node can change the state of Controlled
Nodes according to four options: PreOperationall, PreOperational2, ReadyToOperate and Operational.
In the PreOperationall state all the modules are stopped, the PreOperational2 allows the functionality
all the modules except from the PDO and the ReadyToOperate is a transitional state where the PDO
module before moving to the Operational state.

EPL Application
API
Event
Handling
HE:(;; oD PDO SDO
NMT
User part
Communication Abstraction Layer
Data Link Layer
Event
Handling
Ethernet Time—critical
Driver Driver
Kernel part
EPL Hardware

Figure 2. openPOWERLINK stack architecture.

Lessons learned from our usage of openPOWERLINK for the development of functional industrial
applications included the following sequential steps:
1. The MN should detect and access the connected CNs in the EPL network through an Ident

Request
2. The Object Dictionary entries in the CNs are initialized by dedicated SDO frames in the

asynchronous phase of the EPL cycle

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

6 of 25

3. The process variables of the EPL Application layer should be linked with entries of the OD
module for each node (MN or CN). Once linked, a modification of a process variable will

automatically signal the API layer to update the dedicated entry in the node’s OD.
4. Implementation of the callback between the Communication Abstraction Layer (CAL) and the

Data Link Layer for the kernel part.
5. Implementation of the callback between the EPL Application and the API layer for the user part.

Despite the presence of the openPOWERLINK stack and the presented application development
steps, the development of industrial applications using openPOWERLINK requires extensive
knowledge of the API. Additionally, it may often be time-consuming, due to the asynchronous callbacks
that should be considered for data handling as well as the need for proper device configuration.
Specifically, the main challenges (by priority level) are summarized below:

1. Separation of functionalities between the EPL nodes. The developer should be able clarify and
implement a different behavior for each EPL node, according to the type of EPL application. As
an example in a sense-compute-control application the MN node is not only used for polling,
but the CN’s may often require dedicated data from it, in order to perform actuation. This is
handled in the EPL cycle by supporting transmission capabilities to the MN node using proper
configuration. Therefore, the developer should be able clarify and implement a different behavior

for each EPL node.
2. Mapping of application-specific functionality to the Object Dictionary entries. Once a clear

functionality separation is defined, specific entries to the Object Dictionary should be assigned
for handling the network configuration as well as the exchange of time critical or asynchronous
data in the application. This task should be done in respect to the CANopen profile and thus
requires high expertise, in order to define the correct data encoding and object linking and may

be time consuming if the application’s behavior is complex.
3. Selection of the EPL configuration parameters. EPL applications are characterized by strict

timing constraints. Therefore the selection of parameters, such as the cycle duration, the timeout
for acquiring the polling responses, the tolerance timeout in the CN'’s for receiving the SoC
frame and the maximum transmitted data during the asynchronous phase, determines to a large
extent the EPL application functionality. The selection of these parameters also depends on the
characteristics of resource-constrained devices (e.g., computational platforms), which are chosen
in the underlying hardware architecture.
To tackle these challenges in Section 3 we illustrate a method for reducing the engineering time
and effort for the development of industrial automation application. The method is based on the
Pragmatic Programming Model (PPM) that is described in the following section.

2.2. PPM: A programming model for networked embedded applications

The Pragmatic Programming Model (PPM) [13] is a description language developed to provide a
simple and convenient way for describing highly-parallel applications expressed as a process network,
which involves communication between different processes. A process network is a directed graph,
where the nodes represent the processes and the directed edges represent the communication channels
between them. The language has been inspired by DOL (Distributed Operation Layer) [14], which
is a framework devoted to the specification as well as the analysis of mixed software/hardware
systems by providing a Kahn Process Network (KPN) model of the application. Even though DOL
provides a fine grained programming model for the application software, it cannot be extended in
networked embedded systems due to three main reasons. Initially, it uses as a basic representation
the KPN programming model, in which each process can only communicate through the use of
FIFO queues. Writing/reading to/from the FIFO queues is non-blocking since they are assumed
to be as large as needed. However, networked embedded systems may use other ways to support
communication between different devices apart from FIFO queues, as for example through the use
of shared memories. Moreover, as we previously mentioned each device has limitations on its
available storage memory and therefore the size of every FIFO queue should be bounded. Secondly,

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

7 of 25

DOL allows restricted communication primitives, which are allowing synchronous communication
between the application-level processes. Nevertheless, networked embedded systems are mainly using
asynchronous communication, such as event-triggered transmission, and dedicated techniques as
asynchronous callbacks to perform data exchange. Finally, since DOL is used to describe multiprocessor
systems, specific API primitives of the hardware (HW) architecture in networked embedded systems
are also not supported. For all these reasons, we have defined the a new framework (PPM),
which addresses these limitations in a systematic way and provides additional characteristics to
the description of the application software (detailed in the following paragraph).

In PPM, application software is defined by using a process network model. It consists of a set of
deterministic, sequential processes communicating asynchronously through shared objects, such as
FIFOs, shared memories and mutexed locations. The process network structure in PPM is described
by using XML specifications and the process behavior is described using structured C code, with well
defined communication primitives. Figure 3 presents an example of a PPM application for industrial

systems.
Slave 1
CyclicRecvCN
Mast
aster ~ so1 gi
CyclicRecvMN M‘%{ CyclicSend
! S02
¢ AsynSendMN \ : m : AsynRecv
AsynRecv } p AsynSendCN
o~ ® 2 |
O I
2L 1= |
Slave 2 \ |

CyclicRecvCN

.

CyclicSend

9{ AsynRecv I

AsynSendCN

Figure 3. Application Model in PPM.

The behavior of each PPM process is described in C language and has a particular structure,
which is presented in Algorithm 1. This algorithm defines three abstract functions, which are
implemented based on the application logic and requirements. Each function operates on the process
state. Specifically, the init() function initializes the process data and is followed by an endless loop
calling the fire() function. In this function the process can communicate read and write primitives for
respectively sending and receiving data to shared objects. A read operation reads data from an input
port, and a write operation writes data to an output port. Additionally, the fire() function may invoke
a detach primitive in order to terminate the execution of the process. Before termination the deinit()
function is executed, in order to deallocate the memory that is reserved for the process thread as well
as for the defined variables or the processed data.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

8 of 25

Algorithm 1 PPM Process behavior

1: procedure <procName>_init(<procName>_process *p)
2 initialize process data
3: end procedure

4: while (true)

5:

6

7

8

9

: procedure <procName>_fire(<procName>_process *p)

<sharedObjectType> _read(buffer,INPUT,size)
perform computation

: <sharedObjectType> _write(buffer, OUTPUT,size)

10: end procedure

11: end while

12: procedure <procName> deinit(<procName> process *p)

13: deallocate process thread and data

14: end procedure

2.3. Automated code generation from PPM models

The generated code from PPM consists of the functional code and the glue code. The functional
code is generated from the application software in PPM consisting of processes and shared objects. In
the case of networked embedded systems, processes are implemented as threads, and shared objects
are implemented according to the underlying communication protocols. The implementation in C
contains the thread local data and the routine implementing the specific thread functionality. The
latter is a sequential program consisting of plain C used as a controller, wrapping the process C code
described in PPM. The communication function calls are implemented by substituting the read and
write primitives by read and write API calls on the respective communication protocol.

On the other hand, the glue code implements the deployment of the application to the
resource-constrained platforms, i.e., allocation of threads to the devices (i.e., hardware platforms). The
glue code is essentially obtained from the application deployment (i.e., mapping) PPM specification.
Threads are created and allocated to network devices according to the process mapping, which also
specifies configuration parameters for the underlying communication protocols. The glue code is
linked with hardware architecture library to produce the binary executables for execution on the
resource-constrained devices. The generated code is described in C language. Both functional and
glue code are implemented using re-targetable template files and hardware specific files.

3. Applying PPM for industrial applications

In this section we describe the method that is used to automate code generation from industrial
programming models. The method (Figure 4) aims in reducing the overall complexity in industrial
application development using the openPOWERLINK stack. It requires as input the PPM model of
the application software along with code templates for the application-specific behavior as well as the
hardware platform. The latter includes application deployment in an EPL architecture and respective
code templates for the implementation of CANopen’s primitives and communication mechanisms.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

9 of 25

Application Software Model (PPM) Mapping (PPM)
Process Network Behavior Architecture HW Code
1 (xml) (C code) 4 (xml) 3 Templates

(C code)

Code generation

|
! I
! I
| |
|
openPOWERLINK ‘ CANopen/ |
: POV\(’iERLIN K I
evice !
(C code) : configurations l
! I
|
| |
\ 4 | K :
Platform ! 6 Translation |
compilation e S

Functlonal Firewall _ Node
code 7 policies configuration files
(binary) (rules) (openPOWERLINK)

l

Deployment

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[stack
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EPL EPL EPL
CN1 CN2 CNn

EPL
MN

Figure 4. Automated code generation from industrial programming models.

Overall, the method to generate executable code for industrial systems consists of the sequential
steps. These steps concern artifacts (i.e., inputs and outputs) of the methods as well as tools that
were developed to automate the process and are also marked in Figure 4 to improve the reader’s
comprehension.

1. Describing the application behavior in PPM processes. This step aims at identyfying the
PPM processes that characterize the application and including them in the PPM XML process
network description (Section 3.1). The number of application processes for the PPM network
is proportional to the functionalities that the application should implement. Each process that
is selected in this step should implement atomic and have no overlap with the others. Such
processes are the CyclicRecvMN and CyclicRecvCN of Figure 3 implementing message reception

in the EPL control loop process.
2. Development of code templates for the application behavior. The developed code templates

model the application behavior in PPM and concern the user part of the openPOWERLINK stack.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

10 of 25

Hence, they describe the behavior as well as the interactions of each process in the application
software with the API layer of the openPOWERLINK stack. The initial development is manual
and conforms to the system requirements (Section 3.2). The developed code templates though

are modular and can be used afterwards for any application with similar requirements.
3. Linking application behavior with the openPOWERLINK libraries. The high-level behavior

that belongs to the user part of the openPOWERLINK stack needs to be linked with the lower
layers i.e., the CAL and kernel layers. These layers are added as libraries and do not require any
development since they are already part of the openPOWERLINK stack. Moreover, they can
be used by any hardware architecture that involves network communication through the EPL
protocol. Linking is a sequential process where first the libraries are initialized according to the
parameters of the Architecture XML specification. Secondly, the shared objects of the Application
Software Model are replaced with the API primitives of openPOWERLINK as well as the code
libraries implementing the lower layers of the stack. Finally, the processes of the Application

Software Model are instantiated according to the Architecture XML specification.
4. Mapping of application processes in the EPL architecture. This step concerns the mapping of

the processes in the EPL architecture as well as the proper distribution of the application processes
to the underlying EPL architecture, that is described in the Architecture XML specification Section
3.3. This specification also includes firewall rules described in Netfilter format. These rules are

used to produce node configurations that ensure cyber-resilience in the EPL architecture (Step 7).
5. Code generation for Real-Time Ethernet architectures. The code in the flow is generated using

a) the result of application behavior linking with the openPOWERLINK libraries in Step 3 as
well as b) the mapping specification of Step 4. The procedure is described in Section 3.4. The
specific artifacts that are generated through this step are initially the functional code in C that
is compiled in the chosen hardware platform to produce executable (i.e., binary) format for the
Managing and Controlled Nodes. Second artifact are the firewall configuration files (in rules
format) for the cyber-resilience of the EPL architecture. Final artifact are the node configuration

files in XDC format, which are compatible with both CANopen and EPL.
6. Translation of the CANopen/EPL device configurations into openPOWERLINK

configuration files. Since the content of the XDC configuration files cannot be interpreted
directly by the openPOWERLINK stack, additional effort has to be done to translate them
before the deployment of the generated code. To automate this step we have developed a
node configuration tool (Appendix A) that handles this translation. Specifically, it parses the
CANopen/EPL device configurations in order to create a) header files related to the object
definitions, b) initial object configuration files as well as to provide object linking information to
the API module of the stack. The resulting configuration files are provided to the OD module of

the stack.
7. Cyber-resilience through firewall rules in EPL nodes. To generate firewall rules specific for

the EPL architecture, our method uses abstract firewall specifications that are derived from the
system requirements. Afterwards, through a semantic translation [9] Netfilter configuration files
are produced in rule format, that can be ported in all the EPL nodes of the architecture. This
ensures protection against unauthorized access for the EPL system.

3.1. Modeling industrial application software in PPM

In this section we detail on the underlying effort, which is required to describe an industrial
application into a network of communicating processes in PPM.

The processes of the PPM Application Software are encapsulated in process blocks according to
their usage (Figure 3). Industrial applications usually employ Master-Slave communication, hence
two process blocks were identified, namely the Master and the Slave block. The processes of the PPM
Application Model can either belong to the Master block, the Slave block or both. Those that belong to
both blocks are mainly responsible for data reception during the asynchronous phase (AsynRecv). Data
reception may concern EPL frames (i.e., ASnd) or even non-EPL frames. The Master block contains

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

11 0f 25

processes for data reception in the EPL cycle (CyclicRecvMN) as well as network management and
device detection during the asynchronous phase (AsynSendMaster). On the other hand, the Slave
blocks (Slave 1 and Slave 2) contain processes for responding to polling requests (CyclicSend), to
identification requests (AsynSendSlave) as well as additional processes for data reception in the EPL
cycle (CyclicRecvCN). Data exchange in the model is represented through shared objects (SO1, . . ., S10)
that represent FIFO queues (Figure 3). The behavior of the CyclicRecvCN process is different from the
CyclicRecoMN process of the Master block, in order to ensure the proper functionality of the EPL cycle.
The PPM Application Model is described in XML (Figure 5). It consists of processes, shared
objects and connections. For each process, we specify its name (e.g., process name="CyclicRecvMN"),
the names of the input and output (e.g., port name="out") ports, the respective process type (e.g.,
process-class="WhileFire") as well as the location of the source C code describing the process behavior
(e.g., file="CyclicRecvMN.h" or “CyclicRecvMN.c"). For each shared object we specify its name (e.g.,
shared-object name="S01"), its type (i.e object-class="FIFO" or “MUTEX"), the maximum capacity
of data (e.g., size="4") and the names of the input (e.g., port name="in") and output port (e.g., port
name="out"). Each process includes firewall rules that are defined using the tag rule. Finally, we
define the connections between the processes and the shared objects (e.g., port-ref node="SO1" or
“CyclicRecvMN") by specifying the input and output ports which contribute in each connection.

<header lang="c" file="Epl.h">
<parameter name="N" value="3"/>

<process name="CyclicRecvMN" process-class="WhileFire">
<port name="out" peer-class="FIF0" peer-name="in"/>
<header lang="c" file="EplCfg.h"/>
<header lang="c" file="CyclicRecvMN.h"/>
<source lang="c" file="CyclicRecvMN.c" libs="-lpowerlink -lm -lrt"/>
<rule -A INPUT -p epl-eth --epl-type 1 -j ACCEPT/>
<rule -A OUTPUT -p epl-eth --epl-type 1 -j ACCEPT/>
</process>

<shared-object name="S01" object-class="FIF0" size="4" item-size="64">
<port name="in"/>
<port name="out"/>

</shared-object>

<shared-object name="PResASnd" object-class="MUTEX" multiplicity="N">
<port name="a"/>
<port name="b"/>

</shared-object>

<connection>
<port-ref node="S01" port="out"/>
<port-ref node="CyclicRecvMN" port="in"/>
</connection>

Figure 5. Application Process XML Description.

The resulting model of Figure 3 and includes communication between application software
processes through the shared objects of FIFO type. Moreover, additional shared objects of MUTEX type
were used to enforce scheduling policies between the threads that are instantiated for the processes.
An example in this scope are the process threads that are allocated for data reception, such as the
threads for the CyclicRecvMNand AsynRecv processes.

3.2. Code templates for industrial architectures

The code templates require an initial manual development effort both at application as well
as industrial architecture level. The application code templates contain the behavior of industrial
applications according to their requirements, whereas the industrial architecture templates contain the
interactions and communication mechanisms for the modules of the user part in the openPOWERLINK
stack (Figure 2). The user part is developed first as it concerns the configuration and interactions of
each node in the industrial architecture. At a later stage the user part is combined with the lower-layers
of the openPOWERLINK stack, such as the Communication Abstraction Layer (CAL) and the kernel
part, which are included as code libraries in the XML specification of the industrial architecture. Once

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

12 of 25

the initial development is finalized the code templates can be used and configured for automated code
generation in any industrial application using the openPOWERLINK stack.

#include "CyclicRecvMN_process.h"
#include "xap.h"
void CyclicRecvMN_init(CyclicRecvMN_process *p) {
PI_IN InputProcessImage; // input process i
PI_OUT OutputProcessImage; // output proc
BYTE sendVar; // 8 bit digital input
EplRet = EplApiProcessImageLinkObject(0xA4CO, 0xO1,
offsetof (PI_OUT, readVar), TRUE, ObdSize, &uiVarEntries);
}
int CyclicRecvMN_fire(CyclicRecvMN_process *p) {
tEplKernel EplRet;
EplRet = EplApiProcessImageExchange (&AppProcessImageCopyJob_g) ;
if (EplRet != kEplSuccessful)
{

return EplRet;
}
readVar.rotorInput = OutputProcessImage.CN1_MOO_Digitallnput_Inputl;
if (readVar.rotorInput != readVar.rotorInput0ld)
{
InputProcessImage.CN1_MOO_DigitalOutput_Outputl = readVar.rotorInput;
printf("Received values from the CN’s are different: Node 1 has %d\n and Node 2
has %d\n", readVar.rotorInput,readVar.rotorInput0ld);
}
else {
printf("Received values from the CN’s are the same: %d\n",readVar.rotorInput);
}
readVar.rotorInput0ld = readVar.rotorInput;
return EplRet;
s
void CyclicRecvMN_deinit(CyclicRecvMN_process *p) {
// stop the processing of POWERLINK frames
EplRet = EplApiExecNmtCommand(kEplNmtEventSwitchOff) ;
// delete process variable
EplRet = EplApiProcessImageFree();
// delete instance for all modules
EplRet = EplApiShutdown();
s

Figure 6. CyclicRecvMN Process Code Description.

An example on the development of code templates for industrial applications in PPM is presented
in Figure 6, where we present the CyclicRecvMN PPM process. This process is specified in Figure 5
and uses the FIFO SO1 to receive data during the isochronous phase in EPL through the PRes frames.
Moreover, it is implemented in the Master block of processes.

According to Algorithm 1, this process has three main functions (i.e., init, fire and deinit). The
code for each function is following the structure of the openPOWERLINK applications. Examples of
such applications are provided along with the openPOWERLINK stack source code 2.

Each function has a prefix of the process it belongs to i.e., CyclicRecvMN in Figure 6. Concerning
the behavior of each function, the CyclicRecvMN_init function defines input (InputProcessImage) and
and output (OutputProcessImage) process variables, which handle the transmission and reception
of data between the EPL Application and the API layers of the openPOWERLINK stack respectively.
As a further action, the process variables are linked with OD entries (lines 7-8). The cyclic behavior
of the process is defined through the CyclicRecvMN_fire function, which as defined in Section 2 is a
loop function that executed repeatedly. This function specifies the actions followed in the course of the
EPL cycle, where the data through the PRes frames are received in the OutputProcessImage process
variable (line 17). Then, they are manipulated according to the application-specific functionality
and the outputs of the processing trigger dedicated actions, such as output to the screen (line 21) or
dedicated actuators as for example LEDs. The CyclicRecoMN_deinit function stops the EPL frame
processing (line 29), deletes the process variables (line 33) as well as the instances for all the modules
of the openPOWERLINK stack (line 35).

2 https:/ /github.com/OpenAutomationTechnologies/
openPOWERLINK_V2

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

13 of 25

3.3. Deployment of industrial applications to the underlying architecture

The deployment of each industrial application to the EPL-based architecture is following the
mapping specification in PPM of Figure 4. The PPM mapping specifies how the processes and shared
objects of the PPM Application Model are mapped to the hardware nodes of the EPL architecture.

Specifically, the application deployment description (“mapping") is illustrated in Figure 7. It
consists of several mapping elements (“deployment”) for each application processes (“app-node") that
is bound to a device of the underlying architecture (“hw-element"), which is a hardware platform of
certain type (“hw-class"). The device is identified in the hardware architecture by its index (“index").
The binding includes additional information, concerning the hardware platform (“hw-property"), that
are necessary for establishing and configuring the communication between the network devices. This
information can include the network interface name, the IP addresses of the destination network
device, the port specification and the type of communication used (e.g., unicast, multicast and
broadcast). The application deployment description may also contain additional elements which are
application-specific and define particular characteristics of the hardware architecture or the application
software, however they have to be specified in separate XML elements.

<deployment>
<app-node name="CyclicSend"/>
<hw-element name="node" hw-class="RTU" index="0"/>
<hw-property name="networkInterface" hw-class="node-networkInterface" value="eth0"/>
<hw-property name="CycleLen" hw-class="uiCycleLen" value="000186A0"/>
<hw-property name="Loss0fSoC" hw-class="CNLossOfSocTolerance" value="02FAF080"/>
</deployment>
<deployment>
<app-node name="CyclicRecv"/>
<hw-element name="node" hw-class="RTU" index="1"/>
<hw-property name="networkInterface" hw-class="node-networkInterface" value="eth0"/>
<hw-property name="CycleLen" hw-class="uiCycleLen" value="000186A0"/>
<hw-property name="PResTimeout" hw-class="m_dwPresTimeoutNs" value="0000C350"/>
</deployment>

<communication protocol="powerlink">

<extra>
<app-property app-name="CyclicSend" property-name="InputODAPI" value="6000"/>
<app-property app-name="CyclicSend" property-name="OutputODAPI" value="6200"/>

<app-property app-name="CyclicRecv" property-name="OutputODAPI" value="A4C0"/>
</extra>

Figure 7. Industrial application mapping in PPM.

For industrial applications each specified application process (“app-node" in Figure 11 is bound to
a hardware architecture node (“hw-element"). Moreover, the additional information are characterizing
the industrial applications and are defined under the “hw-property" XML element. These concern
initially the type of considered network interface (i.e., hw-property name =“CycleLen"), considered
for EPL as the Ethernet interface for the Linux environment (i.e., value =“eth0"). A second element
concerns the EPL cycle length (i.e., hw-property name =“CycleLen"), which is crucial to the application
functionality and therefore needs to be specified for each process of the PPM Application Model
(Section 2). An additional element is related to the tolerance timeout on the CN for the reception
of the SoC frame which is transmitted by the MN in the beginning of each EPL cycle. This timeout
(i.e., hw-property name =“LossOfSoC") is considered here equal to the value of the EPL cycle length
multiplied by two and if it has elapsed the SoC frame is considered as lost. A final described element
concerns the timeout for the reception of the poll responses (i.e., hw-property name =“PResTimeout").

3.4. Code generation from PPM-based industrial applications

The code generation method is a sequential process that is automated through the developed
Algorithm 2.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

14 of 25

Algorithm 2 Algorithm of Automated Code Generation

Require: XMLAppFile, CCodeAppFile, XMLMapFile, PlatformFiles
Ensure: Platform Dependent Code Generation
1. app := reader.load Application(XMLAppFile)
. app := reader.load Mapping(XMLMapFile)
: < builderTarget >__Builder builder;
: procedure buildPreamble()
mkdir build directory, transfer default platform files
: end procedure
. procedure build Application()
encode application structure into C Structures from Input XML
build process controller, copy input process C files and other library source files
: end procedure
: procedure buildMapping()
allocate processes to the network devices
configure communication parameters of the underlying architecture
: end procedure
. procedure buildPostamble()
create main.c, create FIFOs, create and run processes
: end procedure
: procedure buildMakefile()
code compilation and library linking
: end procedure

[S e S e e Sy
S 0V O NOU R WN R~ O

In the initial (line 1) step the algorithm parses the PPM Application Model and in the second
step (line 2), it parses the PPM Application Deployment (i.e., mapping) specification to orchestrate
the code generation process. As a following step, it initializes the dedicated system builder according
to the underlying architecture. Depending on the selection, different implementations of the generic
functions provided in this algorithm will be chosen. The < builderTarget > construct has a value
“powerlink” for industrial systems. The method accordingly relies on the mapping specification to
create the different hardware platform directories as well as to copy target platform specific files into
them through the buildPreamble function (line 3). In the most important step of the algorithm the tool
calls the build Application function (line 6), in order to copy the process source, header and library files
in the hardware platform directories. Afterwards, it creates a process controller C file per each input
PPM process. The process controller contains all the necessary functions to control the execution of
each process and to connect the process communication primitives with the communication interface of
the target hardware platform. The buildMapping (line 8) function call allocates processes to hardware
platforms according to the input mapping specification. It then deducts the necessary communication
parameters that need to be configured based on the supported protocol stack of underlying architecture.
Finally, the tool generates the processes, shared objects (build Postamble function in line 10) and builds
a makefile (buildMakefile function in line 12) in order to simplify the compilation of the generated
code.

The code generation method also includes a tool for the configuration of industrial devices using
the openPOWERLINK stack described in Appendix A.

3.5. Firewall rule generation for industrial architectures

Rules are specified for each PPM process that has security requirements. They are included in the
EPL or CANopen OD entry 1E81 [5]. This index specifies entries the default policy for the forwarding
and outbound communications with possible policy values: accept (1), drop (2) or reject (3).

Specifically, they are part of the PPM deployment XML description under the “rule" construct.
Figure 5 illustrates a rule to allow only incoming connections and packets that are EPL-complaint and
block all the other legitimate or malicious Ethernet connections. More complex rules that can block
a replay or masquerade attack using valid EPL packets can be specified using the “rule” construct.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 doi:10.20944/preprints202308.1644.v1

15 of 25

Finally, the node of the industrial architecture that the process is mapped to has also embedded these
rules in its native Netfilter configurations.

4. Case study: Triple Modular Redundancy in a Power Plant

In this case-study we focused on demonstrating the method we described in Section 3. Specifically,
our objective was to automatically generate code for a Hydroelectric Power Plant (HPP) of the Public
Power Corporation in Greece. The HPP is illustrated in Figure 8.

Figure 8. Public Power Corporation’s Hydroelectric Power Plant used for the case-study deployment.

The deployed setup on the HPP is commonly used in safety-critical Real-Time Ethernet
applications to provide support for fault-tolerance through the Triple Modular Redundancy (TMR)
mechanism [15]. This mechanism also aids in masking the failure of a component. In the particular
network we have tested a basic industrial setup with one Managing Node (MN) and two Controlled
Nodes (CNs) in a line topology which is illustrated in Figure 9.

CN1

Managing
Node

Switch Output

CN2

Figure 9. TMR Application for the Hydroelectric Power Plant.

Each CN sends data to the MN through PRes frames containing PDO objects with the temperature
and motion values of the power generator. If no change is made with respect to the previous
measurements, the CN will repeat the transmission of the same measurements. The MN recognizes
failures if the values that are received by the CNs are not consistent. When they are not consistent,
the MN only considers values that are originating from the CN2 to provide the output in its native
graphical user interface (GUI). The GUI of the MN implements the functionality of a Supervisory
Control and Data Acquisition (SCADA) system [4], by allowing electrical network supervision as
well as incident detection and mitigation. The software that is used to provide the GUI and SCADA

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 doi:10.20944/preprints202308.1644.v1

16 of 25

functionalities for the MN is based on the proprietary Siemens software Totally Integrated Automation
(TIA) portal that is illustrated in Figure 10. Regarding the SDO objects, the TMR application only allows
SDQ’s transmitted by the MN for the configuration of the CNs” OD entries during the initialization
phase.

Figure 10. Graphical interface of the Managing Node’s supervision (SCADA) system.

Each device has the role of a PLC implemented using a Raspberry Pi 3 Model B device 3, which
is connected to a Sparkfun ESP32 Thing micro-controller . The EPS32 Thing is in turn connected to
temperature and motion sensors, which control the temperature and rotor speed of the power generator
respectively. Furthermore, the EPL network is supported by a 100 Mbps NETGEAR Gigabit Switch
(GS105 model [16]). Usually, EPL applications use a hub for their interconnections, however as this
case-study is a small-scale application, the use of switch does not introduce significant communication
latencies in the EPL network. Furthermore, for the device id we have used for CN1 EPL network
id equal to 1, likewise for CN2 an id equal to 2 and for the Managing Node (MN) we used the
defined by the standard id, equal to 240 [6]. Finally, to allow early detection of incidents on the MN,
a strong requirement of the TMR application lies in the deterministic time duration of the EPL cycle
(synchronous and asynchronous part) that should be kept within 200ms. Hence, the temperature and
motion inputs given by the CNs, should not have a significant time difference (less than 100 ms), as
they might not be handled in the same EPL control loop.

The deployment of the TMR CANopen Application in the underlying EPL architecture is
illustrated in Figure 11. Specifically, the processes of the Master block in the PPM Application Model
are mapped to the EPL Managing Node in the EPL architecture. Likewise, the processes of the Slave
block are mapped to the Controlled Nodes. Moreover, the FIFO shared objects are mapped to Ethernet
cards of the devices of the underlying EPL architecture.

3 https://www.raspberrypi.org/products/raspberry-pi-3-model-b /

4 https:/ /www.sparkfun.com/products /13907

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

17 of 25

TMR Application Slave1 | . _____

CyclicRecv
Mast ~.
aster 1 sor -
CyclicRecv M%— CyclicSend N .
|

I
I

! = AsynRecv [

I

I

AsynSendMaster

H

AsynSendSlave

|

__S07_____

S10

Slave 2

v

. Managing Node ' /I \ \ Controlled Node 1 -~ \ L
\ ’ ‘ Y -

’ \ \

\ ’
\
\ ' , N \ ,
\ v . \ - S -

\ \ . s \ S -

\ B \ - \ -
v] £ ’ -
. -

* 4 .
EPL stack 4 \ EPL stack H
h “ N Ethernet ----77 |
|
I
'
1

Ethernet Switch N
card . card .
.

SN N ’
’
, 1

\ .
.

_ | Controlled Node 2 ,- K
A /,, ’

N

e v

=l e tack ’
stacl e

Ethernet -
card

Figure 11. Deployment of PPM Application Model in the Hydroelectric Power Plant plant’s

architecture.

4.1. Experiments
For our experiments we have focused on simulating and analyzing the behavior of the generated
code for the TMR application over the EPL network. Thus, we have executed the application for 5
minutes, which corresponds to a large number of EPL control loops, each one taking approximately
100 ms. This can also be evaluated by Figure 12, as the difference between two consequent SoC frames.
In the same figure we can observe that the Managing Node (MN) transmits two subsequent PReq
polling frames, which are correctly followed by the respective PRes poll-response frames from CN1
and CN2. Additionally, the times elapsed between PReq and PRes are sometimes different, which is
due to the transmission latency of the network.
Moreover, the PReq frames issued by the MN to the CNs in the isochronous period are correctly
followed by two subsequent PRes frames by each one of them. We can further observe that transmission
of the SoA frame indicates as well the end of the EPL cycle, as no configuration data transmission is

considered in this specific TMR application.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

18 of 25

6 T T T T
ASnd
ASnd
PRes from CN1,CN2
5 PRes from CN1,CN2 : &
PReq PReq

oY 1
(O]
e
S 3 :
Y
—
O | soC SoC SoC
w ,| 1

1k ol

0 1 1 1 1

160 165 170 175 180 200

Execution time (ms)

Figure 12. EPL cycle in the executed TMR CANopen application.

Figure 13 illustrates a fragment of the console output in the MN device. For the sake of
comprehension, in this fragment we focus on the messages of only one CN (CN with id 1), concerning
the management of its different states through the NMT state machine as well as its configuration
(initialization of OD entries) as well. The former is presented in this fragment in lines 6-7 and 20-21,
where we can observe how the MN sets the CN from the PreOperationall to the PreOperational?2 state
for the configuration as well as from the ReadyToOperate to the Operational state once it is properly
configured. On the other hand, lines 10-16 illustrate the successful configuration of OD entries in the
CN through dedicated ASnd frames in the asynchronous phase, which in this case are the entries
1600, 1A00 and 1F98. The first two are used for the configuration of mapping parameters in the EPL,
whereas the 1F98 OD entry is used to set the maximum size of the EPL or non-EPL frames that are
transmitted during the asynchronous phase (value range between 300 and 1500 bytes). Apart from
configuring the CN’s the MN performs also local PDO configurations (lines 1 to 4), indicating where
the RPDO and TPDO are to be mapped respectively. The application functionality is presented in the
lines 23 to 25, where we can see that the motion input values for the rotor speed from the CN’s match
and are displayed in the MN console in a decimal ASCII form. As a next step, we have introduced a
faulty reading on CN1 to verify 1) if the rotor speed remained intact as well as 2) if an incident was
logged on the diagnostic output of the MN node and subsequently on the SCADA system. Through
our experiments, we verified that a difference in readings appeared on MN’s diagnostic output as
illustrated in line 26 of Figure 13 as well as a FAILURE incident appeared in MN’s SCADA system i.e.,
red lettered indication in Figure 10. Furthermore, the rotor’s speed remained intact in the 3303 rpm.

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023

d0i:10.20944/preprints202308.1644.v1

19 of 25

2014/12/11 06:54:42 - AppCbEvent (RPD0=0x1600 to node Ox1 with 1 objects activated)
2014/12/11 06:54:42 - 1. mapped object 0xA4C0/0

2014/12/11 06:54:42 - AppCbEvent (TPDO=0x1A00 to node Ox1 with 1 objects activated)
2014/12/11 06:54:42 - 1. mapped object 0xA040/0

2014/12/11 06:56:44 - AppCbEvent (Node=0x1, NmtState=NmtCsPreQOperationall)
2014/12/11 06:56:44 - AppCbEvent (Node=0x1, NmtState=NmtCsPreQOperational2)
2014/12/11 06:56:45 - AppCbEvent (Node=0x1, Found)

2014/12/11 06:56:45 - AppCbEvent (Node=0x1, CheckConf)

2014/12/11 06:56:49 - AppCbEvent (Node=0x1, CFM-Progress: Object 0x1600/0,
2014/12/11 06:56:49 - 16/133 Bytes2014/12/11 06:56:49

2014/12/11 06:56:50 - AppCbEvent (Node=0x1, CFM-Progress: Object 0x1A00/0,
2014/12/11 06:56:50 - 24/133 Bytes2014/12/11 06:56:50

2014/12/11 06:56:55 - AppCbEvent (Node=0x1, CFM-Progress: Object 0x1C14/0,
2014/12/11 06:56:55 - 68/133 Bytes2014/12/11 06:56:55

2014/12/11 06:57:05 - AppCbEvent (Node=0x1, ConfReset)

2014/12/11 06:57:06 - AppCbEvent (Node=0x1, Found)

2014/12/11 06:57:07 - AppCbEvent (Node=0x1, NmtState=NmtCsReadyToOperate)
2014/12/11 06:57:08 - AppCbEvent (Node=0x1, NmtState=NmtCsOperational)

Received values from the CN’s are the same: 3050 rpm

Received values from the CN’s are the same: 3228 rpm

Received values from the CN’s are the same: 3303 rpm

Received values from the CN’s are different: Node 1 has 2900 rpm and Node 2 has 3303 rpm

Figure 13. Diagnostic output of the EPL Managing Node (MN).

5. Discussion

5.1. Benefits of the proposed method

The method that is illustrated in Figure 4 supports the automated generation of executable code for
Real-Time Ethernet architectures. The executable code covers 1) functional aspects 3) the configuration
of the industrial network nodes through CANopen profiles and 3) cyber-resilience aspects through
firewall rules. A significant benefit of the method is that it uses configurable code templates for both
the application software and the libraries for the communication in the underlying architecture. This
allows to generate code rapidly for any application by only modifying the parameters of application
processes in a high-level and user-friendly XML format. Additionally, it also allows the method to be
ported quickly into similar projects.

The reason for such benefit is the reusable code artifacts and the modularity of the method, which
builds upon atomic functionalities of each industrial system. The atomicity of each functionality also
reduces the application complexity. The TMR application that is illustrated in Section 4 aims at testing
the effectiveness of our approach and the satisfaction of the industrial application tight requirements
when deployed in the underlying architecture. Table 1 reports figures for the required effort and code
artifacts for the case study. Each row refers to a particular step of the proposed method, however Step
5 refers to the overall effort for building the tool that would allow automated code generation based
on the PPM process model.

Table 1. Effort and products for the method’s application to the TMR case study.

. Code
Steps of Figure 4 Effort Scope Product Lines
1. PPM App behavior 2weeks App-specific XML 268
2. App. Code templates 1week App-specific C code 1367
3. Kernel code + linking 2 weeks Reusable C code 2836
4. Architectural mapping 4 hours App-specific XML 40
5. Code generation 11 weeks Reusable C code 3293
6. Node configuration 3 weeks Reusable EPL files 218
7. Firewall rule devel. 1 week Reusable Netfilter rules 114

Overall the generated code for the case study consisted of 13169 lines of code spread into 118
files. From these files, 42 were deployed in the Managing Node with 4619 lines in total for the TMR

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

20 of 25

application and the remaining were equally deployed in the 2 Controlled Nodes. This means per
Controlled Node there were 38 files and 4275 lines of code. Apart from this code the Managing Node
had had 4 configuration files and each Controlled Node another 2 files for the configuration of the EPL
nodes (node configurations described in Appendix A).

5.2. Limitations

The method relies on the identification of processes that implement atomic functionalities of
each industrial application. This is a manual step that requires conceptual thinking from the system
designer and is vital for the proper system operation. The illustrated case-study of Section 4 depicts
a realistic scenario that can be deployed in as a testbed in a small production line. In this scenario
there is no overlap in application functionalities allowing to distinguish the atomic functionalities and
constructing the PPM process network without considerable effort. The ultimate goal of Industry 4.0
area though is to bring automation in larger production lines. Hence, production lines will require
to handle multiple operational tasks, thus increasing the number of functionalities that need to be
considered in the application. Given the current form of our method, the application designer will
have a substantial manual effort. To this end, we plan to add further automation in the initial steps
(Steps 1 and 2) of our method to avoid such scalability issues.

The current applicability scope of our methods is on building rapidly or updating EPL-compliant
systems. This is due to the available application and architectural code artifacts of our method.
For widening the application to other Real-Time Ethernet system architectures (e.g., EtherCAT [17],
PROFINET RT [18]), it is essential to enrich the develop code artifacts. Except from EPL that has
the open-source openPOWERLINK stack, the rest of Real-Time Ethernet protocols have proprietary
libraries and stacks for the development of industrial applications. This is a considerable limitation as
many industrial manufacturers are already using in their production lines third-party equipment that
employs some of these protocols, such as the EtherCAT implementation on NXP’s P2020 processor [19].
Furthermore, the Real-Time Ethernet network is usually be installed and configured by supply-chain
personnel [20], hence control and automation engineers might have knowledge only for its operation
and not the installation. Therefore, extending our method with new libraries and stacks to bring
business benefits will require a substantial initial effort. Despite this initial effort though, the individual
steps of the presented method will not be affected by this enrichment.

5.3. Comparison with similar methods

The Industry 4.0 area involves a lot of proprietary communication technologies as well as
infrastructure systems. Along with these technologies vendors also provide tools to facilitate the
development of functional applications. The tools allow simulation, testing and validation of system
requirements as well as rapid prototyping, in order to automate code generation for industrial
architectures. To better position our work in comparison with these tools we hereby provide three
categories of related work in literature. Each category focuses on state-of-the-art work on the three
main benefits of our method (Section 5.1).

Code generation for traditional Ethernet architectures

An interesting toolbox for distributed industrial control systems, is provided by PLCTOOLS [21].
PLCTOOLS is able to describe such systems in different levels from the design of function block
diagrams (FBDs) to timed Petri-Nets for validating the design as well as can generate executable C
code for their architecture. However, the generated code is not deployable since it cannot be deployed
in the industrial infrastructure but rather runs through a dedicated engine.

Code generation for industrial applications is also handled by Mathwork’s Simulink, which
includes the Simulink PLC Coder library. This library allows to generate Ladder Diagrams describing
the application logic of PLCs. The library supports many well-known PLC vendors, which can use
the Ladder Diagrams for compilation and flashing to the PLC the executable code. Alternatively, the

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

21 of 25

Ladder diagrams can be used for application simulation in the native Matlab environment. Another
work towards this direction has been conducted in CERN [22] and the authors use code generators for
PLC and SCADA systems. The code generators concern the control logic, communication interfaces
and device configurations. Nevertheless, these libraries does not support Real-Time Ethernet protocols
and can rather be used in traditional industrial architectures.

Node configuration/performance analysis in Real-Time Ethernet

As Industry 4.0 is a fairly new area in industrial systems considerable work has been done into their
simulation and validation instead of code generation for rapid prototyping. Specifically, the authors in
[23] use the OPNET Modeler framework ° to simulate and analyze the performance and impact of
automation in industrial systems, which use the EPL protocol in their network stack. The conducted
sets of extensive simulations are considering several performance indicators as well the presence
of notifications in the form of alarm frames in the asynchronous phase of the EPL cycle. Though
the developed models are generic, the use of the OPNET Modeler framework is limited in terms of
customizability as well as it does not allow addressing and validating system requirements or the
generation of deployable code for such systems.

Node configuration in our method is using CANopen profiles, which provides automation and
flexibility for industrial applications. Nevertheless, CANopen was initially developed and is still being
used for the configuration of Controller Area Network (CAN) [24] applications, hence its integration
with EPL architectures are considerably lower. When used it allows faster configuration of safety
applications, such as the scenario of controlling lifts [25]. In this scenario the application configuration
with CANopen allows to satisfy the requirements even under failure conditions of the mechanical
components. However, the node configuration requires substantial effort for parameters related to
the TPDO and RPDO CANopen objects (e.g., payload size, frame timeout). Hence, the automatic
configuration of CANopen-complaint nodes of our method aids in faster development of similar
applications.

To expand CANopen’s usage the configuration and analysis of the performance for CANopen
applications Vector has provided an extension to its well-known tools CANoe and CANalyzer °.
Nevertheless, as these tools require a proprietary license and their evaluation version allows only the
configuration of simple CANopen applications. Moreover, the use of the CANoe and CANalyzer
toolkits in industrial applications requires adequate knowledge as well as often it cannot be always
used as a standalone method for application development, since it often requires the implementation
of additional interfaces [26].

Cyber-resilience for traditional Ethernet architectures

Another contribution of our method is related to cyber-resilience through automated firewall rule
generation. Several tools has been presented in literature related to the generation of rules for protection
7,8 . However, most tools do not rely on semantics for the
generation, except the Mignis tool [9]. Mignis defines relies on a configuration file to generate rules for
any architecture, that can be also verified formally. Our work extends Mignis configurations to not
only protect traditional Ethernet architectures, but also to provide protection through EPL-specific
configurations for the Real-Time Ethernet architecture.

of traditional Ethernet architectures

https:/ /support.riverbed.com/content/support/software/

opnet-model /modeler.html

https:/ /www.vector.com/int/en/products/products-a-z/software /canoe / option-canopen/
https:/ /github.com/rikktOr/firewall-rule-generator

8 http:/ /staff.washington.edu/corey/fw/fw2.6.cgi

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

22 of 25

6. Conclusion

We presented a novel method for automating the generation of reliable executable code for
industrial applications from high-level programming models. The method takes as input the
application model described as a Kahn process network, a XML-based mapping of the application
to the hardware architecture as well as code templates describing the application behavior and the
hardware architecture that is using Ethernet Powerlink protocol and CANopen communication profiles
for data exchange. Afterwards, it generates executable code for the architecture and configurations
for the devices of the hardware architecture. We demonstrate the method in an industrial plant
case-study, which provides support for fault-tolerance through the Triple Modular Redundancy (TMR)
mechanism. The executable code is deployed in Programmable Logic Controllers (PLCs) of the
industrial plant, in order to control the temperature and rotor speed of a power generator. The power
generator is responsible for electricity production in a Hydroelectric Power Plant (HPP) of the Public
Power Corporation (PPC). As an outcome, the case-study provides reliability under both normal and
error-prone operating conditions.

An interesting extension for this work concerns the automatic generation of the industrial
application model and the Mapping from specifications of the CANopen application software. One
interesting direction in this scope is to extend the NETCARBENCH specification [27] for industrial
automation systems. Then, we plan to develop a tool, which will be using the XSLT transformation
language [28] and its native style-sheets to transform the input specifications to dedicated XML files
for describing the Kahn process network as well as the architecture deployment.

Additionally, as a part of our future work we plan to investigate the more complex architectures
for Real-Time Ethernet, than the considered Triple Modular Redundancy application in this article. This
will allow us to automate the initial steps (i.e., Step 1 and 2) of your method towards the separation of
the application behavior into processes of the Kahn network, when there are overlapping functionalities.
A particularly interesting architecture using several communication layers as in Computer Integrated
Manufacturing (CIM) systems [23]. Each layer in such systems is supported by a dedicated switch,
which introduces forwarded messages along with the usual transmitted and received. Additionally,
such messages include overlapping functionalities. Along with this extension we consider building a
tool that extracts atomic and non-overlapping functionalities from the application behavior, to remove
this manual effort from the application designer.

Finally, we also plan to consider transmission errors related to electromagnetic noise in Real-Time
Ethernet architectures that are frequently encountered in industrial environments [29]. These errors
have a strong impact on the performance of the network and may cause loss of the transmitted frames,
but also their corruption or duplication.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable
Informed Consent Statement: Not applicable

Data Availability Statement: The datasets generated and/or analyzed during the current work are available
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A: Industrial node configuration

The process of generating specific configurations for the nodes that implement the
openPOWERLINK stack takes place in step 3 of Figure 4. As input it receives the device configuration
files for each node in CANopen or EPL conforming format ?. The developed tool consists of two XML

° Full conformity is proved wusing open-source validation tools, as the EPL XDD-Check utility
(http:/ /www.ethernet-powerlink.org/en/powerlink /conformity /xdd-check/)

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

23 of 25

translators: the xdc2objh and the xdc2Cfm. The xdc2objh translator parses every device configuration
file and creates a header file (objdict.h) for the OD module of the stack. This file contains the definition
of each object used in the communication or device profile. Consequently, the xdc2Cfm translator
identifies the MN device configuration and extracts linking information for the API layer in order to
add them to a stack-specific file (xap.h), which provides access to OD modules from the EPL Application
layer. It additionally extracts the initial values for the OD objects of all the device configurations,
in order to use them in the object initialization phase. All these information are evenly added in a
stack-specific file (mnobd.txt), which is latter converted to a binary file (mnobd.cdc) through the txt2cdc
tool that is available in openCONFIGURATOR 0. The output binary file is used by the MN node.

CANopen/POWERLINK
device configuration
(XDC)
] y N
% xdc2Cfm xdc2objh
Translation

| 4 |
| f, xap.h mnobd.txt | ! objdict.h
= |
=h |
R ! |
=~ !
20 I
= txt2cdc !
S ! .
9] : l
S ! Conversion :
Cl :
EManaging Node mnobd.cde |
" (MN) !

Figure A1. Configuration generator tool for EPL nodes.

References

1. Mosterman, PJ.; Zander, J. Industry 4.0 as a cyber-physical system study. Software & Systems Modeling 2016,
15,17-29.
2. Felser, M. Real-time ethernet—industry prospective. Proceedings of the IEEE 2005, 93, 1118-1129.

10 http:/ /openpowerlink.sourceforge.net/doc/2.5/2.5.1/page
_openconfig.html

https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

24 of 25

3. Moyne, J.R; Tilbury, D.M. The emergence of industrial control networks for manufacturing control,
diagnostics, and safety data. Proceedings of the IEEE 2007, 95, 29-47.

4. Galloway, B.; Hancke, G.P. Introduction to industrial control networks. IEEE Communications surveys &
tutorials 2012, 15, 860-880.

5. Standard, E.D. 301, Ethernet POWERLINK Communication Profile Specification Version 1.3. 0, 2016.

6. Std., LE.C. IEC 61784: Digital data communications for measurement and control — Part 2: Additional
profiles for ISO/IEC8802-3 based communication networks in real-time applications July 2014.

7. Lekidis, A.; Bozga, M.; Bensalem, S. Model-based validation of CANopen systems. In Proceedings of the
2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014). IEEE, 2014, pp. 1-10.

8. Kriaa, S.; Pietre-Cambacedes, L.; Bouissou, M.; Halgand, Y. A survey of approaches combining safety and
security for industrial control systems. Reliability engineering & system safety 2015, 139, 156-178.

9. Adao, P; Bozzato, C.; Dei Rossi, G.; Focardi, R.; Luccio, EL. Mignis: A semantic based tool for firewall
configuration. In Proceedings of the 2014 IEEE 27th Computer Security Foundations Symposium. IEEE,
2014, pp. 351-365.

10. Wool, A. A quantitative study of firewall configuration errors. Computer 2004, 37, 62—67.

11. Baumgartner, J.; Schoenegger, S. POWERLINK and Real-Time Linux: A Perfect Match for Highest
Performance in Real Applications. In Proceedings of the Twelfth Real-Time Linux Workshop, Nairobi,
Kenya, 2010.

12. Pfeiffer, O.; Ayre, A.; Keydel, C. Embedded networking with CAN and CANopen; Copperhill Media, 2008.

13. Lekidis, A.; Bourgos, P.; Simplice, D.D.; Bozga, M.; Bensalem, S. Building Distributed Sensor Network
Applications using BIP. In Proceedings of the IEEE Sensors Applications Symposium (SAS). IEEE, 2015, pp.
1-6.

14. Thiele, L.; Bacivarov, I.; Haid, W.; Huang, K. Mapping Applications to Tiled Multiprocessor Embedded
Systems. In Proceedings of the Proceedings of the Seventh International Conference on Application of
Concurrency to System Design; IEEE Computer Society: Washington, DC, USA, 2007; ACSD 07, pp. 29-40.
https://doi.org/10.1109/ ACSD.2007.53.

15. Kopetz, H. Real-time systems: Design principles for distributed embedded applications; Springer, 2011.

16. NETGEAR. ProSafe 5-port and 8-port Gigabit Desktop Switches 10/100/1000 Mbps.
http:/ /www.netgear.ru/images/GS105v3_GS108v3_DS
_27Apr1170-4903.pdf.

17. Jansen, D.; Buttner, H. Real-time Ethernet: The EtherCAT solution. Computing and Control Engineering 2004,
15,16-21.

18. Ferrari, P; Flammini, A.; Venturini, F.; Augelli, A. Large PROFINET IO RT networks for factory automation:
A case study. In Proceedings of the ETFA2011. IEEE, 2011, pp. 1-4.

19. Orfanus, D.; Indergaard, R.; Prytz, G.; Wien, T. EtherCAT-based platform for distributed control in
high-performance industrial applications. In Proceedings of the 2013 IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA). IEEE, 2013, pp. 1-8.

20. Hood, G.W,; Hall, KH.; Chand, S.; D’'mura, P.R; Kalan, M.D.; Plache, K.S. Module and controller operation
for industrial control systems, 2011. US Patent 7,912,560.

21. Baresi, L.; Mauri, M.; Monti, A.; Pezze, M. PLCTools: Design, formal validation, and code generation for
programmable controllers. In Proceedings of the Smc 2000 conference proceedings. 2000 ieee international
conference on systems, man and cybernetics.’cybernetics evolving to systems, humans, organizations, and
their complex interactions’(cat. no. 0. IEEE, 2000, Vol. 4, pp. 2437-2442.

22. Fernandez Adiego, B.; Prieto Barreiro, I.; Blanco Vinuela, E. UNICOS CPC6: Automated code generation for
process control applications. In Proceedings of the Conf. Proc., 2011, Vol. 111010, p. WEPKS033.

23. Cena, G,; Seno, L.; Valenzano, A.; Vitturi, S. Performance analysis of Ethernet Powerlink networks for
distributed control and automation systems. Computer Standards & Interfaces 2009, 31, 566-572.

24. DiNatale, M.; Zeng, H.; Giusto, P.; Ghosal, A. Understanding and using the controller area network communication
protocol: Theory and practice; Springer Science & Business Media, 2012.

25. Soury, A.; Charfi, M.; Genon-Catalot, D.; Thiriet,]. M. Performance analysis of Ethernet Powerlink protocol:
Application to a new lift system generation. In Proceedings of the 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA). IEEE, 2015, pp. 1-6.

https://doi.org/10.1109/ACSD.2007.53
https://doi.org/10.20944/preprints202308.1644.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2023 d0i:10.20944/preprints202308.1644.v1

25 of 25

26. Molfese, C.; Schipani, P.; Marty, L.; Esposito, E; D'Orsi, S.; Debei, S.; Bettanini, C.; Aboudan, A.; Colombatti,
G.; Mugnuolo, R.; et al. The EGSE for the DREAMS payload onboard the ExoMars 2016 space mission. In
Proceedings of the 2014 IEEE Metrology for Aerospace (MetroAeroSpace). IEEE, 2014, pp. 337-341.

27. Braun, C.; Havet, L.; Navet, N. NETCARBENCH: A benchmark for techniques and tools used in the design
of automotive communication systems. 2007.

28. Clark, J.; et al. Xsl transformations (xslt). World Wide Web Consortium (W3C). URL http://www. w3. org/TR/xslt
1999.

29. Decotignie,].D. Ethernet-based real-time and industrial communications. Proceedings of the IEEE 2005,
93, 1102-1117.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202308.1644.v1

	Introduction
	Background
	Industrial automation networks
	Ethernet Powerlink (EPL)
	Integration with CANopen communication profiles
	Application development with openPOWERLINK

	PPM: A programming model for networked embedded applications
	Automated code generation from PPM models

	Applying PPM for industrial applications
	Modeling industrial application software in PPM
	Code templates for industrial architectures
	Deployment of industrial applications to the underlying architecture
	Code generation from PPM-based industrial applications
	Firewall rule generation for industrial architectures

	Case study: Triple Modular Redundancy in a Power Plant
	Experiments

	Discussion
	Benefits of the proposed method
	Limitations
	Comparison with similar methods

	Conclusion
	References

