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Abstract: Alzheimer's disease (AD) is an incurable neurodegenerative disorder. Early screening, 

particularly in blood has been regarded as an effective approach for AD diagnosis and prevention. 

In addition, metabolic dysfunction has been demonstrated to be closely related to AD, which might 

be reflected in whole blood transcriptome. Hence, we hypothesized that establishment of diagnostic 

model based on metabolic signatures of blood is a workable strategy. To the end, we initially 

constructed metabolic pathway pairwise (MPP) signatures to characterize the interplay among 

metabolic pathways. Then, a series of bioinformatic methodologies, e.g., differential expression 

analysis, functional enrichment analysis, and network analysis, etc. were used to investigate the 

molecular mechanism behind AD. Moreover, an unsupervised clustering analysis based on the MPP 

signature profile via Non-Negative Matrix Factorization (NMF) algorithm was utilized to stratify 

AD patients. Finally, aimed at distinguishing AD patients from non-AD group, a metabolic 

pathway-pairwise scoring system (MPPSS) was established using multi-machine learning methods. 

As a result, many metabolic pathways correlated to AD were disclosed, including oxidative 

phosphorylation and fatty acid biosynthesis, etc. NMF clustering analysis divided AD patients into 

two subgroups (S1 and S2), which exhibit distinct activities of metabolism and immunity. Typically, 

oxidative phosphorylation in S2 exhibits a lower activity than that in S1 and non-AD group, 

suggesting the patients in S2 might possess a more compromised brain metabolism. Additionally, 

Immune infiltration analysis showed that the patients in S2 might have phenomena of immune 

suppression, compared with S1 and non-AD group. These findings indicated that S2 probably have 

a more severe progression of AD. Finally, MPPSS could achieve an AUC of 0.73 in training dataset, 

0.71 in testing dataset and an AUC of 0.82 on weighted average in five external validation datasets. 

Overall, our study successfully established a novel metabolism-based scoring system for AD 

diagnosis using blood transcriptome, and provided new insight into the molecular mechanism of 

metabolic dysfunction implicated in AD. 
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1. Introduction 

AD is an extremely common neurodegenerative disease, which is the leading cause of dementia. 

It typically begins with deterioration in memory and is characterized by a progressive decline in 

cognitive function [1]. With the aging of the population and longer lifespans, the incidence of the 

disease continues to rise. There are approximately 50 million people worldwide with AD [2], and this 

number is expected to increase rapidly in the coming decades. Currently, there is no curative 

treatment for AD and the best therapy is early diagnosis and the delay of the disease progression [3]. 

Therefore, AD risk prediction is in urgent need of effective biomarkers. 
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Diagnosis of AD involves a variety of methods, including clinical presentation, cognitive tests, 

brain imaging, cerebrospinal fluid analysis, and blood testing. Clinical presentation involves 

observing the patient's symptoms, including cognitive and memory impairment, as well as 

behavioral and emotional changes. Cognitive tests, such as the Mini-Mental State Examination 

(MMSE) and Montreal Cognitive Assessment (MoCA) are used to evaluate a patient's cognitive 

ability. Brain imaging techniques, such as Positron Emission Tomography (PET) and Magnetic 

Resonance Imaging (MRI) scans, can reveal structural and functional changes in the brain, i.e., brain 

atrophy and accumulation of beta-amyloid plaques. But these diagnostic methods are time-

consuming, costly and subjective based on the clinic doctors’ experience [4]. Particularly, the US 

National Institute on Aging and the Alzheimer’s Association proposed using biomarkers as purely 

biological definition of AD [5]. For example, Cerebrospinal fluid examination (CSF) can detect the 

accumulation of β-amyloid protein plaques and other biomarkers associated with AD i.e., Aβ42, T-

tau, and P-tau [6]. Although CSF test is effective for AD, its highly invasive character remains 

challenging for AD patients, especially for elderly patients. More importantly, establishment of 

reliable biomarker based on CSF core biomarkers, i.e., Aβ and tau, has culminated in a debate derived 

from conflicting results and theories [7]. It is urgent, thereby, to identify novel biomarkers for early 

diagnosis of AD, as well as potential targets for therapeutic methods in AD. Recently, accumulating 

evidence indicated that detection of fluid biomarkers from blood as diagnostic tools for AD is 

definitely a practical solution [8,9]. Blood testing detects specific proteins or other biomarkers in 

blood and thus can be used to early predict a patient's risk of developing AD. This approach has the 

advantage of being convenient, fast, and non-invasive compared with other methods for AD 

diagnosis. 

Although the exact cause of AD is still not fully understood, many studies have suggested that 

metabolic abnormalities are associated with the development of AD [10]. There has been growing 

interest in the role of metabolic dysfunction, particularly, lipid, glucose, and energy metabolism in 

the development and progression of AD [11-13]. Abnormalities in lipid metabolism in AD refer to a 

series of aspects, including high cholesterol, high triglycerides, and low-density lipoprotein [14]. 

These abnormalities can lead to atherosclerosis and cardiovascular disease [15], greatly increasing 

the risk of patients developing AD. Some studies have further demonstrated that high cholesterol 

may lead to the formation of β-amyloid protein plaques, which are one of the typical features of AD. 

β-amyloid protein plaques can damage neurons in the brain, leading to cognitive impairment, 

memory loss, and neuronal death [16]. The apolipoprotein E (ApoE) gene has been identified as a 

major risk marker of AD, which could repair synapsis and maintain neuronal structure [17]. 

Currently, many studies also indicated that glucose and energy metabolism significantly associate 

with AD, such as tricarboxylic acid (TCA) cycle, oxidative phosphorylation deficits, and pentose 

phosphate pathway impairment [18]. Glucose is important energy substrate for brain and neurons in 

brain need a great quantity of energy to sustain the normal activity [18]. But a decrease in glucose 

and energy metabolism is also observed in AD patients by research [19]. In addition, oxygen and 

glucose metabolic rates are significantly changed in AD because of the alterations of glycolytic 

pathway and TCA cycle [20]. Reasonably, abnormality of metabolism exhibits a closely association 

with the onset and progression of AD, and identification of novel metabolism-related biomarkers is 

a workable strategy for diagnosis of AD. 

In the present study, we hypothesized that molecular metabolism abnormalities in AD might 

reflect in metabolic gene expression of peripheral blood, and characterizing those unconventionally 

metabolic genes in blood may give rise to a promising non-invasive biomarker for diagnosis of AD, 

particularly in early stage. Initially, we unveiled the difference of peripheral blood gene expression 

between AD and non-AD patients based on the high-throughput RNA sequencing data, along with 

the relevant biological processes and pathways they involved. Subsequently, inspired by Lixin Cheng 

et al’ s study [21], we proposed a novel approach to quantify the difference between a pair of 

metabolic pathways within each individual sample (including AD and non-AD patients). The main 

merit of this approach can well avoid the batch effect derived from different datasets. This analysis 

successfully figured out several metabolic pathway pairwise (MPP) signatures associated to AD. 

Furthermore, all the AD patients could be classified into two subgroups via the unsupervised 
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clustering analysis based on the MPP signature matrix, which exhibits distinct patterns of immunity 

and metabolism. Eventually, we utilized multiple machine learning methods to screen out key MPP 

signatures correlated to AD and establish a metabolic pathway pairwise scoring system (MPPSS) for 

AD of diagnosis (Figure 1). The model achieved a high AUC in not only test data but also the 

independent validation datasets. In conclusion, we developed reliable and sensitive biomarkers for 

AD early diagnosis and intervention, it holds significantly potential value in helping people deeply 

understand the disease mechanisms and influencing factors of AD and will be of practical clinical 

use. 

 

Figure 1. The flow chart summarizes the scheme performed to construct Metabolic Pathway Pairwise-

based System scoring (MPPSS) for AD diagnosis. 

2. Methods 

2.1. Data acquisition and preprocess 

Eight gene expression datasets of AD patients and non-AD controls are obtained from GEO 

database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) [17]. The basic statistics of relevant 

information including platform, tissue, and sample number was summarized in Table S1. Of them, 

three datasets were merged and used for the downstream analysis, as well as the establishment of 

model for AD diagnosis. Merged data, referred to here as metaGEO, consisted of GSE140829 (249 

Control and 204 AD patients), GSE63060 (104 Control and 145 AD patients), and GSE63061 (234 

Control and 238 AD patients). The R package ‘SVA’ [18] was applied to remove batch effect among 

different datasets by ComBat() function. Patient ID, gender, race, age and APoE stage among the 

clinical data of AD and non-AD samples were summarized in Table 1. The remaining datasets 
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(GSE97760, GSE26927, GSE148822, GSE163877 and GSE104704) were used as independent data for 

the validation of diagnosis model. 

Table 1. The clinical information of 975 samples including GSE140829, GSE63060 and GSE63061 

datasets. 

Characteristic Group No. of cases (%) 

Samples AD 488 (50.05%) 

 Non-AD 487 (49.95%) 

Age ≤60 11 (1.13%) 

 >60&≤70 277 (28.41%0 

 >70&≤80 479 (49.13%) 

 >80&≤90 206 (21.13%) 

 >90 2 (0.21%) 

Gender Male 405 (41.54%) 

 Female 570 (58.46%) 

Race Western European 385 (39.49%) 

 Other Caucasian 42 (4.31%) 

 British 3 (0.31%) 

 British Welsh 2 (0.21%) 

 British English 69 (7.08%) 

 British Scottish 2 (0.21%) 

 British Other Background 1 (0.10%) 

 Irish 5 (0.51%) 

 Indian 2 (0.21%) 

 White And Asian 1 (0.10%) 

 Any Other White Background 7 (0.72%) 

 Any Other Asian Background 1 (0.10%) 

 Unknown 455 (46.67%) 

APoE status apoe_E2_E2 2 (0.21%) 

 apoe_E2_E3 39 (4.00%) 

 apoe_E2_E4 10 (1.03%) 

 apoe_E3_E3 233 (23.90%) 

 apoe_E3_E4 130 (13.33%) 

 apoe_E4_E4 30 (3.08%) 

 Unknown 531 (45.54%) 

Subgroups S1 295 (54.92%) 

 S2 193 (40.98%) 

2.2. Construction of MPP signatures  

After removing the batch effect of 975 samples, single sample gene set enrichment analysis 

(ssGSEA) score derived from R package ‘GSVA’ [22] was used to evaluate the pathway activity of 84 

metabolic pathways (Table S2) from Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

[23]. After that, we make subtraction between two pathways and iterate through all 84 KEGG 

pathways and resulting in 3486 MPP signatures at the end. We constructed the MPP signatures based 

on the Lixin Cheng et al’s study [21] and displayed this process below. 

2.2.1. Within-sample analysis 

We performed the comparisons for MPP signatures based on the ssGSEA value of the single 

pathway. For each sample, the Metabolism Pathway (MP) score of k-th sample was recorded as the 

vector 
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where MPm represent the ssGSEA score of the m-th metabolic pathway and the superscript k 

indicated the k-th sample. Then, we defined the relative value of a MP pair, which can be summarize 

to the MPP signature as 
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 was a vector comprised 

the pathway activity values of all pairs of MPs within the k-th sample. 
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(�) were in �� dimensions. 

2.2.2. Cross-sample analysis 

Within-sample calculation was followed by cross-sample analysis between AD and non-AD 

groups. To acquire those significantly differential MPP signatures, we conducted the count test and 

thus compared the number of r��
(�) = 1(���

(�) ≥ ���
(�))  and r��

(�) = −1(���
(�) ≥ ���

(�))  in AD 

and non-AD groups. Finally, the contingency table of MPP signatures for AD and non-AD samples 

was shown as follows: 

Type ���
(�) ≥ ���

(�) ���
(�) < ���

(�) 

Non-AD a b 

AD c d 

Subsequently, Chi-square test was calculated based on this contingency table to quantify the 

association between AD and each MPP signature. Holm’s adjustment was used for multiple 

comparisons. The relevant analysis above was conducted using R version 4.2.1 (https://www.r-

project.org/). After gain these MPP signatures, we used Cytoscape software [24] 

(http://www.cytoscape.org/) to analyze and visualize metabolic network and thus detect hub nodes 

by Maximal Clique Centrality (MCC) method in cytoHubba software [25]. 

2.3. Unsupervised clustering to characterize AD patient subgroups 

Based on the integration of MPP signatures, we used the ‘NMF’ R package [26] to perform an 

unsupervised clustering algorithm Non-Negative Matrix Factorization (NMF). Before clustering, we 

take the exponent of constant e to eliminate negative numbers in matrix. The resampling set to 10 

repetitions to maintain clustering stability. After iterations of the consensus clustering algorithm, the 

number of optimal clusters was confirmed according to the rockfall diagram (Figure S1). 

2.4. Establishment of AD diagnostic MPPSS by using multiple machine learning approaches 

Next, we established machine learning-based MPPSS for the diagnosis of AD and non-AD 

samples. Firstly, the metaGEO dataset was randomly split into a training set (comprising 70% of the 

total dataset) and a testing set (comprising 30% of the total dataset) for the purpose of model 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2023                   doi:10.20944/preprints202305.0837.v1

https://doi.org/10.20944/preprints202305.0837.v1


 

establishment and accuracy validation [27]. We respectively used five artificial intelligence 

frameworks and conducted AD diagnosis model establishment and validation. Finally, we 

constructed AD diagnostic MPPSS by using the best performing method among the five machine 

learning methods including extreme gradient boosting (XGBoost [28], R Package ‘xgboost’, V4.2.2, 

https://xgboost.ai/), Boruta (R package ‘Boruta’ [29], V8.0.0, https://gitlab.com/mbq/Boruta/), random 

forest (R package ‘randomForest’, V4.7-1.1), decision tree (R package, ‘rpart’ [30], V4.1.16, 

https://cran.r-project.org/web/packages/rpart/index.html), LASSO (R Package ‘glmnet’ [31] V4.1-4, 

https://cran.r-project.org/web/packages/glmnet/index.html). Boruta is a feature selection algorithm 

based on random forest that can identify significant and insignificant features, helping to determine 

which features are useful for the model [29]. XGBoost is an enhanced learning algorithm based on 

decision tree that can also be used for feature selection [28]. LASSO is a regression analysis method 

that can reduce the number of parameters in the model by adding penalty terms and selecting key 

features [32]. The principle of Lasso Regression is to add an L1 regularization term that limits the 

number of features in the model, thereby reducing the risk of overfitting. Specifically, the L1 

regularization term adds the sum of the absolute values of the regression coefficients to the loss 

function, which forces some of the feature coefficients to be zero during optimization and achieves a 

feature selection effect. Decision tree and random forest are also common feature selection algorithms 

that can rank the importance of each feature through calculation [33]. 

2.5. Immune infiltration analysis by CIBERSORT algorithm 

As a machine learning method based on linear support vector regression method of calculating 

cell fractions from gene expression data, Cell-type Identification By Estimating Relative Subsets Of 

RNA Transcripts (CIBERSORT) [34], could infer the proportions of B cells, plasma cells, T cells, 

natural killer cells, monocytes, macrophages, dendritic cells, mast cells, eosinophils, and neutrophils 

that had infiltrated among 3 groups (S1, S2 and non-AD groups). By using the CIBERSORT algorithm, 

we analyzed the AD patients’ gene expression data and quantified the relative proportions of 22 

infiltrating immune cells. 

2.6. Gene differential expression analysis and functional annotation analysis between the AD and non-AD 

groups, as well as within the two AD subgroups. 

We identified the differentially expressed genes (DEGs) by comparing non-AD and AD groups, 

as well as AD subgroups using the ‘limma’ R package [35]. It developed a multidimensional gene 

expression analysis method to evaluate the differences in gene expression and identify which 

biological pathways affected by these differences. First, we converted the transcriptome data 

downloaded from GEO in probe-level format to gene-level format for further analysis. Subsequently, 

the data underwent batch effect removal, and differential expression analysis was performed 

between the AD and non-AD samples, as well as within the two AD subgroups. The logarithmic fold 

change (logFC) values that exceeded the limit of the mean value ＋ /－  tow folds of standard 

deviation and the adjusted p value less than 0.05 were considered DEGs. A volcano plot of the DEGs 

were created using the ‘ggplot2’ R package. After obtaining the DEGs, we performed functional 

enrichment analysis based on Gene Ontology (GO) knowledgebase [36], KEGG database, as well as 

Hallmarks pathway derived from Molecular Signatures Database (MSigDB) [37] via the ‘GSEA’ and 

‘clusterProfiler’ R packages. In addition to GO and KEGG pathways, Hallmark pathways is a 

classification system used to describe important biological process related to disease development. 

3. Results 

3.1. Comparative transcriptome analysis characterizes metabolic hallmarks of peripheral blood in AD 

After integration of three GEO datasets, referred to as metaGEO, the differential gene expression 

analysis based on blood RNA-seq data between 488 AD and 487 non-AD samples was performed, 

which yielded 605 DEGs (324 up-regulated and 281 down-regulated DEGs) (Figure 2a, g and Table 

S3). Upregulated genes such as KLRB1, involved in immune regulation, and HINT7, involved in 
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neurodevelopment, play critical roles in these processes. Protein-coding gene, such as LSM3, ATPO5, 

COX7, and RPL17, participate in mitochondrial respiration and RNA splicing. In contrast, 

downregulated genes such as NBEAL2, CEBPD, OSCAR, CD14, PAD14, CRISPLD2, and PGLYRP1 

are associated with immune response and inflammation. HK3, STXBP2, and PGD are related to 

metabolic processes. Genes like APBB1IP, ITPK1, and TLN1 are involved in signal transduction and 

neurodevelopment. Subsequently, we conducted cluster analysis of GO, KEGG, and hallmark 

pathways. Using GSEA to sort the logFC of DEGs, we found that in the AD and non-AD groups, 

DEGs were mainly enriched in KEGG pathways (Figure 2c and Table S4) related to nucleotide 

excision repair, citrate cycle (TCA cycle), pyruvate metabolism, drug metabolism-cytochrome P450, 

oxidative phosphorylation, and ECM-receptor interaction. GO was enriched in chemical stimulus 

perception, aerobic respiration, oxidative phosphorylation, electron transport coupled ATP 

synthesis, sensory perception, etc. (Figure 2d and Table S5). Hallmark pathways were enriched in 

biological processes such as oxidative phosphorylation, MYC V1 targets, and heme metabolism 

(Figure 2f and Table S6). We further depicted the differences of metabolic pathways including lipid, 

glucose and energy metabolism between AD and non-AD samples (Figure 2e). We performed a 

differential MPP signature analysis between AD and non-AD groups via chi-square test (adjusted p 

value <0.01) and obtained 112 significantly differential MPP signatures (Figure 2h and Table S7). 

Then, we processed network analysis for those MPP signatures to detect key metabolic pathways 

(Figure S2). Among them, several glucose and lipid metabolic pathways including Galactose 

metabolism, Biosynthesis of unsaturated fatty acids Biosynthesis of unsaturated fatty acids and 

Arachidonic acid metabolism are identified (Figure 2b and Table S8). Oxidative phosphorylation 

was consistent with our previous differential gene expression analysis between AD and non-AD 

groups (Figure 2c, f). 
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Figure 2. The metabolic hallmarks between AD and non-AD samples detected by comparative 

transcriptomic analysis. (a) The volcano plot of DEGs between AD and non-AD groups. (b) The core 
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metabolic network of significantly differential MPP signatures unveiling importantly metabolic 

pathways. We selected top10 metabolic pathways ranked by MCC algorithm and their neighbors for 

visualization. Hub nodes also are labeled by red color and the nodes with deeper color have higher 

rank. Green nodes are the neighbor nodes of hub nodes. (c) The functional annotation analysis of 

DEGs by KEGG database. (d) The functional annotation analysis of DEGs by GO database. (e) The 

boxplot of metabolic pathways between AD and non-AD samples revealing the significantly 

differential metabolic pathways. (f) The functional annotation analysis of DEGs by hallmark 

pathways. (g) The heatmap of DEGs between AD and non-AD groups. We selected significantly 

DEGs from all available ones for visualization. (h) The heatmap of differential MPP signatures. We 

selected significantly differential MPP signatures from all available ones for visualization. hsa01040, 

Biosynthesis of unsaturated fatty acids; hsa00052, Galactose metabolism; hsa00780, Biotin 

metabolism; hsa00270, Cysteine and Methionine metabolism; hsa00760, Nicotinate and Nicotinamide 

metabolism; hsa00592, alpha-Linolenic acid metabolism; hsa00533, Glycosaminoglycan biosynthesis 

- keratan sulfate; hsa00590, Arachidonic acid metabolism; hsa00980, metabolism of xenobiotics by 

cytochrome P450; hsa00512, Mucin type O-glycan biosynthesis. 

3.2. NMF clustering analysis of AD patients based on peripheral blood MMP signatures reveals distinct 

pattern of lipid, glucose and energy metabolism 

To quantify the degree of metabolic differences in AD patients, we selected 112 MMP signatures 

via chi-square test (adjusted p value < 0.01) for NMF clustering (Figure 3a). NMF clustering of the 

MMP signature matrix revealed two main AD clusters, referred to here as S1 and S2 (with 295 and 

193 cases, respectively; Table 1). Then, we conducted the differential gene expression analysis of 

blood-based RNA-seq data between S1 and S2 groups, which yielded 675 DEGs (420 up-regulated 

and 255 down-regulated DEGs; Figure 3b, d and Table S9). As a result, upregulated genes such as 

ANAX1 participate in biological functions such as autophagy, and metabolic regulation. ARGLU1 is 

mainly involved in metabolic regulation. S100A8 and KLRB1 are involved in inflammation and 

immune regulation. TOMM7 dominates cerebrovascular network homestasis, and some studies have 

found that it is associated with neurodegenerative disease Parkinson's [38]. Downregulated genes 

such as LSP1 and CDA are involved in immunity. SLC25A37 participates in metabolic development. 

NINJ2 and GRINA regulate neurodevelopment, while EPB49 is involved in cell extension and 

development. DEGs were enriched in KEGG pathways including neuroactive ligand-receptor 

interaction, cytokine-cytokine receptor interaction, olfactory transduction, etc. (Figure 3e and Table 

S10). Between the S1 and S2 groups, GO enrichment of DEGs was found to be involved in autophagy, 

sensory perception, macroautophagic, organelle catabolic process, chemical stimulus, olfaction, and 

stimulus detection in sensory perception, etc. (Figure 3f and Table S11). DEGs were mainly enriched 

in hallmark pathways consisting of glycolysis, apoptosis, fatty acid metabolism, estrogen response 

and oxidative phosphorylation (Figure 3c and Table S12). Similarly, chi-square test was used to 

detect differential MPP signatures (adjusted p value < 0.01) between the S1 and S2 groups, which 

generated 120 differential MPP signatures (Figure 3h and Table S13). Subsequent network analysis 

for those differential MPP signatures was conducted to screen out key metabolic pathways (Figure 

S3). As a result, many key metabolic pathways correlated to AD was detected (Figure 3g and Table 

S14), including alpha-Linolenic acid metabolism, Fructose and mannose metabolism and Fatty acid 

elongation, etc. Also, several pathways such as Oxidative phosphorylation, Biosynthesis of 

unsaturated fatty acids and Drug metabolism-cytochrome P450 were enriched in our previous 

functional analysis of DEGs between S1 and S2 groups (Figure 3c and Table S10), implying the 

reliability of these AD-related metabolic pathways. We compared metabolic pathway activity 

between S1 and S2 groups via ssGSEA analysis. The activity of oxidative phosphorylation in S1 group 

is higher than that in S2 group, whereas the activities of most lipid metabolism, i.e., alpha-Linolenic 

acid metabolism, Arachidonic acid metabolism and Ether lipid metabolism in S1 group was found to 

exhibit lower than that in S2 group (Figure 3j). 
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3.3. Comprehensive evaluation of immune cell infiltration characteristics in AD subgroups and non-AD 

control group 

Immune cell infiltration is significantly associated with AD progress, and it’s one of the 

hallmarks of AD [39]. To comprehensively evaluate the immune infiltration characteristics of two AD 

subgroups and one control group, we applied the CIBERSORT algorithm to estimate the proportions 

of 12 immune cell types (i.e., B cells, plasma cells, CD8+ T cells, CD4+ T cells, γδ T cells, NK cells, 

monocytes, macrophages, dendritic cells, mast cells, eosinophils, and neutrophils) in each sample. 

The results presented significantly different immune infiltration features in the subgroups, indicating 

that the patients in different these groups were of different immune cells infiltration landscapes. As 

shown in Figure 3i, T cells memory activated and T cells CD4 memory resting was significantly lower 

in S2 patients, while T cells CD4 naive infiltration was significantly higher than S1 patients. Dendritic 

cells activated and dendric cells resting were both extremely significant in S2. The formal is higher 

than the two other groups, and the latter is on the opposite. While in T cells regulatory, the index of 

S2 group immune infiltration was obviously higher than the other groups, whereas the control group 

was the second. In T cells gamma delta immune infiltration, S2 group had the lowest proportion 

compared with S1 group and non-AD group. Mast cell activation were significantly accumulated in 

S2, while the Mast cell resting of S2 is on the counterpart. 
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Figure 3. The characterization of DEGs, pathways, MPP signatures and immune microenvironments 

between S1 and S2 groups. (a) The heatmap of NMF clustering based on AD patients. (b) The volcano 

plot of DEGs between S1 and S2 groups. (c)  The functional annotation analysis of DEGs by hallmark 

pathways. (d) MMP signature-based clustering of metaGEO dataset showed that significantly DEGs 

correlated with metabolism, nervous system and immunity among S1, S2 and non-AD group. (e) The 

functional annotation analysis of DEGs by KEGG database. (f): the functional annotation analysis of 

DEGs by GO database. (g) The core metabolic network of significantly differential MPP signatures. 

We selected top10 metabolic pathways ranked by MCC algorithm and their neighbors. Hub nodes 
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also are labeled by red color and the nodes with deeper color have higher rank. Green nodes indicate 

adjacency nodes of hub nodes. (h) The heatmap of differential MPP signatures which we selected 

from all available ones between S1 and S2 groups. (i) The immune infiltration analysis showing the 

profiles of infiltrating immune cell types between S1 and S2 groups. (j) The boxplot of metabolic 

pathways between S1 and S2 groups. hsa00592, alpha-Linolenic acid metabolism; hsa00982, Drug 

metabolism-cytochrome P450; hsa01040, Biosynthesis of unsaturated fatty acids; hsa00534, 

Glycosaminoglycan biosynthesis-heparan; hsa00780, Biotin metabolism; hsa00980, Metabolism of 

xenobiotics by cytochrome; hsa00512, Mucin type O-glycan biosynthesis; hsa00051, Fructose and 

mannose metabolism; hsa00760, Nicotinate and nicotinamide metabolism; hsa00062, Fatty acid 

elongation. 

3.4. Establishment of MPPSS for distinguishing AD patients from non-AD patients 

Initially, metaGEO was divided into training cohort and testing cohort at ratio of 7:3. Five 

machine learning methods were applied to assess the importance of MPP signatures, including 

Boruta, XGBoost, random forest, decision tree and LASSO (Table S15). The MPP signatures matrix 

was subjected to each machine learning model for training 1000 iterations, respectively (Figure 4a). 

We evaluated the performance of the MPSS classifier using the ROC metric, with the points on the 

ROC curve representing its performance at different classification thresholds. The results indicated 

that the LASSO model, referred to as MPP scoring system (MPPSS), outperformed other models on 

the train and test dataset (Figure 4b), which consists of 13 important MPP signatures related to AD 

(Figure 4c and Table 2). These pathways are closely related to biological processes such as oxidative 

phosphorylation, pyruvate metabolism, or heme metabolism, and involve the synthesis, degradation, 

and transformation of various important metabolites, such as steroid hormones, GPI anchors, 

heparan sulfate/dermatan sulfate, terpenoid backbones, etc. Understanding these pathways can help 

us better understand the structure and function of metabolic regulatory networks, providing insights 

into disease prevention and treatment. 

Table 2. MPP Signatures used for LASSO model construction. 

MPPS coef Pathway pairwise function 

hsa00100-hsa00190 1.0285978 
Steroid hormone biosynthesis - oxidative 

phosphorylation 

hsa00563-hsa00190 1.4211556 GPI-anchor biosynthesis - oxidative phosphorylation 

hsa00534-hsa00190 1.0289191 
Glycosaminoglycan biosynthesis-heparan 

sulfate/heparin - oxidative phosphorylation 

hsa00900-hsa00190 1.1686399 
Terpenoid backbone biosynthesis - oxidative 

phosphorylation 

hsa00310-hsa00534 -0.6982631 
Lysine degradation - glycosaminoglycan 

biosynthesis-chondroitin sulfate/dermatan sulfate 

hsa00760-hsa00190 1.1373381 
Nicotinate and nicotinamide metabolism - oxidative 

phosphorylation 

hsa00531-hsa00860 0.1188049 
Glycosaminoglycan degradation - porphyrin 

metabolism 

hsa00513-hsa00620 1.3416181 
Various types of N-glycan biosynthesis - pyruvate 

metabolism 

hsa01040-hsa00190 1.0216412 
Unsaturated fatty acid biosynthesis - oxidative 

phosphorylation 

hsa00310-hsa00600 -0.8491503 Lysine degradation - sphingolipid metabolism 

hsa00534-hsa00620 0.1976417 
Glycosaminoglycan biosynthesis-heparan 

sulfate/heparin - pyruvate metabolism 

hsa00310-hsa00531 -1.1770501 
Lysine degradation - glycosaminoglycan 

degradation 

hsa00051-hsa00860 0.4476219 
Fructose and mannose metabolism - porphyrin 

metabolism 
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Next, we found that the AUC value of MPPSS for the training set was 0.73 and for the testing set 

it achieved 0.71 (Figure 4d). The performance of the training and validation sets directly demonstrate 

the predictive potential of the MPPSS. Then, to further evaluate the robustness and accurate of the 

MPPSS, we validated it using five independent GEO datasets. Our MPPSS had good performance for 

predictions on the independent GEO sets. Concretely, when evaluating the model on the whole blood 

validation sets (GSE97760), we obtained AUC value of 0.99 (Figure 4e). Otherwise, the AUC value of 

the MPPSS also achieved 0.94 on the brain tissue datasets (GSE26927; Figure 4e). The AUC values are 

likewise higher than 0.7 in the rest brain tissue validation sets (GSE148822 and GSE104704; Figure 

4e). In addition, to evaluate the classification performance of the MPPSS, we compared the APoE 

genotypes and metabolic pathways in two groups divided by MPPSS on the metaGEO dataset 

(Figure 4f). and the results indicated that lipid (alpha-Linolenic acid metabolism and Biosynthesis of 

unsaturated fatty acids), glucose (galactose metabolism and pentose phosphate pathway), and energy 

(oxidative phosphorylation) metabolism are significantly different (Figure 4g). 

 

Figure 4. Establishment and validation of MPPSS for the diagnosis of AD patients. (a) The 

construction of MPP signature models based on multiple machine learning methods; (b) The 

performance among five machine learning methods on train and test datasets; (c) The selection of 

MPP signatures by MPPSS; (d) The AUC curves of MPPSS on train and test datasets; (e) The AUC 

curves of MPPSS on five independent validation datasets; (f) The comparison of the APoE genotypes 
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in two groups diagnosed by MPPSS on the metaGEO dataset; (g) The comparison of metabolic 

pathway activity in two groups diagnosed by MPPSS on the metaGEO dataset. 

4. Discussion 

AD is an incurable neurodegenerative disorder associated with aging, and its underlying 

mechanisms are not yet fully understood [40]. Early diagnosis and delay of disease process are 

regarded as the best treatment for AD. In our study we aimed to develop a diagnostic scoring system 

(MPPSS) for AD patients based on the blood gene expression data. The advantages of blood-based 

biomarker diagnosis for AD include its non-invasiveness, safety, ease of use, low cost, and high 

accuracy, compared to other traditional diagnostic methods which require invasive procedures such 

as lumbar puncture or intracranial injection to collect samples. 

Recent studies suggest that metabolic pathways including lipid, glucose and energy metabolism 

may play a role in the development of AD [18,41]. Therefore, we conducted the establishment of 

MMP signatures for the characterization of the interplay between metabolic pathway pairs. Based on 

the MMP signatures, we identified two subsets (S1 and S2) of AD patients via NMF clustering. In the 

S1, S2, and non-AD groups, the down-regulated genes are mostly related to immunity, neurogenesis, 

and signal transduction, while the up-regulated genes are mostly related to mitochondrial respiration 

and RNA splicing. Furthermore, we conducted the immune infiltration analysis for three groups, and 

found that the S2 group had lower immune proportion, which might suggest a strong correlation 

between AD progression and immunity. Finally, we constructed MPPSS for the AD diagnosis. 

Compared with single marker-based diagnostic model, MMP signature-based diagnostic model has 

more power of characterization of the interaction among metabolic pathways in AD onset and 

development. The MPPSS hold considerable potential for assisting doctors in diagnosing elderly 

patients. It also suggests that MPP signatures may be used as diagnostic biomarkers in clinic. 

Overall, these findings suggest that metabolic pathways may provide potential diagnostic 

biomarkers for AD, particularly through blood-based analysis. Moreover, the involvement of 

cytochromes P450 in lipid homeostasis and detoxification processes further supports the role of 

metabolism in AD development [42]. Many studies have shown Cytochromes P450 of the liver are 

involved in maintenance of lipid homeostasis, such as cholesterol, vitamin D, oxysterol and bile acid 

metabolism [43,44]. And in detoxification processes of endogenous compounds such as bile acids 

[45]. The correlation provides evidence in support of our research findings. The core metabolic 

network metabolism of xenobiotics by cytochrome P450 (hsa00980) and Drug metabolism-

cytochrome P450 (hsa00982), which are involved in the metabolic mechanisms associated with 

cytochrome P450. The metabolism of xenobiotics by cytochrome P450 appeared as an important core 

metabolic pathway in both comparison of AD vs non-AD (Figure 2b) and S1 vs S2 (Figure 3g), and 

drug metabolism-cytochrome P450 appeared in S1 vs S2 (Figure 3g) individually. 

The activity of Cytochrome P450 protein is also regulated by the lipid environment [46]. The 

lipid level may have an important impact on the onset and development of AD [47,48]. In our study 

the differential enrichment of lipid metabolism pathways such as Steroid biosynthesis, Sphingolipid 

metabolism, Glycerolipid metabolism etc. (Figure 2e) supported this point of view. 

Alzheimer's disease is believed to be caused by Reactive Oxidative Stress (ROS), which occurs 

prior to the formation of Aβ-plaques and neurofibrillary tangles [49]. The core metabolism pathway, 

that is Biosynthesis of unsaturated fatty acids (hsa01040) identified in the present study have been 

demonstrated to be associated with the ROS production [50]. Another core metabolism involved in 

the metabolism of unsaturated fatty acids was reported to be considerably disrupted in the brains of 

individuals with different levels of Alzheimer’s pathology [51]. What’s more, Cysteine and 

Methionine metabolism (hsa00270) also plays an essential role in ROS, it can be oxidized and has 

been implicated in caloric restriction and aging [52]. These results were shown in Figure 2b. 

Among these metabolism pathways, oxidative phosphorylation (Figure 2e) plays a crucial role 

in brain cell energy metabolism [53] and has been shown to be involved in the pathogenesis of AD 

[54]. Other pathways, including pyruvate metabolism [55], porphyrin metabolism [56](Figure 2e), 

and fatty acid biosynthesis [43] (Figure 3e), have also been found to be implicated in AD. The 
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dysregulation of these pathways may lead to cellular energy metabolism disruption, oxidative stress, 

and cell death, which may negatively affect the occurrence and development of AD [43,55-57].  

Through analyzing the proportions of different immune cells in whole blood, a better 

understanding of the pathogenesis of AD can be gained. For example, inflammation may be an 

important trigger for AD, and certain immune cells such as macrophages and T cells are associated 

with inflammation. The comparison of T cells and Macrophage among three groups demonstrated 

the AD patients in S2 has low accumulation. T cells memory activated and T cells CD4 memory 

resting was significantly lower in S2 patients, while T cells CD4 naïve infiltration was significantly 

higher than that of S1 patients. Memory T cells are a subset of T cells that can encounters with foreign 

substances antigens and become activated more effectively, in the meanwhile, CD4 T cells helps 

coordinate immune responses by releasing cytokines and other signaling molecules [58], implying 

the patients in S2 exhibit lower immunity. There was a significant difference in the level of gamma 

delta immune infiltration among the S2 group compared to the other groups, with the S2 group 

exhibiting the lowest level. T cells with gamma delta receptor form small percentage of lymphocytes 

in healthy individuals, whereas their number increases in persons with immunological disorders. 

Also, we found the patients in S2 possessed the highest proportion of regulatory T cells (Treg), which 

is hallmark of immunological suppression These findings suggested that the patients in S2 might 

have a more severe progression of AD. 

Additionally, there are significant differences in the enrichment of Mast cells among the three 

groups. Concretely, Mast cell activation were significantly higher accumulated in S2 group, while the 

Mast cell resting of S2 group is on the counterpart. Derived from the myeloid lineage, mast cells are 

a category of immune cells that exist in connective tissues across the body [59]. Fibrillar Aβ peptides 

are known to play a significant role in the development of AD [60], and some studies have suggested 

that accumulation of them can trigger mast cells and elicit exocytosis and phagocytosis [61,62], which 

supports our finding that the patients in S2 exhibit a higher proportion of Mast cell activation. It 

should be noted that our results were based on analysis of blood samples. This finding indicates that 

the impact of AD on mast cells can be reflected in the whole blood. 

In our study, we utilized multiple machine learning approaches to establish and test the 

predictive model, respectively, with the aim of screening out the optimal model for AD diagnosis. 

Specifically, this strategy utilizes various feature selection algorithms (such as LASSO and random 

forest, etc.) to select features and evaluate the predictive capability of models via AUC index. This 

strategy could well eliminate the bias which may exist in a single feature selection algorithm, which 

improve the robustness and sensitiveness of the predictive model. 

However, several limitations exist and should be noted. Firstly, the missing some key clinic 

information, i.e., survival time, survival status, of AD patients limits our ability to fully analyze the 

clinic features between S1 and S2 groups. We expectantly collect more clinical data of AD patients in 

our future work. Secondly, although MPPSS exhibits decent predictive performance no matter in 

testing data or independent validated data (including blood dataset and brain datasets), there is still 

a lack of large-scale verification via prospective studies with large sample sizes. The MPPSS might be 

a valuable clinical tool aiding doctors in accurately diagnosing AD, especially for the elderly patients 

after rigorous evaluation and validation. Additionally, the lack of blood samples prevented us from 

conducting more stable external validation specifically for blood-based analysis. Nonetheless, we 

included the samples from other brain tissues for validation, which further demonstrated the 

generalizability of our model. Finally, the functional role of the reliable MPP signatures we identified 

requires further molecular experiments, which facilitates a better understanding of their biological 

significance implicated in AD. 

In summary, we conducted comparative analysis based on blood gene expression data between 

AD and non-AD groups. Characterization of the DEGs, and pathway associated with AD disclosed 

potential correlation of metabolism with onset and progression of AD. Based on blood transcriptome 

data, we constructed new metabolic marker, referring to as MPP signatures. Subsequently, we 

revealed the molecular subtype of AD based on NMF clustering and detected the differences within 

AD subset distribution. Network analysis was applied to differential MPP signatures to detect the 

core metabolic network of AD. Eventually, we established MPPSS for AD diagnosis which exhibited 
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a good performance on train, test and validation datasets. Our study provides insights into the 

association between AD and metabolism, and MPPSS shows the important implications for the AD 

diagnosis and treatment. 

Supplementary Materials: Figure S1: The cophenetic, dispersion and silhouette indicators determining the 

optimal clustering number of NMF method; Figure S2: The metabolic network of differential MPP signatures 

between AD and non-AD groups revealing key metabolic pathways related to AD; Figure S3: The metabolic 

network of differential MPP signatures between S1 and S2 groups revealing important metabolic pathways 

related to AD; Table S1: Overview Table of AD/Non-AD Sample Quantity, Tissue Type, and Platform Across 

Multiple Datasets; Table S2: 84 KEGG metabolism pathway; Table S3: Differentially Expressed Genes between 

AD and Non-AD Samples; Table S4: KEGG Pathway Enrichment Analysis Based on Differential Expression 

Genes Between AD and Non-AD Samples; Table S5: Gene Ontology Enrichment Analysis Based on Differential 

Expression Genes Between AD and Non-AD Samples; Table S6: HALLMARK Gene Set Pattern Analysis Based 

on Differential Expression Genes Between AD and Non-AD Samples; Table S7: Differential MPP Signatures 

Analysis in AD and Non-AD Samples Based on Chi-squared Test; Table S8: Top 10 Metabolic Pathways of core 

metabolic network constructed based on differential analysis of MPP signatures between AD and non-AD 

group; Table S9: Differentially Expressed Genes between Subgroup1 (S1) and Subgroup2 (S2) Samples; Table 

S10: KEGG Pathway Enrichment Analysis Based on Differential Expression Genes Between Subgroup1 (S1) and 

Subgroup2 (S2) Samples; Table S11: Gene Ontology Enrichment Analysis Based on Differential Expression Genes 

Between Subgroup1 (S1) and Subgroup2 (S2) Samples; Table S12: HALLMARK Gene Set Pattern Analysis Based 

on Differential Expression Genes Between Subgroup1 (S1) and Subgroup2 (S2); Table S13: Summary Table of 

Pathway Analysis Results in Subgroup1 (S1) and Subgroup2 (S2) Samples Based on Chi-squared Test; Table S14: 
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