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Abstract: Automotive chassis components, constructed as lap  joints and produced by gas metal arc welding 

(GMAW), require fatigue durability. The fatigue properties of the weld in a lap joint are largely determined by 

the weld geometry factors. When there is no gap or a consistent gap in the lap joint, improving the geometry 

of the weld toe can alleviate stress concentration and enhance fatigue properties. However, due to spring‐back 

and machining tolerances, it is difficult to completely eliminate or consistently manage the gap in the joint. In 

the case of a lap‐welded  joint with an inconsistent gap, it is necessary to identify the weld geometry factors 

related to fatigue properties. Evaluating the fatigue behavior of materials and welded joints requires significant 

time and cost, making research to predict fatigue properties essential. More research in needed on predicting 

fatigue  properties  related  to  automotive  chassis  components,  particularly  studies  on  predicting  the  fatigue  
properties  of  lap‐welded  joints  with  gaps.  This  study  proposed  a  regression  model  for  predicting  fatigue 
properties based on crucial weld geometry  factors  in  lap‐welded  joints with gaps using statistical analysis. 

Welding conditions were varied to build various weld geometries in joints configured in a lap from with gaps 

of 0, 0.2, 0.5, and 1.0 mm, and 87 S‐N curves for the lap‐welded joints were derived. As input variables, 17 weld 

geometry factors (7 lengths, 7 angles, and 3 area factors) were selected. The slope of the S‐N curve using Basquin 

model  from  the S‐N curve and  the safe  fatigue strength were selected as output variables  for prediction  to 

develop the regression model. Multiple linear regression models, multiple non‐linear regression models, and 

second‐order  polynomial  regression  models  were  proposed  to  predict  fatigue  properties.  Backward  
elimination was applied to simplify the models and reduce overfitting. Among the three proposed regression 

models, the multiple non‐linear regression model had a coefficient of determination greater than 0.86. In lap‐

welded  joints with gaps, the weld geometry factors representing fatigue properties were  identified through 

standardized  regression  coefficients,  and  four  weld  geometry  factors  related  to  stress  concentration  were  
proposed. 

Keywords: lap welded joint; GMAW; fatigue characteristic prediction; regression model; joint gap; 

weld geometry 

1. Introduction

The automobile chassis collectively refers to all the parts of a car, excluding the body, consisting 

of  the  frame, powertrain, suspension, steering, and braking components. Among  these,  the  frame 

serves  as  the  fundamental  skeleton  of  the  chassis,  comprising  cross‐members,  lower  arms,  and 

coupled torsion beam axle, and it is located at the very bottom of the car, requiring durability against 

repetitive loads during operation. 

The  chassis  frame,  which  requires  fatigue  durability,  mainly  comprises  lap  joints  and  is 

primarily manufactured using GMAW  to ensure  strength.  In GMAW, using  filler wire,  the weld 

metal will impart a geometric shape to the joint is inevitable. This acts as a stress concentration point 

due  to  repeated  fatigue,  leading  to  fracture  initiation and ultimately decreasing  the  component’s 

fatigue  durability.  Even when  high‐strength  steel  is  applied  to  chassis  components  for weight 

reduction,  the benefits of high‐strength steel are  lost due  to  the notch effect of  lap welds  [1,2].  In 
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welded joints with geometric shapes, such as lap welds, the bead shape has a more significant impact 

on fatigue characteristics than the weld’s microstructure [3,4]. Previous studies have reported that, 

particularly in lap  joints, improving the weld toe angle alleviates stress concentration at the notch 

area of the weld, thereby enhancing fatigue characteristics [5–9]. Prior investigations examining the 

fatigue  characteristics  of  lap  joints  have  compared  the  relationship  between weld  toe  angle  and 

fatigue characteristics only in flawless joints without gaps or with a consistent gap.   

Differences in the amount of spring‐back due to the non‐uniformity of alloying elements even 

within the same material, cutting errors, and machining dimensional tolerances make it impossible 

to completely eliminate or maintain a consistent joint gap in welded parts. The presence of gaps in 

the joint can lead to welding defects, even when welding is performed under the same conditions on 

identical components [10]. It has been reported that gaps deteriorate fatigue properties [11,12]. Kim 

et at [13] reported in the weld of lap joints, an increase in the joint gap caused the filler metal of the 

GMAW process to fill the gap, resulting in a smoother weld profile and an increase in the apparent 

weld toe angle. However, they confirmed that stress concentration at the weld root occurred, leading 

to decreased fatigue strength. Therefore, they suggested considering geometric shapes other than the 

weld toe angle for lap welds with gaps requiring fatigue characteristics. 

Deriving S‐N  curves  to determine  fatigue  characteristics  is a  time‐consuming and expensive 

process. Therefore, methods and  research  for predicting  fatigue  characteristics are being actively 

pursued. Traditionally, after Palmgren  introduced  the  concept of damage  accumulation  [14] and 

Miner  introduced  the  linear  damage  rule  [15], many  damage  and  prediction models  have  been 

developed. Fatemi et al [16] and Hectors et al [17] reviewed the article paper on cumulative damage 

and  life  prediction models  for  fatigue.  They  have  confirmed  that  linear  and  non‐linear  fatigue 

cumulative damage rules can predict fatigue characteristics based on fatigue life calculations. These 

calculations reflect the material and weld joint properties and the stress‐strain relationship resulting 

from repetitive loading cycles. Machine learning methods have recently been applied to process data, 

including noisy data, and learn complex non‐linear relationships to predict the fatigue characteristics 

of materials and weldments based on data without prior assumptions. Various machine  learning 

algorithms,  including  artificial  neural  networks,  convolutional  neural  networks,  residual  neural 

networks,  and  gradient  boosting  decision  trees,  have  been  applied  to  predict  the  fatigue 

characteristics of materials and weldments, demonstrating excellent fatigue prediction performance 

[18–21].   

In predicting the fatigue characteristics of the lap weld, which is the most commonly used single‐

sided  joint  in chassis components,  it  is considered difficult  to apply a  fatigue cumulative damage 

model  for  load  cycles  due  to  the  challenge  of  reflecting  the  weld  shape  (non‐uniform  stress 

distribution)  that  changes due  to welding  conditions  and disturbances during welding. Machine 

learning‐based prediction models operate as black‐box surrogate models between input and output 

parameters,  making  the  internal  decision‐making  process  opaque  and  difficult  to  interpret. 

Additionally,  it  is challenging  to assign physical meaning  to  the  input variables  in relation  to  the 

output  variables  [22]. Although  studies  to  fatigue  characteristics  are  being  reported  for  chassis 

components  requiring  fatigue  properties,  research  on  predicting  fatigue  characteristics  remains 

relatively scarce. The lack of research on predicting the fatigue characteristics of automotive chassis 

components is due to the widely accepted fact that improving the weld toe angle of typical lap joints 

enhances fatigue characteristics. However, the need for additional research on predicting the fatigue 

characteristics of lap welds, especially considering the gap, is urgent. This is particularly crucial in 

actual components where it is impossible to eliminate or maintain a consistent joint gap. 

  This  study  not  only  identified  the  significant  weld  geometry  factors  affecting  fatigue 

characteristics in lap welds with gaps but also predicted an S‐N curve based on a regression model. 

Lap welding was performed on GA 590 MPa 2.3 mm, which is widely used in chassis components. 

The joint gap size (Gap), welding process (WP), wire feed rate (WFR), and welding speed (WS) were 

varied to achieve different weld geometric shapes. A total of 87 S‐N curves were derived through 

fatigue tests on lap joint specimens with various weld shapes. Through cross‐sectional analysis, 17 

weld geometry measurements (seven length factors, seven angle factors, and three area factors) were 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2024                   doi:10.20944/preprints202408.1463.v1

https://doi.org/10.20944/preprints202408.1463.v1


  3 

 

used as input variables. Three regression models were proposed to predict the slope of the S‐N curve 

and the fatigue strength (fatigue strength at 2 × 106 cycles) with a safety factor. Three models were 

developed using backward elimination: a multiple  linear  regression model, a multiple non‐linear 

regression model, and a second‐order polynomial regression model. The significant factors affecting 

fatigue characteristics were proposed through standardized regression coefficients. 

2. Experimental Procedure 

2.1. Welding Procedure 

A GA 590 MPa grade steel sheet of thickness 2.3 mm was considered for the welding experiment, 

and AWS A5.18 ER70S‐3 of diameter 1.2 mm was used as the filler wire. Table 1 shows the chemical 

composition and mechanical properties of the base material and filler wire. 

Table 1. Welding parameter. 

 
Chemical composition [wt.%]  Mechanical properties 

C  Si  Mn  P  S  TS [MPa]*  YS [MPa]*  EL [%] * 

Base material  0.07  0.14  1.44  0.13  0.002  610  583  25 

Filler wire  0.07  0.65  1.14  0.02  0.010  560  440  28 

* Note. TS: Tensile strength, YS: Yield strength, EL: Elongation. 

The base material was cut to a size of 150 × 300 mm, and the direction of joint was selected in 

two forms, shown in Figure 1. Various weld joint configurations were considered to predict fatigue 

characteristics  through  weld  joint  shapes,  and  welding  was  conducted  using  diverse  welding 

processes and conditions.  In order  to confirm  fatigue characteristics based on  joint gap,  four gap 

conditions were selected: 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm. Cold metal transfer (CMT, Fronius co.) 

and direct current (DC, Daihen co.) were applied to the two types of joints prepared for the WP. WFR 

was varied in three levels, which included 5.0 – 9.0 m/min during CMT and 3.0 – 7.0 m/min during 

DC application. Two  levels of WS were selected as 60 and 80 cm/min. Additionally, contact tip to 

work distance (CTWD, α) and work angle were fixed at 15 mm and 45°, respectively. A 90 % Ar + 10 

% CO2 mixed shielding gas was provided at a flow rate of 25 L/min. The welding experiment was 

repeated five times under the same conditions to produce a fatigue specimen. The detailed welding 

conditions are listed in Table 2. 

 

(a) 
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(b) 

Figure 1. Schematic of joint preparation (a) A position, (b) B position. 

Table 2. Welding processes and conditions. 

Parameters  Value 

Weld joint  A position  B position 

WP  CMT  DC  CMT  DC 

WFR (m/min)  5.0, 7.0, 9.0  3.0, 5.0, 7.0  5.0, 7.0, 9.0  3.0, 5.0, 7.0 

WS (cm/min)  60, 80 

Gap (mm)  0, 0.2, 0.5, 1.0 

CTWD (α, mm)  15 

Work angle (β, ˚)  45 

Shielding gas  90 % Ar + 10% CO2 (25 L/min) 

2.2. Fatigue Test Procedure 

The  fatigue  test  specimens were manufactured by  referring  to  the ASTM E466  standard  for 

welding specimens (Figure 2) [23]. A spacer was inserted by combining the thickness of the gap and 

base material. Radiography inspection was performed on fabricated test specimens, and fatigue tests 

were conducted on the test specimens without defects such as porosity. We employed fatigue testing 

equipment (Instron 8801, Instron Co.) with a maximum load of 100 kN. Table 3 and Figure 3 show 

the fatigue  test conditions and a schematic of  the applied fatigue stress amplitude variations. The 

stress ratio of a specific component of an automobile chassis was adopted, and the fatigue limit was 

set at the commonly used 2 × 106 cycles. A total of 87 S‐N curves are derived through fatigue testing 

and used as data  to predict  fatigue  characteristics.  In  this  study,  the  fatigue  test  specimens were 

denoted in the order of weld joint – WP – WFR – WS – Gap. For example, under the conditions A 

position, WP CMT, WFR 7.0 m/min, WS 60 cm/min, Gap 0.2 mm (Table 2), it is expressed as A–C 

(CMT: C, DC: D)–7.0–60–0.2.   
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Figure 2. Configuration of fatigue specimen. 

Table 3. Fatigue test conditions. 

Maximum stress 

(𝝈𝒎𝒂𝒙) 

366–122 MPa (at intervals of 10 %) 

122–62 MPa (at intervals of 5 %) 

62 MPa under (at intervals of 2.5 %) 

Stress ratio (R)  0.1 

Frequency  40 Hz 

Fatigue limit  2 × 106 cycles 

 

Figure 3. Amplitude fluctuations of the applied fatigue stress. 

3. Method for Developing the S‐N Curve Prediction Model 

3.1. Selection of Independent and Dependent Variables 

The weld  joint geometry data extracted and used as  independent variables. A  lap‐joint weld 

typically appears in a shape similar to that illustrated in Figure 4, As criteria for configuration of weld 

shape  to  be  used  in  a  fatigue  prediction model,  17  parameters were  extracted.  The method  for 

extracting the 17 parameters is summarized in Figure 4. In the geometry of the lap weld joint, seven 

factors related to length including leg length and penetration depth [24–27], seven factors related to 

angle [28], such as toe angle, and three factors about have been derived [28]. 
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(a)  (b) 

 

(c) 

Figure 4. Schematic of weld joint geometry factors (a) length, (b) angle, (c) area. 

3.2. Selection of Dependent Variables 

The response variable for developing the S‐N curve prediction model was constructed using the 

fatigue dataset. For each S‐N curve, a  logarithm was considered at  the stress  range  (𝜎௥ሻ, and  the 
𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑒𝑞𝑎𝑡𝑖𝑜𝑛  (Eq. 1) was applied the determine  𝜎௙

ᇱ  and  𝑏  [29]. 

𝜎 ൌ 𝜎௙
ᇱ ∙ ൫𝑁௙൯

ି௕
  (1)

where  𝜎௙
ᇱ  is the material property,  𝑁௙  is the fatigue life as the number of cycles to failure under a 

constant load, and  𝑏  is the  𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑠𝑙𝑜𝑝𝑒 ሺ𝐵𝑆ሻ. 
In  the S‐N  curve  for  the weld  joint,  establishing  a  safety  factor  to prevent  fatigue  failure  is 

essential. 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝜎௙
ᇱ ሺ𝜎௙

ᇱ
ெ
ሻ  and 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏 ሺ𝐵𝑆ெሻ  were determined by applying M‐2SD in Eq. 2 

[30]. 

𝑁ெିଶௌ஽ ൌ
1
𝑛
෍ሺ𝑁ଵ ൅ 𝑁ଶ ൅⋯൅𝑁௡ሻ
௡

௜ୀଵ

െ 2 ∙ ඨ
1
𝑛
෍ሺ𝑁௜ െ 𝑁ഥሻଶ
௡

௜ୀଵ

  (2)

where 𝑁  represents fatigue life at  𝜎, while  𝑁ഥ  signifies the mean life at  𝜎௥ . 
Essentially,  M‐2SD  represents  fatigue  life  re‐expressed  by  subtracting  twice  the  standard 

deviation from the average fatigue life at  𝜎௥. This value was used to design a safety factor in the S‐N 

curve using the  𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛.  𝐵𝑆ெ  incorporating the safety factor was used as the dependent 

variable  to predict fatigue characteristics through weld  joint geometry parameters. Only  𝐵𝑆ெ was 

predicted, while  𝜎௙
ᇱ
ெ
was not predicted. The  reasons are explained  in next  section. Predicting  the 

endurance fatigue limit (2 × 106 cycles) on the S‐N curve was essential. Fatigue strength at a fatigue 

life of 2 × 106 cycles was derived from the  𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  using M‐2SD and compared with the 

fatigue  strength  obtained  through  fatigue  testing.  Lower  fatigue  strength was  defined  as  safety 

fatigue  strength  ሺ𝑆𝐹𝑆ሻ ,  considering  stability  against  fatigue  failure.  The  schematic  for  𝜎ௌிௌ   is 
presented in Figure 5. The critical factors obtained from  𝐵𝑆ெ  and  𝑆𝐹𝑆, along with the individually 

applied value of stress levels, included independent variables that were used to predict the overall 

fatigue life. 
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Figure 5. Schematic to the definition of safety fatigue strength ሺ𝜎ௌிௌሻ. 

3.3. Development of an S‐N Curve Prediction Model through Statistical Analysis   

We employed a statistical analysis method, a  regression model approach,  to predict  the S‐N 

curve. A regression model is a statistical analysis technique used to predict the value of dependent 

variables  from  independent  variables  by  assuming  a  mathematical  model  between  them.  A 

generalized linear regression model was constructed, as given in Eq. 3. 

𝑌 ൌ 𝛽଴ ൅෍𝛽௜𝑓௜ሺ𝑋ଵ,𝑋ଶ,⋯ ,𝑋௡ሻ ൅ 𝜀

௡

௜ୀଵ

  (3)

where  𝑓௜  denotes a scalar function with independent variables as arguments and includes non‐linear 

and polynomial expressions. In this study, multiple linear, non‐linear, and second‐order polynomial 

regression models were derived using the backward elimination method. 

4. Result of Fatigue Behavior 

A total of 87 S‐N curve were derived from varying welding conditions. Figure 6 illustrates some 

of them selectively presented. It was observed that as WFR increase, fatigue strength and life at a 

constant load increase (Figure 6 (a)). Conversely, an increase in WS resulted in decreased fatigue life 

and strength (Figure 6 (b)). As the gap increased, fatigue life and strength decreased (Figure 6 (c)). 

The fatigue life and strength were similar despite changes in the joint position (Figure 6 (d)). 

Using  the  𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑚𝑜𝑑𝑒𝑙   (Eq.1),  𝐵𝑆ெ   and  𝜎௙
ᇱ
ெ
  were  derived. M‐2SD was  applied  to  the 

fatigue life at the shared stress range, and  𝐵𝑆ெ  and  𝜎௙
ᇱ
ெ
  were derived from the logarithmic values 

in  𝐵𝑎𝑠𝑞𝑢𝑖𝑛 𝑚𝑜𝑑𝑒𝑙  (Eq.4).   

𝑙𝑜𝑔 𝜎 ൌ 𝑙𝑜𝑔 𝜎௙ெ
ᇱ െ 𝐵𝑆ெ ∙ 𝑙𝑜𝑔 𝑁௙  (4)

Figure 7 show  𝐵𝑆ெ  and  𝑙𝑜𝑔𝜎௙
ᇱ
ெ
derived from the S‐N curves under varying welding conditions. 

The X‐axis represents the deposition rate, which is proportional to WFR and inversely proportional 

to WS. Figure 7 (a) shows the relationship between the deposition rate and  𝐵𝑆ெ. As the value of  𝐵𝑆ெ 
decreases, the slop of S‐N curve decreases, indicating that the fatigue life increases when the same 

stress  range.  In other words,  the smaller  the  𝐵𝑆ெvalue,  the better  the performance of  the  fatigue 

properties. The  𝐵𝑆ெ  tends to decrease as the deposition rate increases, regardless of the  joint gap 
size. As the gap of the joint increases,  𝐵𝑆ெ  increases for the same deposition rate. The variation in 

𝐵𝑆ெ   was more  significant with  the  joint gap  size  than  the deposition  rate. While  increasing  the 

deposition rate can reduce  𝐵𝑆ெ  by improving the weld joint’s shape, an increase in gap size results 

in a greater share force acting on the lap joint, thereby degrading the fatigue characteristics of the lap 

weld. In the field where chassis parts are manufactured, the joint gap is an uncontrollable variable, 
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so it was not measured separately. It was determined that the weld joint shape measured in Figure 4 

varies, including the gap. Figure 7 (b) shows the relationship between the deposition rate and  𝑙𝑜𝑔𝜎௙
ᇱ
ெ
. 

Although  𝑙𝑜𝑔 𝜎௙
ᇱ
ெ
did not vary significantly with changes in the deposition rate, it was observed to 

increase with the increase in the joint gap. 
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Figure 6. Fatigue behavior of lap joint weld by welding conditions (a) WFR variation (fixed B position, 

WP: DC, WS: 60 cm/min, gap: 0 mm), (b) WS variation (fixed A position, gap: 0 mm), (c) gap variation 

(fixed A position, WP: CMT, WFR: 5.0 m/min, WS: 80 cm/min), (d) position variation (fixed WFR: 5.0 

m/min, WS: 60 cm/min, gap: 0 mm). 
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Figure 7. The relationship between (a)  𝐵𝑆ெ  and (b)  𝜎௙ெ
ᇱ   with respect to the deposition rate and gap 

variation in a lap joint. 
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𝜎௙
ᇱ
ெ
  is a value derived from the material property in Eq. 1, and it determined that verification of 

changes in the weld joint’s properties is necessary. The amount of heat input and colling rate applied 

to the base material during welding determine changes in the properties of the weld joint, which can 

be identified through its hardness. The hardness of weld depends on the amount of heat input, and 

the formula for calculating the heat input is presented in Eq. 5. 

𝐻𝑒𝑎𝑡 𝑖𝑛𝑝𝑢𝑡 ቀ𝐽 𝑐𝑚ൗ ቁ ൌ  
60 ∙ 𝐼 ∙ 𝑉
𝑊𝑆

  (5)

Figure 8 shows the hardness of the weld joint according to variations in heat input and gap. DC 

and CMT in WP exhibited different current waveform shapes, which led us to anticipate variations 

in heat input. Welding conditions with the highest and lowest heat input were selected in each WP. 

The joint position was fixed to the A position, respectively. The heat inputs calculated using average 

current and voltage, for the welding conditions A‐D‐3.0‐80‐0, A‐C‐5.0‐80‐1.0, A‐D‐7.0‐60‐1.0, and A‐

C‐9.0‐60‐0, were 1.54, 1.94, 4.83, and 5.07 kJ/cm, respectively.   

The base metal was at 199 HV on average, and HAZ  softening was not observed. With  the 

increase  in heat  input, an  increase  in  the size of FZ and a difference  in hardness within FZ were 

observed. The hardness of FZ under various welding conditions, A‐DC‐3‐80‐0, A‐DC‐7‐60‐1.0, A‐

CMT‐5‐80‐1.0, and A‐CMT‐9‐60‐0, was 255, 237, 255, and 239 HV, respectively. The difference in heat 

input resulted in hardness variations, although no hardness difference was observed with a change 

in the gap size. An increase in heat input delays the solidification of the molten pool, leading to a rise 

in ferrite structures in the target material’s FZ. This increase in ferrite structures, which have a lower 

hardness compared to bainite and martensite structures, decreases the hardness of the FZ [31]. Kim 

et al. [32] investigated the fatigue characteristics of lap welds in the subject material; despite the low 

FZ hardness in the welded joints with high fatigue strength, the fatigue characteristics of the welded 

joints improved by enhancing the weld shape. These results indicate that, in the fatigue characteristics 

of the lap welds in the target material, the influence of changes in weld shape is more significant than 

that of changes in weld microstructure. 

In Figure 7  (b), variations  in  𝑙𝑜𝑔 𝜎௙
ᇱ
ெ
  representing material characteristics were evident with 

change  in gap  size, whereas differences  in  𝑙𝑜𝑔 𝜎௙
ᇱ
ெ
  due  to variations  in heat  input were  scarcely 

observed. Therefore,  𝑙𝑜𝑔 𝜎௙
ᇱ
ெ
was not adopted as a dependent variable in the prediction model of this 

study. 
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Figure 8. Hardness distribution of the lap weld according to heat input and gap. 
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5. Fatigue Prediction Model for Statistical Analysis 

5.1. Correlation Analysis between the Weld Joint Geometry and Dependent Variables (𝐵𝑆ெ, 𝜎ௌிௌ) 

Before  conducting  regression  analysis,  a  correlation  matrix  between  the  dependent  (𝐵𝑆ெ 
and  𝜎ௌிௌ )  and  independent  (X1–17)  variables  was  computed  to  determine  their  relationships. 

Generally, a higher correlation between predictor variables and dependent variable implies a more 

significant  influence  of  those  predictors  on  the  outcome, which  is  essential  between  variables. 

Therefore,  in  some  cases,  variables with  strong  correlations  could  still  remain  inappropriate  for 

inclusion  in a regression model if the model assumptions are not met. Conversely, even variables 

with  low  correlation  coefficients  could  contribute  to  reducing  the  error  in  a  regression model. 

Additionally,  the  intercorrelation  among  independent  variables  should  be  considered.  High 

intercorrelation indicated similar impacts of the variables on  𝐵𝑆ெ  and  𝜎ௌிௌ, potentially leading to 
multi‐collinearity effects that increase errors in all models. 

The  correlation  analysis  was  conducted  to  examine  the  linearity  between  dependent  and 

independent variables, and among independent variables. Table 5 illustrates the correlation analysis 

results of variables concerning  𝐵𝑆ெ. X10 showed a correlation of 0.82, while X14 demonstrated −0.84, 

indicating a stronger linear relationship with  𝐵𝑆ெ than other factors. From Table 6, which focuses on 

 𝜎ௌிௌ, X10 and X14 were observed to exhibit strong linear relationships with correlation coefficients 

of −0.84 and 0.83, respectively. 

The correlation analysis among independent variables revealed significant correlations, with a 

correlation coefficient of 0.96 between X1 and X15, 0.95 between X6 and X16, 0.98 between X7 and 

X17,  −0.96  between  X9  and  X11,  and  −0.97  between  X11  and  X12.  Such  high  correlation  values 

indicated strong relationships among the variables, and caution should be exercised when including 

them in the regression model. The regression model used the remaining factors, excluding X6, X11, 

X12, X15, and X17, with correlation coefficients exceeding 0.95 among the independent variables.
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Table 5. Correlation matrix between the independent variables and  𝑩𝑺𝑴. 

  𝐵𝑆ெ  X1  X2  X3  X4  X5  X6  X7  X8  X9  X10  X11  X12  X13  X14  X15  X16 

X1  ‐0.66                                 

X2  ‐0.26  0.63                               

X3  ‐0.02  0.54  0.83                             

X4  0.62  ‐0.35  0.16  0.49                           

X5  ‐0.77  0.60  0.36  0.07  ‐0.46                         

X6  0.21  0.26  0.84  0.89  0.61  ‐0.13                       

X7  ‐0.13  0.50  0.74  0.68  0.24  0.22  0.66                     

X8  ‐0.15  0.06  0.25  0.05  0.04  0.19  0.16  0.29                   

X9  ‐0.73  0.88  0.27  0.26  ‐0.56  0.58  ‐0.13  0.21  ‐0.11                 

X10  0.82  ‐0.75  ‐0.61  ‐0.33  0.49  ‐0.67  ‐0.18  ‐0.39  ‐0.18  ‐0.66               

X11  0.68  ‐0.90  ‐0.24  ‐0.23  0.53  ‐0.53  0.13  ‐0.22  0.06  ‐0.96  0.60             

X12  ‐0.59  0.89  0.21  0.19  ‐0.46  0.45  ‐0.12  0.22  ‐0.01  0.86  ‐0.51  ‐0.97           

X13  0.79  ‐0.55  ‐0.07  0.31  0.92  ‐0.74  0.47  0.04  ‐0.09  ‐0.68  0.66  0.63  ‐0.55         

X14  ‐0.84  0.74  0.43  0.09  ‐0.72  0.77  ‐0.08  0.22  0.15  0.73  ‐0.82  ‐0.69  0.61  ‐0.86       

X15  ‐0.58  0.96  0.80  0.66  ‐0.23  0.59  0.45  0.62  0.12  0.75  ‐0.77  ‐0.75  0.70  ‐0.45  0.71     

X16  0.38  0.11  0.71  0.82  0.70  ‐0.24  0.95  0.63  0.11  ‐0.24  0.03  0.22  ‐0.20  0.60  ‐0.23  0.29   

X17  ‐0.07  0.47  0.80  0.76  0.31  0.16  0.77  0.98  0.27  0.15  ‐0.39  ‐0.16  0.15  0.12  0.18  0.62  0.74 
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Table 6. Correlation matrix between the independent variables and  𝝈𝑺𝑭𝑺. 

  𝜎ௌிௌ  X1  X2  X3  X4  X5  X6  X7  X8  X9  X10  X11  X12  X13  X14  X15  X16 

X1  0.76                                 

X2  0.51  0.63                               

X3  0.27  0.54  0.83                             

X4  ‐0.43  ‐0.35  0.16  0.49                           

X5  0.78  0.60  0.36  0.07  ‐0.46                         

X6  0.07  0.26  0.84  0.89  0.61  ‐0.13                       

X7  0.37  0.50  0.74  0.68  0.24  0.22  0.66                     

X8  0.21  0.06  0.25  0.05  0.04  0.19  0.16  0.29                   

X9  0.69  0.88  0.27  0.26  ‐0.56  0.58  ‐0.13  0.21  ‐0.11                 

X10  ‐0.84  ‐0.75  ‐0.61  ‐0.33  0.49  ‐0.67  ‐0.18  ‐0.39  ‐0.18  ‐0.66               

X11  ‐0.66  ‐0.90  ‐0.24  ‐0.23  0.53  ‐0.53  0.13  ‐0.22  0.06  ‐0.96  0.60             

X12  0.59  0.85  0.21  0.19  ‐0.46  0.45  ‐0.12  0.22  ‐0.01  0.86  ‐0.51  ‐0.97           

X13  ‐0.67  ‐0.55  ‐0.07  0.31  0.92  ‐0.74  0.47  0.04  ‐0.09  ‐0.68  0.66  0.63  ‐0.55         

X14  0.83  0.74  0.43  0.09  ‐0.72  0.77  ‐0.08  0.22  0.15  0.73  ‐0.82  ‐0.69  0.61  ‐0.86       

X15  0.74  0.96  0.80  0.66  ‐0.23  0.59  0.45  0.62  0.12  0.75  ‐0.77  ‐0.75  0.70  ‐0.45  0.70     

X16  ‐0.11  0.11  0.71  0.82  0.70  ‐0.24  0.95  0.63  0.11  ‐0.24  0.03  0.22  ‐0.20  0.60  ‐0.23  0.29   

X17  0.33  0.47  0.80  0.76  0.32  0.16  0.77  0.98  0.27  0.15  ‐0.39  ‐0.16  0.15  0.12  0.18  0.62  0.74 
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5.2. Regression Model for S‐N Curve Prediction 

The selected weld shape parameters were normalized and used as independent variables. Multi‐

linear  regression  analysis was  conducted  using  the  backward  elimination method,  a  technique 

employed in regression analysis to simplify models by iteratively removing non‐significant variables 

based on their p‐value. Furthermore, the approach allows for a more interpretable model and assists 

in preventing overfitting. 

The variables were systematically eliminated from the regression model based on the criteria of 

partial correlation coefficients and the significance level of regression coefficients with a threshold of 

0.05.  The  accuracy  of  the  regression  model  was  assessed  using  the  adjusted  coefficient  of 

determination and the standard error of the estimates. The adjusted coefficient of determination was 

particularly valuable as  it accounted  for model complexity and  is often preferred over  traditional 

coefficients. Eq. 6, 7, and 8 was used to represent the coefficient of determination, adjusted coefficient 

of determination, and standard error of the estimates, respectively. 

𝑅ଶ ൌ 1 െ
∑ ሺ𝑦௜ െ 𝑦పෝሻଶ
௡
௜ୀଵ

∑ ሺ𝑦௜ െ 𝑦തሻ௡
௜ୀଵ

ଶ   (6)

𝑅௔ௗ௝
ଶ ൌ 1 െ ሺ1 െ 𝑅ଶሻ ∙

𝑛 െ 1
𝑛 െ 𝑘 െ 1

 (7)

𝑆𝐸ሺ𝜀ሻ ൌ
√𝛴ሺŷᵢ െ 𝑦ᵢሻ²
𝑛 െ  𝑘 െ  1

 (8)

where  n  denotes the number of samples,  k  represents the number of independent variables,  y୧  is 
the i‐th actual measurement data,  yనෝ   is the predicted value for the ith data point, and  yത  represents 
the mean value of the dependent variable  y.   

Table 7 presents the backward elimination regression analysis results for 𝑀𝑜𝑑𝑒𝑙 𝐼஻ௌಾ. A total of 
8 steps were performed, and the variables X7, X13, X2, X3, X8, X1, and X5 were removed in higher 

order of their p‐values, which exceeded 0.05. Despite reducing the number of independent variables, 

𝑅௔ௗ௝
ଶ   remained  unchanged  at  0.86  and  the  final  𝑆𝐸ሺ𝜀ሻ   value was  0.170,  the  same  as  in  Step  #1. 

Therefore, the model from Step #8 was presented as the final regression equation for predicting 𝐵𝑆ெ 
using linear multiple regression analysis. Table 8 presents the regression analysis results obtained 

using the backward elimination method for 𝑀𝑜𝑑𝑒𝑙 𝐼ఙೄಷೄ, which followed the same procedure as 𝐵𝑆ெ. 
A total of 8 steps resulted in removing variables in the following order: X13, X8, X9, X3, X2, X5, and 

X1. After 8 steps,  𝑅௔ௗ௝
ଶ   remained at 0.838, and  𝑆𝐸ሺ𝜀ሻ was 7.461. Accordingly, the regression model 

is represented as Eq. 9.   

𝑀𝑜𝑑𝑒𝑙 𝐼஻ௌಾ ൌ 3.326 െ 0.86𝑋4 െ 0.26𝑋9 ൅ 0.90𝑋10 െ 0.85𝑋14 ൅ 1.00𝑋16 

𝑀𝑜𝑑𝑒𝑙 𝐼ఙೄಷೄ ൌ െ47.9 ൅ 51.44𝑋4 ൅ 17.40𝑋7 െ 28.72𝑋10 ൅ 54.70𝑋14 െ 36.03𝑋16   (9)

The variables X4, X10, X14, and X16 were observed to simultaneously satisfy the significance 

level of 0.05 for both 𝐵𝑆ெ  and  𝜎ௌிௌ. The standardized regression coefficient was utilized to examine 

the contributions of the variables used to determine the fatigue characteristics. The contributions are 

presented  in  Table  9.  The  standardized  regression  coefficients  revealed  that  X14  had  the most 

significant influence, followed by X4, X10, X16, and X9 as the critical factors for predicting  𝐵𝑆ெ. For 
𝜎ௌிௌ, the order of importance for factors was X14, X4, X10, X16, and X7.   
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Table 7. Significance provability values of regression coefficients for the back elimination method and 

its result for 𝑀𝑜𝑑𝑒𝑙 𝐼஻ௌಾ . 

P‐value 
Step 

#1  #2  #3  #4  #5  #6  #7  #8 

X1  0.20  0.20  0.21  0.16  0.11  0.18  ‐  ‐ 

X2  0.73  0.74  0.83  ‐  ‐  ‐  ‐  ‐ 

X3  0.35  0.34  0.33  0.29  ‐  ‐  ‐  ‐ 

X4  0.07  0.06  0.01  0.00  0.00  0.00  0.00  0.00 

X5  0.24  0.24  0.19  0.11  0.10  0.09  0.14  ‐ 

X7  0.83  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

X8  0.26  0.23  0.24  0.23  0.19  ‐  ‐  ‐ 

X9  0.05  0.05  0.04  0.01  0.01  0.03  0.03  0.03 

X10  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

X13  0.075  0.76  ‐  ‐  ‐  ‐  ‐  ‐ 

X14  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

X16  0.11  0.10  0.11  0.08  0.00  0.00  0.00  0.00 

𝑅௔ௗ௝
ଶ   0.86  0.86  0.86  0.86  0.86  0.86  0.86  0.86 

𝑆𝐸ሺ𝜀ሻ  0.170  0.169  0.168  0.167  0.167  0.167  0.169  0.170 

Table 8. Significance provability values of regression coefficients for the back elimination method and 

its result for 𝑀𝑜𝑑𝑒𝑙 𝐼ఙೄಷೄ . 

P‐value 
Step 

#1  #2  #3  #4  #5  #6  #7  #8 

X1  0.62  0.61  0.60  0.24  0.10  0.07  0.07  ‐ 

X2  0.59  0.53  0.52  0.52  0.53  ‐  ‐  ‐ 

X3  0.78  0.74  0.73  0.83  ‐  ‐  ‐  ‐ 

X4  0.02  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

X5  0.37  0.25  0.24  0.20  0.18  0.09  ‐  ‐ 

X7  0.10  0.09  0.08  0.08  0.06  0.06  0.03  0.01 

X8  0.97  0.97  ‐  ‐  ‐  ‐  ‐  ‐ 

X9  0.80  0.78  0.78  ‐  ‐  ‐  ‐  ‐ 

X10  0.01  0.00  0.01  0.00  0.00  0.00  0.00  0.00 

X13  0.98  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

X14  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

X16  0.23  0.02  0.02  0.02  0.10  0.00  0.00  0.00 

𝑅௔ௗ௝
ଶ   0.84  0.84  0.84  0.84  0.85  0.85  0.84  0.84 

𝑆𝐸ሺ𝜀ሻ  7.474  7.424  7.375  7.331  7.286  7.258  7.348  7.461 
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Table 9. Standardized regression coefficients of the Model I. 

  X4  X7  X9  X10  X14  X16 

𝑀𝑜𝑑𝑒𝑙 𝐼஻ௌಾ  ‐0.50  ‐  ‐0.14  0.50  ‐0.50  0.40 

𝑀𝑜𝑑𝑒𝑙 𝐼ఙೄಷೄ  0.50  0.14  ‐  ‐0.38  0.66  ‐0.36 

Another  regression model was considered  for predicting  fatigue characteristics, utilizing  the 

same dependent and  independent variables. The non‐linear regression model  involved taking the 

logarithm of the 17 variables extracted from the welded geometry for analysis and back‐transforming 

them to obtain a form similar to Eq. 10. 

𝑌 ൌ 𝛽଴ ∙ 𝑋1ఉభ ∙ 𝑋2ఉమ ∙ 𝑋3ఉయ ∙ 𝑋4ఉర ⋯ ∙ 𝑋17ఉభళ   (10)

As revealed during the examination of linear regression model that considered issues including 

model overfitting and complexity, backward elimination proved to be more effective in constructing 

the regression model. Therefore, only the results obtained through the method were considered for 

the non‐linear regression model. The results are presented in Eq. 11.   

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼஻ௌಾ ൌ 10.23 ∙ 𝑋4ି଴.ସ଺ ∙ 𝑋10଴.ସଶ ∙ 𝑋13ି଴.ଷ଼ ∙ 𝑋14ି଴.ଷହ ∙ 𝑋16଴.ସସ 

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼ఙೄಷೄ ൌ 0.000995 ∙ 𝑋3ି଴.଻ଶ ∙ 𝑋4ଵ.଴ସ ∙ 𝑋9଴.଻଼ ∙ 𝑋10ିଵ.଴ସ ∙ 𝑋14ଶ.଴ଶ ∙ 𝑋16ଵ.଼଻ 
(11)

Among the critical factors in the non‐linear regression model for predicting  𝐵𝑆ெ  and  𝜎ௌிௌ, X4, 
X10,  X14,  and  X16  were  significant  in  both  prediction  models.  𝑅௔ௗ௝

ଶ   for  𝑀𝑜𝑑𝑒𝑙 𝐼𝐼஻ௌಾ   and 
𝑀𝑜𝑑𝑒𝑙 𝐼𝐼ఙೄಷೄ   in  the  multiple  non‐linear  regression  model  was  0.863  and  0.860,  respectively. 

Additionally,  𝑆𝐸ሺ𝜀ሻ  values were 0.024 and 0.071, respectively.   

The standardized regression coefficients were calculated for 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼, a non‐linear regression 
model, using the same method as 𝑀𝑜𝑑𝑒𝑙 𝐼  to examine the influence of independent variables on the 

dependent variable. These results are presented in Table 10. In both 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼஻ௌಾand 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼ఙೄಷೄ, 
the standardized regression coefficients for X4 and X16 were the highest. It was observed that the 

independent variables X4, X10, X14, and X16 intersect in the non‐linear models predicting  𝐵𝑆ெ  and 
𝜎ௌிௌ . Based on  the  standardized  coefficients of  the multi  linear  regression model  and non‐linear 

regression model, which  predict  the  S‐N  curve  (𝐵𝑆ெ   and  𝜎ௌிௌ )  through weld  geometry  factors 

(independent variables) in a lap weld, it was determined that the weld geometry factors X4, X10, X14, 

and X16 are significant variables.   

Table 10. Standardized regression coefficients of the 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼. 

  X3  X4  X9  X10  X13  X14  X16 

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼஻ௌಾ   ‐  ‐0.518  ‐  0.483  ‐0.372  ‐0.409  0.458 

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼ఙೄಷೄ  ‐0.237  0.365  0.287  ‐0.408  ‐  0.781  0.785 

Finally, a  second‐order polynomial  regression model was applied  to predict  𝐵𝑆ெ   and  𝜎ௌிௌ . 
Considering complexity and analysis, only four independent variables (X4, X10, X14, X16) were used, 

and backward elimination was applied to enhance the model performance, as shown in Eq. 12. 

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼஻ௌಾ ൌ 3.02 ൅ 0.97𝑋4 ൅ 0.94𝑋10 െ 1.08𝑋14 െ 1.01𝑋16 െ 1.07𝑋4ଶ ൅ 1.25𝑋14 ∙ 𝑋16 

𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼ఙೄಷೄ ൌ 491 െ 624𝑋4 െ 26.27𝑋10 െ 464𝑋14 ൅ 491𝑋16 ൅ 142.4𝑋4ଶ ൅ 112.6𝑋14ଶ

൅ 291.4𝑋 ∙ 𝑋14 െ 145.9𝑋14 ∙ 𝑋16 െ 186𝑋14 ∙ 𝑋16 
(12)

The regression analysis showed that the  𝑅௔ௗ௝
ଶ   values for 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼஻ௌಾ, and 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼ఙೄಷೄ  were 

0.863 and 0.851, respectively. The values of  𝑆𝐸ሺ𝜀ሻ  were 0.168 and 7.158, respectively. Although the 
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second‐order polynomial regression model introduced a more complex structure, compared to the 

multiple linear and non‐linear models, the coefficient of determination and standard error were not 

improved. 

Various  regression  analyses were  employed  to  statistically  analyze  the  impact of weld  joint 

geometry on fatigue characteristics and propose diverse fatigue property prediction models. While 

slight  variations  did  exist  among  the models  used,  up  to  86 %  of  the  total  variability  could  be 

explained collectively. Figure 9 compares the measured and predicted values of    𝐵𝑆ெ  and    𝜎ௌிௌ, 
with the quantified results presented in Table 11 and 12. 
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Figure  9.  Relationship  between measured  value  and  estimated  value  by  regression models  (a) 

𝑀𝑜𝑑𝑒𝑙 𝐼஻ௌಾ , (b) 𝑀𝑜𝑑𝑒𝑙 𝐼ఙೄಷೄ , (c) 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼஻ௌಾ , (d) 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼ఙೄಷೄ , (e) 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼஻ௌಾ , (f) 𝑀𝑜𝑑𝑒𝑙 𝐼𝐼𝐼ఙೄಷೄ . 
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Table 11. Coefficient of determination and standard error of  the estimate  for  the  𝐵𝑆ெ   estimation 

models. 

𝑩𝑺𝑴  𝑴𝒐𝒅𝒆𝒍 𝑰  𝑴𝒐𝒅𝒆𝒍 𝑰𝑰  𝑴𝒐𝒅𝒆𝒍 𝑰𝑰𝑰 

𝑅௔ௗ௝
ଶ   0.863  0.867  0.863 

𝑆𝐸ሺ𝜀ሻ  0.170  0.024  0.168 

Table 12. Coefficient of determination and  standard error of  the estimate  for  the  𝜎ௌிௌ  estimation 

models. 

𝝈𝑺𝑭𝑺  𝑴𝒐𝒅𝒆𝒍 𝑰  𝑴𝒐𝒅𝒆𝒍 𝑰𝑰  𝑴𝒐𝒅𝒆𝒍 𝑰𝑰𝑰 

𝑅௔ௗ௝
ଶ   0.838  0.860  0.851 

𝑆𝐸ሺ𝜀ሻ  7.461  0.071  7.158 

5.3. Analysis of Significant Weld Geometry Affecting Fatigue Characteristics 

X4, X10, X14, and X16 were considered significant factors in predicting fatigue behavior for lap 

welds that include a gap. Figure 10 illustrates a schematic of the stress distribution at area A (𝜎஺), B 
(𝜏஻ ),  C  (𝜏௖ ) when  subjected  to  tensile  forces  in  lap welds  [33]. During  load  application,  stress 

distribution in the weld joint was not uniform. Herein,  𝑡  represents the material thickness (2.3 mm) 

and  𝑙  denotes the width of the fatigue specimen (10 mm). The same stress acted in area A, where 

thickness and width were uniform (Eq. 13). The force acting on area B resulted in shear stress (𝜏஻); 
and as X4 increased,  𝜏஻  decreased (Eq 14). Finally, at area C, stress concentration was the greatest at 

the red point on the bottom plate, and an increase in angle X10 led to an increase in shear stress on 

the welded toe surface of the bottom plate (Eq 15). The additional bending stress occurred at the joint 

in tension due to the eccentricity between one‐side lap welds and the applied force, as depicted in 

Figure 10 (b).   

The higher the stress, the greater the bending force, thereby increasing stress concentration at 

the weld  root.  Therefore,  the magnitude  of X14 was  considered  to  be  crucial. Additionally,  the 

magnitude of X16 was expected to be determined by X4, X10, and X14. In conclusion, the four factors 

(X4, X10, X14,  and X16) derived  from  the  regression model  can  be  considered  as  variables  that 

represent  stress  concentration  and magnitude  in  the  lap welds,  allowing  us  to  predict  fatigue 

characteristics. 

 
(a) 

 

(b) 
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Figure 10. Stress distribution of  lap welds during  loading  (a) stress distribution  field,  (b) bending 

morphology at weld toe and root stress concentration. 

𝜎஺ ൌ
𝐹
𝐴ଵ

ൌ
𝐹
𝑡 ∙ 𝑙

  (13)

𝜏஻ ൌ
𝐹
𝐴ଶ

ൌ
𝐹

𝑋4 ∙ 𝑙
 (14)

𝜏௖ ൌ
𝐹

𝑐𝑜𝑠𝜃𝑑𝜃
ൌ 𝐹 ∙ 𝑠𝑒𝑐𝜃𝑡𝑎𝑛𝜃 ൌ 𝐹 ∙

𝑠𝑖𝑛𝜃
𝑐𝑜𝑠ଶ𝜃

 (15)

6. Conclusions 

In  this  study,  we  developed  a  statistical  analysis‐based  model  to  predict  the  fatigue 

characteristics  of  lap weld  using weld  geometry  factors  of  lap  joints,  and  proposed  key weld 

geometry factors in response to the fatigue characteristics of weld with gaps. 

(1) A GA590 2.3 mm sheets were overlapped, and welding performed by varying the joint position, 

WP, WFR, WS, and gap to produce various weld geometries. Among the weld geometry factors, 

the size of seven length factors, including leg length, seven angle factors, including toe angle, 

three  area  factors, were measured  and  utilized  as  independent  variables  to  predict  fatigue 

characteristics. 

(2) 87  S‐N  curves were  derived  under  various welding  conditions,  and  the  S‐N  curves  varied 

according to change in WP, gap size, WFR, and WS. The  𝑩𝒂𝒔𝒒𝒖𝒊𝒏 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏  determined the 

𝑩𝑺𝑴   and  𝝈𝒇
ᇱ
𝑴
  for  each  S‐N  curve.  The  𝑩𝑺𝑴   increased with  the  gap  size  and  showing  a 

decreasing trend as the deposition rate increased. The  𝝈𝒇
ᇱ
𝑴
  showed a slight upward trend with 

increasing  gap  size,  while  significant  changes  were  not  observed  with  variations  in  the 

deposition rate. 

(3) 𝑩𝑺𝑴  and  𝝈𝑺𝑭𝑺were selected as dependent variables to predict the S‐N curve with the M‐2SD 

applied, and 17 weld geometry factors were used as independent variables. Through correlation 

analysis, the weld geometry factors X6, X11, X12, X15, and X17, which showed multicollinearity 

among variables, were excluded from the independent variables.   

(4) Backward elimination was applied to develop multiple linear and non‐linear regression models 

to  predict  𝑩𝑺𝑴   and  𝝈𝑺𝑭𝑺 .  The weld  geometry  factors  applied  across  both multiple  linear 

regression models and multiple non‐linear regression models were X4 (length), X10 (Angle), X14 

(Area),  and  X16  (Area). Upon  examining  the  standardized  regression  coefficients,  the  four 

factors were identified as the primary weld geometry factors for predicting  𝑩𝑺𝑴  and  𝝈𝑺𝑭𝑺. 

(5) For  the multiple  linear  regression model,  the  adjusted R‐squared values  for  𝑩𝑺𝑴   and  𝝈𝑺𝑭𝑺 
were 0.863 and 0.838, respectively. The adjusted R‐squared values for the multiple non‐linear 

regression model  for  𝑩𝑺𝑴   and  𝝈𝑺𝑭𝑺  were  0.867  and  0.860,  respectively.  The  second‐order 

polynomial  regression model performed  backward  elimination  on  the  four  significant weld 

geometry factors, resulting in adjusted R‐squared values of 0.863 and 0.851 for  𝑩𝑺𝑴  and  𝝈𝑺𝑭𝑺, 
respectively. The predictive performance of the three regression models was nearly identical at 

around 86%, but the multiple non‐linear regression model showed slightly better performance.   

(6) Among  the weld  geometry  factors  of  the  lap  joint with  a  gap,  X4,  X10,  X14,  and  X16  are 

considered to be closely related to stress concentration. These four factors are judged to predict 

fatigue characteristics. 

When manufacturing  chassis  components  subjected  to  fatigue  loading,  it  is  challenging  to 

completely eliminate or consistently manage the gap. Aspects such as leg length, penetration depth, 

throat thickness, and the toe angle of the weld in lap joint are managed in the manufactured chassis 

components. The controlled weld geometry mains the same even if a gap occurs in the lap joint. For 

lap joints with gaps that require fatigue characteristics, it is necessary to manage new weld geometry 

factors such as X10, X14, and X16, in addition to throat thickness (X4).   
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Additionally,  easy  statistical  analysis  of  the main weld  geometry  factors  predicted  fatigue 

characteristics in lap joints, which requires significant time and cost, possible. 
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