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Abstract: Automotive chassis components, constructed as lap joints and produced by gas metal arc welding
(GMAW), require fatigue durability. The fatigue properties of the weld in a lap joint are largely determined by
the weld geometry factors. When there is no gap or a consistent gap in the lap joint, improving the geometry
of the weld toe can alleviate stress concentration and enhance fatigue properties. However, due to spring-back
and machining tolerances, it is difficult to completely eliminate or consistently manage the gap in the joint. In
the case of a lap-welded joint with an inconsistent gap, it is necessary to identify the weld geometry factors
related to fatigue properties. Evaluating the fatigue behavior of materials and welded joints requires significant
time and cost, making research to predict fatigue properties essential. More research in needed on predicting
fatigue properties related to automotive chassis components, particularly studies on predicting the fatigue
properties of lap-welded joints with gaps. This study proposed a regression model for predicting fatigue
properties based on crucial weld geometry factors in lap-welded joints with gaps using statistical analysis.
Welding conditions were varied to build various weld geometries in joints configured in a lap from with gaps
0f 0,0.2, 0.5, and 1.0 mm, and 87 S-N curves for the lap-welded joints were derived. As input variables, 17 weld
geometry factors (7 lengths, 7 angles, and 3 area factors) were selected. The slope of the S-N curve using Basquin
model from the S-N curve and the safe fatigue strength were selected as output variables for prediction to
develop the regression model. Multiple linear regression models, multiple non-linear regression models, and
second-order polynomial regression models were proposed to predict fatigue properties. Backward
elimination was applied to simplify the models and reduce overfitting. Among the three proposed regression
models, the multiple non-linear regression model had a coefficient of determination greater than 0.86. In lap-
welded joints with gaps, the weld geometry factors representing fatigue properties were identified through
standardized regression coefficients, and four weld geometry factors related to stress concentration were
proposed.

Keywords: lap welded joint; GMAW; fatigue characteristic prediction; regression model; joint gap;
weld geometry

1. Introduction

The automobile chassis collectively refers to all the parts of a car, excluding the body, consisting
of the frame, powertrain, suspension, steering, and braking components. Among these, the frame
serves as the fundamental skeleton of the chassis, comprising cross-members, lower arms, and
coupled torsion beam axle, and it is located at the very bottom of the car, requiring durability against
repetitive loads during operation.

The chassis frame, which requires fatigue durability, mainly comprises lap joints and is
primarily manufactured using GMAW to ensure strength. In GMAW, using filler wire, the weld
metal will impart a geometric shape to the joint is inevitable. This acts as a stress concentration point
due to repeated fatigue, leading to fracture initiation and ultimately decreasing the component’s
fatigue durability. Even when high-strength steel is applied to chassis components for weight
reduction, the benefits of high-strength steel are lost due to the notch effect of lap welds [1,2]. In
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welded joints with geometric shapes, such as lap welds, the bead shape has a more significant impact
on fatigue characteristics than the weld’s microstructure [3,4]. Previous studies have reported that,
particularly in lap joints, improving the weld toe angle alleviates stress concentration at the notch
area of the weld, thereby enhancing fatigue characteristics [5-9]. Prior investigations examining the
fatigue characteristics of lap joints have compared the relationship between weld toe angle and
fatigue characteristics only in flawless joints without gaps or with a consistent gap.

Differences in the amount of spring-back due to the non-uniformity of alloying elements even
within the same material, cutting errors, and machining dimensional tolerances make it impossible
to completely eliminate or maintain a consistent joint gap in welded parts. The presence of gaps in
the joint can lead to welding defects, even when welding is performed under the same conditions on
identical components [10]. It has been reported that gaps deteriorate fatigue properties [11,12]. Kim
et at [13] reported in the weld of lap joints, an increase in the joint gap caused the filler metal of the
GMAW process to fill the gap, resulting in a smoother weld profile and an increase in the apparent
weld toe angle. However, they confirmed that stress concentration at the weld root occurred, leading
to decreased fatigue strength. Therefore, they suggested considering geometric shapes other than the
weld toe angle for lap welds with gaps requiring fatigue characteristics.

Deriving S-N curves to determine fatigue characteristics is a time-consuming and expensive
process. Therefore, methods and research for predicting fatigue characteristics are being actively
pursued. Traditionally, after Palmgren introduced the concept of damage accumulation [14] and
Miner introduced the linear damage rule [15], many damage and prediction models have been
developed. Fatemi et al [16] and Hectors et al [17] reviewed the article paper on cumulative damage
and life prediction models for fatigue. They have confirmed that linear and non-linear fatigue
cumulative damage rules can predict fatigue characteristics based on fatigue life calculations. These
calculations reflect the material and weld joint properties and the stress-strain relationship resulting
from repetitive loading cycles. Machine learning methods have recently been applied to process data,
including noisy data, and learn complex non-linear relationships to predict the fatigue characteristics
of materials and weldments based on data without prior assumptions. Various machine learning
algorithms, including artificial neural networks, convolutional neural networks, residual neural
networks, and gradient boosting decision trees, have been applied to predict the fatigue
characteristics of materials and weldments, demonstrating excellent fatigue prediction performance
[18-21].

In predicting the fatigue characteristics of the lap weld, which is the most commonly used single-
sided joint in chassis components, it is considered difficult to apply a fatigue cumulative damage
model for load cycles due to the challenge of reflecting the weld shape (non-uniform stress
distribution) that changes due to welding conditions and disturbances during welding. Machine
learning-based prediction models operate as black-box surrogate models between input and output
parameters, making the internal decision-making process opaque and difficult to interpret.
Additionally, it is challenging to assign physical meaning to the input variables in relation to the
output variables [22]. Although studies to fatigue characteristics are being reported for chassis
components requiring fatigue properties, research on predicting fatigue characteristics remains
relatively scarce. The lack of research on predicting the fatigue characteristics of automotive chassis
components is due to the widely accepted fact that improving the weld toe angle of typical lap joints
enhances fatigue characteristics. However, the need for additional research on predicting the fatigue
characteristics of lap welds, especially considering the gap, is urgent. This is particularly crucial in
actual components where it is impossible to eliminate or maintain a consistent joint gap.

This study not only identified the significant weld geometry factors affecting fatigue
characteristics in lap welds with gaps but also predicted an S-N curve based on a regression model.
Lap welding was performed on GA 590 MPa 2.3 mm, which is widely used in chassis components.
The joint gap size (Gap), welding process (WP), wire feed rate (WFR), and welding speed (WS) were
varied to achieve different weld geometric shapes. A total of 87 S-N curves were derived through
fatigue tests on lap joint specimens with various weld shapes. Through cross-sectional analysis, 17
weld geometry measurements (seven length factors, seven angle factors, and three area factors) were
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used as input variables. Three regression models were proposed to predict the slope of the S-N curve
and the fatigue strength (fatigue strength at 2 x 106 cycles) with a safety factor. Three models were
developed using backward elimination: a multiple linear regression model, a multiple non-linear
regression model, and a second-order polynomial regression model. The significant factors affecting
fatigue characteristics were proposed through standardized regression coefficients.

2. Experimental Procedure
2.1. Welding Procedure

A GA 590 MPa grade steel sheet of thickness 2.3 mm was considered for the welding experiment,
and AWS A5.18 ER70S-3 of diameter 1.2 mm was used as the filler wire. Table 1 shows the chemical
composition and mechanical properties of the base material and filler wire.

Table 1. Welding parameter.

Chemical composition [wt.%] Mechanical properties
C Si Mn P S TS [MPa]" | YS [MPa]" | EL [%]"
Base material |  0.07 0.14 1.44 0.13 0.002 610 583 25
Filler wire 0.07 0.65 1.14 0.02 0.010 560 440 28

* Note. TS: Tensile strength, YS: Yield strength, EL: Elongation.

The base material was cut to a size of 150 x 300 mm, and the direction of joint was selected in
two forms, shown in Figure 1. Various weld joint configurations were considered to predict fatigue
characteristics through weld joint shapes, and welding was conducted using diverse welding
processes and conditions. In order to confirm fatigue characteristics based on joint gap, four gap
conditions were selected: 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm. Cold metal transfer (CMT, Fronius co.)
and direct current (DC, Daihen co.) were applied to the two types of joints prepared for the WP. WFR
was varied in three levels, which included 5.0 — 9.0 m/min during CMT and 3.0 — 7.0 m/min during
DC application. Two levels of WS were selected as 60 and 80 cm/min. Additionally, contact tip to
work distance (CTWD, a) and work angle were fixed at 15 mm and 45°, respectively. A 90 % Ar + 10
% CO:z mixed shielding gas was provided at a flow rate of 25 L/min. The welding experiment was
repeated five times under the same conditions to produce a fatigue specimen. The detailed welding
conditions are listed in Table 2.
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Figure 1. Schematic of joint preparation (a) A position, (b) B position.

Table 2. Welding processes and conditions.

Parameters Value
Weld joint A position B position
WP CMT DC CMT DC
WER (m/min) 5.0,7.0,9.0 3.0,5.0,7.0 5.0,7.0,9.0 3.0,5.0,7.0
WS (cm/min) 60, 80
Gap (mm) 0,0.2,0.5,1.0
CTWD (a, mm) 15
Work angle (3, *) 45
Shielding gas 90 % Ar +10% COz2 (25 L/min)

2.2. Fatigue Test Procedure

The fatigue test specimens were manufactured by referring to the ASTM E466 standard for
welding specimens (Figure 2) [23]. A spacer was inserted by combining the thickness of the gap and
base material. Radiography inspection was performed on fabricated test specimens, and fatigue tests
were conducted on the test specimens without defects such as porosity. We employed fatigue testing
equipment (Instron 8801, Instron Co.) with a maximum load of 100 kN. Table 3 and Figure 3 show
the fatigue test conditions and a schematic of the applied fatigue stress amplitude variations. The
stress ratio of a specific component of an automobile chassis was adopted, and the fatigue limit was
set at the commonly used 2 x 10¢ cycles. A total of 87 S-N curves are derived through fatigue testing
and used as data to predict fatigue characteristics. In this study, the fatigue test specimens were
denoted in the order of weld joint - WP — WER — WS — Gap. For example, under the conditions A
position, WP CMT, WER 7.0 m/min, WS 60 cm/min, Gap 0.2 mm (Table 2), it is expressed as A—C
(CMT: C, DC: D)-7.0-60-0.2.
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Figure 2. Configuration of fatigue specimen.
Table 3. Fatigue test conditions.
366-122 MPa (at intervals of 10 %)
Maxi t
aximum stress 122-62 MPa (at intervals of 5 %)
(Omax)
62 MPa under (at intervals of 2.5 %)
Stress ratio (R) 0.1
Frequency 40 Hz
Fatigue limit 2 x 10¢cycles
A P Omin
Stress ratio = P
max Maximum, o,
0 t
g Amplitude, o,
: |
=1 I S U I TS S (R, S S S
§ mean, G,
8
&h
LS Range, fc
Minimum, G,
>

Time
Figure 3. Amplitude fluctuations of the applied fatigue stress.

3. Method for Developing the S-N Curve Prediction Model
3.1. Selection of Independent and Dependent Variables

The weld joint geometry data extracted and used as independent variables. A lap-joint weld
typically appears in a shape similar to that illustrated in Figure 4, As criteria for configuration of weld
shape to be used in a fatigue prediction model, 17 parameters were extracted. The method for
extracting the 17 parameters is summarized in Figure 4. In the geometry of the lap weld joint, seven
factors related to length including leg length and penetration depth [24-27], seven factors related to
angle [28], such as toe angle, and three factors about have been derived [28].
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Figure 4. Schematic of weld joint geometry factors (a) length, (b) angle, (c) area.

3.2. Selection of Dependent Variables

The response variable for developing the S-N curve prediction model was constructed using the
fatigue dataset. For each S-N curve, a logarithm was considered at the stress range (o,-), and the
Basquin eqation (Eq. 1) was applied the determine o7 and b [29].

o=af (V) M

where o; is the material property, N is the fatigue life as the number of cycles to failure under a
constant load, and b is the Basquin slope (BS).

In the S-N curve for the weld joint, establishing a safety factor to prevent fatigue failure is
essential. Modified of (J;M) and Modified b (BS)) were determined by applying M-2SD in Eq. 2
[30].

v 1% _
Ny_2sp =;Z(N1+Nz+‘“+Nn)_2' EZ(NIZ_N) 2
i=1 i=1

where N represents fatigue life at o, while N signifies the mean life at o,.

Essentially, M-2SD represents fatigue life re-expressed by subtracting twice the standard
deviation from the average fatigue life at o,.. This value was used to design a safety factor in the S-N
curve using the Basquin equation. BS,, incorporating the safety factor was used as the dependent
variable to predict fatigue characteristics through weld joint geometry parameters. Only BSy was
predicted, while J}Mwas not predicted. The reasons are explained in next section. Predicting the

endurance fatigue limit (2 x 106 cycles) on the S-N curve was essential. Fatigue strength at a fatigue
life of 2 x 10¢ cycles was derived from the Basquin equation using M-25D and compared with the
fatigue strength obtained through fatigue testing. Lower fatigue strength was defined as safety
fatigue strength (SFS), considering stability against fatigue failure. The schematic for ogsps is
presented in Figure 5. The critical factors obtained from BS),, and SFS, along with the individually
applied value of stress levels, included independent variables that were used to predict the overall
fatigue life.
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Figure 5. Schematic to the definition of safety fatigue strength (osgs).

3.3. Development of an S-N Curve Prediction Model through Statistical Analysis

We employed a statistical analysis method, a regression model approach, to predict the S-N
curve. A regression model is a statistical analysis technique used to predict the value of dependent
variables from independent variables by assuming a mathematical model between them. A
generalized linear regression model was constructed, as given in Eq. 3.

V= Bo+ Y BifiKuXo Xo) + e @)
i=1

where f; denotes a scalar function with independent variables as arguments and includes non-linear
and polynomial expressions. In this study, multiple linear, non-linear, and second-order polynomial
regression models were derived using the backward elimination method.

4. Result of Fatigue Behavior

A total of 87 S-N curve were derived from varying welding conditions. Figure 6 illustrates some
of them selectively presented. It was observed that as WER increase, fatigue strength and life at a
constant load increase (Figure 6 (a)). Conversely, an increase in WS resulted in decreased fatigue life
and strength (Figure 6 (b)). As the gap increased, fatigue life and strength decreased (Figure 6 (c)).
The fatigue life and strength were similar despite changes in the joint position (Figure 6 (d)).

Using the Basquin model (Eq.1), BSy and Jf’M were derived. M-2SD was applied to the

fatigue life at the shared stress range, and BSy and of ~were derived from the logarithmic values
in Basquin model (Eq.4).
log o =log ofy — BSy - log Ny (4)

Figure 7 show BS) and lo gaf’Mderived from the S-N curves under varying welding conditions.

The X-axis represents the deposition rate, which is proportional to WFR and inversely proportional
to WS. Figure 7 (a) shows the relationship between the deposition rate and BSj,. As the value of BSy
decreases, the slop of S-N curve decreases, indicating that the fatigue life increases when the same
stress range. In other words, the smaller the BSyvalue, the better the performance of the fatigue
properties. The BS), tends to decrease as the deposition rate increases, regardless of the joint gap
size. As the gap of the joint increases, BS), increases for the same deposition rate. The variation in
BSy was more significant with the joint gap size than the deposition rate. While increasing the
deposition rate can reduce BS) by improving the weld joint’s shape, an increase in gap size results
in a greater share force acting on the lap joint, thereby degrading the fatigue characteristics of the lap
weld. In the field where chassis parts are manufactured, the joint gap is an uncontrollable variable,
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so it was not measured separately. It was determined that the weld joint shape measured in Figure 4
varies, including the gap. Figure 7 (b) shows the relationship between the deposition rate and logay .

Although log g7 did not vary significantly with changes in the deposition rate, it was observed to

increase with the increase in the joint gap.
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Figure 6. Fatigue behavior of lap joint weld by welding conditions (a) WER variation (fixed B position,
WP: DC, WS: 60 cm/min, gap: 0 mm), (b) WS variation (fixed A position, gap: 0 mm), (c) gap variation
(fixed A position, WP: CMT, WER: 5.0 m/min, WS: 80 cm/min), (d) position variation (fixed WFR: 5.0

m/min, WS: 60 cm/min, gap: 0 mm).
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Figure 7. The relationship between (a) BSy and (b) a7y with respect to the deposition rate and gap

variation in a lap joint.
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G;M is a value derived from the material property in Eq. 1, and it determined that verification of
changes in the weld joint’s properties is necessary. The amount of heat input and colling rate applied
to the base material during welding determine changes in the properties of the weld joint, which can
be identified through its hardness. The hardness of weld depends on the amount of heat input, and
the formula for calculating the heat input is presented in Eq. 5.
60-1-V

ws

Figure 8 shows the hardness of the weld joint according to variations in heat input and gap. DC
and CMT in WP exhibited different current waveform shapes, which led us to anticipate variations
in heat input. Welding conditions with the highest and lowest heat input were selected in each WP.
The joint position was fixed to the A position, respectively. The heat inputs calculated using average
current and voltage, for the welding conditions A-D-3.0-80-0, A-C-5.0-80-1.0, A-D-7.0-60-1.0, and A-
C-9.0-60-0, were 1.54, 1.94, 4.83, and 5.07 kJ/cm, respectively.

The base metal was at 199 HV on average, and HAZ softening was not observed. With the
increase in heat input, an increase in the size of FZ and a difference in hardness within FZ were
observed. The hardness of FZ under various welding conditions, A-DC-3-80-0, A-DC-7-60-1.0, A-
CMT-5-80-1.0, and A-CMT-9-60-0, was 255, 237, 255, and 239 HV, respectively. The difference in heat
input resulted in hardness variations, although no hardness difference was observed with a change
in the gap size. An increase in heat input delays the solidification of the molten pool, leading to a rise
in ferrite structures in the target material’s FZ. This increase in ferrite structures, which have a lower
hardness compared to bainite and martensite structures, decreases the hardness of the FZ [31]. Kim
et al. [32] investigated the fatigue characteristics of lap welds in the subject material; despite the low
FZ hardness in the welded joints with high fatigue strength, the fatigue characteristics of the welded
joints improved by enhancing the weld shape. These results indicate that, in the fatigue characteristics
of the lap welds in the target material, the influence of changes in weld shape is more significant than
that of changes in weld microstructure.

Heat input (]/cm) = ()

In Figure 7 (b), variations in log af'M representing material characteristics were evident with
change in gap size, whereas differences in log an due to variations in heat input were scarcely
observed. Therefore, log of was not adopted as a dependent variable in the prediction model of this

study.
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Figure 8. Hardness distribution of the lap weld according to heat input and gap.
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5. Fatigue Prediction Model for Statistical Analysis
5.1. Correlation Analysis between the Weld Joint Geometry and Dependent Variables (BSy;, ogps)

Before conducting regression analysis, a correlation matrix between the dependent (BSy
and ogrs) and independent (X1-17) variables was computed to determine their relationships.
Generally, a higher correlation between predictor variables and dependent variable implies a more
significant influence of those predictors on the outcome, which is essential between variables.
Therefore, in some cases, variables with strong correlations could still remain inappropriate for
inclusion in a regression model if the model assumptions are not met. Conversely, even variables
with low correlation coefficients could contribute to reducing the error in a regression model.
Additionally, the intercorrelation among independent variables should be considered. High
intercorrelation indicated similar impacts of the variables on BS) and ogrs, potentially leading to
multi-collinearity effects that increase errors in all models.

The correlation analysis was conducted to examine the linearity between dependent and
independent variables, and among independent variables. Table 5 illustrates the correlation analysis
results of variables concerning BS),. X10 showed a correlation of 0.82, while X14 demonstrated -0.84,
indicating a stronger linear relationship with BS,, than other factors. From Table 6, which focuses on
osrs, X10 and X14 were observed to exhibit strong linear relationships with correlation coefficients
of -0.84 and 0.83, respectively.

The correlation analysis among independent variables revealed significant correlations, with a
correlation coefficient of 0.96 between X1 and X15, 0.95 between X6 and X16, 0.98 between X7 and
X17, —0.96 between X9 and X11, and -0.97 between X11 and X12. Such high correlation values
indicated strong relationships among the variables, and caution should be exercised when including
them in the regression model. The regression model used the remaining factors, excluding X6, X11,
X12, X15, and X17, with correlation coefficients exceeding 0.95 among the independent variables.
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5.2. Regression Model for S-N Curve Prediction

The selected weld shape parameters were normalized and used as independent variables. Multi-
linear regression analysis was conducted using the backward elimination method, a technique
employed in regression analysis to simplify models by iteratively removing non-significant variables
based on their p-value. Furthermore, the approach allows for a more interpretable model and assists
in preventing overfitting.

The variables were systematically eliminated from the regression model based on the criteria of
partial correlation coefficients and the significance level of regression coefficients with a threshold of
0.05. The accuracy of the regression model was assessed using the adjusted coefficient of
determination and the standard error of the estimates. The adjusted coefficient of determination was
particularly valuable as it accounted for model complexity and is often preferred over traditional
coefficients. Eq. 6, 7, and 8 was used to represent the coefficient of determination, adjusted coefficient
of determination, and standard error of the estimates, respectively.

a0 = )
Rz =12t 6
0= ©
Riy=1-(-R) )
_ ‘/Z(f’i - y)?
SE@ =TT ®

where n denotes the number of samples, k represents the number of independent variables, y; is
the i-th actual measurement data, §, is the predicted value for the ith data point, and ¥ represents
the mean value of the dependent variable y.

Table 7 presents the backward elimination regression analysis results for Model Igg,,. A total of
8 steps were performed, and the variables X7, X13, X2, X3, X8, X1, and X5 were removed in higher
order of their p-values, which exceeded 0.05. Despite reducing the number of independent variables,
RZ4; remained unchanged at 0.86 and the final SE(¢) value was 0.170, the same as in Step #1.
Therefore, the model from Step #8 was presented as the final regression equation for predicting BSy
using linear multiple regression analysis. Table 8 presents the regression analysis results obtained
using the backward elimination method for Model I,,., which followed the same procedure as BSy.
A total of 8 steps resulted in removing variables in the following order: X13, X8, X9, X3, X2, X5, and
X1. After 8 steps, R;4; remained at 0.838, and SE (&) was 7.461. Accordingly, the regression model
is represented as Eq. 9.

Model Igg,, = 3.326 — 0.86X4 — 0.26X9 + 0.90X10 — 0.85X14 + 1.00X16

Model I = —47.9 + 51.44X4 + 17.40X7 — 28.72X10 + 54.70X14 — 36.03X16 ©)

OSFS

The variables X4, X10, X14, and X16 were observed to simultaneously satisfy the significance
level of 0.05 for both BSy, and ogps. The standardized regression coefficient was utilized to examine
the contributions of the variables used to determine the fatigue characteristics. The contributions are
presented in Table 9. The standardized regression coefficients revealed that X14 had the most
significant influence, followed by X4, X10, X16, and X9 as the critical factors for predicting BS,,. For
Osrs, the order of importance for factors was X14, X4, X10, X16, and X7.
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Table 7. Significance provability values of regression coefficients for the back elimination method and
its result for Model Igg,,.

P-value i 4
#1 #2 #3 #4 #5 #6 #7 #8
X1 020 020 021 016 0.11 0.18 - -
X2 073 074 083 - - - - -
X3 035 034 033 029 - - - -
X4 007 006 001 0.00 0.00 0.00 0.00 0.00
X5 024 024 019 011 010 0.09 0.14 -
X7 0.83 - - - - - - -
X8 026 023 024 023 019 - - -
X9 005 005 004 001 0.01 0.03 0.03 0.03
X10 0.00 000 000 0.00 0.00 0.00 0.00 0.00
X13 0.075 0.76 - - - - - -
X14 000 000 000 0.00 0.00 0.00 0.00 0.00
X16 0.11 010 011 008 000 0.00 0.00 0.00
RZ4j 08 08 086 086 08 08 0.86 0.86
SE(¢) 0.170 0.169 0.168 0.167 0.167 0.167 0.169 0.170

Table 8. Significance provability values of regression coefficients for the back elimination method and
its result for Model [

OSFs*

Step
P-value

#1 #2 #3 #4 #5 #6 #7 #8

X1 0.62 0.61 0.60 0.24 0.10 0.07 0.07 -

X2 0.59 0.53 0.52 0.52 0.53 - - -

X3 0.78 0.74 0.73 0.83 - - - -
X4 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

X5 0.37 0.25 0.24 0.20 0.18 0.09 - -
X7 0.10 0.09 0.08 0.08 0.06 0.06 0.03 0.01

X8 0.97 0.97 - - - - - -

X9 0.80 0.78 0.78 - - - - -
X10 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

X13 0.98 - - - - - - -
X14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
X16 0.23 0.02 0.02 0.02 0.10 0.00 0.00 0.00
RZ4; 0.84 0.84 0.84 0.84 0.85 0.85 0.84 0.84

SE(¢) 7474 7424 7375 7.331 7286 7258 7.348  7.461
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Table 9. Standardized regression coefficients of the Model I.

X4 X7 X9 X10 X14 X16
Model Igs,,  -0.50 - 014 050 050 040
Model I, 050  0.14 - 038 066  -0.36

Another regression model was considered for predicting fatigue characteristics, utilizing the
same dependent and independent variables. The non-linear regression model involved taking the
logarithm of the 17 variables extracted from the welded geometry for analysis and back-transforming
them to obtain a form similar to Eq. 10.

Y =8 < X1B1 . x2B2 . x3Bs . x4PBs ... X17PB17 (10)

As revealed during the examination of linear regression model that considered issues including
model overfitting and complexity, backward elimination proved to be more effective in constructing
the regression model. Therefore, only the results obtained through the method were considered for
the non-linear regression model. The results are presented in Eq. 11.

Model Ilgs,, = 10.23 - X47%46 - X10942 - 137938 +X147035. x16044
Model I1 = 0.000995 - X37072 . x41.04. x9078 . x10~104. x14202. x16187

OSFS

(11)

Among the critical factors in the non-linear regression model for predicting BSy, and osgs, X4,
X10, X14, and X16 were significant in both prediction models. RZ, ; for Model Illgg,, and
Model I, in the multiple non-linear regression model was 0.863 and 0.860, respectively.
Additionally, SE(e) values were 0.024 and 0.071, respectively.

The standardized regression coefficients were calculated for Model II, a non-linear regression
model, using the same method as Model I to examine the influence of independent variables on the
dependent variable. These results are presented in Table 10. In both Model Ilzs,,and Model 1,
the standardized regression coefficients for X4 and X16 were the highest. It was observed that the
independent variables X4, X10, X14, and X16 intersect in the non-linear models predicting BS,, and
osrs. Based on the standardized coefficients of the multi linear regression model and non-linear
regression model, which predict the S-N curve (BSy and ogs) through weld geometry factors
(independent variables) in a lap weld, it was determined that the weld geometry factors X4, X10, X14,
and X16 are significant variables.

Table 10. Standardized regression coefficients of the Model II.

X3 X4 X9 X10 X13 X14 X16
Model Ilgg,, - -0.518 - 0.483 -0.372 -0.409 0.458
Model Il -0.237 0.365 0.287 -0.408 - 0.781 0.785

Finally, a second-order polynomial regression model was applied to predict BSy and oss.
Considering complexity and analysis, only four independent variables (X4, X10, X14, X16) were used,
and backward elimination was applied to enhance the model performance, as shown in Eq. 12.

Model Illgg,, = 3.02 + 0.97X4 + 0.94X10 — 1.08X14 — 1.01X16 — 1.07X4% 4+ 1.25X14 - X16

Model 111 =491 — 624X4 — 26.27X10 — 464X14 + 491X16 + 142.4X4? + 112.6X14? (12)

+291.4X - X14 — 145.9X14 - X16 — 186X14 - X16

OSFS

The regression analysis showed that the R,; values for Model Illgg,,, and Model Ill,, . were

0.863 and 0.851, respectively. The values of SE(e) were 0.168 and 7.158, respectively. Although the
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second-order polynomial regression model introduced a more complex structure, compared to the
multiple linear and non-linear models, the coefficient of determination and standard error were not

improved.

Various regression analyses were employed to statistically analyze the impact of weld joint
geometry on fatigue characteristics and propose diverse fatigue property prediction models. While
slight variations did exist among the models used, up to 86 % of the total variability could be
explained collectively. Figure 9 compares the measured and predicted values of BSy and ogps,
with the quantified results presented in Table 11 and 12.
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Figure 9. Relationship between measured value and estimated value by regression models (a)
Model Igg,,, (b) Model I5,, (c) Model Ilgg,,, (d) Model I, (e) Model Illgg,, (f) Model I11,,..
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Table 11. Coefficient of determination and standard error of the estimate for the BS estimation

models.
BSy Model I Model I1 Model I11
Rﬁdj 0.863 0.867 0.863
SE(¢) 0.170 0.024 0.168

Table 12. Coefficient of determination and standard error of the estimate for the ogps estimation

models.
Ogps Model I Model I1 Model I11
Rgdj 0.838 0.860 0.851
SE(¢) 7.461 0.071 7.158

5.3. Analysis of Significant Weld Geometry Affecting Fatigue Characteristics

X4, X10, X14, and X16 were considered significant factors in predicting fatigue behavior for lap
welds that include a gap. Figure 10 illustrates a schematic of the stress distribution at area A (g,), B
(tg), C (7.) when subjected to tensile forces in lap welds [33]. During load application, stress
distribution in the weld joint was not uniform. Herein, t represents the material thickness (2.3 mm)
and [ denotes the width of the fatigue specimen (10 mm). The same stress acted in area A, where
thickness and width were uniform (Eq. 13). The force acting on area B resulted in shear stress (t3);
and as X4 increased, 13 decreased (Eq 14). Finally, at area C, stress concentration was the greatest at
the red point on the bottom plate, and an increase in angle X10 led to an increase in shear stress on
the welded toe surface of the bottom plate (Eq 15). The additional bending stress occurred at the joint
in tension due to the eccentricity between one-side lap welds and the applied force, as depicted in
Figure 10 (b).

The higher the stress, the greater the bending force, thereby increasing stress concentration at
the weld root. Therefore, the magnitude of X14 was considered to be crucial. Additionally, the
magnitude of X16 was expected to be determined by X4, X10, and X14. In conclusion, the four factors
(X4, X10, X14, and X16) derived from the regression model can be considered as variables that
represent stress concentration and magnitude in the lap welds, allowing us to predict fatigue
characteristics.

(b)
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Figure 10. Stress distribution of lap welds during loading (a) stress distribution field, (b) bending

morphology at weld toe and root stress concentration.
_F F 13
Oy = A, -l (13)
_F F 14
BT T X4 (14)
F sinf

= = F -secftanf = F - 15
fe = Cos0do secvtan cos?6 1)

6. Conclusions

In this study, we developed a statistical analysis-based model to predict the fatigue
characteristics of lap weld using weld geometry factors of lap joints, and proposed key weld
geometry factors in response to the fatigue characteristics of weld with gaps.

(1) A GA590 2.3 mm sheets were overlapped, and welding performed by varying the joint position,
WP, WER, WS, and gap to produce various weld geometries. Among the weld geometry factors,
the size of seven length factors, including leg length, seven angle factors, including toe angle,
three area factors, were measured and utilized as independent variables to predict fatigue
characteristics.

(2) 87 S-N curves were derived under various welding conditions, and the S-N curves varied
according to change in WP, gap size, WER, and WS. The Basquin equation determined the
BSy and G}M for each S-N curve. The BSy increased with the gap size and showing a

decreasing trend as the deposition rate increased. The G}M showed a slight upward trend with

increasing gap size, while significant changes were not observed with variations in the
deposition rate.

(38) BSy and ogpswere selected as dependent variables to predict the S-N curve with the M-25D
applied, and 17 weld geometry factors were used as independent variables. Through correlation
analysis, the weld geometry factors X6, X11, X12, X15, and X17, which showed multicollinearity
among variables, were excluded from the independent variables.

(4) Backward elimination was applied to develop multiple linear and non-linear regression models
to predict BSy and ogsps. The weld geometry factors applied across both multiple linear
regression models and multiple non-linear regression models were X4 (length), X10 (Angle), X14
(Area), and X16 (Area). Upon examining the standardized regression coefficients, the four
factors were identified as the primary weld geometry factors for predicting BSy and oggs.

(5) For the multiple linear regression model, the adjusted R-squared values for BSy and ogps
were 0.863 and 0.838, respectively. The adjusted R-squared values for the multiple non-linear
regression model for BSy and ogps were 0.867 and 0.860, respectively. The second-order
polynomial regression model performed backward elimination on the four significant weld
geometry factors, resulting in adjusted R-squared values of 0.863 and 0.851 for BSy and oggs,
respectively. The predictive performance of the three regression models was nearly identical at
around 86%, but the multiple non-linear regression model showed slightly better performance.

(6) Among the weld geometry factors of the lap joint with a gap, X4, X10, X14, and X16 are
considered to be closely related to stress concentration. These four factors are judged to predict
fatigue characteristics.

When manufacturing chassis components subjected to fatigue loading, it is challenging to
completely eliminate or consistently manage the gap. Aspects such as leg length, penetration depth,
throat thickness, and the toe angle of the weld in lap joint are managed in the manufactured chassis
components. The controlled weld geometry mains the same even if a gap occurs in the lap joint. For
lap joints with gaps that require fatigue characteristics, it is necessary to manage new weld geometry
factors such as X10, X14, and X16, in addition to throat thickness (X4).
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Additionally, easy statistical analysis of the main weld geometry factors predicted fatigue
characteristics in lap joints, which requires significant time and cost, possible.
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