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Abstract: Emotion recognition through multimodal signals—such as speech, text, and facial cues—has
garnered increasing attention due to its pivotal role in enhancing human-computer interaction and
intelligent communication systems. However, existing approaches often struggle to thoroughly
capture the intricacies of multimodal interactions, primarily due to the challenges in effectively fusing
heterogeneous modalities while mitigating redundancy and preserving complementary information.
In this study, we introduce MIMIC, a novel framework designed to comprehensively model complex
multimodal interactions from diverse perspectives. Specifically, MIMIC introduces three parallel
latent representations: a modality-preserving full interaction representation, a cross-modal shared
interaction representation, and individualized modality-specific representations. Furthermore, a
hierarchical semantic-driven fusion strategy is proposed to seamlessly integrate these representations
into a cohesive multimodal interaction space. Extensive experiments demonstrate that our MIMIC
framework not only surpasses prior state-of-the-art methods but also achieves this with remarkable
efficiency, involving lower computational complexity and significantly fewer trainable parameters.
Our contributions are twofold: (1) advancing a multi-perspective interaction modeling approach that
enhances the depth of multimodal emotion analysis, and (2) offering a streamlined, resource-efficient
framework suitable for practical deployments in emotion-aware systems.

Keywords: multimodal emotion recognition; cross-modal interaction modeling; efficient multimodal
fusion; hierarchical representation learning; modality decoupling

1. Introduction
Emotion understanding, as a critical aspect of artificial intelligence (AI), has long been a subject

of intense research interest [1]. By empowering AI agents with the ability to recognize, interpret,
and respond to human emotions, we enable more naturalistic, engaging, and effective interactions in
applications ranging from interactive virtual assistants and social robots to healthcare monitoring and
public sentiment analysis [2]. Despite notable advancements, the challenge of capturing and modeling
the nuanced interactions between diverse modalities remains unresolved, particularly in scenarios
involving spoken language, facial expressions, and paralinguistic cues [2].

The inherent complexity arises not only from the heterogeneity of modalities—each possessing
distinct characteristics and distributions—but also from the intertwined nature of emotional signals
where modalities may reinforce, complement, or even contradict each other [3,4]. Early attempts
in multimodal fusion primarily adopted straightforward concatenation or direct integration of raw
feature representations across modalities [2–4]. While these approaches are intuitive, they often fall
short in addressing the modality gaps and may inadvertently amplify redundant or noisy signals,
thereby compromising the overall representation’s discriminative power [5].

To alleviate such limitations, recent methods have explored representation disentanglement
strategies. For instance, the MISA framework [5] introduces modality-invariant and modality-specific
decomposition, enabling finer-grained interaction modeling. Although this decomposition demon-
strates improvements in interaction learning, it is not without drawbacks. The reliance on auxiliary
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orthogonal losses, delicate hyper-parameter tuning, and increased parameter overhead render MISA
less appealing for practical systems where computational efficiency and robustness are paramount.
Recognizing these limitations, our proposed MIMIC framework seeks to revolutionize multimodal
emotion analysis by rethinking how multimodal interactions are represented and fused. Inspired by
cognitive science perspectives where human perception processes multiple streams of signals through
specialized and integrative pathways, MIMIC introduces a tripartite interaction modeling strategy that
systematically captures information from complementary, shared, and modality-specific perspectives.

The first component, the Modality-Preserving Interaction Representation, retains the entirety
of each modality’s information, ensuring that no modality-specific cues essential for emotion recog-
nition are prematurely discarded. This preserves the original richness of individual modalities for
downstream reasoning.

Secondly, the Cross-Modal Shared Interaction Representation emphasizes the synergistic co-
ordination among modalities by extracting the shared latent space where cross-modal agreements
and reinforcements reside. This component is critical for scenarios where emotional cues are subtly
dispersed across modalities and require joint attention mechanisms for accurate interpretation.

Lastly, the Individual Modality-Specific Representations deliberately isolate each modality’s
unique traits while excluding redundant shared information. This fosters the model’s ability to identify
modality-unique emotional signals, such as sarcasm detectable only via tone or micro-expressions
perceivable only via facial cues.

To effectively merge these diversified representations, we propose a Semantic-Driven Hierarchi-
cal Fusion Mechanism, which dynamically adjusts the weighting and interaction pathways based on
the semantic consistency and informativeness of the representations. This design ensures a balanced
and comprehensive integration, unlocking the full potential of multimodal information fusion for
emotion analysis tasks.

Crucially, MIMIC is architected with practical deployment considerations at its core. By minimiz-
ing computational redundancy and introducing a parameter-light fusion strategy, MIMIC delivers
state-of-the-art performance with significantly reduced complexity and accelerated convergence dur-
ing training. This makes it highly suitable for edge devices and real-time emotion-aware applications,
where computational resources are often constrained.

Our contributions are summarized as follows. First, we systematically advance the field of
multimodal emotion analysis by introducing a multi-perspective interaction modeling framework
that captures the layered and multifaceted nature of emotional signals across modalities. Second,
we deliver a lightweight, easy-to-train, and fast-converging model that reduces the burden of hyper-
parameter tuning and computational overhead, facilitating wider adoption in practical AI systems.
These innovations collectively redefine the paradigm of multimodal interaction modeling, offering
new insights and methodologies that transcend existing fusion-centric approaches. We anticipate
that our work will stimulate further research into multi-level, cognitively inspired multimodal fusion
strategies for emotion recognition and beyond.

2. Related Work
The domain of multimodal emotion analysis has witnessed substantial progress over recent years,

yet the effective modeling of unimodal and multimodal representations continues to present enduring
challenges for the research community. Broadly, these challenges can be systematically decomposed
into two interrelated facets: (i) the construction of robust and generalizable unimodal representations,
and (ii) the formulation of effective strategies for integrating and interacting across modalities to derive
a comprehensive multimodal representation suitable for downstream emotion recognition tasks.

2.1. Unimodal Feature Representation Learning

Existing benchmark datasets for multimodal emotion recognition, such as MOSI [7] and MOSEI
[8], have provided rich multimodal resources comprising textual utterances, audio waveforms, and
visual streams extracted from conversational data. Accompanying these datasets are also canonical
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feature sets, including word embeddings for the textual modality, a compact 74-dimensional acoustic
descriptor set widely used for the auditory channel, and facial Action Unit (AU) features along with
their associated intensities for the visual modality. Tools like OpenFace and FaceNet have been
extensively adopted for the automatic extraction of visual features, thereby providing a standardized
pipeline for facial expression analysis.

While these classical features have provided a solid foundation for multimodal analysis, they
exhibit significant limitations, particularly when directly applied in complex emotion recognition
scenarios. Recent research has increasingly advocated for end-to-end learning pipelines that attempt
to directly optimize unimodal representations within a joint multimodal framework. However, given
the limited size and diversity of existing datasets, such end-to-end methods are prone to overfitting,
severely limiting their generalizability to unseen emotional expressions or diverse user populations.

In response to these limitations, the research community has shifted attention toward leveraging
large-scale pre-trained models. The fine-tuning of BERT-based models [12] has proven highly effective
as a universal feature encoder for both text and, more recently, speech modalities [19]. Nevertheless,
there remains a critical gap regarding the absence of similarly effective pre-trained frameworks for the
vision modality, leaving an open research direction in the development of visual-centric pre-trained
models that can be seamlessly integrated into multimodal emotion understanding systems.

2.2. Integration-Oriented Learning Paradigms

Historically, the most prevalent approach for multimodal representation learning has been the
straightforward integration of unimodal features through direct concatenation or attention-based
mechanisms. Such approaches, exemplified by works like MVLSTM [14] and BCLSTM, aim to leverage
the complementary nature of each modality by combining them into a unified joint feature space.
Several models also adopt attention mechanisms [3,15] to dynamically weigh the importance of each
modality during fusion.

However, as noted by Zadeh et al. [2], these methods often induce modality biases where domi-
nant modalities suppress the contributions of less prominent ones, thereby undermining the holistic
nature of emotion representation. To mitigate these shortcomings, subsequent works have introduced
various regularization techniques during joint representation learning, such as Canonical Correlation
Analysis (CCA) losses [18], adversarial mechanisms, and self-supervised learning schemes. These
strategies aim to extract common cross-modal information while disregarding the unique, modality-
specific cues that might carry vital emotion-related insights. Additionally, tensor fusion techniques
[2,4] have been proposed to retain both unimodal specificity and their higher-order interdependencies
within a single framework.

2.3. Decoupling Learning for Enhanced Interaction Modeling

More recently, the community has gravitated toward decoupling-based learning strategies, where
the goal is to separately model modality-invariant and modality-variant representations, facilitating
more granular interaction learning. A pioneering effort in this direction is MISA [5], which introduces
a sophisticated framework that decouples modality features into two distinct representations, enabling
the isolation of shared semantics from modality-unique characteristics. Although MISA demonstrates
promising performance improvements, its reliance on complex auxiliary losses—comprising multiple
reconstruction, difference, and similarity losses—alongside a delicate balance of hyper-parameters,
poses significant training challenges and potential instability. Furthermore, the indirect enforcement of
low similarity between disentangled representations cannot always guarantee the desired separation
in practical scenarios, possibly leading to suboptimal emotion representation capabilities.

Despite the breadth of research efforts, existing approaches—whether integration-based or
decoupling-based—exhibit inherent limitations when it comes to achieving effective and efficient
multimodal interaction modeling. Integration-based methods tend to overlook modality-specific nu-
ances by emphasizing commonality, whereas decoupling-based methods often complicate the training
pipeline and increase the computational footprint.
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In light of these observations, our proposed MIMIC framework is designed to address the
aforementioned limitations by introducing a principled yet lightweight approach to model multimodal
interactions from multiple perspectives. Unlike conventional methods that either over-simplify or
over-complicate interaction modeling, MIMIC adopts a tripartite interaction representation scheme
that captures full modality-preserving, cross-modal shared, and individualized representations in
parallel. Furthermore, our semantic-driven fusion strategy circumvents the need for auxiliary losses
and excessive hyper-parameter tuning, facilitating a more stable and efficient training process while
achieving superior emotion recognition performance.

By systematically integrating these advancements, MIMIC paves the way for a more interpretable,
robust, and scalable solution to multimodal emotion recognition, aligning closely with the current
demands for deployable and resource-efficient AI systems in emotion-aware applications.

3. MIMIC: Multi-Interaction Modeling with Intelligent Coordination Framework
This section elaborates on the proposed MIMIC framework, designed to address the challenges

in multimodal emotion analysis by comprehensively modeling both the independent and joint interac-
tions among heterogeneous modalities, including text, audio, and visual cues. Each input video clip
is segmented into utterance-level units, bounded by natural speech cues such as breaths or pauses.
For simplicity of notation, we denote ul

m, hm, and im as the temporal features, the aligned unimodal
utterance-level representation, and the modality-individual representation for modality m, respectively,
where m ∈ {t, v, a} denotes text, vision, and audio.

MIMIC introduces an end-to-end trainable framework comprising four core components: (i) Uni-
modal Encoder Module, (ii) Instance-Aware Decoupling Mechanism, (iii) Hierarchical Multi-View
Fusion Module, and (iv) Contrastive Regularization and Classification Head. Each component is
meticulously designed to balance representation granularity, cross-modal coordination, and computa-
tional efficiency.

Figure 1. Overview of illustration of EffMulti framework.

3.1. Unimodal Encoder Module

The Unimodal Encoder Module Em aims to extract high-quality, temporally aware features
from each unimodal input sequence. Specifically, given the raw sequence ul

m, we adopt a modality-
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specific encoder consisting of a stack of Bi-LSTMs followed by self-attention to capture contextual
dependencies:

hm = SelfAttn(BiLSTM(ul
m)), (1)

where hm ∈ RL×D, L is the utterance length, and D = 64 is the unified embedding dimension.
Motivation: Using self-attention enables capturing long-range utterance dependencies, critical in

handling expressive emotions dispersed across temporal segments.
To further reduce modality gaps, a modality alignment layer is applied:

ĥm = LayerNorm(hm) + hm, (2)

which harmonizes all modalities into a shared feature space and prepares them for downstream
interaction modeling.

3.2. Instance-Aware Decoupling Mechanism

To capture both commonality and individuality across modalities, we propose an efficient
Instance-Aware Decoupling Mechanism that decomposes ĥm into:

• Modality-Shared Representation S
• Modality-Individual Representation im

Motivation: Unlike prior works [5] requiring auxiliary losses and hyper-parameter balancing,
our decoupling method is parameter-free and self-contained within the data instance.

Formally:

S =
1
3 ∑

m
ĥm, (3)

im = ĥm − S . (4)

We further introduce a bottleneck transformation to reduce im into a compact representation:

ĩm = ReLU(W iim + bi), (5)

where ĩm ∈ R16, W i ∈ R16×D, ensuring computational efficiency.

3.3. Hierarchical Multi-View Fusion Module

Our Hierarchical Multi-View Fusion Module orchestrates the integration of S , ĩm, and ĥm into a
comprehensive interaction representation F from multiple perspectives.

Step 1: High-Order Modality-Preserving Fusion. We first project ĥm to a lower dimension:

h̃m = ReLU(Whĥm + bh), (6)

where h̃m ∈ R16. Subsequently, a high-order tensor interaction is modeled:

M = FC(MaxPool(h̃t ⊗ h̃v ⊗ h̃a)), (7)

where ⊗ is the outer product.
Step 2: Modality-Individual Fusion. Similarly:

I = FC(MaxPool(ĩt ⊗ ĩv ⊗ ĩa)). (8)

Step 3: Gated Semantic-Aware Fusion. To dynamically modulate the contribution of S , M, and
I , we introduce a learnable gating mechanism:

F0 = Concat([S , I ,M]), (9)
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G = σ(WgF0 + bg), (10)

F = G ⊙F0, (11)

where σ is the sigmoid function, and ⊙ is element-wise multiplication.

3.4. Contrastive Regularization and Classification Head

Inspired by recent contrastive learning paradigms, we introduce an auxiliary Instance-Level
Contrastive Regularization to encourage S to maintain cross-modal alignment:

Lcontrast = − log
exp(sim(Si,Sj)/τ)

∑k exp(sim(Si,Sk)/τ)
, (12)

where sim(·) denotes cosine similarity and τ is the temperature hyperparameter.
Finally, the fused representation F is passed through a three-layer MLP for emotion prediction,

with either:

LCE = −
C

∑
c=1

yc log ŷc, (13)

or for regression:

LMSE =
1
N

N

∑
i=1

(yi − ŷi)
2. (14)

Total Loss:
Ltotal = LCE/MSE + λLcontrast, (15)

where λ balances the contrastive regularization.

4. Experiments
In this section, we conduct comprehensive empirical evaluations to validate the effectiveness,

efficiency, and robustness of the proposed MIMIC framework. We compare MIMIC against a series
of strong multimodal baselines across multiple metrics on two widely-used datasets, MOSI [7] and
MOSEI [8]. Furthermore, we perform detailed ablation studies to analyze the contributions of each
component within MIMIC. Additionally, we investigate the modality contribution, computational
cost, and representation disentanglement capability of our framework. All experiments strictly follow
standard settings to ensure fair and credible comparisons.

4.1. Experimental Setup and Implementation Details

Implementation Details. All models are trained using the Adam optimizer with an initial learning
rate of 0.0001, and early stopping is applied with a patience threshold of 10 epochs. The mini-batch size
is set to 64, and training is performed on a single NVIDIA RTX 3090 GPU. Our models are optimized
using the cross-entropy loss for classification tasks and the mean squared error loss for regression
tasks, depending on the dataset annotations. For reproducibility, we plan to release the source code
and pre-trained models upon acceptance.

Datasets and Preprocessing. We evaluate our models on two benchmark datasets: MOSI and
MOSEI. MOSI comprises 2,199 utterance-level samples from 89 speakers, with annotations in the
range of [−3,+3]. MOSEI is a larger-scale dataset containing 23,453 samples across 1,000 speakers and
250 topics. We adopt standard preprocessing pipelines: text features are extracted using GloVe [9]
and BERT [12]; audio features are extracted using COVAREP [11] and Speech-BERT [13]; and visual
features are obtained via Facet [10] or our proposed visual encoder. All modalities are aligned at the
word level using P2FA.
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4.2. Comparison with State-of-the-Art Methods

We benchmark MIMIC against state-of-the-art methods including MFN [3], MV-LSTM [14],
RAVEN [15], MulT [16], TFN [2], LMF [4], MFM [17], ICCN [18], MISA [5], and SSL [19]. Evaluation
metrics include mean absolute error (MAE), Pearson correlation coefficient (Corr), binary accuracy
(Acc-2), F1 score, and 7-class accuracy (Acc-7).

Performance Comparison Results. Tables below present the comparative results. Our MIMIC
achieves consistent improvements over all baselines across all metrics and datasets. On MOSEI,
MIMIC (C) achieves a MAE of 0.543 and a Corr of 0.764, outperforming strong baselines like MulT
and RAVEN. On MOSI, MIMIC achieves superior results with a MAE of 0.793 and Corr of 0.756,
surpassing all classical feature baselines.

When equipped with BERT and Speech-BERT features (BT and BTS), MIMIC maintains its
superiority, demonstrating its robustness under diverse feature settings. Notably, even when visual
modality is removed, MIMIC still achieves competitive or superior performance, highlighting its
flexibility in partial modality scenarios.

In-depth Discussion. We observe that methods like SSL which utilize two modalities (text-BERT
and audio-BERT) achieve impressive results but still lag behind our proposed MIMIC in both MOSI
and MOSEI datasets. This verifies that our fusion mechanism and decoupling strategy can better
harness the complementarity among modalities.

Modality Ablation Analysis. We further provide modality removal analysis in Table 1. Results
show that text modality remains the most critical signal, while removing visual or audio still causes a
noticeable drop in performance, reinforcing the multimodal synergy captured by MIMIC.

Table 1. Modality contribution analysis on MOSI and MOSEI using MIMIC.

Modality Setting Dataset MAE ↓ Acc-2 ↑

All Modalities (T+V+A) MOSEI 0.543 85.8
w/o Visual MOSEI 0.551 85.5
w/o Audio MOSEI 0.553 85.0
w/o Text MOSEI 0.823 67.7

All Modalities (T+V+A) MOSI 0.793 82.0
w/o Visual MOSI 0.880 80.6
w/o Audio MOSI 0.873 81.7
w/o Text MOSI 1.455 59.4

4.3. Ablation Study on Module Effectiveness

We perform ablation studies on MIMIC’s core modules, including interaction representation
components (S , M, I) and decoupling strategies. The results in Table 1 confirm that all three interaction
representations are indispensable and jointly contribute to the overall performance. Furthermore, our
instance-based decoupling strategy consistently outperforms orthogonal constraint-based decoupling.

New Representation Efficiency Comparison. To investigate the decoupling effectiveness, we
compute the average cosine similarity between modality-individual representations. As shown in Table
2, MIMIC achieves significantly lower inter-modality similarity, indicating superior disentanglement
capacity.

Table 2. Average cosine similarity between modality-individual representations on MOSEI.

Method Audio-Text Audio-Visual Text-Visual

MISA 28.9 28.8 30.3
MIMIC 4.3 4.2 4.4

Training Convergence and Efficiency Analysis. We also analyze the training speed and resource
consumption. Table 3 shows that MIMIC reduces both parameters and FLOPs compared to MISA
while achieving faster convergence and higher final accuracy.
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Table 3. Efficiency comparison between MIMIC and MISA.

Method Params (M) FLOPs (MFLOPs) Convergence Epochs

MISA 1.4 5 20
MIMIC 0.3 2 8

Representation Dynamics Visualization. Furthermore, we observe the dynamic change of
representation similarities during training. The similarity first rises as representations are aligned,
then drops as they are disentangled by the decoupling operation, confirming the effectiveness of our
instance-aware design. All the above extensive experiments rigorously validate that MIMIC achieves
state-of-the-art performance, superior efficiency, and robust representation learning capability across
diverse multimodal emotion recognition scenarios.

5. Conclusions and Future Work
In this work, we have presented MIMIC (Multi-Interaction Modeling with Intelligent Coordi-

nation), an innovative and carefully engineered deep learning framework specifically designed for
addressing the intricate challenge of multimodal emotion analysis. Motivated by the inherent com-
plexity and heterogeneity of multimodal signals such as speech, text, and visual expressions, MIMIC
systematically models these diverse modalities by disentangling and coordinating their interactions
from multiple complementary perspectives.

Through extensive empirical evaluations on two widely adopted benchmark datasets, MOSI
and MOSEI, our approach demonstrates consistently superior performance over a wide spectrum
of competitive baseline models across all major evaluation metrics. Specifically, MIMIC not only
achieves remarkable improvements in prediction accuracy and correlation but also exhibits significant
advantages in terms of computational efficiency, model compactness, and training stability. These
findings substantiate the efficacy and practicality of the proposed method, making it well-suited for
real-world applications where computational resources may be constrained.

A critical innovation within our proposed framework lies in the introduction of a novel instance-
aware decoupling operation, which allows for the efficient decomposition of modality-specific rep-
resentations into a modality-shared component and distinct modality-individual components. This
decoupling strategy operates in a parameter-free and constraint-free manner, obviating the need for
complex orthogonality losses or additional balancing hyper-parameters, which often complicate the
training process in prior works like MISA [5]. Instead, our lightweight design seamlessly integrates
into the end-to-end training pipeline, facilitating the model’s ability to capture both the commonality
and the uniqueness embedded within each modality.

Furthermore, our proposed hierarchical multi-view fusion module builds upon these decoupled
representations, introducing a high-order interaction modeling mechanism that leverages tensor
operations and semantic-driven fusion gates to generate a comprehensive, discriminative, and robust
multimodal representation space. This mechanism ensures that the full representational capacity
of multimodal information is effectively unleashed, enabling the model to reason over complex
inter-modal relationships that are often overlooked by conventional fusion strategies.

Beyond its performance merits, MIMIC is also designed with deployment efficiency in mind. Our
analyses show that MIMIC significantly reduces the number of trainable parameters and FLOPs while
accelerating convergence speed during training, making it an appealing choice for emotion recognition
tasks in resource-constrained or real-time environments.

Future Directions. While MIMIC already demonstrates strong capability in modeling multimodal
interactions, several avenues remain open for future exploration:

• Intra-utterance Fine-Grained Interaction Modeling: Currently, MIMIC operates at the utterance
level with a focus on global representations. We plan to extend our framework to incorporate
fine-grained intra-utterance fusion mechanisms that can capture more localized emotional dy-
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namics, such as micro-expressions or prosodic variations, which may further enhance the model’s
sensitivity to subtle emotional cues.

• Adaptive Cross-Modality Similarity Learning: Although our instance-aware decoupling already
demonstrates strong disentanglement capacity, we aim to further enhance the model’s ability
to dynamically adjust the similarity space between modalities during training. By integrating
contrastive learning or dynamic margin strategies, we anticipate being able to bridge modality
gaps more effectively and promote better cross-modal alignment.

• Broader Applicability in Open-World Scenarios: Future work will also investigate the extension
of MIMIC to more diverse and challenging datasets beyond MOSI and MOSEI, including open-
world, multilingual, and multi-cultural datasets, to evaluate the generalization capacity of the
model in handling rich and diverse emotional expressions.

• Lightweight Deployment and Edge Adaptation: To further promote the deployment of our
model in real-world edge devices or mobile platforms, we intend to explore model pruning,
quantization, and knowledge distillation techniques to develop lightweight variants of MIMIC
without sacrificing performance.

• Integration with Large Pre-trained Multimodal Models: As the field of multimodal foundation
models advances rapidly, we also plan to investigate how our MIMIC can be integrated or
adapted into such large-scale models, leveraging their general knowledge while preserving the
fine-grained emotional reasoning capability brought by our multi-view interaction modeling.

In conclusion, this work offers a robust and versatile framework for multimodal emotion under-
standing, bridging the gap between modality-specific features and joint reasoning, and paving the
way toward more holistic, efficient, and interpretable emotion-aware AI systems.
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