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Abstract: This paper aims to explore the sufficient conditions for assuring that, the set of mild solutions
to two types of non-local semilinear fractional differential inclusions involving the conformable
derivative, in the existence of non-instantaneous impulses, is not empty and compact. We will consider
the case when the linear part in the studied problem is the infinitesimal generator of a C0 - semigroup
or a sectorial operator. We give the definition of mild solutions, and then, by using appropriate fixed
point theorems for multi-valued functions and the properties of both the conformable derivative, and
the measure of noncompactness, we achieve to our findings. Since the most of the known fractional
derivatives do not satisfy many basic properties that usual derivatives have, the conformable derivative
is introduced in a previous paper, and it is shows that it is the most natural definition. Therefore,
many works have been done on differential equation with the conformable. But, works on semilinear
differential inclusions are not reported until now. We will do not assume that the semigroup generated
by the linear term is not compact,also, we will examine the case when the values of the multi-valued
function are convex, also nonconvex. So, our work is novel, and interested. We give examples of the
application of our theoretical results.

Keywords: differential inclusions; infinitesimal generator of a C0 - semigroup; sectorial operator,
conformable fractional derivative; instantaneous and non-instantaneous impulses; mild solutions;
measure of noncompactness

1. Introduction
Differential inclusions take the form:

ζ́(δ) ∈ G(δ, ζ(δ)), a.e.,

where G is a multi-valued function, and is therefore a generalization of differential equations. Many
authors have been studied numerous of differential inclusions [1-4]. Impulsive differential problems
are proper models for tell of processes which at certain time change their situation speedily. This
processes can’t be described by the classical differential equations. If the effect of this change is
instantaneous, it is termed instantaneous impulses, but if it remains stable over a period of time, it is
called non-instantaneous impulses, for example to non-instantaneous impulses, the consequence of
institute medications into the bloodstream and their soaking up the body. To equip the reader with
the application of non-instantaneous impulses in physics, biology, population dynamics, ecology and
pharmacokinetics, we refer to [5-7]. In [8-10], there are many studies on differential inclusions with
non-instantaneous impulses.

Differential equations and inclusions containing fractional derivatives have many applications
in various branches of science, engineering and medicine [11-14], which indicates the importance
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of fractional derivatives. Therefore, many researchers pay attention to giving different concepts
to fractional derivatives, such as Riemann-Liouville, Caputo, Hilfer, Katugampola, Hadamard and
Atangana–Baleanu. All known fractional derivatives, except the conformable fractional derivative
was introduced by Khalil et al. [15], do not satisfy many basic properties of the usual derivative,
such as the product rule, quotient rule, mean value theorem, chain rule and Taylor power series
expansion. Therefore, the conformable fractional derivative is the most natural fractional derivative.
For this reason, many researchers have shown interest in exploring more properties of the conformable
fractional derivative and studying differential equations involving it. In [16-19], the conformable
fractional derivative properties are given, while in [20-22] some of its applications are given. Nonlocal
telegraph equations with the conformable fractional derivative are considered in [23]. Meng et al. [24]
looked for the existence of external iteration solutions to conformable fractional differential equations.
Tajadodi et al. [25] treated with the exact solution to a nonlinear differential equation involving the
conformable derivative.

In [26-28], there are other findings on differential equations with conformable derivative.
Let α ∈ (0, 1], ℧ be a Banach space, Υ = [0, b], A is the infinitesimal generator of a C0 - semigroup,

{T(δ) : δ ≥ 0}, on ℧, f : Υ ×℧ → ℧ is a single-valued function, g : ℧ → ℧ and ζ0 ∈ ℧ be a fixed
point. Without assuming the compactness of the family {T(δ) : δ ≥ 0}, Bouaouid et al.[29] proved,
under the condition that g is continuous and compact, the existence of mild solutions to the non-local
conformable fractional semilinear differential equations:{

dα

dζα ζ(δ) = Aζ(δ) + f (δ, ζ(δ)), δ ∈ Υ,
ζ(0) = ζ0 + g(ζ),

(1)

where dα

dζα ζ(δ) is the conformable derivative of the function ζ at the point δ.
Bouaouid et al.[30] studied the existence of mild solutions to the following non-local conformable

fractional semilinear differential equations:{
dα

dζα ζ(δ) = Bζ(δ) + f (δ, ζ(δ)), δ ∈ Υ,
ζ(0) = ζ0 + g(ζ),

(2)

where B is a sectorial operator on ℧ that generates a strongly analytic semigroup {K(δ) : δ ≥ 0}.To
achieve their goal, Bouaouid and associates authors imposed the compactness of both K(δ), ∀δ > 0 and
g.

Motivated by the above works, especially that done in [29,30], we will present in this paper,
six existence results for mild solutions to two types of non-local semilinear differential inclusions
containing the conformable derivative in the presence of non-instantaneous impulses in Banach spaces.
In fact, we will generalize the work in [29,30] and prove three existence results for mild solutions
to both problems (1) and (2), when f is replaced with a multi-valued function Θ and there are non-
instantaneous impulses in the system. Unlike [30], we will not assume the compactness of K(δ), ∀δ > 0.
In order to formulate the problems that we study, let 0 = s0 < b1 ≤ s1 < b2 ≤ s2 < ....... < sr < br+1 =

b, Θ : Υ → 2℧ − {ϕ} is a multi-valued function, gi : [bi, si]×℧ → ℧ and Λ1,r = {1, 2, ..r}.
Consider the following two non-local semilinear fractional differential inclusions involving the

conformable derivative, in the presences of non-instantaneous impulses:
dα

dζα ζ(δ) ∈ Aζ(δ) + Θ(δ, ζ(δ)), a.e. δ ∈ ∪i=r
i=0(si, bi+1],

ζ(δ) = gi(δ, ζ(b−i )), δ ∈ (bi, si]; i ∈ Λ1,r,
ζ(0) = ζ0 + g(ζ),

(3)

and 
dα

dζα ζ(δ) ∈ Bζ(δ) + Θ(δ, ζ(δ)), a.e. δ ∈ ∪i=r
i=0(si, bi+1],

ζ(δ) = gi(δ, ζ(b−i )), δ ∈ (bi, si]; i ∈ Λ1,r,
ζ(0) = ζ0 + g(ζ),

(4)
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We will explore the sufficient conditions for assuring that, S3(A, Θ) and S4(B, Θ) are not empty and
compact in PC(Υ,℧), where S3(A, Θ) and S4(B, Θ) are the set of mild solutions to problems (3) and
(4) respectively.

Remark 1. 1-This work is novel because this is the first time to consider non-local semilinear fractional
differential inclusions involving the conformable derivative, in the presences of non-instantaneous impulses in
infinite dimensional Banach spaces, where the linear part is the infinitesimal generator of a C0- semigroup (not
necessary compact) or a sectorial operator generates an analytic semigroup( not necessary compact) .Moreover,
we will consider the case when the values of Θ are convex as well as nonconvex.

2-This work is interesting because our studied problems involving the conformable derivative
which possess many properties like the usual derivative and that is not verified for all the other known
fractional derivatives.

The significant contributions are the following:
1-The representation of mild solutions to Problems (3) and (4) are formulated (Definitions 4 and

5).
2- We have extended the problem (1), studied by Bouaouid et al. [29], to the case when the

single-valued f is replaced with a multivalued function Θ and in the presence of non-instantaneous
impulsive effects (Problem 3). In fact, three existence results of mild solution to Problems (3) are given
(Theorems 1,2 and 3). In Theorem1, the values of Θ are not empty, convex and compact and Θ satisfies
a compactness condition containing a measure of noncompactness. In Theorem 2, the values of Θ are
not empty, convex and compact and Θ satisfies a Lipschitz condition. In Theorem3, the values of Θ
are not empty, compact (not necessary convex) and Θ satisfies a compactness condition containing a
measure of noncompactness.

3- We have extended the problem (2), studied by [30] to the case when the single-valued f
is replaced with a multivalued function Θ and in the attendance of non-instantaneous impulsive
effects.(Problem4). Moreover, we do not suppose that the semi-group generated by the operator B is
compact like in [30]. In fact, three existence results of mild solution to Problems (4) are given (Theorems
4,5 and 6).

In the third section of this paper, we demonstrate three existence results of mild solutions to
Problem (3). Section four is concerning with three existence of mild solutions to Problem (4). In section
5, we provide examples sections 5

2. Preliminaries and Notations
We use the following notations:
1-Υi = (bi, bi+1], i ∈ L0,r = {0, 1, ..., r}.
2-Pb(℧) := {∆ ⊆ ℧ : ∆ is not empty, and bounded}
3- Pcc(℧) := {∆ ⊆ ℧ : ∆ is not empty, convex and closed}.
4-Pbc(℧) := {∆ ⊆ ℧ : ∆ is not empty, bounded and closed}.
5-Pck(℧) := {∆ ⊆ ℧ : ∆ is not empty, convex and compact}.
6-S3(A, Θ) and S4(B, Θ) are the set of mild solutions to problems (3) and (4) respectively.
7-

PC(Υ,℧) : = {z : Υ → ℧, z is continuous on [0, b1] and on (bi,bi+1]

and lim
δ→b+i

z(b+i ) exists for any i ∈ Λ1,r}.

Note that the space PC(Υ,℧) is a Banach spaces where the norm is given by:

|| f ||PC(Υ,℧) := max{||z(δ)|| : δ ∈ Υ}.
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The Hausdorff measure of noncompactness on PC(Υ,℧) is given by χPC(Υ,℧) : Pb(PC(Υ,℧)) →
[0, ∞],

χPC(Υ,℧)(D) := max
i∈L0,r

χC(Υi
,℧)(D|Υi

),

where χC(Υi
,℧)is the Hausdorff measure of noncompactness on the Banach space C(Υi,℧).

As in [15], we give the following definitions:

Definition 1. The conformable integral of order α for a function f ∈ L1(Υ,℧) is given by:

Iα f (δ) :=
∫ δ

0
sα−1 f (s)ds.

Definition 2. The conformable fractional derivative of order α for a function f : [0, ∞) → ℧ at a point
δ ∈ (0, ∞) is defined by

Dα f (δ) = lim
ε→0

f (δ + εδ1−α)− f (δ)
ε

, δ ∈ (0, ∞).

The proof of the following Lemmas is exactly the same as in the scalar case treated in [15]

Lemma 1. Suppose that f , g : [0, ∞) → ℧ are conformable fractional differentiable of order α at a point
δ ∈ (0, ∞). Then,

1-Dα( f (δ) + g(δ)) = Dα f (δ) + Dαg(δ).
2-Dα( f g)(δ) = gDα f (δ) + f Dαg(δ).
3-Dα( f

g )(δ) =
gDα f (δ)− f Dαg(δ)

g(δ)2 .

Lemma 2. If f : [0, ∞) → ℧ is differentiable at a point δ ∈ (0, ∞), then it is conformable fractional
differentiable of order α at δ and Dα f (δ) = δ1−α d f

dδ .

3. The Compactness of the Solution Set to Problem (3)
In this section, we will present three theorems, in each one we explore the conditions that make

the set of mild solutions to problem (3) is not empty and compact in the Banach space PC([0, T],℧) or
not empty. In Theorem1, the multivalued function Θ has convex values and satisfies a compactness
condition involving a measure of non-compactness. In Theorem2, the multivalued function Θ has
convex values and verifies a Lipschitz condition, and in Theorem 3, the values of Θ are not necessarily
convex and verifies a compactness condition involving a measure of non-compactness.

Definition 3. ([29], Definition 6) Let A be the infinitesimal generator of a C0- semigroup {T(δ) : δ ≥ 0} and
f : [0, T]×℧ → ℧ be continuous.A continuous function ζ : [0, T] → ℧ is called a mild solution to the problem
(1)

if

ζ(δ) := T(
δα

α
)(ζ0 + g(ζ)) +

∫ δ

0
s1−α T(

δα − sα

α
)Θ(s, ζ(s)ds.

Based on this definition, we present the definition of mild solutions to Problem (3).

Definition 4. A function ζ ∈ PC(Υ,℧) is called a mild solution to the problem(3),if

ζ(δ) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ [0, b1],
gi(δ, ζ(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f (s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r.

(5)
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where f ∈ S1
Θ(.,ζ(.)) = {z ∈ L1([0, T],℧) : f (δ) ∈ Θ(δ, ζ(δ)), a.e.}.

Remark 2. The solution function given by (5) is continuous at the points si, and hence it is continuous on
(bi, bi+1], i ∈ {0, 1, .., r}

We consider the following assumptions:
(HA) A : D(A) ⊆ ℧ → ℧ is the infinitesimal generator of a C0-semigroup {T(δ) : δ ≥ 0} in ℧.
(HΘ)1 Θ : Υ ×℧ → Pck(℧) with:
(i) For every z ∈ ℧, there is a strongly measurable function ξ : Υ → ℧ satisfying ξ(δ) ∈ Θ(δ, z),

a.e.and for almost δ ∈ Υ, ζ → Θ(δ, ζ) is upper semicontinuous from ℧ to ℧.
(ii)There is φ ∈ Lp(Υ,R+), p > 1 such that

sup
u∈Θ(δ,z)

||u|| ≤ φ(δ)(1 + ||z||), f or a.e.δ ∈ Υ and z ∈ ℧. (6)

(iii) There is β ∈ L1(Υ,R+) such that for any bounded set D ⊆ ℧,

χΘ(δ, D) ≤ β(δ)χ(D), (7)

where χ is the Hausdorff measure of noncompactness on ℧.
(Hg)1 The function g : PC(Υ,℧) → ℧ is a compact, continuous and there are two positive real

numbers a, d such that
||g(ζ)| ≤ a||ζ||+ d, ∀ζ ∈ PC(Υ,℧).

(H)1 For every i = 1, 2, .., r, the function gi : [ti si]×℧ → ℧ is uniformly continuous on bounded
sets, gi(δ, .) is compact and there is hi > 0

||gi(δ, z)|| ≤ hi||z||, δ ∈ [bi, si], z ∈ ℧. (8)

Lemma 3. [([2],Lemma 5.1.1] Let Θ : Υ ×℧ → Pck(℧) be a multifunction satisfying (i) and (ii) in (HΘ)1,
then for any u ∈ C(Υ,℧),the set S1

Θ(.,u(.)) = {z ∈ L1(Υ,℧) : z(δ) = Θ(δ, u(δ)), a.e.} is not empty and
weakly closed.

The following Lemma is a version for the previous lemma when u ∈ PC(Υ,℧) and its proof can
be found in [31]

Lemma 4. Under the assumptions of the previous lemma, then for any u ∈ PC(Υ,℧), the set S1
Θ(.,u(.)) is not

empty weakly closed.

We need to the following Lemmas.
Let ℜ ∈ Pcc(℧), χ be a non-singular measure of noncompactness defined on subsets of ℧,

ℵ : ℜ → Pck(℧) be a closed multifunction and Fix(ℵ) = {z ∈ ℧ : z ∈ ℵ(z)}.

Lemma 5. (Kakutani-Glicksberg-Fan theorem)( [2], Corollary 3.3.1) If ℵ : ℜ → Pck(ℜ) is v−condensing, then
Fix(ℵ) ̸= ϕ.

Lemma 6. ([2] ,Proposition.3.5.1)). In supplement of hypothesis of Lemma (10), if χ is a monotone measure of
noncompactness defined on ℧ and Fix(ℵ) is bounded, then it is compact.

In the following theorem, we are going to obtain conditions that make S3(A, Θ) is not empty and
compact.

Theorem 1. Assume that (HA), (HΘ)1, (Hg)1 and (H)1 are satisfied

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2025 doi:10.20944/preprints202502.0496.v1

https://doi.org/10.20944/preprints202502.0496.v1


6 of 18

Then, S3(A, Θ) is not empty and compact provided that

Ma + 2Mb1−α||φ||Lp(J, R+) + h < 1, (9)

and
4Mb1−α||β||L1(Υ,R+) < 1, (10)

where M = sup{||T(δ)||, δ ≥ 0}, and h = max{hi : i = 1, 2, 2, 4}.

Proof. Let ζ ∈ PC(Υ,℧). In view of Lemma (4), there is f ∈ S1
Θ(.,ζ(.)). Then, we can define a multi-

valued function ℵ : PC(Υ,℧) → 2PC(Υ,℧) − {ϕ}, where ϕ is the empty set, as follows: y ∈ ℵ(ζ) if and
only if

y(δ) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ [0, b1],
gi(δ, ζ(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f (s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r,

(11)

where f ∈ S1
Θ(.,ζ(.)). Obviously, Fix (ℵ) ⊆ S3(A, Θ). So, by applying Lemma (5 ), we show that

Fix (ℵ) ̸= ϕ. This will proceed in the following steps:
Step 1. There is a natural number ℘ such that ℵ(D℘) ⊆ D℘,where D℘ = {ζ ∈ PC(Υ,℧) : ||ζ|| ≤

℘.
Assume the contrary. Then, for any n ∈ N, there are ζn, yn ∈ PC(Υ,℧) with ||yn||PC(Υ,℧) > n,

||ζn||PC(Υ,℧) ≤ n and yn ∈ ℵ(ζn) such that

yn(δ) =


T( δα

α )(ζ0 + g(ζn)) +
∫ δ

0 s1−αT( δα−sα

α ) fn(s)ds, δ ∈ [0, b1],
gi(δ, ζn(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,
gi(si, ζn(b−i ))−

∫ si
0 s1−αT( si−sα

α ) fn(s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) fn(s)ds, t ∈ (si, bi+1], i ∈ Λ1,r,

(12)

where fn ∈ S1
Θ(.,ζn(.))

.Using (6) to get

|| fn(δ)|| ≤ φ(δ)(1 + n), a.e. (13)

Let δ ∈ [0, b1].From(6), (Hg)1, (12) and (13), it results

||yn(δ)|| ≤ M(||ζ0||+ an + d) + Mb1−α
∫ δ

0
fn(s)ds

≤ M(||ζ0||+ an + d) + Mb1−α(1 + n)||φ||Lp(J, R+), (14)

where M = sup{||T(δ)|| : δ ≥ 0}. Let δ ∈ [b1, s1]. From (8), we get,

||gi(δ, ζn(b−i ))|| ≤ nhi, ∀n ≥ 1. (15)

Let δ ∈ (si bi+1], i ∈ L1,r. Then, as above, we obtain

||yn(δ)|| ≤ nhi + 2Mb1−α(1 + n)||φ||Lp(J, R+). (16)

Inequalities (14 - 16) lead to

n < M(||ζ0||+ an + d) + 2Mb1−α(1 + n)||φ||Lp(J, R+) + nhi

Dividing this inequality by n and letting n → ∞, it yields from (6),

1 < Ma + 2Mb1−α||φ||Lp(J, R+) + h
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which contradicts (9).
Step 2. We demonstrate that, if yn, ζn ∈ D℘ such that ζn → ζ and yn ∈ ℵ(ζn), ∀n ∈ N, then

yn → y and y ∈ ℵ(ζ).
Because yn ∈ ℵ(ζn), ∀n ∈ N, (12) is satisfied.
Since p > 1, then from (13), the set { fn : n ≥ 1} is weakly compact in Lp(Υ,℧). Application of

Mazur’s lemma, there is, without loss of generality, a subsequence ( f ∗n ), n ∈ N of convex combinations
of ( fn) and converging almost everywhere to a function f ∈ Lp(Υ,℧) ⊆ L1(Υ,℧). By the continuity
of both g and gi(δ, .), it follows by letting n → ∞ in (12), yn → y, where

y(δ) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ [0, b1],
gi(δ, ζ(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f (s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r.

But, the assumption Θ(δ, .) is upper semicontinuous implies that f (δ) ∈ Θ(δ, ζ(δ)), a.e.Therefore,
y ∈ ℵ(µ)

Step 3. For any ζ ∈ D℘, ℵ(ζ) is compact in PC(Υ,℧).
Let yn ∈ ℵ(ζ); n ∈ N. Using the same arguments as in Step 2, one can show that there is a

subsequence of (ynk ) that converging to y ∈ ℵ(ζ). This shows that ℵ(ζ) is relatively compact, but
Step(2) leads to the ℵ(ζ), is closed and consequently ℵ(ζ) is compact in PC(Υ,℧).

Step 4. The family of functions

ℵ(D℘)|Υi = {ω∗ ∈ C(Υi ,℧) : ω∗(δ) = ω(δ), δ ∈ (bi, bi+1],

ω∗(bi) = lim
δ→b+i

ω(δ), ω ∈ ℵ(D℘)}, i ∈ {0, 1, .., r},

are equicontinuous in C([si, bi+1],℧). Assume that ω∗ ∈ ℵ(D℘)|[si ,bi+1]
; i ∈ {0, 1, .., r}. Then, there

is ζ ∈ D℘ with

ω∗(δ) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ [0, b1],
gi(δ, ζ(b−i )), δ ∈ (bi, si], i ∈ Λ1,r

gi(si, ζ(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f (s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f (s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r.

(17)

and ω∗(bi) = limδ→b+i
ω(δ). We consider the following cases:

Case1. Let δ, δ + d ∈ [0, b1], d > 0. Using (17), it yields

lim
d→0

||ω∗(δ + d)− ω∗(δ)||

≤ lim
d→0

||T( (δ + d)α

α
)− T(

δα

α
)|| ||ζ0 + g(ζ)||

+ lim
d→0

||
∫ δ+d

0
s1−αT(

(δ + d)α − sα

α
) f (s)ds −

∫ δ

0
s1−αT(

δα − sα

α
) f (s)ds||

≤ lim
d→0

||T( (δ + d)α

α
)− T(

δα

α
)|| ||ζ0 + g(ζ)||

+ lim
d→0

∫ δ+d

δ
|| s1−αT(

(δ + d)α − sα

α
) f (s)||ds

+ lim
d→0

||
∫ δ

0
s1−αT(

(δ + d)α − sα

α
) f (s)− s1−αT(

δα − sα

α
) f (s)ds||

= I1 + I1 + I3.
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In view of (HA), limd→0 I1 = 0. Making use (13), we get

lim
d→0

I2 ≤ (1 + ℘)Mb1−α lim
d→0

∫ δ+d

δ
φ(s)ds = 0,

Next, the strong continuity of {T(δ) : δ ≥ 0} leads to

lim
d→0

I3 ≤ (1 + ℘)b1−α lim
d→0

∫ δ

0
||T( (δ + d)α − sα

α
)− T(

δα − sα

α
)|| φ(s)ds = 0,

Case2. Let δ, δ + d ∈ (b1, s1]. By the uniform continuity on bounded sets of g1, it results

lim
d→0

||ω∗(δ + d)− ω∗(δ)||

= lim
d→0

||g1(δ + d, ζ(b−1 ))− g1(δ, ζ(b−1 ))|| = 0,

independently of ζ. Moreover,

lim
d→0

||ω∗(δ + d)− ω∗(bi)||

= lim
d→0

lim
δ→b+1

||g1(δ + d, ζ(b−1 ))− g1(δ, ζ(b−1 ))||

= 0,

independently of ζ. Similarly, one can show that ℵ(D℘)|Υi , i ∈ L1,r is equicontinuous.
Step 5. The set £ = ∩n=1Dn is compact, where D1 = ℵ(B℘) and Dn+1 = ℵ(Dn), n ≥ 1.
Because Dn ⊆ Dn+1,then, as stated by Cantor’s intersection property [32], it be enough to manifest

that,
lim

n→∞
κPC(Υ,℧)(Dn) = 0. (18)

Let κ > 0, and n ≥ 1 be fixed. In view of [[33], lemma 2.9], there is a sequence (ym) in Dn with

χPC(Υ,℧)(Dn) ≤ 2χPC(Υ,℧){ym : m ≥ 1}+ κ

= 2 max
i∈L0,r

χC(Υi
,℧)(D|Υi

).

As a result of Step4, the sets D|Υi
are equicontinuous, and hence, the last inequality becomes

χPC(Υ,℧)(Dn) ≤ 2 max
δ∈Υ

χ(ym(δ) : m ≥ 1}+ κ. (19)

Now, since Dn = ℵ(Dn−1),there is ζm ∈ Dn−1 with ym ∈ ℵ(ζm),which means that

ym(δ) =


T( δα

α )(ζ0 + g(ζm)) +
∫ δ

0 s1−αT( δα−sα

α ) fm(s)ds, δ ∈ [0, b1],
gi(δ, ζm(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζm(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) fm(s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) fm(s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r,
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where fm ∈ S1
Θ(.,ζm). If δ ∈ [0, b1], then due to the continuity of T( δα

α ),the compactness of g and (7)
we get

χ{ym(δ) : m ≥ 1}

≤ χ{
∫ δ

0
s1−αT(

δα − sα

α
) fm(s)ds : m ≥ 1}

≤ 2Mb1−α
∫ δ

0
χ{ fm(s) : m ≥ 1}ds

≤ 2Mb1−α
∫ δ

0
χ{ζm(s)) : m ≥ 1}β(s)ds

≤ 2Mb1−α χPC(Υ,℧)(Dn−1)||β||L1(Υ,R+). (20)

If δ ∈ (bi, si]; i ∈ L1,r, then the compactness of gi(δ, .) implies to

χ{ym(δ) : m ≥ 1} = 0. (21)

Finally, if δ ∈ (si, bi+1], i ∈ L1,r,then as in (20)

χ{ym(δ) : m ≥ 1}
≤ 4Mb1−α χPC(Υ,℧)(Dn−1)||β||L1(Υ,R+). (22)

It results from (19 - 22) that

χPC(Υ,℧)(Dn) ≤ 4Mb1−α||β||L1(Υ,R+) χPC(Υ,℧)(Dn−1) + κ.

Since κ is arbitrary and this relation is true for any n, it follows

χPC(Υ,℧)(Dn) ≤ (4Mb1−α||β||L1(Υ,R+))
n χPC(Υ,℧)(D1).

This inequality along (10), we get (18) and then, D is compact.
Step 6. Applying Lemma (5), the multi-valued function ℵ : D → Pck(PC(Υ,℧)) has a fixed point,

which is the solution to Problem (3). Moreover, using the same arguments in step 1, we can show
Fix(ℵ) is bounded, and hence by Lemma (6), S3(A, Θ) is compact.

In the following theorem, we offer another result of existence of mild solutions to Problem(3).

Lemma 7. [34]. If Φ : Ω → Pbc(Ω) is a contraction, then Fix(Φ) is not empty, where Ω is a complete metric
space.

Theorem 2. In addition of (HA),suppose the following assumptions:

(HΘ)2 Θ : Υ ×℧ → Pck(℧) such that:
(i) For every u ∈ ℧, the multifunction δ → Θ(δ, u) has a strongly measurable selection.
(ii)There is a function φ ∈ L1(J,R+) satisfying

h(Θ(δ, u), Θ(δ, v)) ≤ φ(δ)∥u − v∥, ∀u, v ∈ ℧ and for a.e. δ ∈ Υ, (23)

and
Sup{ ||u|| : u ∈ Θ(δ, 0)} ≤ φ(δ), for a.e. δ ∈ Υ, (24)

where h is the Hausdorff distance between two closed convex bounded sets.
(Hg)2 There is a a > 0 with

∥g(ζ1)− g(ζ2)∥ ≤ a∥ζ1 − ζ2∥, ∀ζ1, ζ2 ∈ PC(Υ,℧). (25)
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(H)2 For each i = 1, 2, ....r, there is hi > 0 such that for any δ ∈ Υ,

||gi(δ, u)− gi(δ, v) || ≤ hi ||u − v ||, for all u, v ∈ ℧. (26)

Then, S3(A, Θ) is not empty if inequality (10) is verified.

Proof. From (i) and (ii) of (HΘ)2,we get

h(Θ(δ, z), {0}) ≤ h(Θ(δ, z), Θ(δ, 0)) + h(Θ(δ, 0), {0})
≤ φ(δ)(||z||+ 1), ∀z ∈ ℧ and for a.e δ ∈ Υ.

Then, (i) and (ii) of (HΘ)1 are satisfied. According to Lemma(4), S1
Θ(.,ζ(.)) is not empty, and hence we

can define a multi-valued function ℵ : PC(Υ,℧) → 2PC(Υ,℧) − {ϕ},which is defined by (11). We will
use Lemma (6) to demonstrate that ℵ has a fixed point. So, we will show that ℵ is a contraction. In
order to do this, let ζ1, ζ2 ∈ PC(Υ,℧) and y1 ∈ ℵ(ζ1).In view of the definition of ℵ, we have

y1(δ) =


T( δα

α )(ζ0 + g(ζ1)) +
∫ δ

0 s1−αT( δα−sα

α ) f1(s)ds, δ ∈ [0, b1],
gi(δ, ζ1(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ1(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f1(s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f1(s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r,

(27)

where f1 ∈ L1(Υ,℧) satisfying f1(δ) ∈ Θ(δ, ζ1(δ)).a.e.
Next, we consider the multi-valued function:Γ : Υ → 2℧, defined by

Γ(δ) = {z ∈ Θ(δ, ζ2(δ)) : || f1(δ)− z|| = d( f1(δ), Θ(δ, ζ2(δ))}.

Since the values of Θ are in Pck(℧), then the values of Γ(δ) are not empty. Moreover, (HΘ)2(i)
implies the measurability of Γ. Thanks to Theorem III-41 in [35], there is a measurable function f2 :
Υ → ℧ with f2 ∈ Γ(δ), a.e., and consequently,

|| f1(δ)− f2(δ)|| = d( f1(δ), Θ(δ, ζ2(δ))

≤ h(Θ(δ, ζ1(δ)), Θ(δ, ζ2(δ)))

≤ φ(δ)∥ζ1(δ)− ζ2(δ)∥ ≤ φ(δ)||ζ1 − ζ2||PC(Υ,℧), a.e. (28)

Next, define y2 : Υ → ℧ by

y2(δ) =


T( δα

α )(ζ0 + g(ζ2)) +
∫ δ

0 s1−αT( δα−sα

α ) f2(s)ds, δ ∈ [0, b1],
gi(δ, ζ2(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ2(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α ) f2(s)ds
+
∫ δ

0 s1−αT( δα−sα

α ) f2(s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r.

(29)

Obviously, y2 ∈ ℵ(ζ2). Now, we compute ||y1 − y2||PC(Υ.℧). If δ ∈ [0, b1], then from (27) and (29),
we get

||y1(δ)− y2(δ)||

≤ M ||g(ζ1)− g(ζ2)||+ Mb1−α
∫ δ

0
|| f1(s)− f2(s)||ds

≤ M a ||ζ1 − ζ2||PC(Υ,℧) + Mb1−α||ζ1 − ζ2||PC(Υ,℧) ||φ||L1(Υ,℧). (30)
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If δ ∈ (bi, si], i ∈ L1,r,then

||y1(δ)− y2(δ)||
≤ ||gi(δ, ζ1(b−i ))− gi(δ, ζ2(b−i ))||
≤ hi ||ζ1(b−i )− ζ2(b−i ) ||
≤ h ||ζ1 − ζ2||PC(Υ,℧). (31)

If δ ∈ (si, bi+1], i ∈ L1,r, then as in the pervious cases

||y1(δ)− y2(δ)||
≤ h ||ζ1 − ζ2||PC(Υ,℧) + 2Mb1−α||ζ1 − ζ2||PC(Υ,℧) ||φ||L1(Υ,℧). (32)

By combining relations (30 -32), we get

||y1 − y2|| ≤ ||ζ1 − ζ2||PC(Υ,℧)[h + a + 2Mb1−α||φ||L1(Υ,℧)].

By interchanging the rules of y1 and y2, it results

h(ℵ(ζ1),ℵ(ζ2)) ≤ ||ζ1 − ζ2||PC(Υ,℧)[h + a + 2Mb1−α||φ||L1(Υ,℧)].

This inequality along condition (11), leads to ℵ is a contraction, and therefore, by Lemma (7), ℵ
has a fixed point which is a solution to Problem(3).

Now, we offer another set of conditions that make S3(A, Θ) is not empty when the values of Θ are
not necessarily convex.

Theorem 3. In addition of (Hg)1, (H)1 suppose that the following condition hold:

(HΘ)3 Θ : Υ ×℧ → Pbc (℧) is a multifunction such that
(i) Θ has a measurable graph and for any δ ∈ Υ, z → Θ(δ, z) is lower semicontinuous.
(ii)There exists a function φ ∈ L1(T,R+), such that for any z ∈ ℧

∥Θ(δ, z)∥ ≤ φ(δ) , a.e. δ ∈ T. (33)

(iii)There is β ∈ L1(Υ,R+) such that for any bounded set D ⊆ ℧,

χΘ(δ, D) ≤ β(δ)χ(D),

Then, S3(A, Θ) is not empty if condition (10) and the following condition are satisfied.

Ma + h < 1. (34)

Proof. First, by using Theorem 3 in [36], we show the existence of a continuous selection to the
multivalued Nemitsky operator ℜ : PC(Υ,℧) → 2L1(T,℧)

ℜ(ζ) = S1
Θ(.ζ(.)) = { f ∈ L1(T,℧) : f (δ) ∈ Θ(δ, ζ(δ))), a.e. δ ∈ Υ}.

Obviously, ℜ(ζ); ζ ∈ PC(Υ,℧) is decomposable. Since Θ has a measurable graph and satisfies
(33), then by Theorem 3.2 in [37], ℜ(ζ) is not empty. Because Θ(ζ) is closed, ℜ(ζ) is closed. To prove
the lower semicontinuity of ℜ, it is sufficient to show that, for every v ∈ L1(T,℧), ζ → d(v,ℜ(ζ)) is
upper semicontinuous ( Proposition 1.2.26 in [38]). This is equivalent to show that for any θ ≥ 0, the
set

v
θ
= {ζ ∈ PC(Υ,℧) : d(v,ℜ(ζ)) ≥ θ}.
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is closed. Let {ζn} ⊆ v
θ

and ζn → ζ in PC(Υ,℧). Then, for all δ ∈ Υ, ζn(δ) → ζ(δ) in ℧. By Theorem
2.2 in [37],

inf
z∈ℜ(ζn)

∫ b

0
∥v(δ)− z(δ)∥dδ =

∫ b

0
inf

z∈ℜ(ζn)
∥v(δ)− z(δ)∥dδ.

Then, for any n ∈ N,

d(v,ℜ(ζn)) = inf
z∈ℜ(ζn)

∥v − z∥L1(Υ,℧) = inf
v ∈ℜ(ζn)

∫ b

0
∥v(δ)− z(δ)∥dδ

=
∫ b

0
inf

z∈ℜ(ζn)
∥v(δ)− z(δ)∥dδ =

∫ b

0
d(v(δ), Θ(δ, ζn(δ)))dδ.

This equality along with Fatou’s Lemma, yields

θ ≤ lim
n→∞

sup d(v,ℜ(ζn)) = lim
n→∞

sup
∫ b

0
d(v(δ), Θ(δ, ζn(δ))dδ

≤
∫ b

0
lim

n→∞
sup d(v(δ), Θ(δ, ζn(δ))dδ. (35)

Since for any δ ∈ Υ, Θ(δ, z) is lower semi continuous, the function, z → d(v(δ), Θ(δ, z)) is
upper semicontinuous [38], and hence limn→∞ sup d(v(δ), Θ(δ, ζn(δ)) = d(v(δ), Θ(δ, ζ(δ)). Therefore,
inequality (35) implies

θ ≤
∫ b

0
d(v(δ), Θ(δ, ζ(δ))dδ = d(v,ℜ(ζ)),

and this proves that v
λ

is closed, and so, ℜ is lower semicontinuous. By applying Theorem
3 in [36], ℜ has a continuous selection, that is, there is a continuous function η : PC(Υ,℧) →
L1(Υ,℧), η(ζ) ∈ ℜ(ζ); ζ ∈ PC(T,℧). Then, η(ζ)(s) ∈ Θ(s, ζ(s)), a.e. Now, let ℵ∗ : PC(Υ,℧) →
PC(Υ,℧) defined by

(ℵ∗ζ)(t) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α )Z(ζ)(s), δ ∈ [0, b1],
gi(δ, ζ1(b−i )), δ ∈ (bi, si], i ∈ L1,r,

gi(si, ζ1(b−i ))−
∫ si

0 s1−αT( sα
i −sα

α )Z(ζ)(s)ds
+
∫ δ

0 s1−αT( δα−sα

α )Z(ζ)(s), δ ∈ (si, bi+1], i ∈ L1,r.

Notice that assumption (ii) in (HΘ)3 implies to supu∈Θ(δ,z) ||u|| ≤ φ(δ) for a.e.δ ∈ Υ and z ∈ ℧.
Then, By following what we did in step 1 in Theorem 1, we can show that relation (34) leads to the
existence of ϱ > 0 such that ℵ∗(Dϱ) ⊆ Dϱ. Next, as in steps 2,3,4 and 5 in the proof of Theorem1, the
set D∗ = ∩n=1ℵ∗(Dn), D1 = ℵ∗(Dϱ), Dn+1 = ℵ∗(Dn) is not empty, convex and compact in PC(Υ,℧).
By applying Schauder’s fixed point theorem to the function ℵ∗ : D∗ → D∗, there is a point ζ ∈ D∗

with

ζ(δ) =


T( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αT( δα−sα

α )Z(ζ)(s)ds, δ ∈ [0, b1],
gi(δ, ζ1(b−i )), δ ∈ (bi, si], i ∈ Λ1,r,

gi(si, ζ1(b−i ))−
∫ si

0 s1−αδ(
sα

i −sα

α )Z(ζ)(s)ds
+
∫ δ

0 s1−αT( δα−sα

α )Z(ζ)(s)ds, δ ∈ (si, bi+1], i ∈ Λ1,r.

Since Z(ζ)(s) ∈ Θ(s, ζ(s)), a.e., S3(A, Θ) is not empty.

4. Existence of Solutions to Problem(4)

This section concerned to give two existence results of solutions to Problem(4).We start by
presenting the concepts and facts that we need.

Definition 5. [39] A linear closed densely defined operator B : D(B) → ℧ is said to be sectorial of type
(M∗, τ, σ),where M∗ > 0, τ ∈ R, σ ∈ (0, π

2 ) if
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(1)C− (τ + Sθ) ⊆ ρ(B)
(2) For any λ /∈ τ + Sθ , ∥R(λ, B)∥ ≤ M∗

|λ−ω| ,

where τ + Sσ = {τ + λ ∈ C : 0 < |arg(−λ)| < σ}, ρ(B) = {λ ∈ C : (λ − B)−1 exists} is the
resolvent set and R(λ, B) = (λ − B)−1 is the λ−resolvent operator of B and λ ∈ ρ(B).

Lemma 8. [39] A linear closed densely defined sectorial operator B generates a strongly analytic semigroup
{K(δ) : δ ≥ 0}. Moreover,

K(δ) =
1

2πi

∫
γ

eλδR(λ, B)dλ, (36)

where γ is a suitable path inside ρ(B)

Lemma 9. [30]. Let B be a linear closed densely defined sectorial operator on the Banach space ℧ of type
(M, ω, σ),where M∗ > 0, τ ∈ R, σ ∈ (0, π

2 ) and f : [0, b] → ℧ be continuous. The continuous function

ζ(δ) = K(
δα

α
)(ζ0 + g(ζ)) +

∫ δ

0
sα−1 f (s)ds. (37)

is the mild solution for the semilinear Cauchy problem:{
Dαζ(δ) = Bζ(δ) + f (δ), δ ∈ Υ,
ζ(0) = ζ0 + g(ζ),

(38)

where K(δ), δ ≥ 0 is given by (36).
Based on this Lemma, we present the concept of mild solutions to Problem (4).

Definition 6. A function ζ ∈ PC(Υ,℧) is called a mild solution to the problem(4),if

ζ(δ) =


K( δα

α )(ζ0 + g(ζ)) +
∫ δ

0 s1−αK( δα−sα

α ) f (s)ds, δ ∈ [0, b1],
gi(δ, ζ(b−i )), δ ∈ (bi, si], i ∈ ∆1,r,

gi(si, ζ(b−i ))−
∫ si

0 s1−αK( sα
i −sα

α ) f (s)ds
+
∫ δ

0 s1−αK( δα−sα

α ) f (s)ds, δ ∈ (si, bi+1], i ∈ ∆1,r,

(39)

where f ∈ S1
Θ(.,ζ(.)) = {z ∈ L1([0, T],℧) : f (δ) ∈ Θ(δ, ζ(δ)), a.e.}.

Now, since every analytic semigroup is a C0 - semigroup, then by following the same arguments
used in the proof of Theorems (1)-(3), we can demonstrate the following existence results of mild
solutions to Problem (4).

Theorem 4. In addition of assumptions (HΘ)1, (Hg)1 and (H)1, we suppose the following condition:

(HB) Let B be a linear, closed and densely defined sectorial operator on the Banach space ℧ of
type (M∗, ω, θ),where M∗ > 0, τ ∈ R, σ ∈ (0, π

2 ).
Then, S4(B, Θ) is not empty and compact in PC(Υ,℧) provided that

M∗a + 2M∗b1−α||φ||Lp(J, R+) + h < 1, (40)

and
4M∗b1−α||β||L1(Υ,R+) < 1, (41)

where M∗ = sup{||K(δ)||, δ ≥ 0}, and h = ∑i=r
1=1 hi.

Theorem 5. If the assumptions (HB), (HΘ)2, (Hg)2 and (H)2, then S4(B, Θ) is not empty in the Banach
space PC(Υ,℧) provided that (40) is satisfied.
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Theorem 6. If the assumptions (HB), (HΘ)1, (Hg)1 and (H)1, then S4(B, Θ) is not empty in the Banach
space PC(Υ,℧) provided that

M∗a + h < 1. (42)

5. Examples
Example 1. Let α = 1

2 ,℧ = L2[0, ∞), Υ = [0, 1], and s0 = 0, si =
2i
9 , ti =

2i−1
9 ,i = 1, 2, 3, 4, t5 = 1, r = 4,

∆ : ℧ → ℧ be a linear bounded compact operator and Λ ∈ Pck(℧) with 0 ∈ Λ. On E, define the translation
C0- semigroup:T(t) f (s) = f (t + s); f ∈ ℧. If A is the infinitesimal generator of this semigroup, then
A f = f ′́,where

D(A) = { f ∈ L2[0, ∞) : the weak derivative f ′́ exists and f ′́ ∈ L2[0, ∞)}.

Define Θ : Υ ×℧ → Pck(℧), and g : PC(Υ,℧) → ℧ and gi : [ti, si]×℧ → ℧as follows:

Θ(δ, z) =
υ ||z|| sin δ

ω (1 + ||z||)Λ ; (δ, z) ∈ Υ ×℧, (43)

g(x) =
i=4

∑
i=1

κi∆(x(bi)), (44)

gi(δ, z) := iκ5δ∆(z), ∀(δ, z) ∈ [bi, si]×℧, i = 1, 2, .., 4, (45)

where υ, κi(i = 1, 2, .., 5) are positive real numbers and ω = sup{||u|| : u ∈ Λ}.Notice that, for any
z ∈ ℧, the function f (δ) = υ ||z|| sin δ

ω (1+||z||)u0; u0 ∈ Z is a strongly measurable selection for the multi-valued
function δ → Θ(δ, z). Also„ for any δ ∈ Υ and any z, y ∈ ℧ , we have

sup
z∈Θ(δ,z)

||y|| ≤ υ ||z|| | sin δ|
(1 + ||z||) ≤ υ < υ(1 + ||z||), (46)

and

H(Θ(δ, z), Θ(δ, y)) ≤ υ || ||z||
(1 + ||z||) −

||y||
(1 + ||y||) ||

≤ υ||z − y||, (47)

It results from (46 and (47) that, Θ(δ, .) is upper semicontinuous, and for any bounded subset D ⊆ ℧,

χ(Θ(δ, D)) ≤ υ χ(D), for δ ∈ [0, 1].

Then, the assumption (HΘ)1 is verified with φ(δ) = β(δ) = υ, for δ ∈ [0, 1]. Furthermore, the
compactness of the operator ∆ implies the compactness of g and for any x ∈ PC(Υ,℧),

||g(x)|| ≤ ||
i=4

∑
i=1

κi∆(x(bi))|| ≤
i=4

∑
i=1

κi||∆|| ||x(bi)|| ≤ ||∆||||x||PC(Υ,℧)

i=4

∑
i=1

κi.

and hence, (Hg)1 is satisfied with a = ||∆||∑i=4
i=1 κi and d = 0. Next, the compactness of the operator ∆

implies the compactness of gi; i = 1, 2, 3, 4. Moreover, in view of (47),

||gi(δ, z)|| = iκ5 ||(∆(z))|| ≤ iκ5||∆|| ||z||℧, ∀(δ, z) ∈ [bi, si]×℧.
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Consequently, the assumption (H)1is verified, where hi = iκ5||∆||, i = 1, 2, 3, 4. By Applying Theorem
1,the set of mild solutions to the following nonlocal impulsive conformable fractional semilinear
differential inclusion :

d
1
2

dζ
1
2

ζ(δ) ∈ ζ′(δ) + υ ||ζ|| sin δ
ω (1+||ζ||)Λ, a.e. δ ∈ ∪i=4

i=0(si, bi+1],

ζ(δ) = iκ5δ∆(ζ), δ ∈ (bi, si]; i ∈ {1, 2, 3, 4},
ζ(0) = ζ0 + ∑i=4

i=1 κi∆(ζ(bi)),

(48)

is not empty and compact in PC(Υ,℧), provided that

M||∆||
i=4

∑
i=1

κi + 2M υ + 4κ5||∆|| < 1, (49)

and
4Mυ < 1, (50)

where M = sup{||T(δ)||, δ ≥ 0}.By choosing κi, i = 1, .., 5,and υ small enough, both (49) and (50)
will be satisfied.

Example 2. Let α = 2
3 ,℧ = L2([0, π]) and Υ, si, ti ,i = 1, 2, 3, 4, t5 = 1, , ∆, and Λ be as in in Example 1.

On E, define A : D(A) ⊆ ℧ → ℧ , Az = z′′ with

D(A) = {z ∈ E : z, z′ are absolutely continuous, z(0) = z(π) = 0}.

The operator A is sectorial and it is the infinitesimal generator of an Analytic semigroup{K(t) :
t ≥ 0},

K(t)(x) =
∞

∑
k=1

cos kt < x , xk > xk, x ∈ E,

where xk(y) =
√

2 sin ky, k = 1, 2, ..., is the orthonormal set of eigen functions of A. Moreover, M = 1.
Let Θ, g, gi, 1 = 1, 2, 3, 4 be as in the Example 1. Then, by following the same arguments in Example1
and applying Theorem 4, the set of mild solutions to the following nonlocal impulsive conformable
fractional semilinear differential inclusion :

d
2
3

dζ
3
3

ζ(δ) ∈ ζ′′(δ) + υ ||ζ|| sin δ
ω (1+||ζ||)Λ, a.e. δ ∈ ∪i=4

i=0(si, bi+1],

ζ(δ) = iκ5δ∆(ζ), δ ∈ (bi, si]; i ∈ {1, 2, 3, 4},
ζ(0) = ζ0 + ∑i=4

i=1 κi∆(ζ(bi)),

(51)

is not empty and compact in PC(Υ,℧), provided that

||∆||
i=4

∑
i=1

κi + 2 υ + 4κ5||∆|| < 1, (52)

and
4υ < 1. (53)

By choosing κi, i = 1, .., 5,and υ small enough, both (52) and (53) will be satisfied.

6. Discussion and Conclusion
Unlike all known fractional derivatives, the conformable fractional derivative, was introduced

by Khalil et al. [15], satisfies many basic properties of the usual derivative, such as the product rule,
quotient rule, mean value theorem, chain rule and Taylor power series expansion. Therefore, the
conformable fractional derivative is the most natural fractional derivative. For this reason, many
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researchers have shown interest in exploring more properties of the conformable fractional derivative
and studying differential equations and involving. In this work, six existential results are presented for
mild solutions of two types of fractional differential inclusions with non-local conditions involving
the conformable fractional derivative in infinite-dimensional Banach spaces and in the attending of
non-instantaneous impulses. In contrast to [30], we did not assume that the semigroup generated by
the linear part is compact. We considered the case when the linear part is the infinitesimal generated
of semigroup of linear bounded operators, as well as a sectorial operator. Also, we considered the case
when the values of Θ are convex, as well as, nonconvex.

We propose the following future directions:
1- Study the controllability of problems (3) and (4).
2- Prove that the set of mild solutions to problems (3) and (4) are Rδ - sets.
3- Generalize the results obtained in [40] to the case of replacing the single-valued function f with

a multi-valued function.
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