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Abstract: Knowing the mechanical properties of fibrous composite materials used in aeronautical industry 

from the design phase is a primary objective for designers. There are many methods for determining them, but 

they are laborious and require a long calculation time. And some of the methods are very approximate, giving 

only upper and lower bounds for these values. Experimental measurements also consume time and others 

resources. A method for sufficiently accurate and quickly obtained estimation of the engineering constants of 

the homogenized material is presented in the work. FEM is used to determine the natural frequencies of a 

standard bar, for which there are sufficiently precise classical methods for expressing these constants according 

to the properties of the homogenized material. In this way, these sought constants can be determined. In the 

work, Young's modulus will be determined for such a material, using the relationships that provide the proper 

pulsations for the longitudinal vibrations. Within the adopted model, transverse and torsional vibrations will 

be eliminated by blocking the nodes on the surface of the bars. In this way, more longitudinal self-pulsations 

can be obtained, so the precision in calculating the Young's modulus will increase. 

Keywords: Young’s modulus; longitudinal vibration; composite; FEM; fiber reinforced material 

 

1. Introduction 

Determining Young's modulus for a material is an important objective during the design of a 

mechanical system. In the aeronautical industry, this becomes particularly important if you take into 

account the continuously increasing percentage of the parts of an aircraft made of composites. Its 

determination can be done experimentally or using different calculation formulas, methods for which 

there is a rich literature. For composite materials in particular, numerous methods have been 

developed to determine this value, with greater or lesser precision. The methods based on 

micromechanical models and those based on the theory of homogenization are based on the 

determination of the stress and deformation field for the respective system. Variational models 

generally provide upper and lower limits of the modulus of elasticity. Obviously in this case it is 

given by the difference between the upper and lower modulus of the module and can lead, for certain 

concentrations of the composite phases, to errors, sometimes significant [1]. Such limits for an 

orthotropic and a transversally isotropic composite are presented in the cited work. These methods 

take into account particular cases of loading of the studied body and are quite imprecise [2,3]. 

Micromechanical models are theoretically more accurate, but require knowledge of the field of 

stresses and deformations for the respective material [4,5]. The results obtained in these works are 

developed and verified experimentally and the results agree very well [6,7]. Fiber-reinforced 

composites represent an important class of materials, with many applications in practice and as a 

result numerous studies have been carried out on their mechanical properties [8–16]. The studies 

generated numerous problems related to the methods of solving the equations obtained and the 

numerical results obtained [17–20]. Of course, experimental methods represent an extremely useful 

solution and with a very high degree of confidence, but their use requires time, equipment and costs 

that can sometimes be significant. For this reason, in a first phase of the design, it is more 

advantageous to have some estimates obtained quickly and with a satisfactory degree of confidence. 
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For materials that can be considered to be made up of many elementary volumes with the same 

topology, geometry and dimensions, the study is done for an elementary volume called a 

representative volume element. For this volume, the homogenized elastic coefficients are determined, 

which are assumed to be the coefficients of the entire material. Using this method, a composite 

material with short fibers is analyzed in [21], but it can be applied in many applications to determine 

the elastic constants of composite materials, for example, reinforced composites with aligned 

cylindrical fibers. 

The Finite Element Method (FEM) is a method successfully used by researchers to determine the 

mechanical behavior of composites. In general, this method is applied for static calculation, mainly 

to determine the stress and strain field inside a composite solid. In the work, the proposed method 

uses the dynamic analysis of the composite to study the vibrations and determine the natural 

frequencies of the considered specimen. The advantage of this method is that it allows obtaining fast 

results in a very wide class of materials, with different topologies, geometries and mechanical 

properties. The ability of FEM to obtain results very close to reality was demonstrated by 

experimental verifications [22]. So FEM proved once again to be a useful method for studying the 

mechanical properties of composite materials made up of a polymer matrix reinforced with aligned 

cylindrical fibers [23]. 

In engineering practice, situations may arise in which it is necessary to take into account other 

factors such as temperature and humidity. In this case, it is necessary that the classic models used 

also take into account these factors in obtaining some analytical relations that contain Young's 

modulus. The FEM can be used in the classical mode to obtain the natural frequencies, but in the 

classical model the additional factors that influence the mechanical behavior of the materials must 

also be introduced. A very useful model for determining the elastic constants for a polymeric 

composite reinforced with unidirectional graphite fibers is developed in [24]. Developments of this 

model are made in [25,26]. 

For the determination of Young's modulus using experimental techniques that provide these 

values with high precision in laboratory conditions, useful results are presented in [27]. Some 

examples for the determination of Young's modulus for brass, copper, plexiglass and PVC illustrate 

the proposed experimental method. The material studied in the paper has a transversely isotropic 

behavior and the axial Young's modulus is determined. 

Pipes for current applications are made of rubber that is reinforced with metal braids. Due to the 

wide use of these elements, the interest in determining the mechanical properties is obvious. Due to 

the complexity and the complicated manufacturing method that introduces parameters that are 

difficult to control, for these types of materials the best method for determining the mechanical 

properties is the experimental methods.  

Thus in [28] a method is proposed for the experimental determination of Young's modulus. For 

this, the Euler-Bernopulli model is used and three vibration modes are determined experimentally. 

Based on the obtained results, the Young's modulus is calculated with simple relations. In the paper, 

an additional verification of the results is done using FEM. The experimental determination of 

Young's modulus for a special type of fiber-metal laminated beams is described in [29]. Modeling 

using a classic model confirms the accuracy of the results obtained. The FEM is also used to determine 

the mechanical properties of some types of wood, a situation in which there are insufficient data to 

describe the model and approximations at the model level are needed [30]. Things become more 

complicated in such an analysis since wood is an orthotropic composite, so it is necessary to know 

several parameters to describe the constitutive law of the material. The method used was to make 

successive tests, with different values of the elastic constants, until the moment when the theoretical 

results obtained with FEM coincided with the experimental determinations. Obviously, such an 

approach requires effort and resources. Once these values are determined, it is possible to study more 

complex models for practical situations that can be encountered in practice. In [31] such an approach 

is used to determine the mechanical properties of some species and types of wood material, in order 

to use these values for design activities. Other experimental methods performed to determine the 

natural frequencies for transverse and torsional vibrations that allow the determination of some of 
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the elastic constants are presented in [32]. The theoretical model for their determination is based on 

Timoshenko's theory. 

It is clear that to determine the mechanical properties of composites the best method and which 

has been used intensively by researchers is to experimentally measure the natural frequencies of a 

material specimen and using these measurements to calculate the values of the engineering constants 

[33–36] . But this method involves time and resources to perform the measurements, which is why 

the use of a quick method of determining the properties in the first design phase is desirable.   

In engineering practice, the last few years have shown that composites reinforced with carbon 

fibers or glass have had a spectacular evolution, proving to be extremely useful in a wide range of 

applications. Obviously, such an evolution led to the increase of researchers' interest in this type of 

material. Some applications of these fiber-reinforced materials will be presented below. Concrete is 

one of these materials and deserves special attention due to its extraordinary application in 

construction. In this field, the current practice is to reinforce the concrete with cylindrical iron fibers. 

The FEM proved to be in this case also an adequate method to determine the mechanical properties 

of the homogenized material. Using finite element modeling of a concrete block reinforced with iron 

bars, the elastic constants of the homogenized material were determined. These values were thus 

obtained by calculation, which were then verified experimentally [37]. A very good agreement was 

found between the values estimated by calculation and the values determined by experimental 

methods. Another area where intense development is taking place is the use of natural fibers to 

reinforce the polymer matrix. The use of these fibers is based on both ecological considerations and 

the fact that they are easily obtained at a low price. However, their study is more complicated because 

they have a viscoelastic behavior [38] and the developed models are generally sophisticated. The 

analytical methods used are more elaborate and require a greater calculation effort. The results 

obtained by the mentioned work were validated experimentally, the differences between the 

calculated and measured values being small. 

Another interesting method used in the study of composite materials reinforced with glass or 

carbon fibers, which presents a viscoelastic behavior, is presented in [39]. Such a material has 

viscoelastic behavior due to the polymer matrix material. In developing the method, the time factor 

must also be introduced that will describe the flow of the material if the temperature at which it is 

used increases. The theoretically obtained results are verified experimentally, obtaining a good 

agreement. Other works develop methods for calculating the elastic coefficients for different types of 

materials used in engineering applications [40,41]. 

In the study, a FEM model is used to calculate the natural frequencies of a bar. Two sets of 

boundary conditions are considered, the bar is embedded at both ends and the bar is embedded at 

one of the ends. The material from which the beam is made is a polymer composite reinforced with 

carbon fibers. Within the standard assumptions of the classical theory of straight bars, with the values 

determined based on the formulas provided by the literature and knowing the values of the natural 

pulsations determined with the FEM model, the Young's modulus can be determined. 

The FEM is used to determine the natural frequencies for a composite material, using all the 

information regarding the matrix material and the fiber material in the modeling. At the same time, 

the classical methods are considered for determining the natural frequencies for a straight bar, made 

of the same material, which represents the homogenized material having the properties determined 

by the properties of the phases used. By comparing these values and comparing with those obtained 

using FEM, the values for the elastic constants for the homogenized material can be obtained. The 

main advantage offered by this method consists in the fact that it provides quick estimates for these 

values. Obviously, the costs involved are also reduced. If it is compared with the experimental 

methods, the method is much cheaper and more convenient. Also, the time required to obtain these 

values is reduced. The analysis focuses on the study of longitudinal vibrations, through the 

conditions imposed on the displacements in the FEM allowing only the axial displacement of the bar. 

In this way, computing resources are optimally used. In this work, this method is used to determine 

Young's modulus for a composite material reinforced with unidirectional carbon fibers. The method 
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can be applied to a wide class of materials in order to determine the properties of the homogenized 

material. 

2. Materials and Methods 

The main results regarding the vibrations of straight beam are briefly presented. The classic 

assumptions from the straight bar theory are considered valid [42]. In our study two cases are 

considered: clamped beam at both ends and clamped beam at one of the ends. Based on the 

relationships to determine the eigenfrequencies for a beams with the mentioned boundary 

conditions, it is possible to determine the Young's modulus for the homogenized material. These 

values represent a quick estimation for the Young’s modulus. 
FEM is used to determine these natural frequencies considering the matrix and the reinforcing 

fibers included in it. This can be done relatively easily and accurately using this method. Knowing 

the relations that provide the analytical expression of the eigenfrequencies of a homogeneous beam 

depending on the dimensions of the beam and the Young's modulus and having the eigenfrequencies 

calculated with the FEM, it is possible to obtain the Young's modulus from these relations through 

simple calculations. Figure 1 shows the two types of beams analyzed.  

 
(a) (b) 

Figure 1. Beam a) clamped at both end; b) clamped at one end. 

Consider the longitudinal vibration of a straight beam. These vibrations are described by the 

differential equations: 
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If we choose a solution under the form: 
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Eq.(3) give the solution: 

xCxCx  cossin)( 21 +=  (5) 

where: 
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If we consider the beam clamped at both end the boundary conditions become: 

0)(;0)0( == l  (7) 

and it results: 

0sin;0 12 == lCC   (8) 

It obtains easily: 
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Taking into account notation (6) the eigenpulsations are given by the relation: 
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So the Young’s modulus of the homogenized material clamped at the both ends can be 
determined: 

,.....3,2,1;
22

22

== n
n

lp
E n

L 


  . (11) 

From Eq.(10), it results: 
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Now if we consider the beam clamped only on one end, the boundary conditions are: 
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The Young’s modulus of the homogenized material clamped at one both end can be determined: 

( )
,.....3,2,1;

12

4
22

22

=
−

= n
n

lp
E n

L 


  . (18) 

From Eq.(20), it results: 
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Using FEM, it is possible to obtain a number of eigenpulsation which offers us more values for 

E. The average can be calculated in order to obtain a better estimation for E. 

3. Results 

In this study, a composite material made of a polymeric material reinforced with carbon fibers 

is considered. With the help of finite element analysis, the material is modeled considering the fibers 

incorporated in it. The beam's own pulsations are determined with the help of this model. Only the 

longitudinal vibrations of the material are considered. On the other two directions, the nodes are 

blocked. This was done because when analyzing such a bar, the low modes are transverse and 

torsional vibration modes. The modes due to longitudinal vibrations appear at higher frequencies. 

The study aimed to obtain more frequencies for the longitudinal vibrations, without having to 

identify and eliminate the other modes of vibration. This is achieved by blocking the movement of 

the bar surface in the other two directions. Considering the classical model of the bar [43], the 

relationship between Young's modulus and the natural pulsation can be written. If the natural 

pulsation was calculated with FEM, then it is easy to obtain the Young's modulus. Several 

determinations of the natural pulsations are considered in order to obtain a better estimate for the 

modulus of elasticity. This way of estimating Young's modulus has the advantage of simplicity. The 

methods that can be used today are relatively imprecise and time- and resource-consuming. 

Experimental methods also involve careful preparation, time and resources. For the two bars with 

different boundary conditions, eigenfrequencies and eigenmodes were determined. Based on the 

values obtained in the calculation, the longitudinal Young's modulus was calculated [44–50]. 

The model considered in the calculations is presented in Figure 2 and is represented by a 

specimen with a square section, with a length of 10 mm and a side of 1 mm, inside which are 

incorporated 16 cylindrical carbon fibers aligned along the x axis. The considered dimensions can be 

found on the figure. It was considered for carbon fiber that the Young's modulus has the value of 

86,960 GPa. For the polymer matrix, the Young's modulus was considered to be 4,140 GPa. The 

density taken in the calculations is 1850 kg/m3 for the polymer matrix and 2000 kg/m3 for the 

reinforcing carbon fibers. The Poisson's ratio for the matrix was taken to be 0.22 and 0.34 for the 

carbon fibers. Based on these data, the FEM model was built with the help of which the 

eigenfrequencies were determined. 

 

Figure 2. The composite specimen. 
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The density of the homogenized material, which is a necessary quantity for performing the 

calculations, is obtained with the relation: 

mmff  +=   . (20) 

Here, the density of the fiber is f , the density of the matrix is m , the ratio of the fiber is f  

and the ratio of the matrix is m , ( fm  −=1 ).  

The eigenmodes for the longitudinal vibrations, for the first six eigenfrequencies are represented 

in Table 1. Based on the relationships that give us the Young's modulus depending on the 

eigenpulsation values, this quantity can now be determined. The results of the calculations are 

presented in Table 1. In conclusion, if we know the length of the beam specimen considered, the 

density of the homogenized material, the number of the eigenmode considered and the 

eigenfrequency for this mode, calculated with FEM for a model that reproduces the two phases of the 

composite, we can determine Young's modulus. This module can be determined for each frequency. 

It is reasonable to average the values obtained for several natural frequencies obtained by FEM 

calculation. In the work, we considered two boundary conditions for the bar specimen. First, the bar 

clamped at both ends is considered, then the bar clamped at one of the ends and free at the other end. 

If it is taken into account that  

nnp 2=   . (21) 

where n is the natural frequency corresponding to the natural pulsation, the expression for the 

modulus of elasticity is obtained [46]: 
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 if the bar is clamped at both ends and 
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,.....3,2,1;
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16
2
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=
−
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n

l
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L
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if the bar is clamped at one end. 

Table 1. Eigenpulsations obtained with FEM for the longitudinal vibration. Beam clamped at both 

ends. 

Mode 

No. 

Eigen 

frequency 

[Hz] 

Representation 

Ratio 

,
1p

pn

6,1=n  

Longitudinal 

Young’s modulus  

2

224

n

l
E n

L


=

;  

EL [GPa] 

1 264,380.6 

 

1.00 54.010 
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2 528,032.1 

 

2.00 51.232 

3 790.496.2 

 

2.99 51.061 

4 1,052,232 

 

3.98 50.816 
 

5 1,311,324 

 

4.96 50.494  

6 1,567,773 

 

5.93 50.088  

Average longitudinal Young’s modulus  EL [GPa] 51.284 

A representation of the eigenfrequencies for beam clamped at one end is made in Figure 3. 

 

Figure 3. The eigenfrequencies for the beam clamped at both ends. 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

E
ie

g
e

n
fr

e
q

u
e

n
cy

 [
H

z]
 x

 1
0

-5

No of frequency

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2024                   doi:10.20944/preprints202401.1507.v1

https://doi.org/10.20944/preprints202401.1507.v1


 9 

 

Table 2. Eigenpulsations obtained with FEM for the longitudinal vibration. Beam clamped at one end. 

Mode 

No. 

Eigen 

frequency 

[Hz] 

Representation 

 

Ratio 

6,1,
1

=n
p

pn  

Longitudinal Young’s 

modulus  

( )2
22

12

16

−
=

n

l
E n

L



;  

[GPa] 

1 128,773 

  

1.00 53.927 

2 386,064 

 

3.00 53.856 

3 642,587 

 

4.99 53.713 

4 897,798 

 

6.97 53.496 

5 1,151,110 

 

8.94 
53.199 

 

6 1,401,865 

 

10.91 52.818 

Average longitudinal Young’s modulus  EL [GPa] 53.502 

It is found that the values obtained for the bar clamped at one end are closer to each other than 

in the first case, when the bar is clamped at both ends. The eigenfrequencies for beam clamped at one 

end are represented in Figure 4. 
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Figure 4. The eigenfrequencies for the beam clamped at one end. 

The law of mixtures gives us the value 54.950 GPa 

4. Discussion 

The values of the elastic constants that define the constitutive law of a composite made of a 

polymer matrix reinforced with glass or carbon fibers can be determined by several analytical 

methods developed by researchers, which are however very laborious. Most of these methods 

assume the determination of the stress field and deformations in the specimen considered 

representative of the material. The bounding methods for the elastic constants, proposed by some of 

the researchers, lead to less precise results. Sometimes when edge methods are used, for certain phase 

concentrations these methods can lead to practical results. Experimental methods represent the most 

reliable methods of determining these elastic constants, but they involve significant time and 

resources. 

In the paper one showed that the FEM can be a simple and sufficiently precise method for a 

quick estimation of some of the elastic constants. In this work, we dealt with the modulus of elasticity, 

but it is obvious that other constants can be determined, if suitable models are used. The classical 

theories of the straight bar were used to analytically determine the natural frequencies and these 

values were compared with those obtained from the exact model elaborated with FEM. Thus, with 

the help of simple formulas, we managed to calculate Young's modulus. We can conclude that the 

presented method has the advantage of speed, simplicity and accessibility to obtain quick estimates 

for the values of the elastic constants in the design phases of a mechanical system. The accuracy of 

the results can be improved by considering a FEM model with many elements, which will more 

precisely describe the existing situation for each practical application [48–50]. So there are many 

methods for determining the elastic constants of a composite material, but most of them are laborious 

and require many calculations. The ones that stand out for their simplicity offer upper and lower 

bounds for the elastic constants that lead to significant errors. The method proposed in the work uses 

the determination of the natural frequencies for the homogenized bar using the classical theory of 

straight bars. FEM is also used to determine these natural frequencies, on the real system. This 

method gives fast and accurate estimates of Young's modulus, important data in a design process. 

Obviously, the bar assumptions of the theory of straight bars must be respected. The errors that may 

appear are due to the FEM, within the limits accepted by the approximation method and the 

deviation from the classical assumptions. The method allows obtaining fast and useful results. 

Obviously, the need to know the mechanical properties expressed by the elastic constants of the 

materials is a main objective in the case of designing a mechanical system. Within these materials, 
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polymer composites reinforced with aligned cylindrical fibers are distinguished, mainly due to their 

numerous practical applications. Obviously, experimental measurements provide the most reliable 

results, but this operation is expensive and takes time. That is why the existence of fast methods for 

estimating these properties is required depending on the properties of the component phases. This 

has been intensively studied and numerous calculation models have been proposed. Based on the 

micromechanical models, analytical formulas were determined to determine the engineering 

constants. But this approach implies the determination of the stress and deformation field for the 

studied system. The same requirement is involved if the homogenization theory is used. Other 

theoretical models have been proposed that involve the knowledge of particular loading situations 

but that provide upper and lower bounds for the elastic constants, which means significant errors 

when determining these constants that can sometimes be far from the real values[7–13]. The method 

used in the present work is to consider the homogenized material and to determine with the classical 

calculation methods the natural frequencies of such a homogenized bar. With the FEM, the values of 

the natural frequencies for the real system, consisting of the matrix material and the reinforcing fibers, 

are determined. Comparing the two values, Young's modulus can be easily determined. In this way, 

fast and accurate estimates are obtained for this quantity [59]. In practice, complex situations may 

arise, determined by practical applications, in which effects may appear that cannot be neglected, 

such as thermal effects, humidity, etc. In order to solve such problems, the classical models must be 

improved to be able to take into account these effects, which introduce new parameters. And they 

must be taken into account in these calculations, 

5. Conclusions 

The method proposed in the present study gives a quick estimate of the Young's modulus for a 

composite material reinforced with fibers. The method can be useful to designers to be able to have 

data necessary for the design process. Within this method, FEM is used, which is a calculation method 

well mastered by designers and which provides precise results. The eigenpulsations are determined 

for the analyzed specimen, which are then used to obtain, through simple calculations, the elastic 

modulus. It is necessary that the properties of the phases that make up the composite must be known. 

The simplicity and speed with which this method can be applied is an argument for its use in the 

design phase. The estimate is mainly affected by the approximations and assumptions that are made 

in the classic calculation of the straight beam and by FEM errors, which is essentially an 

approximation method. In the case of the example studied in the work, the results are similar to those 

obtained by other methods and then verified experimentally [48–50]. Obviously, the model can be 

improved, if it is necessary to determine Young's modulus for special situations, when it is necessary 

to take into account the effect of temperature, humidity or other factors. The method qualifies to be 

used in these cases as well, but for the study of the beam, models must be used that include these 

factors in their description. There are therefore possibilities for the development of research for these 

cases as well. 
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