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Article 
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Abstract: Runs of homozygosity (ROH) are contiguous homozygous segments occurring throughout the 
genome. ROH's number and size heavily depend upon shared parental ancestry, particularly relevant in the 
context of parental consanguinity. Homozygosity mapping, a valuable technique for the identification of genes 
associated with human genetic diseases, is based on the presence of ROH. Next-generation sequencing (NGS) 
improved this process by allowing simultaneous homozygosity mapping and detection of disease-causing 
variants. In this work, we present the methodology to automate the creation of personalized multigene panels 
based on whole-exome sequencing (WES) data using ROH (identified by combining two different algorithms: 
ROHMMCLI and HomozygosityMapper) and/or Human Phenotype Ontology (HPO) terms, and its 
integration in a Django Web application. The new resources’ applicability and impact on diagnostics are 
demonstrated through the genetic characterization of two siblings affected by a recessive disease. Resorting to 
a sample of 3,941 patients generated in this work, we provide an extensive analysis of ROH at a genomic scale 
for the first time in the Portuguese population. This work also describes the development of a new classification 
approach based on ROH features. In summary, this research advances ROH analysis from WES data, 
emphasizing its diagnostic potential and significance in population genetics’ characterization.   

Keywords: Regions of homozygosity; bioinformatics model; variant prioritization; whole-exome 
sequencing; consanguinity; multigene panels; recessive diseases 

 

1. Introduction 

Runs of homozygosity (ROHs) are continuous segments of the genome identical in both copies 
of a chromosome pair (alleles) ranging from tens of kilobases to megabases [1]. Homozygosity refers 
to having two identical alleles of a gene inherited from each parent [2], and due to common ancestry 
between the parents or due to identity-by-descent (IBD), it is called autozygosity [3]. ROHs can arise 
from consanguineous marriages (estimated to affect ~10% of people worldwide) [4], inbreeding [5,6], 
or founder effect [7], increasing the risk of recessive diseases in the offspring. ROHs may also be “runs 
of hemizygosity”, when there is a deletion in one copy of a chromosome, leading to a loss of 
heterozygosity [8]. 
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ROH patterns reflect the level of kinship and autozygosity, both reduced by people’s mobility 
and globalization [9]. Short ROH are characteristic of admixed populations resembling ancient 
parental relatedness, whereas longer ROH reflect higher consanguinity levels and recent parental 
relatedness [10–13]. ROH patterns reflect population and demographic history [14,15], including 
differences in consanguinity and number of ROHs between ethnic subgroups [10,16–21]. 
Understanding these patterns in diverse populations is essential for assessing disease risk and 
identifying disease-causing genetic variants, particularly in admixture isolates [11,22–24]. 

As consanguinity increases, so does the number and size of ROHs, raising the risk of autosomal 
recessive (AR) diseases. ROH analysis increases the diagnostic rate of recessive diseases, especially 
in consanguineous families, for finding candidate genes [25–29], disease-causing homozygous 
variants [30], and corroborating the historical context of communities [31]. Furthermore, it is crucial 
for identifying candidate genes for specific recessive diseases [32–36], even in non-consanguineous 
families [37]. Biodemographic and genetic studies provide insights into population structure and its 
link to diseases, by exploring the human genome's significance in population history and 
consanguinity practices [14,38].  

Homozygosity mapping (ROH detection) aids gene discovery by assuming individuals with AR 
diseases likely have homozygous markers surrounding the disease locus, searching for and 
identifying regions harboring the affected gene. If other relatives also have the disease, the strategy 
includes identifying ROHs exclusive to affected individuals within the family [39]. It was first applied 
in 1987 by Lander and Botstein in consanguineous families affected by a recessive disease using 
restriction fragment length polymorphisms (RFLPs) [40]. Homozygosity mapping evolved to utilize 
Single Nucleotide Polymorphism (SNP) array data, and with the advent of next-generation 
sequencing (NGS), software tools were designed to accommodate this sequencing data as input [39].   

NGS introduction enables simultaneous homozygosity mapping and variant detection, 
generating vast data volumes surpassing previous technologies in speed and cost-effectiveness. Since 
454 sequencing by Roche, NGS has evolved through second-generation (short-read) and third/fourth-
generation (long-read) technologies [41]. Second-generation sequencing generates short DNA 
fragments (100-600 bp), with Illumina being widely used for genetic testing [41,42]. Third/fourth-
generation sequencing achieves reads of over 10 kb, effectively detecting genome-wide repeats and 
structural variants, suitable for diagnostic and clinical applications [41,43]. The two main 
technologies are provided by Pacific Biosciences (PacBio) [44], and Oxford Nanopore (ONT) [45].  

NGS applications include single-gene, targeted multigene panel, whole-exome sequencing 
(WES), whole-genome sequencing (WGS), and transcriptome (RNA sequencing), all effective for 
genetic testing [46]. WES, which targets protein-coding exons, where ~85% of the known Mendelian 
disease variants occur, has become a mainstream approach due to its cost-effectiveness and 
simplified data management [47–49]. WES can be done individually or in trio (enhanced variant 
identification) [50]. Its limitations include sensitivity to GC-rich regions, reliance on Sanger 
sequencing to confirm low-quality variants, challenges with variants of uncertain significance (VUS), 
shared homology between genomic regions (segmental duplications/ pseudogenes and failure to 
genotype highly repetitive regions completely and especially when large repeats expansions 
[2,51,52]. 

Re-analyzing genomic data enhances diagnostic rates by uncovering novel gene-disease 
associations, improving bioinformatics techniques for CNV detection and variant calling, 
incorporating consanguinity assessment (ROH filter) to narrow down the list of candidate variants, 
and integrating the Human Phenotype Ontology (HPO) [51] terms. HPO terms describe human 
phenotypic information in a standardized way (used for supporting clinical diagnostics and genetic 
research). Estimating consanguinity through ROH analysis allows for an unbiased determination of 
parental or ancestral consanguinity, overcoming the limitations of self-reports or inferences based on 
family context [52].  

Homozygosity mapping tools, both adapted and new, emerged [39], enhancing diagnostic rates 
by combining WES data and ROH analysis [53,54]. The software can be based on sliding-window or 
hidden Markov model (HMM) algorithms [39]. Sliding-window algorithms, originally designed for 
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SNP array data analysis, move a fixed-size window along the chromosome to find stretches of 
consecutive homozygous SNPs [39]. PLINK [39] is widely used on its own [16,55–65], as a 
complementary analysis [66], or integrated into other algorithms [67]. Other software followed, such 
as Obelisc [68], GERMLINE [39], EX-HOM (EXome-HOMozygosity) [69], and HomozygosityMapper 
(HM) [70]. PLINK, GERMLINE and HomozygosityMapper (HM) were subsequently adapted for 
WES data [39,71]. Other software created includes HOMWES [72], GARLIC [73], HomSI [39,74], and 
Automap [75]. 

Hidden Markov models (HMM) represent observed data as outputs generated by hidden states, 
modelled as a Markov chain [76]. In ROH detection, HMMs estimate the likelihood of a genotype 
(observation) being homozygous or heterozygous (hidden states) [77]. The software tools available 
are H3M2 [77,78]; IBDSeq and GIBDLD [78]; BEAGLE [79]; ROHMM and BCFtools/RoH [77,80]; and 
Python packages FILTUS and hapROH [81–83]. 

The accuracy of these tools can be influenced by many factors, such as the choice of algorithm 
used, sample sequencing depth and coverage, SNPs density and sequence quality, the need for 
phased data, loss of short and medium-sized ROHs, and false positives [39,82]. These factors should 
be considered when selecting the appropriate software for a project [39,83].  

This work presents new bioinformatics approaches to address the creation of personalized 
multigene panels based on WES data using ROH and/or HPO terms, integrated into a Django Web 
application. Its impact on diagnostics is illustrated by the genetic characterization of two siblings 
affected by a recessive disease. Analysis of ROH at a genomic scale in a representative sample of 3,941 
patients advances ROH analysis using WES data, highlighting its diagnostic potential and 
significance in population genetics. 

2. Materials and Methods 

The dataset used in this work consisted of WES samples from patients who performed genetics 
tests at the Center for Predictive and Preventive Genetics (CGPP), Portugal. 

2.1. Creation of Personalized Multigene Panels Based on ROH 
Multigene panels based on the patient’s ROH focus on the analysis of regions of the genome 

more likely to contain recessive disease-causing variants. By targeting genes within these ROH, the 
panels are more likely to identify relevant genetic variants, particularly in consanguinity context or 
shared ancestry. 

The samples used for the creation of these panels were analyzed using two Homozygosity 
Mapping algorithms, HomozygosityMapper (HM), which uses a sliding-window algorithm, and 
ROHMMCLI, which uses a hidden Markov model (HMM) algorithm. Each patient has a pseudo-
anonymized ID without any personal information. 

Both algorithms output data in different formats: HM outputs a raw data text file with 
chromosome, position and score, while ROHMMCLI outputs a BED file. To generate the Uniform 
Resource Locator (URL), a connection to the HM database is initiated and the project number 
(project_no) is retrieved using the patient ID. With the URL generated, the data is collected and saved 
in a BED File. Then, the HM and ROHMMCLI BED files are merged using a shell script. This script 
takes the patient ID and the current date as inputs and is divided into four Linux commands, as 
follows:  
1. Clean up the ROHMMCLI BED file to contain only chromosome, start and end positions.  
2. Merge the HM and the cleaned ROHMMCLI BED files, using bedtools merge with option -d of 

1000000 bp, the maximum distance between ROHs to be merged.  
3. Use bedtools intersect to find overlaps between the merged BED file and the coding sequence 

coordinates BED file, producing another BED file with the list of gene coordinates found within 
ROHs.  

4. Create a text file with a list of gene Entrez IDs present in the identified ROHs. 
The process of obtaining the gene list is outlined in Figure 1. 
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Figure 1. Flowchart representing the automation of the creation of multigene panels based on ROH 
(DB - Database, DF - Dataframe). 

The file containing all coding sequence coordinates was generated using two in-house 
developed tools (gtf2tsv.py and tsv2bed.py). For this work, the file used was a GTF file named 
GCF_000001405.25_GRCh37.p13_genomic.gff.gz, representing the RefSeq annotations release 
version 105.20220307 of the human genome build GRCh37, and the “feature” column was filtered for 
“CDS” (available at: 
https://ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9606/105.20220307/GCF_000001405.25
_GRCh37.p13/) (Figure 2).  

  

Figure 2. Flowchart to obtain the reference BED file. 
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The final step to generate multigene panels consists of comparing the genes’ list with the 
coverage for the representative transcript of each gene, described in Figure 3. Genes are divided into 
three lists based on the percentage of horizontal coverage at 20x: white (≥0.9), grey (0.1-0.9), and black 
(≤0.1). Only the white and grey genes are included in the multigene panel. Another list, containing 
the genes that were not assorted to any of the previous lists, is generated.  

 

Figure 3. The flowchart of the multigene panels lists: white, grey and black. 

Copy Number Variations (CNVs), more specifically heterozygous deletions, can mimic ROH, 
given that the single nucleotide variants (SNVs) encompassed by the deletion cannot be heterozygous 
(and are in fact hemizygous). To incorporate such a possible impact in the multigene panel creation, 
the following steps were implemented: 
1. Find the CNV results for the sample in analysis and filter by CNVs with a span above 500,000 bp 

and that are ‘Heterozygous Deletion’, resulting in a BED file with CNV’s genomic coordinates.  
2. Filter by non-empty files, meaning files that contain CNVs. 
3. The shell script uses bedtools jaccard tool to calculate the Jaccard index for each CNV that 

intersects an ROH, using the merged ROH results and CNV BED files. 
The Jaccard index (equation 1) is a single statistic that reflects the similarity of the two BED files 

based on the intersections between them, where a value of 0.0 indicates no overlap and 1.0 represents 
complete overlap.  

    𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 =
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

(𝑅𝑂𝐻 𝑙𝑒𝑛𝑔𝑡ℎ + 𝐶𝑁𝑉 𝑙𝑒𝑛𝑔𝑡ℎ) − 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
 (1) 

Where the intersection is the difference between the end of the ROH and the start of the CNV, 
the ROH length is the difference between the end and start coordinates of the ROH and the CNV 
length is the difference between the end and start coordinates of the CNV.  

2.2. Creation of Personalized Multigene Panels Based on HPO Terms 

Multigene panels based on HPO terms ensure that gene selection is targeted for the patient’s 
specific phenotype. These panels are designed to ensure that only the genes possibly associated with 
the phenotype are analyzed, and therefore the most likely to harbor disease-causing variants 
responsible for the patient’s phenotype, increasing the accuracy and relevance of genetic testing. 
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A Python script that takes as input an HPO term was created to establish the connection to the 
HPO API and retrieve the list of genes’ Entrez IDs associated with the HPO identifier 
(https://hpo.jax.org/api/hpo/term/{hpoId}/genes, version 1.7.13, accessed May 2023). By parsing the 
JSON file retrieved by the HPO API, we were able to get the gene entrez ID and gene symbol. Then 
the white, grey and black lists for the gene panels were created, as previously described in Figure 3.  

2.3. Creation of Personalized Multigene Panels Based on ROH and HPO Terms 

The integration of ROH and HPO term analysis may offer an even more personalized approach. 
This method focuses on the individual's ROH and examines whether the genes associated with the 
patient's specific HPO terms are located within these regions.  

A new script was generated based on the previously described script for creating multigene 
panels. To obtain a BED file with the coordinates of the genes from the HPO terms’ gene list, the 
command-line tool tsv2bed.py was used. The merged BED file results containing the ROHs and the 
HPO terms genes’ BED file are merged to get a final list of the genes from the HPO terms within the 
ROHs. The corresponding flowchart is presented in Figure 4. 

 
Figure 4. Flowchart of the ROH and HPO multigene panels automation. 

From the list of genes obtained, the process of generating the white, grey and black lists for the 
gene panels is the same as previously described in Figure 3. 

2.4. Django Web Application Development 

The process of personalized multigene panel creation based on ROH, HPO and both, 
simultaneously, was made using Python 3 and shell scripting. To deploy a more user-friendly 
interface, a Django web application was developed. The design/style of all HTML pages for this 
application (app) was made using Cascading Style Sheets (CSS) for visual consistency. 

The home page of this app contains a title (“Personalized multigene panels”), a small description 
of the app, and three buttons: “HPO term-based panels”, “ROH based panels” and “HPO term and 
ROH-based panels”. Each button is linked to a different HTML file, with different HTML forms to 
submit the input data.  

For the “HPO term-based panels” button, the form handles multiple HPO terms at the same 
time. For the “ROH-based panels” button, the form contains two different types of input, a text area 
to fit the multiple input lines, and a drop-down list of the possible HM threshold options.  
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For the “HPO term and ROH-based panels” button, the form is a combination of the ones from 
the previously described HTML files. The only difference is that the text area only allows the analysis 
of one sample at a time with multiple HPO terms. 

2.5. Establishing the First Portuguese ROH Characterization on a Genomic Scale 

To establish the first Portuguese ROH characterization on a genomic scale, the dataset initially 
consisted of over 12,000 WES samples. Since there were municipalities that were over-represented, 
normalization and down-sampling processes were automated. The final number of samples was 
3,941 WES samples (detailed process in Supplementary File S1). 

The process of establishing the first Portuguese ROH characterization started with the 
assessment of the ROH levels through the genome-wide autozygosity measure from ROH (𝐹ோைு), 
calculated using equation 2.  

𝐹ோைு =
∑ 𝐿ோைு

𝐿௔௨௧௢
 (2) 

Here, ∑ 𝐿ோைு  is the total length of all of an individual’s ROHs above a specified minimum 
length and 𝐿௔௨௧௢  is the length of the autosomal genome covered by WES, after removing the 
centromeres (which are excluded to prevent overestimating autozygosity). 

For each sample, three 𝐹ோைு  values were calculated, using three ROH minimum size thresholds 
to calculate ∑ 𝐿ோைு : 0.5, 1.5 and 5 Mb.  

The calculation of 𝐿௔௨௧௢ involved using the Integrative Genomics Viewer (IGV) to determine 
the genomic coordinates of the first and last genes on the p and q arms of each chromosome. These 
coordinates were used to calculate the size of each chromosomal arm using Equation 3: 

𝑎𝑟𝑚 𝑠𝑖𝑧𝑒 = 𝑒𝑛𝑑 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑔𝑒𝑛𝑒 − 𝑏𝑒𝑔𝑔𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑔𝑒𝑛𝑒 (3) 
The sum of both chromosomal arms’ sizes corresponds to the size of the autosome without the 

centromeres. 𝐿௔௨௧௢ value is the total size of all autosomes, calculated as 2638.813981 Mb. 
The patients’ address information was obtained from the internal database, consisting of 

patients’ ID, postcode, municipality and district names. All patients’ VCF files were previously 
processed by HM and ROHMMCLI and both results were merged. Homozygosity mapping data was 
organized into standardized CSV (*.csv) files containing the detailed patient ROH profile 
(chromosome, ROH’s start and end position, ROH length (bp), ROH length (Mb), and ROH 
length/chromosome length), and the general patient’s profile (Number of ROH, Number of ROH > 1 
Mb and Sum ROH (Mb)).  

To calculate the FROH, the information needed was combined into separate CSV (*.csv) files: 
 One containing ROH > 0.5 Mb; 
 One containing ROH > 1.5 Mb; 
 One containing ROH > 5 Mb. 

Then, the ∑ 𝐿ோைு was calculated per patient, grouping the ROHs, from each CSV (*.csv) file and 
summing its total per patient. 

The value of FROH was calculated for each patient using the corresponding ∑ 𝐿ோைு value, for 
each minimum ROH size, resulting in an CSV (*.csv) file containing the patients’ ID and FROH. 
Portugal comprises 18 districts and 2 Autonomous Regions (Açores and Madeira), divided into a total 
of 308 municipalities. With this information, and the address information, patients were grouped by 
municipality, and the mean FROH was calculated (per municipality) and used to create Maps of the 
Portugal Mailand and Autonomous Regions (Açores and Madeira) per municipality.  

 There were two types of maps, the classical and the interactive ones, created for each FROH mean 
calculated using minimum ROH’s size of 0.5, 1.5 and 5 Mb. 

To create the maps several data were necessary. The geographical data, at the municipality level 
(shapefile) was obtained from dados.gov (https://dados.gov.pt/en/datasets/concelhos-de-portugal/, 
accessed June 6, 2023), the Portuguese Public Administration's open data portal. Then we established 
the connection to the internal SQL database to get the municipality and respective districts’ 
association, the CSV (*.csv) files per municipality and a CSV (*.csv) file containing the number of 
people per municipality and respective ratio, so that only the municipalities with representativity 
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were used for the maps. For the creation of the maps, since we were dealing with geospatial data, we 
used the GeoPandas package. The maps created were stored as PNG (*.png) files. 

The interactive maps were created using the explore method on a Geodata Frame and were 
saved as HTML files. 

2.6. Consanguinity Classification Approach  
The set of samples used to build the clustering model was meticulously chosen from the internal 

database based on the patients’ information concerning consanguinity. A total of 9,160 WES samples 
were collected for the analysis. This included 9,020 (98,5%) individuals with “unknown” 
consanguinity, 84 (0.92%) known non-consanguineous samples, and 56 (0.61%) known 
consanguineous samples. Of the 56 consanguineous samples, 34 (60.7%) were stringent (i.e. parents 
were first-degree cousins). Each sample was submitted to HM to find homozygous blocks of the 
exome and the raw data was provided in a text file containing the chromosome, position and their 
corresponding homozygosity scores from HM. 

2.6.1. Feature Extraction  
For each sample we generated features pertaining to the descriptive statistics of the ROH 

embedded within each chromosome. For the purposes of this analysis, we considered ROH to be at 
least 2 consecutive chromosome positions with homozygosity scores greater than or equal to 64 (i.e., 
80% of the highest observed score, 80, as defined by [71]). Specifically, the following features were 
generated for each sample with respect to each chromosome x: 
 Count_x: the number of ROH in chromosome x. 
 Sum_x: the sum of ROH sizes in chromosome x. 
 Min_x: the minimum ROH size in chromosome x. 
 Max_x: the maximum of ROH size in chromosome x. 
 Mean_x: the mean of ROH in chromosome x. 
 STD_x: the standard deviation of ROH size in chromosome x. 

To make these features more concrete, we provide an illustrative example. Suppose an 
individual possesses three ROHs within chromosome 1 (x = 1), with sizes 3, 7, and 4 Mb. The 
following features are extracted from chromosome 1: Count_1 = 3; Sum_1 = 14; Min_1 = 3; Max_1 = 7; 
Mean_1 = 4.67; and STD_1 = 1.6997. This feature extraction process is then repeated for the 
individual’s remaining chromosomes.  

Following feature extraction, to test the predictive quality of various feature sets in our 
experiments, we created three separate representations of the data, dictated by the following sets of 
features: 
 Tier 0: includes "Count_x" and "Sum_x" features only; 
 Tier 1: includes "Count_x," "Sum_x," "Min_x," and "Max_x" features only; 
 Tier 2: includes "Count_x," "Sum_x," "Min_x," "Max_x," "Mean_x," and "STD_x" features. 

2.6.2. Outlier Detection 
We formulate the task of consanguinity classification as an outlier detection problem. For our 

experiments, we randomly selected 50% of all labeled data points (70 total data points) to be reserved 
for testing. Using the remaining 50% of labeled data points for validation and 100% of unlabeled data 
points for training, we proceeded to establish the semi-supervised outlier detection pipeline. First, 
we projected the data into a low-dimensional (2-D) space using classical multidimensional scaling 
(MDS) [84], which is a manifold learning approach that aims to preserve pairwise Euclidean distances 
between points from the high-dimensional representation in the low-dimensional data 
representation. Following dimensionality reduction, we then fit an elliptic envelope [85] to the data 
with “unknown” consanguinity labels, validating the optimal contamination hyperparameter (i.e., 
the proportion of the data estimated to be outliers) using the remaining 50% of the labeled samples. 
Given the imbalanced class distribution, the F1-score was used to both optimize the contamination 
hyperparameter and evaluate the model on the reserved test set. 
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3. Results 

The results obtained are presented in this section. Figure 5 contains an overview of the results 
obtained.  

  

Figure 5. Overview of the results regarding processes of generating the multigene panel application 
in a case study, the first Portuguese ROH characterization, and the clustering model. 

3.1. Personalized Multigene Panels 

Personalized multigene panels streamline diagnostics by narrowing down the number of genes 
analyzed, leading to a more targeted and efficient diagnosis. In cases of suspected AR diseases, or 
when the patient's consanguinity status is known, ROH analysis can help in the selection of the 
appropriate multigene panel. These panels can also be further tailored to the patient's specific 
phenotype by using HPO terms. Integrating this process into a web application provides a user-
friendly interface, making it accessible to other professionals within the genetic testing center. 

During the process of creating the web application for personalized multigene panels based on 
ROH, HPO and a combination of both, several tests were conducted.  

For testing the personalized multigene panels based on ROH, several randomly selected patients 
were used and the identified genes’ coordinates were checked to ensure they fell within the identified 
ROHs. 

The testing process of the creation of personalized multigene panels based on HPO terms was 
divided into three parts:  

1. The creation of 15 multigene panels based on a single HPO term: HP:0001627 (Abnormal heart 
morphology), HP:0001047 (Atopic dermatitis), HP:0005584 (Renal cell carcinoma), HP:0001789 
(Hydrops fetalis), HP:0011842 (Abnormal skeletal morphology), HP:0000846 (Adrenal 
insufficiency), HP:0003155 (Elevated circulating alkaline phosphatase concentration), 
HP:0000548 (Cone/cone-rod dystrophy), HP:0011510 (Drusen), HP:0000365 (Hearing 
impairment), HP:0000925 (Abnormality of the vertebral column), HP:0001949 (Neoplasm of the 
gastrointestinal tract), HP:0007373 (Motor neuron atrophy), HP:0006530 (Abnormal pulmonary 
interstitial morphology), HP:0012211 (Abnormal renal physiology), HP:0001733 (Pancreatitis), 
HP:0000556 (Retinal dystrophy); 

2. The creation of 3 multigene panels based on multiple HPO terms: HP:0000077 (Abnormality of 
the kidney), HP:0100243 (Leiomyosarcoma) and HP:0100522 (Thymoma); HP:0100574 (Biliary 
tract neoplasm) and HP:0003003 (Colon cancer); and HP:0003198 (Myopathy) and HP:0003473 
(Fatigable weakness); 
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3. The creation of 5 personalized multigene panels based on a single HPO previously manually 
prepared and curated: HP:0000126 (Hydronephrosis), HP:0001250 (Seizure), HP:0010566 
(Hamartoma), HP:0012091 (Abnormality of pancreas physiology term) and HP:0012114 
(Endometrial carcinoma), and comparison with the obtained results. 

3.1.1. Output Obtained for Each Multigene Panel  

The output for the multigene panels based on ROH, for each input line, is a CSV (*.csv) file with 
the gene symbols that belong to each of the lists (white, grey, black). If CNVs’ results are available 
for the sample being analyzed, a BED file with the CNVs’ genomic coordinates is retrieved, as well 
as a text file with the Jaccard index of the overlap. 

The output for the multigene panels based on HPO terms, for each input line, is a CSV (*.csv) 
file with the gene symbols that belong to each of the lists (white, grey, black). The output provided 
by the different multigene panels depends on the number of samples and on the number of HPO 
terms.  

As for personalized multigene panels, simultaneously based on ROHs and HPO terms, the 
output is a CSV (*.csv) file with the gene symbols from the HPO term(s) in analysis within the ROHs 
identified in the sample being analyzed. If CNVs’ results are available for the sample in analysis, a 
BED file with the CNVs is retrieved, as well as a text file with the Jaccard index. 

3.1.2. Application of New Bioinformatic Resources in a Clinical Case 

The clinical case presented consists of two siblings with a phenotype of epilepsy, myoclonus and 
dystonia with onset during infancy, daughters of a consanguineous couple (Figure 6). Even after 
conducting several genetic tests, including an analysis of the entire WES data, both remained 
genetically undiagnosed for several years. 

  
Figure 6. Pedigree depicting two affected sisters, daughters of a consanguineous couple. 

The HPO term used was HP:0001336 (Myoclonus). Myoclonus is characterized by involuntary 
random muscular contractions happening at rest, due to a stimulus or during voluntary movements. 
Figure 7 presents the HTML forms filled with the HPO term used and the path to the VCF file of one 
of the sisters to create the personalized multigene panel. 

 
Figure 7. Example of an input for the personalized multigene panels based on HPO term and ROH. 
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The CSV (*.csv) output file contains the “Summary”, “White list”, “Grey list” and “Black list”. 
According to the HPO API, HP:0001336 (Myoclonus) comprises 360 genes (accessed September 25, 
2023). The results obtained consisted of 11 genes listed for sister II:1 and 3 genes listed for sister II:2. 
All genes identified in both sisters were from the white list, no genes were in the grey and black lists. 
The white lists’ results from the sisters’ selected genes, resulting from the intersection of the genes 
within the identified ROH and those associated with the HPO term used, are presented in Table 1. 
From the 360 genes associated with HP:0001336, 3 genes were commonly shared between the 2 sisters: 
CSTB, SIK1 and SLC32A1.  

Table 1. Resulting list of genes for each sister (II:1 and II:2). 

II:1 II:2 
DHDDS SIK1 
HMGCL CSTB 
MERC SLC32A1 
SDHA  
SIK1  
CSTB  
PIGV  

SLC25A19  
SLC32A1  

TERT  
TSEN54  

Assuming an AR inheritance and the strong correlation between the phenotype associated with 
defects in CSTB gene and the patients’ phenotypes, variant data was further inspected. Integrative 
Genomics Viewer (IGV), a visualization tool, was used in the genomic data analysis. The VCF files, 
BAM files and respective index files were loaded to IGV, as well as the all_cds.bed file as reference. 
The analysis was conducted using the Human reference genome version GRCh37. The visualization 
results for the CSTB gene are depicted in Figure 8. No disease-causing variants were identified in the 
genomic regions covered by WES data. 

 

  
Figure 8. IGV visualization of the reads mapped to the CSTB gene in both sisters (II:1 and II:2). 

Considering that the mutational spectrum associated with disease-causing variants in the CSTB 
gene includes the expansion of a repetitive region [86], the 5’UTR region where the dodecamer repeat 
CCC-CGC-CCC-GCG is located was visually inspected (Figure 9). As it is demonstrated no reads are 
aligned in this region in both patients, whereas these are present in the control sample. This is 
compatible with a large expansion of the dodecamer repeat in both gene’s alleles. A biallelic 
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expansion within the pathogenic range (≥30 repeats) was indeed confirmed by targeted conventional 
approaches (fragment analysis and long-range PCR), making this variant diagnostic for the disease. 

 

Figure 9. BAM visualization depicting the region of the dodecamer repeat expansion in a control I, 
and in both sisters (II:1 and II:2). No reads are aligned in this region in both patients, suggesting that 
a possible expansion is biallelic (present in both CSTB alleles). 

3.2. First Portuguese ROH Characterization on a Genomic Scale  

After the down-sampling process, the 3,941 samples were submitted to ROH analysis to 
contribute to the portrayal of the first Portuguese landscape of ROH at a genomic level. The lack of 
data regarding ROH distribution in Portugal can be filled in with the study presented in this section, 
being of great interest for genetic testing and population genetics.  

3.2.1. Distribution of ROHs per Length in Portugal  

We began by analyzing the distribution of ROHs larger than 0.5 Mb, identifying a total of 19,407 
ROHs. For an overview of the results, Figure 10 depicts the distribution of these ROHs across 
different length intervals in Mb.  

 

Figure 10. Histogram depicting the distribution of ROH length above 0.5 Mb in a Portuguese cohort 
of 3,941 samples. 

3.2.2. Maps of Portugal and Respective Data for FROH > 0.5, 1.5 and 5 Mb  

The results from the genome-wide autozygosity measure from ROH (FROH) are presented in this 
section. The FROH mean values per municipality, with ROHs of size greater than 0.5, 1.5 and 5 Mb, are 

I 

II:1 

II:2 
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presented in Supplementary File S2, and the details for the interactive maps, designed for more 
detailed and interactive navigation, are presented in Supplementary File S3.  

Here we present the resulting classical maps of the representative Portuguese sample of 3,941 
patients for the ROH characterization on a genomic scale. In  

Figure 11 the classical map of Portugal presents the geographical distribution of the mean FROH, 
for ROHs with size greater than 0.5 Mb (FROH > 0.5 Mb), per municipality. The mean value of FROH > 
0.5 Mb is 0.004.  

The municipality of Alter do Chão from Portalegre district is the municipality with the highest 
value of FROH > 0.5 Mb (0.088). The lowest value of FROH > 0.5 Mb (0.0004) is from Manteigas’ 
municipality (Guarda district). The municipality of Machico has the highest value of FROH > 0.5 Mb 
(0.025) of the Autonomous Region of Madeira. In the Autonomous Region of Açores the values of 
FROH > 0.5 Mb are not very high, with the highest one being 0.026 in Vila do Porto municipality. 

 

Figure 11. Geographical distribution per municipality of FROH > 0.5 Mb in Portugal Mainland, 
Autonomous Region of Açores and Autonomous Region of Madeira. 

The mean FROH > 0.5 Mb intervals and the corresponding number of individuals per interval is 
presented in Table 2. From the 3,941 samples, 3,800 are represented in the map. The first interval, 
from 0.000 to 0.004, contains the highest number of samples (3,104). There is a drastic drop in the 
number of samples that within the second interval (from 0.004 to 0.006) and the number decreases 
until the last interval (from 0.034 to 0.088). 

Table 2. Number of people with FROH > 0.5 Mb within each interval. 

FROH > 0.5 Mb Intervals Number of samples 
]0.000, 0.004] 3,104 
]0.004, 0.008] 210 
]0.008, 0.010] 156 
]0.010, 0.018] 107 
]0.018, 0.034] 124 
]0.034, 0.088] 99 

In Figure 12 the classical map of Portugal for the FROH mean for ROHs with size higher than 1.5 
Mb (FROH > 1.5 Mb), per municipality, is presented. The mean value of FROH > 1.5 Mb is 0.003.  

The municipality of Alter do Chão from Portalegre district is still the municipality with the 
highest value of FROH > 1.5 Mb, with a value of 0.085, which is lower than the 0.088 from the previous 
FROH > 0.5 Mb. The lowest value of FROH > 1.5 Mb (0.0001) is from Felgueiras municipality from the 
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district of Porto. The municipality of Machico still contains the highest value of FROH > 1.5 Mb (0.024) 
in the Autonomous Region of Madeira. The municipality of Vila do Porto with a mean FROH of 0.024 
is the municipality with the highest value from the Autonomous Region of Açores.  

 
Figure 12. Geographical distribution per municipality of FROH > 1.5 Mb in Portugal Mainland, 
Autonomous Region of Açores and Autonomous Region of Madeira. 

Table 3 presents the corresponding number of samples that fit within each FROH > 1.5 Mb interval. 
The total number of samples with FROH > 1.5 Mb is considerably low, 2,110 out of the 3,941. The 
behavior of the distribution of samples within each interval is similar to the one observed in Table 2. 
The first interval, from 0.000 to 0.003, contains the highest number of samples (1,430). There is a 
drastic drop in the number of people with FROH belonging to the interval from 0.003 to 0.005 and the 
number decreases until the last interval (from 0.033 to 0.085). 

Table 3. Number of people with FROH > 1.5 Mb within each interval. 

FROH > 1.5 Mb Intervals Number of samples 
]0.000, 0.003] 1,430 
]0.003, 0.005] 196 
]0.005, 0.009] 162 
]0.009, 0.017] 107 
]0.017, 0.033] 126 
]0.033, 0.085] 89 

In Figure 13 the classical map of Portugal for the FROH mean for ROHs with a size higher than 5 
Mb (FROH > 5 Mb), per municipality, is presented. The mean value of FROH > 5 Mb is 0.002. The 
decreasing tendency of the mean FROH value is expected, since with each minimum threshold of the 
ROHs size, the number of people with the mean FROH value equal to zero increases. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 October 2024 doi:10.20944/preprints202410.0870.v1

https://doi.org/10.20944/preprints202410.0870.v1


 15 

 

 
Figure 13. Geographical distribution per municipality of FROH > 5 Mb in Portugal Mainland, 
Autonomous Region of Açores and Autonomous Region of Madeira. 

The municipality of Alter do Chão from Portalegre district is still the municipality with the 
highest value of mean FROH > 5 Mb. The value of mean FROH is 0.074, lower than the 0.085 observed in 
when FROH > 1.5 Mb. The lowest value of FROH > 5 Mb (0.0001) is from Santo Tirso from the district of 
Porto. The municipality of Machico is still the one with the highest value of mean FROH > 5 Mb (0.017) 
in the Autonomous Region of Madeira, but also showing a decreasing tendency, because the number 
of people with ROHs > 5 Mb is lower. The municipality of Vila do Porto with a mean FROH of 0.02 is 
the municipality with the highest value in the Autonomous Region of Açores.  

 Table 4 presents the corresponding number of samples that fit within each FROH > 5 Mb interval. 
The total number of samples with FROH > 5 Mb is even lower than before, 758 out of the 3,941. Contrary 
to the previous tables (Table 2 and Table 3), the first interval, in this case from 0.000 to 0.002, has the 
lowest number of samples (38) out of all the intervals. The interval with the highest number of people 
is from 0.002 to 0.004 with 318 people, then the distribution tendency is similar to the previous tables, 
showing a decrease up to the last interval.  

Table 4. Number of people with FROH > 5 Mb within each interval. 

FROH > 5 Mb Intervals Number of samples 
]0.000, 0.002] 38 
]0.002, 0.004] 318 
]0.004, 0.008] 146 
]0.008, 0.016] 113 
]0.016, 0.032] 91 
]0.032, 0.074] 52 

The FROH mean distribution throughout Portugal is heterogeneous, as seen in the maps (Figures 
11, 12 and 13). The number of municipalities with no sample data is 16. Overall, the ROH minimum 
size thresholds applied to calculate the FROH mean caused the non-representativeness of some 
municipalities. This effect is explained by the scarce number of individuals with ROHs of size greater 
than 1.5 Mb. Initially, there were 3,941 samples, after applying the first threshold (only considering 
the ROHs with size above 0.5 Mb) the sample size dropped to 3,800, then to 2,110 with the 1.5 Mb 
threshold and finally to 758 with the 5 Mb threshold. 
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3.2.3. Comparison with Other Studies  

To compare our results, we used the reference values from a similar study developed using an 
insular population from the Orkney Isles in northern Scotland [87].  

Table 5 contains the mean of all FROH calculated for all samples, the mean of the means per 
municipality and also the previously mentioned reference values for FROH [87]. 

Table 5. FROH mean, FROH mean of means per municipality and comparative values for the different 
ROH size thresholds (0.5, 1.5 and 5 Mb). 

 Mean FROH 
Mean FROH of means per 
municipality 

FROH comparative values [87] 

FROH > 0.5 Mb 0.0042 0.0057 0.0315 
FROH > 1.5 Mb 0.0033 0.0049 0.0021 
FROH > 5 Mb 0.0020 0.0039 0.0001 

The mean FROH values are lower than the mean FROH of the mean FROH values per municipality 
for all ROH thresholds. When comparing the Portuguese mean FROH values with the FROH reference 
values, the mean FROH for FROH > 0.5 Mb is 0.0042, which is inferior to 0.0315. The Portuguese mean 
value for FROH > 1.5 Mb is 0.0033 and for FROH > 5 Mb is 0.0020, both are above the reference values 
presented in [87], 0.0021 and 0.0001.  

To compare the results, we used a study examining the prevalence of consanguineous marriages 
in Portugal between 1980 and 1986 [88]. The map from this study was colorized to align with the 
FROH mean for ROHs larger than 0.5, 1.5, and 5 Mb, and is presented in Figure 14 [88]. According to 
this figure, the Autonomous Region of Madeira exhibits the highest number of consanguineous 
marriages, closely followed by the Autonomous Region of the Açores. This observation can be 
attributed to the isolation of island populations, due to limited population mobility during the 1980s. 
However, with the advent of improved transportation infrastructure, population movement to and 
from the islands has become more accessible. In Portugal Mainland, the district with the highest 
incidence of consanguineous marriages is Bragança [88]. Furthermore, the top five districts (as shown 
in Table 6) with the highest number of consanguineous marriages, listed in descending order, are 
Madeira, Açores, Bragança, Viseu, and Vila Real. 

Our findings, as presented in Table 6, reveal that the top five districts with the highest FROH mean, 
considering thresholds of 0.5, 1.5, and 5 Mb, remain consistent. The ranking from highest to lowest 
FROH mean value for 0.5 and 1.5 Mb thresholds is the following: Portalegre, Viseu, Bragança, Madeira, 
and Vila Real. Meanwhile, the ranking for the 5 Mb threshold is Portalegre, Bragança, Viseu, Madeira, 
and Vila Real. 
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Figure 14. Map of Portugal representing the consanguineous marriages between 1980 and 1986 
(/100000) adapted from [88] (upper left) and the Portugal Mainland maps for the FROH calculated for 
ROHs of size above 0.5 Mb (upper right), 1.5 Mb (lower left) and 5 Mb (lower right). 

Table 6. FROH calculated for the 0.5, 1.5 and 5 Mb thresholds per district, and data from a study 
estimating the number of consanguineous marriages per district [88] . 

District FROH > 0.5 Mb FROH > 1.5 Mb FROH > 5.0 Mb 
Number of consanguineous 

marriages (10 000) [88]  
Açores 0.0046 0.0035 0.0023 78.7 
Aveiro 0.0052 0.0041 0.0024 22.1 

Beja 0.0048 0.0039 0.0022 22.8 
Braga 0.0034 0.0025 0.0013 19.2 

Bragança 0.0102 0.0090 0.0060 52.7 
Castelo Branco 0.0066 0.0054 0.0034 19.9 

Coimbra 0.0063 0.0053 0.0036 38.2 
Évora 0.0039 0.0028 0.0016 34.5 
Faro 0.0029 0.0019 0.0010 27.2 

Guarda 0.0048 0.0038 0.0024 35.3 
Leiria 0.0058 0.0047 0.0030 35.1 
Lisboa 0.0039 0.0030 0.0017 20.2 

Madeira 0.0077 0.0068 0.0041 133.6 
Portalegre 0.0106 0.0092 0.0070 24.8 

Porto 0.0026 0.0018 0.0010 14.4 
Santarém 0.0056 0.0045 0.0032 27.6 
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Setúbal 0.0038 0.0029 0.0019 30.1 
Viana do Castelo 0.0030 0.0021 0.0010 17.8 

Vila Real 0.0070 0.0060 0.0037 38.3 
Viseu 0.0105 0.0091 0.0059 38.7 

The demographic origins of ROH [89] explored in our samples, are presented in Supplementary 
File S4. 

3.3. Consanguinity Classification Results 

The results of the outlier detection consanguinity classification approach can be found in Table 
7. Meanwhile, visualizations of the low-dimensional data, separated by training and validation vs. 
testing datasets are shown in composite Figure 15. 

Table 7. Outlier detection F1-score results, separated by feature set tier. 

Dataset Tier (Feature Set) 
Best Contamination 

Hyperparameter 
Validation 

F1-Score 
Test F1-

Score 
Tier 0 (Count_x, Sum_x) 0.0786 0.9310 0.9412 
Tier 1 (Count_x, Sum_x, Min_x, 
Max_x) 

0.1190 0.9655 0.9434 

Tier 2 (Count_x, Sum_x, Min_x, Max_x, 
Mean_x, STD_x) 

0.1061 0.9474 0.9615 

The F1-scores associated with our outlier detection model remained in the range 0.9412 - 0.9615 
across all feature set tiers of the held-out testing data, which was comparable to the performance 
range of 0.9310 - 0.9655 on the validation set, indicating successful generalization of each model to 
unseen data points. The inclusion of additional descriptive statistic features (i.e., Min, Max, Mean, 
STD) provided only marginal predictive benefit on the held-out test set, as evidenced by an F1-score 
increase of only 0.0203, demonstrating that the “Count_x” (i.e., the number of ROH in each 
chromosome) and “Sum_x” (i.e., the sum of ROH lengths in each chromosome) features provided 
the majority of the predictive power with respect to consanguinity classification in this framework. 
Moreover, the optimal contamination hyperparameters were observed in the range 0.0786 - 0.1190, 
which may inform the true proportion of the population who may be labeled consanguineous.  
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Figure 15. Low-dimensional MDS representations of each “tier” dataset, where Tier 0: training and 
validation results (A) and testing results (B), Tier 1: training and validation results (C) and testing 
results (D); Tier 2: training and validation results (E) and testing results (F). Data points are colored 
according to their consanguinity labels: White “unknown” points do not possess a ground truth label; 
green “NCON” points represent non-consanguineous samples; red “CON” points represent 
consanguineous samples; and purple “CON_ST” represent stringent consanguineous points. The red 
dashed circles represent the elliptic envelope’s outlier decision boundary (i.e., points falling outside 
of the envelope are predicted to be consanguineous, either stringent or non-stringent). 

4. Discussion 

Clinical diagnostics is evolving towards more personalized approaches, demanding the 
development of new genetic tests and the adaptation of existing ones. There are platforms created to 
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support virtual gene panel curation, such as Genomics England PanelApp [90]. It is a database for 
storing virtual gene panel information while gathering community feedback, helping to build a 
consensus on the evidence needed to establish a gene-disease association. 

With this work, we automated the process of creating personalized multigene panels based on 
different scenarios. Generically, all panels described in this work are less time-consuming to create, 
releasing professionals to other tasks to increase the number of tests carried out, and help narrow 
down the number of genes being analyzed. Since all the described tests are based on WES data, 
physicians can request a reanalysis of patient data without the need for additional sample 
sequencing, thereby conserving resources. In terms of storage, one sequencing per patient and a more 
personalized approach means less data being analyzed and consequently less allocated space. 

Multigene panels based only on the specific ROH identified in a patient narrow the analysis to 
genes located within the identified ROH, thereby increasing the likelihood of detecting recessive 
disease-causing variants in those genes. Since the CNV assessment was also included in these panels, 
the diagnostic technician analyzing the case knows where the CNVs overlap with ROH, eliminating 
this confounding factor from ROH analysis.  

The multigene panels based only on HPO terms take into consideration the possible phenotype 
or phenotypes that the patient presents. Resorting to a publicly available database, HPO, the panel is 
built only with the genes that are within the specified terms.  

The use of HPO terms and ROH overlap results, simultaneously, is an even more personalized 
approach, by narrowing-down the list of genes to create personalized multigene panels. In this case, 
only the genes associated with the HPO term(s) in analysis are taken into account and their presence 
is checked in the patient’s ROHs. This allows a higher level of personalization, proven to be useful 
by the clinical case of the two sisters previously presented.  

After having the gene list from the two sisters’ case, the common genes between the two were 
analyzed and visualized on IGV. The results were interpreted using Online Mendelian Inheritance in 
Man (OMIM) database to find the phenotype associated with the genes. According to OMIM, the 
CSTB gene is associated with the phenotype “Epilepsy, progressive myoclonic 1A (Unverricht and 
Lundborg)” (gene MIM number 601145 and phenotype MIM number 254800) and the mode of 
inheritance is AR. This result is in accordance with the analysis done, since the ROHs are used to 
target diseases with AR modes of inheritance. The gene SIK1, on the other hand, is associated with 
the phenotype “Developmental and epileptic encephalopathy 30”, with an autosomal dominant (AD) 
mode of inheritance. The gene SLC32A1 does not currently have an associated phenotype, but the 
gene encodes an amino acid transporter that loads the Gamma-aminobutyric acid (GABA) and 
glycine to synaptic vesicles. Even though there were no variants present in these genes, the diagnosis 
of Epilepsy was only possible through this multigene panel approach, through the visualization of 
the biallelic expansion on the CSTB gene.  

Knowing our cohort background in terms of ROH is also important. In our study we showed 
the ROH distribution in Portugal (Figure 10), where most ROHs (9,358 ROHs) are within the size 
range of 0.5 to 1.0 Mb, followed by a decreasing tendency as the length of the ROHs increases until 
4.0 Mb. Then, there is a small peak of 708 ROHs in the interval from 4.0 to 5.0 Mb, followed by a 
decreasing number of ROHs until the interval from 10.0 and 15.0 Mb, and another decreasing 
tendency in the next intervals. The minimum value is 0.5 Mb, the maximum value is 72.42 Mb and 
the mean value is 2.29 Mb. This is typical of a more ancient parental relatedness of the overall 
population. 

Using the same sample with the 3,941 exomes, and by calculating the FROH per individual using 
the thresholds 0.5, 1.5 and 5 Mb, it was possible to build three maps using the mean value for each 
municipality. Consequently, we found that the top five districts exhibiting higher FROH were 
Portalegre, Viseu, Bragança, Madeira, and Vila Real. Furthermore, another notable finding from this 
study was the striking similarity between the patterns of admixed and consanguinity demographics 
observed in the Portuguese population when examining the Number of ROHs versus Sum of ROHs, 
available at Supplementary File S4.  
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The overall mean value of FROH for the thresholds 0.5, 1.5 and 5 Mb decreased as the minimum 
threshold increased. There are less samples with ROHs above a certain minimum length, with a 
smaller number of ROHs but with bigger sizes, per individual. The municipality of Alter do Chão 
from Portalegre district is the municipality with the highest value of mean FROH for all the presented 
minimum ROH size thresholds (0.5, 1.5 and 5 Mb), which might indicate more consanguinity.  

The disparities observed in the data can derive from various factors, one significant contributor 
being the sample sizes utilized. In our study, we analyzed a sample of 3,941 individuals, with 3,800 
exhibiting a FROH distinct from zero. In contrast, the comparative study only included 49 
individuals. Notably, we compared populations from diverse geographic regions: an insular 
population from the Orkney Isles in northern Scotland[87] with a comprehensive Portuguese 
population encompassing individuals from Portugal Mainland as well as the Autonomous Regions 
of Madeira and the Açores. Another differing factor was the way Lauto was calculated, since the 
reference study referred using the length of the autosomal genome covered by SNPs in an array, 
excluding the centromeres, and in our study, we used the length of the autosomal genome covered 
by WES, excluding the centromeres. 

According to the results from the study shown in Figure 14 [88], the Autonomous Region of 
Madeira exhibits the highest number of consanguineous marriages, closely followed by the 
Autonomous Region of the Açores. This observation can be attributed to the isolation of island 
populations, due to limited population mobility during the 1980s. However, improved transportation 
infrastructure has since increased population mobility to and from the islands. In Portugal Mainland, 
the district with the highest incidence of consanguineous marriages is Bragança [88]. Furthermore, 
the top five districts (as shown in Table 6) with the highest number of consanguineous marriages, 
listed in descending order, are Madeira, the Açores, Bragança, Viseu, and Vila Real. 

Our findings, revealed that the top five districts with the highest FROH mean remain consistent, 
considering thresholds of 0.5, 1.5, and 5 Mb. The ranking from highest to lowest FROH mean value for 
0.5 and 1.5 Mb thresholds is the following: Portalegre, Viseu, Bragança, Madeira, and Vila Real. 
Meanwhile, the ranking for the 5 Mb threshold is Portalegre, Bragança, Viseu, Madeira, and Vila Real.  

Portalegre stands out with the highest FROH mean values across all three thresholds in our data, 
despite having fewer consanguineous marriages compared to other districts. This might be due to 
our sample including fewer individuals from Portalegre, which may suggest that those from this 
region who were referred for genetic testing were more likely to have been screened due to 
consanguinity. Surprisingly, the results show low FROH values across all three thresholds for the 
Autonomous Region of the Açores, which are not in accordance with the reference data on 
consanguineous marriages. This is possibly due to insufficient sample localization. Porto, the district 
with the lowest number of consanguineous marriages, also shows the lowest FROH mean across all 
thresholds. Additionally, we were unable to acquire information regarding the country of origin or 
birth of individuals included in the sample, this parameter was not used as an exclusion criterion. 
Moving forward, we should take this into consideration because certain countries present higher 
levels of consanguinity due to religious and cultural practices. We must also acknowledge the 
potential presence of samples from immigrants residing in our country, which could introduce biases 
into the data.  

The presence of an admixed pattern denotes our country’s history, whilst the consanguineous 
pattern is a result of the marriages between cousins, leading to an increase in the sum of ROHs. 

Having a model to predict patients consanguinity based on ROH features is useful in clinical 
centers. They can be used for the genetic test decision process and for assessing the risk of recessive 
diseases, knowing that the presence of consanguinity increases the risk of having recessive genetic 
diseases. Tier 0 (count and sum of ROH) of the model presented provided the majority of the 
predictive power for consanguinity classification. 

Transitioning from WES to WGS might open some doors in terms of genetic testing, by adding 
insights into the non-coding regions of the genome. This will be of great interest particularly for 
undiagnosed patients and accelerate the diagnosis. 
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With this work, we demonstrated the applicability and utility of the newly developed resources 
and their impact on diagnostics, by solving the genetic etiology of a rare recessive disease. The 
representative sample of 3,941 WES used in this work, allowed us to provide the extensive analysis 
of ROH on a genomic scale for the first time ever in the Portuguese population. In summary, this 
research advances ROH analysis using WES data, highlighting its diagnostic potential and 
significance in population genetics’ characterization. 

Supplementary Materials: The following supporting information can be downloaded at: Preprints.Org, 
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