
Article Not peer-reviewed version

Comparing the Use of EMBA for IoT

Firmware Security Analysis on Cloud

Services and Standalone Servers

Kenan Sansal Nuray * , Oren Upton , Nicole Lang Beebe

Posted Date: 6 January 2026

doi: 10.20944/preprints202601.0407.v1

Keywords: IoT firmware analysis; EMBA; embedded systems security; cloud-based security analysis;

standalone servers; vulnerability assessment; cybersecurity tools

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4763353
https://sciprofiles.com/profile/5014451
https://sciprofiles.com/profile/5011877
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Article

Comparing the Use of EMBA for IoT Firmware

Security Analysis on Cloud Services and

Standalone Servers
Kenan Sansal Nuray 1,*, Oren Upton 1 and Nicole Lang Beebe 2

1 The Cyber Center for Security and Analytics, Alvarez College of Business, The University of Texas at San

Antonio, San Antonio, TX 78249, USA

2 Dean of the College of Computing & Professor of Cybersecurity, Illinois Institute of Technology,

Chicago, IL 60616, USA

* Correspondence: kenan.nuray@utsa.edu

Abstract

This study presents a quantitative evaluation of the EMBA firmware security analysis tool applied to

Internet of Things (IoT) and embedded device firmware in two deployment environments: a

standalone personal computer and a Microsoft Azure cloud-based virtual machine. The study

addresses a gap in existing research regarding how deployment choices affect performance, cost, and

operational characteristics of firmware security analysis. Using identical EMBA configurations and

analysis modules, firmware images of varying sizes were analyzed, while execution time, detected

vulnerabilities, and resource utilization were systematically recorded. The results demonstrate that

scan duration is influenced by both firmware size and deployment environment. Specifically, using

EMBA v1.5.0, a 25.5 MB firmware image required approximately 14 hours on a standalone system

and over 25 hours on Azure Cloud, whereas a 30.2 MB image completed in approximately 18 hours

locally and 17 hours on Azure Cloud. Despite these differences in execution time, the type and

number of identified vulnerabilities were largely consistent across both environments, indicating

comparable analytical coverage. A cost assessment shows that cloud-based execution incurred

approximately US $250 for a limited set of analyses, while standalone deployment required higher

initial investment but provided predictable long-term costs. Overall, this deployment-focused

evaluation offers empirical information into performance, cost, and operational trade-offs,

supporting informed decision-making for IoT security practitioners selecting local or cloud-based

firmware analysis environments.

Keywords: IoT firmware analysis; EMBA; embedded systems security; cloud-based security analysis;

standalone servers; vulnerability assessment; cybersecurity tools

1. Introduction

Embedded systems are fundamental to modern information technology and the Internet of

Things (IoT), with applications ranging from consumer electronics to industrial control systems.

Securing these systems is particularly critical in IoT environments, given their rapid expansion and

the projection of approximately 30 billion connected devices by 2030 [1]. Firmware security analysis

therefore plays a central role in protecting embedded devices, as vulnerabilities in firmware can

compromise device integrity, enable unauthorized access, and propagate attacks across connected

networks.

EMBA is an open-source firmware security analysis tool that automates reverse engineering and

vulnerability detection of embedded systems, providing actionable insights for cybersecurity

professionals. EMBA is developed by Siemens cybersecurity engineers led by Michael Messner [2].

The tool integrates firmware extraction, emulation-based dynamic analysis, and static analysis, and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 22

produces structured reports summarizing identified security issues. EMBA automatically detects

vulnerabilities such as insecure binaries, outdated software components, vulnerable scripts, and

hard-coded credentials [3]. One of its notable features is the generation of a Software Bill of Materials

(SBOM) directly from binary firmware, which supports supply chain security assessments by

correlating identified components with known vulnerabilities from exploit databases [4]. In addition,

EMBA employs a comprehensive multi-stage analysis approach to identifying zero-day

vulnerabilities by examining both compiled binaries and interpreted scripts written in languages

such as PHP, Python, and Lua [5].

As of December 2024, EMBA included 87 analysis modules, these are categorized into four

groups: Pre-Modules (P), Core Modules (S), Live Testing Modules (L), and Finishing Modules (F)

[6,7]. EMBA version 1.4.1 comprises 58 distinct modules, while version 1.4.2 includes 60 modules,

both evaluated using a modified default scan configuration [7]. The experiments presented in this

study were conducted using EMBA versions 1.4.1, 1.4.2, and 1.5.0, which was the latest release

available as of December 2024. Under the specified experimental settings, version 1.5.0 executed 68

distinct modules, each designed to perform a specific analytical task. Updated versions of EMBA,

including version 1.5.2, are publicly available through the official EMBA repository, enabling users

to access ongoing improvements and additional functionality [8]. EMBA is accessible through both a

command-line interface and a graphical interface, EMBArk, which presents analysis results in

summarized and module-specific reports [9].

From a deployment perspective, EMBA can be executed on standalone servers or Cloud

platforms such as Microsoft Azure. Standalone deployments offer predictable costs, full control over

hardware and software resources, and higher assurance for sensitive data handling, but they require

ongoing maintenance and are constrained by fixed computational capacity. In contrast, Cloud

platforms provide elastic resource allocation, scalability, and collaborative workflows, while

introducing additional considerations related to cost variability, data protection, regulatory

compliance (e.g., General Data Protection Regulation and Health Insurance Portability and

Accountability Act), and system integration complexity. Despite the widespread use of both

deployment models, there is limited empirical evidence comparing their impact on firmware security

analysis performance, cost, and analytical consistency.

To address this gap, this study aims to provide a systematic, quantitative comparison of the

EMBA firmware security analysis tool deployed on a standalone personal computer and a public

Cloud environment (Microsoft Azure). The work evaluates performance across multiple EMBA

versions using identical configurations, focusing on scan duration, output consistency, and

operational cost. The results demonstrate measurable performance differences between deployment

environments while indicating comparable vulnerability detection coverage, and they highlight

practical trade-offs between cost predictability, scalability, and operational constraints. These

findings offer deployment-oriented insights to support informed decision-making by cybersecurity

practitioners conducting large-scale or repeated firmware security analyses.

2. Literature Review

This literature review discusses EMBA's technical aspects and its implementation in different

settings. Through the examination of theoretical models as well as empirical research, this review

determines gaps in the research and provides a basis for studying EMBA's performance in Cloud and

standalone server environments.

2.1. White Box Testing

The growing use of IoT devices throughout various industry sectors has increased the necessity

for security controls specific to IoT devices. In today’s world, IoT devices often become important

targets for cyberattacks because they store personal and sensitive information and can be connected

to other devices and networks [10].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 22

Performing a vulnerability assessment is very important for discovering and fixing IoT device

firmware vulnerabilities. The approaches of vulnerability assessments are generally categorized into

three types: black-box, gray-box, and white-box testing. The white box testing approach provides a

detailed analysis of the system's underlying components, such as source code, design, and

architecture [11]. The degree of detail provided by that strategy allows testers the best possible

understanding of code functionality and identifies vulnerable areas, making it possible to identify

hidden flaws that other approaches may not recognize. Verma et al. (2017) argue that white-box

testing enables effective examination of program control flows, data usage, and structural soundness,

making it much more effective at discovering and remedying potential vulnerabilities [12].

 Designed for white-box testing, the EMBA tool is assessing IoT firmware by analyzing extracted

binary files and internal structures. EMBA can help to reveal vulnerabilities that might go undetected

while using other testing approaches by presenting a transparent view of the inner structure of the

system and code base. This approach closely follows the core principles of white-box testing, giving

value to code examination and structural analysis.

2.2. Reverse Engineering and Firmware Analysis

Several studies emphasize reverse engineering as a fundamental technique for analyzing IoT

device vulnerabilities, providing in-depth examination of internal firmware and system structures

that often remain inaccessible through external methods. Shwartz et al. (2018) demonstrate that

conventional black-box testing is insufficient for identifying internal weaknesses such as hardcoded

credentials, buffer overflows, and insecure firmware configurations. By disassembling firmware and

software components, reverse engineering provides detailed visibility into device behavior and

security flaws, including weak password protection and insecure configurations, which can be

exploited to compromise devices, as shown in laboratory experiments involving modified vulnerable

IoT devices [13].

Tamilkodi et al. (2024) focuses on the vulnerabilities of IoT devices by analyzing malware

specifically designed to exploit these devices [14]. Their work accepts static and dynamic analysis

methods using tools such as IDA Pro, Ghidra, and Wireshark for reverse-engineering malware and

identifying vulnerabilities. This work highlights several important vulnerabilities that are commonly

targeted by malware, including weak authentication, lack of input validation, and weak firmware

protection. Also, the study contributes to advanced malware detection and prevention strategies, i.e.,

IoT malware-oriented approaches, including heuristic or signature-based methods, through malware

behavior analysis. The findings emphasize the importance of stringent security practices and

proactive vulnerability management to strengthen the resilience of IoT environments against

advanced threats.

Similarly, Votipka et al. (2019) emphasizes the critical role of reverse engineering in IoT security

analysis, noting that it enables analysts to understand device design, functionality, and operational

mechanisms that are otherwise inaccessible [15].

With the increasing sophistication of IoT devices, reverse engineering has become a critical

approach for understanding internal system operations and identifying previously undiscovered

vulnerabilities [16]. Prior studies emphasize that such techniques provide deep visibility into

firmware components that are otherwise inaccessible through external testing methods.

Building upon these principles, tools such as EMBA apply reverse engineering techniques to

extract and analyze IoT firmware in an automated manner. EMBA’s binary analysis engine uses

multiple reverse engineering frameworks like Radare2 and Ghidra and the well-established Static

Application Security Testing (SAST) framework Semgrep fully automatically on the most critical

binary files [17].

However, prior research outlines EMBA’s technical capabilities; it does not evaluate how its

performance or accuracy varies across different deployment environments, such as Cloud versus

standalone servers. This lack of comparative assessment remains an open gap in current firmware

security research.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 22

2.3. Static and Dynamic Analysis

Within the reverse engineering process, one phase under the security assessment framework is

both static and dynamic analyses. Static analysis is defined by the inspection of either source code or

binary code, regardless of its runtime, thus enabling the detection of vulnerabilities like the misuse

of unsafe functions and programming errors that may be exploited. Though this process is preferred

due to its efficiency and absence of runtime overhead, it often generates false positives and negatives,

which lowers its effectiveness when conducted alone (Aggarwal & Jalote, 2006). Dynamic analysis,

on the other hand, involves executing software under controlled environments, like sandboxes, to

enable real-time inspection of its behaviors. This process is considered more accurate since it has the

capability of detecting faults that occur at runtime alone, such as input handling mistakes or

communication with other systems [18]. However, dynamic analysis requires a thorough set of test

cases needed to ensure full coverage, which leads to its own complexities along with the respective

runtime overhead.

Static analysis is very important for detecting vulnerabilities in IoT devices, since it does not

require code execution. This approach is especially suited for discovering software-related issues,

such as poor data handling, outdated components, and password security vulnerabilities. As per

Ferrara et al. (2020), six out of seven major vulnerabilities among the OWASP IoT Top 10 can be

resolved with static analysis, thus demonstrating its utility in mitigating critical threats in IoT

environments [19]. However, there are limitations, especially with respect to discovering hardware

or runtime vulnerabilities, which require other forms of analysis. Despite this, static analysis remains

a valuable tool for enhancing security analysis of IoT systems.

Static analysis is prone to false positives and does not have the sophistication required to detect

some vulnerabilities that occur during runtime. To overcome these inherent deficiencies, EMBA uses

dynamic analysis and static analysis together [20,21]. Dynamic analysis observes the behavior of the

firmware while it is running to detect vulnerabilities that may go undetected by static analysis. For

example, dynamic analysis can show vulnerabilities related to input validation or problems due to

interactions with external components. By combining the advantages of static and dynamic analysis,

EMBA provides a more accurate and complete assessment of potential security vulnerabilities.

The combined approach adopts the model proposed by Aggarwal and Jalote (2006), which posits

that combining static and dynamic analyses efficiently overcomes the basic drawbacks of both

methods while increasing their overall effectiveness [18]. The combined approach reduces the

number of test cases required by dynamic analysis while at the same time enhancing the accuracy in

identifying vulnerabilities, thus making it especially useful in protecting complex IoT systems.

2.4. Emulation and Code Analysis

Code analysis is a critical component in ensuring the security and reliability of IoT firmware,

providing a structured approach to identifying potential vulnerabilities at both the design and

implementation levels. Unlike reverse engineering, which focuses on understanding system structure

and behavior post-hoc, code analysis emphasizes proactive detection of weaknesses through

systematic examination of source code, binaries, and execution traces. This process supports early

identification of defects and security flaws, which is essential for reducing the risk of exploitation in

complex systems (Goseva-Popstojanova & Perhinschi, 2015) [22].

EMBA incorporates code analysis techniques to improve the detection of firmware

vulnerabilities. Static analysis evaluates code without execution, identifying structural weaknesses

such as poor input validation, unsafe function usage, and outdated components. Dynamic analysis,

often performed in conjunction with emulation, observes the runtime behavior of firmware to detect

execution-dependent flaws, including buffer overflows, race conditions, and logical errors (Zhou et

al., 2025) [23]. By combining these approaches, EMBA provides detection accuracy, coverage, and

prioritization of high-risk vulnerabilities.

Recent studies further highlight the broader industrial relevance of comprehensive code

analysis. Komolafe et al. (2024) [24] emphasize that integrating static, dynamic, and system-level

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 22

analysis is essential not only for uncovering hidden vulnerabilities but also for ensuring compliance

with security and privacy standards. This integrated approach supports reliability, accountability,

and assurance in software-intensive systems across sectors such as manufacturing, aerospace, and

critical infrastructure.

In the context of IoT firmware security, code analysis within EMBA supports the identification

and remediation of vulnerabilities, mitigating the likelihood of zero-day exploits and improving

overall system resilience.

2.5. The Role of EMBA in Firmware Security Analysis

EMBA tool integrates reverse engineering, static and dynamic analysis, and emulation within a

single platform to facilitate firmware vulnerability detection. This structure enables systematic and

detailed identification of firmware-level security issues. By facilitating the early detection of potential

security breaches, especially in IoT devices characterized by long lifespans and limited post-

deployment update options, EMBA reduces the likelihood of long-term security risks. Its automated

capabilities further strengthen the assessment of IoT security and support proactive vulnerability

mitigation prior to device deployment. Due to this architecture, EMBA enhances vulnerability

detection procedures while improving the overall security posture of IoT configurations.

Given EMBA’s established relevance in IoT device security, it is appropriate to examine how the

existing literature has engaged with it. The reviewed studies provide detailed information into

EMBA’s technical capabilities and limitations, while also emphasizing its applications and potential

areas for improvement. This literature offers a comprehensive understanding of how EMBA has been

used and evaluated, forming the basis for our study. Although our review of the current literature

identified no prior article that specifically examined the use of the EMBA tool comparing the Cloud

versus a standalone server, several academic articles and online sources have discussed EMBA's

capabilities. The EMBA development team has provided extensive information on EMBA,

particularly on its GitHub page (GitHub, 2024) [25], which is an official resource. This webpage

provides information about EMBA’s usage and functionalities.

EMBA has been used in several scientific studies. Müller [26] presents a comprehensive analysis

of security vulnerabilities in IoT devices using the TP-Link router as a case study using EMBA. The

author notes EMBA can detect a wide variety of vulnerabilities, including misconfigurations in

Secure Shell (SSH) servers and code vulnerabilities in Python and Bash scripts; he also notes EMBA’s

limitations. Specifically, he concludes EMBA misses detection of weak ciphers in SSH and certain

vulnerabilities in Common Gateway Interface (CGI) scripts and compiled binaries. He also notes that

EMBA's extensive output can be overwhelming for developers with limited security expertise.

De Ruck et al. [27] discussed the development and evaluation of B4IoT, a platform designed to

generate customized Linux-based firmware benchmarks for assessing firmware security analysis

tools. One of the tools mentioned in the article is EMBA. The authors highlight its limitations in

detecting specific vulnerabilities. The version of EMBA tested at the time the article was written in

2023 was found to be ineffective at identifying weak ciphers in SSH services like Dropbear or

OpenSSH. This shortcoming illustrates the need for additional specialized tools, such as ssh-audit, to

complement EMBA for a thorough security assessment. The benchmark tests conducted using the

B4IoT platform revealed these gaps, emphasizing the importance of a comprehensive toolset for

accurate firmware security analysis.

Ahmad and Andras [28] delve into the technical aspects of performance and scalability in Cloud-

based software services. They provide a detailed analysis of the scalability metrics applied to two

Cloud platforms: Amazon EC2 and Microsoft Azure. The study demonstrates how different auto-

scaling policies and Cloud environments impact the performance of software services, including

vulnerability analysis frameworks. By using technical scalability measurements inspired by elasticity

metrics, the authors compare the scalability of Cloud-based software services in different scenarios.

This research shows the importance of incorporating performance and scalability testing into the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 22

development of a lifecycle of Cloud-based applications to ensure optimal resource utilization and

service delivery.

Bouras et al. [29] provides a detailed look at the differences between Cloud-based and

standalone server solutions, highlighting how 5G technology enhances the advantages of Cloud

computing. The authors argue that Cloud computing provides on-demand access to resources, which

leads to greater flexibility and cost savings, especially for medium-sized enterprises. They use

mathematical models to analyze capital and operational costs, concluding that Cloud-based systems

can result in significant financial benefits. By combining 5G features like lower latency and increased

bandwidth, the paper suggests that organizations can improve their efficiency and save money in

sectors such as manufacturing and healthcare. Also, this analysis emphasizes the importance of

utilizing advanced technologies like 5G to make Cloud computing solutions more effective, aligning

with the discussions about the applications of EMBA in security assessments [29].

Fisher [30] provides the critical considerations decision-makers face when choosing between

Cloud services and traditional standalone server systems. Fisher emphasizes the need to understand

the total cost of ownership (TCO) and reminds the reader that Cloud services may offer flexible

pricing, but the total costs can accumulate and potentially surpass those of standalone server

solutions over time. The article encourages organizations to conduct thorough needs analyses and

due diligence before committing to major Cloud investments. This perspective ties in closely with the

discussions about the EMBA tool, as both the use of EMBA and investment in Cloud environments

for EMBA execution require careful consideration of effectiveness and limitations regarding cost and

security in different environments. Fisher’s insights reinforce the need for a comprehensive approach

when evaluating technological solutions, especially as organizations navigate the ever-changing

landscape of IT infrastructure. While the above articles mainly discuss EMBA's capabilities and

limitations in firmware security analysis, none specifically address our desired focus on comparing

EMBA's performance on Cloud versus standalone personal computer or evaluating the differences

between its various versions.

This literature review synthesizes existing research on EMBA’s technical capabilities and

applications, confirming its importance in IoT firmware vulnerability analysis. Despite its robust

combination of reverse engineering, static and dynamic analysis, and emulation, prior work focuses

primarily on functionality rather than deployment implications. The absence of studies comparing

Cloud-based versus standalone EMBA execution highlights a significant gap. Addressing this, the

present review establishes the rationale for evaluating how deployment environments affect EMBA’s

operational performance and the accuracy of its vulnerability detection.

3. Materials and Methods

To evaluate the performance of the EMBA firmware security analysis tool across different

execution environments, a structured and reproducible methodology was designed. The study

compares EMBA’s behavior on locally hosted standalone servers and a Microsoft Azure virtual

machine configured to closely mirror the standalone systems. The methodological design focuses on

three key dimensions: firmware characteristics, platform configurations, and experimental

repeatability.

The overall workflow of the EMBA analysis methodology is illustrated in Figure 1. First,

firmware samples are selected based on size categories and representative characteristics. Next,

EMBA is configured for the chosen platform, and analysis modules are executed in a controlled and

repeatable manner. During execution, runtime data and logs are collected systematically for each

firmware sample. Finally, the logs and metrics are extracted and used to assess performance across

both standalone servers and the Cloud-based environment. This structured approach ensures

comprehensive coverage of firmware behaviors while maintaining experimental reproducibility.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 22

Figure 1. Flowchart of the EMBA analysis methodology.

3.1. Firmware Selection and Size Categories

Firmware images were categorized into three representative size groups commonly observed in

real-world deployments:

Small: <10 MB

Medium: 10–30 MB

Large: >30 MB

These categories align with typical IoT and Industrial Internet of Things (IioT) scenarios, where

smaller images often correspond to consumer devices and larger images to more complex industrial

or enterprise systems. From the dataset of approximately 1,500 firmware samples, three firmware

samples were selected, one from each size category, based on their ability to execute the majority of

EMBA modules. This selection criterion ensures a more meaningful analysis of EMBA’s end-to-end

runtime, since many firmware images execute only a subset of modules, leading to incomplete or

skewed runtime comparisons.

The chosen samples therefore provide a more accurate representation of the computational

resources required for a comprehensive EMBA analysis.

3.2. Experimental Environments

A controlled lab setting was used for the standalone server experiments. Two machines with

identical hardware specifications, except for CPU core count, were deployed:

PC1: 4 CPU cores, 32 GB RAM

PC2: 8 CPU cores, 32 GB RAM

This design enables assessment of how EMBA scales additional CPU resources while holding all

other factors constant.

For Cloud-based testing, a single Microsoft Azure Virtual Machine (VM) was provisioned with:

8 CPU cores, 32 GB RAM

The Azure VM was intentionally configured to match the more powerful standalone server

(PC2) as closely as possible. This alignment ensures that observed performance differences originate

from platform characteristics such as virtualization overhead, storage performance, or Cloud

scheduling behavior rather than hardware discrepancies. The use of commodity-grade hardware

configurations reflects setups accessible to typical practitioners, increasing the practical relevance of

the findings.

3.3. EMBA Configuration and Test Execution

This subsection describes the configuration of the EMBA tool, the execution order of analyses,

and the system setup used to ensure consistent and reproducible testing across all platforms.

3.3.1. EMBA Versions and Execution Order

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 22

To evaluate the evolution of EMBA’s performance and behavior across releases, three

consecutive versions of the tool were selected for analysis: EMBA v1.4.1, v1.4.2, and v1.5.0. These

versions represent incremental development stages of the tool and allow assessment of changes in

module availability, execution behavior, and runtime characteristics.

The experiments were conducted sequentially, and no two firmware analyses were executed

simultaneously on the same platform or machine. Each firmware scan was completed before

initiating the next test to prevent resource contention and ensure consistent measurement conditions.

All scan durations were recorded using the HH:MM:SS format to maintain precision and consistency

in runtime reporting.

EMBA v1.4.1 was initially evaluated on a standalone system to establish a baseline. EMBA v1.4.2

was subsequently tested on a higher-performance standalone server to assess the impact of both

software updates and increased computational resources. Finally, EMBA v1.5.0, the most recent

release at the time of experimentation (October 2024), was evaluated on both a standalone server and

a Microsoft Azure Cloud virtual machine using the same execution methodology [8].

To ensure repeatability and reproducibility, all firmware scans were executed using identical

EMBA configurations and the same set of analysis modules. For standalone servers, each test was

executed three independent times. All three runs produced highly consistent and nearly identical

results, indicating low variance. The results from the final run—representative of all executions—

were used in the analysis.

For the Azure virtual machine, only the T8705.bin firmware was executed twice due to the

significantly higher cost of Cloud computing. Both runs produced nearly identical outputs in terms

of findings and execution time, confirming reproducibility on the Cloud platform. The results from

the second run were used in the study.

3.3.2. Scan Profile Configuration

All experiments were conducted using EMBA’s default scan profile with controlled and

explicitly documented modifications to balance analysis depth and practical runtime constraints. By

default, EMBA disables several long-running modules to optimize scan duration, including

S10_binaries_basic_check, S15_radare_decompile_checks, S99_grepit, S110_yara_check, and

F20_vul_aggregator [31].

In addition to the default exclusions, the Ghidra-based decompilation module was manually

removed from the scan profile prior to testing. This module was excluded due to its substantial

execution time, which would have disproportionately extended scan durations and limited the

feasibility of repeated experiments. This adjustment allowed the study to focus on EMBA’s core

analysis capabilities while maintaining reasonable time and resource usage.

Across versions, the modified scan profile enabled the execution of 58 modules in EMBA v1.4.1,

60 modules in v1.4.2, and 68 modules in v1.5.0, reflecting the progressive expansion of EMBA’s

analysis functionality. All modifications to the scan profile were carefully documented, including the

specific configuration lines altered, and screenshots of the configuration file opened in a Nano editor

session were captured to support experimental reproducibility.

The YARA parameter remained disabled unless explicitly stated, as enabling YARA-based

pattern matching significantly increases scan duration. This configuration choice ensured that all

platforms were evaluated under equivalent conditions.

3.3.3. System and Platform Setup

All experiments were conducted on dedicated physical machines running Ubuntu 22.04 LTS, as

recommended in EMBA’s documentation, using the x86-64 architecture with sufficient CPU cores

and memory for stable execution [32]. Two standalone servers, differing only in CPU core count,

enabled assessment of scalability while controlling other hardware variables. For Cloud-based

testing, a Microsoft Azure virtual machine was provisioned with specifications closely matching the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 22

higher-performance standalone system, minimizing confounding factors such as virtualization

overhead and storage performance.

EMBA supports only x86-64 architecture and officially runs operating systems such as Ubuntu

22.04 and Kali Linux; ARM-based systems were excluded, limiting applicability to embedded

environments. All EMBA dependencies were installed according to the official guidelines, and

identical software environments and configurations were applied across both standalone and Cloud

platforms to ensure consistency [32].

3.3.4. System Limitations

Three distinct platforms were prepared for testing: two standalone servers (PC1 and PC2) and

one Microsoft Azure Cloud virtual machine (VM). Despite this controlled setup, several system-

related limitations should be considered when interpreting the results.

The standalone servers were constrained by their hardware configurations. PC1 was equipped

with a 4-core Intel Xeon E3-1226 v3 processor and 32 GB of DDR3 RAM, while PC2 provided a more

capable setup with an 8-core Intel Core i7 processor and the same memory capacity. Although both

systems meet the minimum requirements for running EMBA, they do not represent high-

performance or enterprise-grade servers. Consequently, the observed execution times may

underrepresent the tool’s potential performance on more powerful hardware, particularly for large

or complex firmware images.

The Azure VM used for Cloud-based testing was a Microsoft Azure Standard D8s_v4 instance,

configured with 8 virtual CPU cores and 32 GB of RAM. This VM type is optimized for general-

purpose workloads rather than compute- or I/O-intensive tasks. Additionally, it lacked local

temporary storage and relied on managed disks, which may have introduced additional I/O

overhead, potentially affecting execution times relative to standalone deployments.

System resource utilization was monitored during all experiments. Peak memory consumption

across both standalone servers and the Azure VM did not exceed approximately 10 GB of RAM,

indicating that under the tested conditions and selected firmware samples, EMBA’s performance was

not memory-bound. Instead, execution time appeared primarily influenced by CPU processing

capacity and disk I/O behavior. Memory usage may vary depending on firmware size, enabled

analysis modules, and scan configurations; therefore, these observations are specific to this

experimental setup.

Disk space also influenced system stability and performance. Although EMBA requires a minimum

of 30 GB of free disk space, at least 100 GB is recommended for optimal operation. In this study, 128

GB was provisioned on all platforms to accommodate extracted firmware files, intermediate artifacts,

and analysis outputs. Preliminary attempts to run EMBA with less than the minimum recommended

disk space caused operational errors and degraded performance [32].

Finally, the experimental evaluation focused on a selected subset of firmware images that

successfully executed the majority of EMBA modules. While this approach improved comparability

and reproducibility, it may not fully capture EMBA’s behavior on firmware that triggers fewer

modules or requires alternative analysis paths.

Taken together, these limitations indicate that the reported results reflect performance

characteristics within a controlled but constrained experimental environment. Future studies using

higher-performance hardware, alternative architecture, and a broader range of firmware samples

may provide additional insights into EMBA’s scalability and resource behavior.

4. Results

To ensure the reliability and reproducibility of the experimental results, multiple test repetitions

were conducted for the selected firmware sample. For EMBA version 1.5.0 analyzing the T8705.bin

firmware, the standalone server (PC2) executed the scan three times, while the Azure virtual machine

(VM) executed the same scan twice due to cost constraints.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 22

For all repetitions, the number of detected findings remained constant at 2198, indicating

functional consistency of the analysis. Execution times exhibited minimal variation within each

platform. On the standalone PC environment (PC2), the three repeated runs yielded execution times

of 14:20:35, 14:21:01, and 14:20:13, corresponding to a mean execution time of 860.6 minutes with a

standard deviation of approximately 0.40 minutes (~24 seconds). This represents a relative variation

of less than 0.05%, demonstrating a high level of repeatability (Figure 2).

Figure 2. Execution time repeatability of EMBA v1.5.0 for the T8705.bin firmware on the standalone PC platform

(PC2). Error bars indicate the standard deviation across three repeated executions.

Similarly, the Azure VM runs resulted in execution times of 1 day, 1:45:17 and 1 day, 1:43:20,

showing a variation of approximately ±2 minutes between runs. Although a third execution was not

performed due to higher operational costs, the close agreement between the two runs provides

preliminary evidence of reproducibility within the cloud environment.

This multi-run experimental design enables calculation of basic statistical measures, including

mean and standard deviation, directly addressing concerns regarding statistical validation and

confirming that observed performance differences are stable and consistent rather than artifacts of

isolated measurements.

4.1. EMBA Version 1.4.1 and 1.4.2 Comparison

A detailed performance evaluation of EMBA versions 1.4.1 and 1.4.2 was conducted using

identical default scan profiles across two distinct hardware configurations. The systems differed in

processor capabilities, with PC1 featuring a quad-core processor and PC2 an octa-core processor.

Both systems were equipped with 32 GB of RAM, ensuring sufficient memory for analysis. The most

important objective was to assess the number of executed modules, runtime efficiency, and findings

across firmware samples of varying sizes.

As shown in Table 1, the results indicate differences between the two versions and systems. With

modified settings, EMBA version 1.4.1 executed 58 modules on PC1, while version 1.4.2 ran 60

modules on PC2 under identical scan profiles. This difference shows software improvements in

version 1.4.2 that enable the processing of additional modules. Observations during the tests showed

that while modules in version 1.4.1 were executed sequentially, version 1.4.2 introduced the ability

to execute certain modules concurrently. Running these modules simultaneously has helped reduce

scan times, especially with larger firmware samples, as it takes better advantage of parallel

processing.

Table 1. Run time comparison between EMBA v1.4.1 and v1.4.2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 22

Firmware

Name

Firmware

Size

PC1-EMBA 1.4.1 4

Cores

32 GB RAM

PC2-EMBA 1.4.2 8

Cores

32 GB RAM

T8516.bin 7.04 MB 3 days, 13 hrs., 1 min.,

36 sec.

n/a

T8705.bin 25.5 MB 2 days, 20 hrs., 22 min.,

12 sec.

1 day, 11 hrs., 11 min.,

31 sec.

S3008.bin 40.8 MB 13 hrs., 20 min., 41 sec. n/a

The correlation between firmware size and scan times also provided additional information. The

data show that scan times are not strictly linear with firmware size. For example, the largest firmware

sample, S3008.bin (40.8 MB), completed its scan on PC1 in 13 hours, 20 minutes, and 41 seconds,

which is significantly shorter than the scan time of 3 days, 13 hours, 1 minute, and 36 seconds for the

much smaller T8516.bin (7.04 MB). This finding shows how scan durations are impacted more by the

configuration and intricacy of the firmware than by the sheer size of the firmware. The number of

scan files, the amount of compression employed, the number of embedded elements, or other

components are likely to greatly influence scan durations.

The enhanced runtime efficiency on PC2 reflects both the hardware improvements and the

concurrency features introduced in version 1.4.2. These results show the interaction between software

improvements in EMBA version 1.4.2 and hardware advancements. Since both EMBA version and

hardware configuration changed simultaneously, the observed improvements cannot be attributed

solely to software enhancements. The ability of version 1.4.2 to execute modules concurrently,

combined with the multi-core architecture of PC2, contributed significantly to runtime reductions.

Moreover, the results question the idea that firmware size is the main factor behind scan duration,

showing that the structure and complexity of the firmware play a more significant role in

performance. Future research could examine these aspects more closely to gain a clearer picture of

what truly influences firmware analysis.

4.2. EMBA Version 1.4.2 and 1.5.0 Comparison

The comparison of EMBA versions 1.4.2 and 1.5.0 shows important differences in runtime

performance and module execution, tested on PC2 with identical hardware configurations. Both tests

ran on a system with an 8-core processor and 32 GB of RAM. The evaluation included three firmware

samples of varying sizes: WR940.bin (3.87 MB), T8705.bin (25.5 MB), and R8000.bin (30.2 MB). A key

distinction between the two versions was the number of executed modules: EMBA 1.4.2 processed 60

modules, whereas version 1.5.0 executed 68 modules due to the addition of new checks and

functionalities with the modified default scan settings.

As shown in Table 2, for WR940.bin, EMBA 1.4.2 completed the scan in 17 minutes and 47

seconds, while version 1.5.0 took significantly longer at 3 hours, 30 minutes, and 56 seconds. The

extended runtime for the smaller firmware sample in version 1.5.0 suggests that the added modules

or enhancements may have introduced more comprehensive checks, increasing the overall

processing time. In contrast, for the larger firmware sample T8705.bin, version 1.5.0 exhibited a

runtime improvement, reducing the scan time from 1 day, 11 hours, 11 minutes, and 31 seconds in

version 1.4.2 to 14 hours, 20 minutes, and 35 seconds. Similarly, R8000.chk showed improved

efficiency in version 1.5.0, with a runtime of 18 hours, 9 minutes, and 40 seconds, down from 20 hours,

32 minutes, and 4 seconds in version 1.4.2.

Table 2. Run time comparison between EMBA v1.4.2 and v1.5.0

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 22

Firmware

Name

Firmware

Size

PC2-EMBA 1.4.2 8 Cores

with 32 GB RAM

PC2-EMBA 1.5.0 8 Cores

with 32 GB RAM

WR940.bin 3.87 MB 17 min., 47 sec. 3 hrs., 30 min., 56 sec.

T8705.bin 25.5 MB
1 day, 11 hrs., 11 min., 31

sec.
14 hrs., 20 min., 35 sec.

R8000.chk 30.2 MB 20 hrs., 32 min., 4 sec. 18 hrs., 9 min., 40 sec.

The runtime improvements for larger firmware samples in version 1.5.0 can be attributed to

enhanced parallel processing capabilities and optimization that enabled the efficient execution of

additional modules. These improvements made better use of the multi-core architecture, allowing for

faster analysis despite the increased number of modules. However, the extended runtime for

WR940.bin suggests that the added modules or checks in version 1.5.0 are the factors contributing to

the increased scan duration.

The increase from 60 to 68 modules in version 1.5.0 demonstrates the ongoing expansion of

EMBA’s analysis capabilities, reflecting the introduction of new functionalities to enhance the scope

and depth of the firmware analysis. While these enhancements improve the tool's effectiveness for

larger and more complex firmware, they may also introduce trade-offs in performance for smaller

files. This analysis underscores the delicate balance between feature expansion and runtime efficiency

in firmware analysis tools. While EMBA 1.5.0 showed clear improvements for larger firmware

samples, the extended runtime for WR940.bin highlights the need for further optimization of module

execution strategies.

4.3. EMBA Version 1.5.0 and Azure VM Comparison

EMBA version 1.5.0 performance was evaluated in two different environments: a physical

machine, PC2, and a virtualized instance on the Microsoft Azure Cloud. Both environments were

configured with identical hardware specifications, featuring 8-core processors and 32 GB of RAM

with Ubuntu 22.04, ensuring consistency in the experimental setup. EMBA’s default scan

configuration was modified, and 68 modules were executed on three firmware samples: WR940.bin,

T8705.bin, and R8000.chk. The results showed important differences in performance between the two

environments, particularly in execution times and the number of findings.

As shown in Table 3, the physical machine PC2 generally outperformed the Azure Cloud virtual

machine in terms of scan duration, with shorter execution times for WR940.bin and T8705.bin. On

PC2, WR940.bin was completed in 3 hours, 30 minutes, and 56 seconds; T8705.bin required 14 hours,

20 minutes, and 35 seconds; and R8000.chk took 18 hours, 9 minutes, and 40 seconds. In contrast, the

Azure Cloud VM demonstrated longer processing times for WR940.bin and T8705.bin, with

WR940.bin completed in 10 hours, 48 minutes, and 48 seconds, and T8705.bin requiring 1 day, 1 hour,

45 minutes, and 17 seconds. However, for R8000.chk, the Azure Cloud VM performed faster,

completing the analysis in 16 hours, 53 minutes, and 55 seconds compared to PC2’s 18 hours, 9

minutes, and 40 seconds. This anomaly suggests that specific workload characteristics or resource

allocation strategies in the Azure Cloud environment may occasionally benefit certain types of

analysis. Due to budget limitations, we had limited time to conduct the experiments in the Cloud,

but the tests we conducted provided representative examples of performance, even if they were not

comprehensive.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 22

Table 3. Run time and findings comparison between EMBA Version 1.5.0 and Azure VM.

Firmware

Name

Firmware

Size

PC2 - 8 Cores - 32 GB

RAM

AZURE VM - 8 Cores - 32

GB RAM

Run Time # of

Findings

Run Time # of

Findings

WR940.bin 3.87 MB

3 hrs., 30

min., 56

sec.

2537
10 hrs., 48

min., 48 sec.
2536

T8705.bin 25.5 MB

14 hrs., 20

min., 35

sec.

2198

1 day 1 hr.,

45 min., 17

sec.

2198

R8000.chk 30.2 MB

18 hrs., 9

min., 40

sec.

2901
16 hrs., 53

min., 55 sec.
3012

While both environments produced largely comparable results in terms of findings, moderate

variations were observed. For WR940.bin and T8705.bin, the number of findings was nearly identical,

with only a slight difference for WR940.bin (2537 on PC2 vs. 2536 on the Azure Cloud VM). However,

for R8000.chk, a more noticeable variation was observed, with PC2 identifying 2901 findings

compared to 3012 on the Azure Cloud VM. This difference should be investigated further in future

work to better understand the impact of execution environment on vulnerability detection results.

These results show the importance of the execution environment in determining the efficiency

and reliability of firmware analysis. While physical hardware generally provides superior

performance due to dedicated resources and lower latency, certain tasks, as evidenced by the R8000

results, may benefit from the dynamic resource allocation in cloud environments.

4.4. EMBA Version 1.4.1 with Different Firmware Samples

EMBA version 1.4.1 tests were conducted on PC1. PC1 is equipped with a 4-core processor and

32 GB of RAM. Also, predefined modifications were made to EMBA's default scanning configuration.

In addition, the tests conducted with EMBA version 1.4.1 analyzed three firmware samples, T8516,

T8705, and S3008, focusing on runtime and performance across various modules. The total scan

durations varied significantly, with T8516 taking approximately 85 hours, T8705 requiring 68 hours,

and S3008 completing in about 13 hours. These differences reflect the varying complexity and size of

the firmware samples.

Key modules like P60_deep_extractor and P61_binwalk_extractor showed notable runtime

disparities. For instance, P60_deep_extractor took 55 minutes for T8516, 99 minutes for T8705, and

only 1 minute 40 seconds for S3008. Similarly, S09_firmware_base_version_check had an extensive

runtime for all samples, particularly T8516 and T8705, consuming 34 and 46 hours, respectively, while

S3008 required just over 5 hours. Analytical modules like S99_grepit and F20_vul_aggregator also

accounted for a significant portion of the runtime, demonstrating the computational intensity of

detailed vulnerability assessments. The results indicate EMBA’s capacity to adapt to different

firmware architectures while highlighting the variable demands imposed by different firmware

complexities.

4.5. Module-Level Performance Analysis of EMBA v1.5.0 on PC2 and Azure VM

EMBA scan results obtained from the PC2 standalone server and Azure Cloud VMs, using three

firmware samples (WR940, T8705, and R8000), reveal notable performance discrepancies (see

Appendix A.1 Detailed EMBA Module Execution Times). Both environments were configured with

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 22

identical hardware specifications. 8 CPU cores, 32 GB of RAM, and at least 128 GB of free disk space.

Our tests show that EMBA scan times differ notably between the two platforms. Overall, the PC2

generally showed faster module completion times compared to the Azure Cloud VM, with some

variations in certain modules. For example, the overall scan time for WR940 was 3:30:56 (HH:MM:SS)

on PC2, less than half the time required by the Azure Cloud VM, which was 10:48:48. Similarly, for

T8705, PC2 finished in 14:20:35, while the Azure Cloud VM took 25:45:17. However, for the R8000

firmware, the Azure Cloud VM was only slightly faster, with a total time of 16:53:55 versus 18:09:40

on PC2. This shows that the performance disparity between the two environments is not consistent

for all firmware samples.

When examining specific modules, several anomalies have been observed. For example, in the

WR940 and T8705 firmware samples, S09 (firmware base version check) took significantly more time

on the Azure Cloud VM than on PC2, with durations like 21:15:18 on the Azure Cloud VM for T8705

compared to just 10:42:58 on PC2. However, the R8000 firmware showed the reverse pattern, where

Azure Cloud VM 2:02:43 outperformed PC2 3:37:27. This indicates that some modules are influenced

by the specific firmware sample, which might have unique attributes that either exacerbate or

mitigate the environmental performance differences. The S15 (Radare decompile checks) module

showed substantial time consumption in both environments. For the R8000 firmware, Azure Cloud

VM required 15:11:15, while PC2 completed the task in 16:29:21, further indicating that decompilation

tasks are particularly resource-intensive and might behave differently depending on the

environment.

Certain modules, like S99 (grepit), exhibited a similar trend, where Azure Cloud VMs’ execution

time was almost double that of PC2 for the T8705 firmware sample. However, for R8000, Azure Cloud

VM’s time of 3:49:06 was closer to PC2's 5:02:12, suggesting that I/O and disk read/write operations

in the Azure Cloud environment might be contributing to these performance disparities. Modules

such as S02 (UEFI_FwHunt) and S36 (lighttpd) showed relatively consistent performance across both

platforms, which implies that certain types of tasks, perhaps those less reliant on raw I/O or system-

level operations, are less sensitive to the differences in environment. The variability in execution

times for different modules and firmware samples hints at a complex interaction between the

hardware environment and the nature of the tasks being executed. For example, S17 (CWE checker)

and S13 (weak function check) revealed marked performance differences, especially with the R8000

firmware, where the Azure Cloud VM took significantly longer than PC2.

On the other hand, certain modules like S115 (user-mode emulator) performed similarly across

both platforms. These observations show that specific tasks like deep system analysis or

computationally intensive processing may be more affected by the virtualization overhead in the

Azure Cloud. On the other hand, other tasks that are less resource-intensive or involve more

straightforward processing may exhibit less of a performance gap between the two environments.

Several factors could cause these observed differences. Virtualization overhead in the Azure

Cloud VM environment is a likely cause for the slower performance in certain modules, as the

abstraction layer could introduce latency, particularly in resource-intensive tasks such as binary

analysis and decompilation. Additionally, resource contention could arise in a cloud-based setup,

where virtual machines may share physical resources with other instances, affecting performance

stability. Network-related delays might also play a role, especially in modules that require external

communication or updates during execution. Furthermore, differences in disk I/O handling between

the physical PC2 server and the Azure Cloud VM may explain some of the variations, particularly

for tasks that involve large-scale data processing or frequent disk access. Ultimately, while both

environments offer similar raw hardware specifications, the cloud-based Azure VM environment

seems to face additional challenges, likely due to the complexities of virtualization and resource

management in a shared infrastructure. Modules like S99_grepit and S118_busybox_verifier exceed

15 hours due to their computational complexity, such as binary decompilation, extensive text

searches, and compressed system analysis. Standalone PCs handle these tasks faster due to

dedicated resources and efficient local I/O. In contrast, Azure Cloud VMs often face I/O bottlenecks,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 22

resource contention, and network latency, leading to longer execution times. Optimizing VM

performance with faster storage, dedicated resources, and task parallelization, or using a hybrid

setup combining PCs and VMs, can mitigate these delays and enhance efficiency.

The test results also indicated a difference between overall scan time and total module time.

Moreover, the results provide supplementary observations into the scanning process. Overall scan

time reflects the cumulative time taken by all modules when considered individually, whereas total

module time (HH:MM:SS) measures the actual duration of a single EMBA scan. The observed

discrepancy between these metrics, particularly in EMBA version 1.4.2, can be attributed to the

concurrent execution of certain modules. Unlike version 1.4.1, which processes modules sequentially,

version 1.4.2 introduced a concurrency feature that allows multiple modules to run simultaneously.

Parallel processing capability greatly reduces the overall module time (HH:MM:SS), while keeping

the overall scanning time unchanged, which indicates the cumulative input from all the modules.

This advancement not only increases the efficiency of operations but also signifies the essential role

of exploiting parallelism in modern-day firmware analysis methods.

5. Discussion

The results presented in the previous section provide a quantitative comparison of EMBA’s

execution behavior across standalone and cloud-based platforms under controlled and repeatable

conditions. Building on these findings, this section interprets the observed performance

characteristics in a broader operational context, focusing on platform-specific trade-offs, deployment

implications, and practical considerations for firmware security analysis. Rather than reiterating

numerical results, the discussion emphasizes how differences in execution environment influence

scalability, cost efficiency, reproducibility, and long-term usability of EMBA in real-world settings.

5.1. Platform Level Implications of EMBA Deployment

The Microsoft Azure Cloud platform offers several measurable advantages for executing EMBA-

based firmware analysis, particularly in terms of scalability and accessibility. Cloud infrastructures

enable dynamic resource allocation, allowing EMBA to be deployed on virtual machines with

configurable CPU and memory resources. This flexibility supports the analysis of firmware images

with varying computational demands, which are difficult to achieve on personal computers with

fixed hardware configurations. In addition, cloud-based deployments facilitate remote access,

enabling geographically distributed teams to perform analyses without reliance on dedicated on-site

hardware.

From a cost perspective, cloud platforms follow a pay-as-you-go model that eliminates the need

for upfront hardware investment. This model can be advantageous for occasional or short-term

analysis tasks, where resources are provided only when needed. However, this benefit must be

balanced against operational costs incurred during sustained usage. In this study, running four

firmware scans on an Azure virtual machine with 8 CPU cores and 32 GB of RAM resulted in an

approximate cost of $250. While acceptable for limited experimentation, such expenses may scale

rapidly with increased analysis frequency or higher-performance instance requirements when

analyses are performed frequently or when higher-performance virtual machines are required to

reduce execution time. Consequently, the cost–performance trade-off becomes a critical factor in

long-term deployment decisions.

Security, compliance, and operational complexity also represent important considerations in

cloud-based firmware analysis. Analyzing potentially sensitive firmware images in a shared cloud

environment requires strict access control mechanisms and adherence to organizational or regulatory

compliance requirements. Furthermore, deploying and maintaining EMBA on cloud virtual

machines may involve additional technical overhead, including dependency management,

permission handling, and system updates. Data transfer overhead is another limitation, as importing

and exporting large firmware images can introduce delays and reduce overall workflow efficiency

compared to locally hosted systems.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 22

In contrast, standalone servers provide a controlled and predictable environment for EMBA-

based firmware analysis. Unlike cloud platforms, standalone deployments eliminate variability

introduced by shared infrastructure, virtualization overhead, and network-dependent operations.

This deterministic behavior is particularly important for experimental rigor and reproducibility, as

repeated scans under identical conditions yield consistent execution times and findings.

From an operational standpoint, standalone servers offer full control over system configuration,

storage, and access policies, thereby reducing security and compliance concerns associated with

external cloud environments. Firmware images remain locally stored, avoiding both data transfer

delays and potential exposure risks. Although standalone servers lack the elasticity of cloud

platforms, their fixed hardware configurations ensure stable long-term performance, which is

advantageous for continuous or large-scale firmware analysis workloads.

Furthermore, when EMBA is used on a regular basis, the one-time investment cost of a

standalone server can become more economical than recurring cloud usage fees. As demonstrated in

this study, repeated firmware scans on a local server achieved consistent execution times with

minimal variance, supporting the suitability of standalone deployments for systematic, repeatable,

and methodologically rigorous firmware security assessments.

5.2. Future Research

Future research should build upon the findings of this study by further strengthening EMBA’s

performance evaluation, scalability, and deployment flexibility across diverse environments. One

immediate direction is the systematic investigation of module-level optimization, where non-

essential analysis modules are selectively excluded or dynamically enabled based on firmware

characteristics. Controlled experiments are required to determine how such configurations affect

execution time, detection coverage, and overall analytical accuracy.

Another important research direction involves cross-platform cloud comparisons. While this

study focused on Microsoft Azure, future work should extend the evaluation to additional cloud

providers, such as Amazon Web Services (AWS) or Google Cloud Platform (GCP). Comparative

analyses across multiple cloud environments would provide deeper insights into performance

variability, cost-efficiency, and deployment trade-offs, enabling informed multi-cloud or hybrid

deployment strategies for firmware security analysis.

The role of high-performance hardware also warrants further investigation. Evaluating EMBA

on more advanced standalone servers and compute-optimized cloud instances could help quantify

performance gains and identify diminishing returns in relation to cost. Such studies would be

particularly valuable for organizations seeking to balance execution speed, reproducibility, and

operational expenses in large-scale firmware analysis workflows.

Expanding the diversity and scale of firmware samples represents another key avenue for future

work. Including a broader range of firmware sizes, architectures, and vendor ecosystems would

improve the generalizability of findings and help uncover edge cases that may stress EMBA’s analysis

pipeline. Additionally, incorporating complementary firmware analysis tools alongside EMBA could

support comparative evaluations, highlighting both strengths and limitations and identifying

opportunities for targeted tool enhancements.

A particularly promising direction for future research is the evaluation of EMBArk, the web-

based enterprise interface for EMBA. EMBArk introduces a centralized and system-independent

approach to firmware analysis, which is especially relevant for enterprise and government

environments. Future studies should assess EMBArk’s performance, scalability, and usability in

large-scale deployments, focusing on centralized management, result aggregation, and auditability.

Further research may also explore the integration of EMBArk with vulnerability databases,

threat intelligence feeds, and Security Information and Event Management (SIEM) systems. Such

integrations could enable real-time risk assessment and transform EMBArk from a visualization layer

into a comprehensive firmware security management platform, supporting cloud-native and

collaborative security workflows.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 22

Overall, future work should focus on coordinated improvements across both the backend

analysis engine (EMBA) and the frontend management interface (EMBArk), with the goal of

achieving higher analytical rigor, improved performance, and broader applicability across varied

operational and deployment contexts.

6. Conclusions

This study examined the behavior of EMBA, an open-source firmware analysis framework,

across standalone servers and cloud-based environments. The analysis focused on execution time,

repeatability, cost implications, and operational constraints across different deployment

environments. Rather than introducing EMBA as a new tool, the work examined its practical behavior

and performance characteristics under controlled and reproducible testing conditions, addressing a

gap in empirical evaluations of firmware analysis frameworks across heterogeneous platforms.

The experimental results demonstrate that EMBA produces stable and repeatable outcomes

when identical firmware samples and configurations are used. Repeated executions within the same

deployment environment yielded nearly identical execution times and identical numbers of findings,

confirming that the observed performance differences were not artifacts of single-run measurements.

This directly addresses concerns regarding experimental rigor and supports the reliability of the

reported comparisons between platforms and EMBA versions.

The findings highlight clear trade-offs between cloud-based and standalone deployments. The

Azure Cloud platform offers flexibility, remote accessibility, and elastic resource provisioning, which

can be advantageous for collaborative or short-term analysis scenarios. However, for computer-

intensive and repeated firmware scans, cloud deployment introduces significant recurring costs,

increased deployment complexity, and additional considerations related to data transfer and

security. In contrast, standalone servers provide a more predictable and controlled execution

environment, enabling reproducible analyses with minimal variance and substantially lower long-

term costs when EMBA is used frequently. While standalone systems lack elasticity, their

performance and fixed cost structure make them well suited for continuous or large-scale firmware

security assessments.

Importantly, this work provides empirical evidence that deployment environment selection has

a measurable impact on the efficiency, cost, and practicality of firmware security analysis, even when

the same analysis framework, firmware inputs, and configurations are used. By combining controlled

experimentation, repeated measurements, and platform-specific observations, the study clarifies the

operational conditions under which cloud-based or standalone deployments are more appropriate.

Overall, the results indicate that no single deployment model is universally optimal for EMBA

based firmware analysis. Instead, deployment decisions should be aligned with workload scale,

analysis frequency, operational complexity, and budget constraints. For limited or short-term

analysis scenarios such as a small number of firmware scans (e.g., fewer than ten) cloud-based

deployment on platforms such as Azure can be cost-effective and operationally acceptable, as it

avoids upfront hardware investment while providing controlled access and managed authentication

mechanisms. However, as the volume and frequency of firmware analyses increase, recurring cloud

costs and operational overhead become significant. In such cases, acquiring and operating a

standalone analysis system represents a more economical and sustainable approach. While cloud

platforms offer advantages in terms of centralized access control, login management, and isolation,

they also impose additional operational burden related to instance management, monitoring, and

cost tracking. Consequently, organizations should evaluate not only performance metrics but also

long-term operational effort and security requirements when selecting an execution environment for

EMBA-based firmware security workflows.

Author Contributions: Conceptualization, K.S.N. and O.U.; methodology, K.S.N.; software, K.S.N.; validation,

K.S.N. and O.U.; formal analysis, K.S.N.; investigation, K.S.N.; resources, K.S.N.; data curation, K.S.N.; writing—

original draft preparation, K.S.N.; writing—review and editing, N.L.B.; visualization, K.S.N.; supervision, O.U.;

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 22

project administration, K.S.N.; funding acquisition, O.U. All authors have read and agreed to the published

version of the manuscript.

Funding: This research was funded by the U.S. Department of Energy Cyber Manufacturing Innovation Institute

(CyManII).

Data Availability Statement: The data supporting the findings of this study are available from the

corresponding author upon reasonable request. Due to the proprietary nature of the firmware samples analyzed,

the raw firmware files cannot be publicly shared. All analysis procedures, configurations, and summary results

are described in the manuscript to allow reproducibility and verification of the study’s findings.

Acknowledgments: This work was supported in part by the U.S. Department of Energy Cyber Manufacturing

Innovation Institute. The authors thank CyManII for providing support that made this research possible. Used

ChatGPT only for minor language and phrasing edits.

Conflicts of Interest: The author declares no conflicts of interest. The funders had no role in the design of the

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to

publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

IOT Internet of Things

IIOT Industrial Internet of Things

VM Virtual Machine

PC Personal Computer

SAST Static Application Security Testing

SBOM Software Bill of Materials

TCO Total Cost of Ownership

SSH Secure Shell

AMZ Amazon Web Service

GCP Google Cloud Platform

CGI Common Gateway Interface

Appendix A

Table A1. EMBA scan output showing per-module execution times for three firmware samples (WR940, T8705,

and R8000) on the standalone PC2 and Azure VM platforms.

 WR940 T8705 R8000

Module Name PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

P02_firmware_bin_file_check 0:00:04 0:00:05 0:00:12 0:00:21 0:00:07 0:00:07

P40_DJI_extractor 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00

P55_unblob_extractor 0:00:22 0:00:18 0:01:59 0:01:58 0:01:08 0:00:37

P60_deep_extractor 0:00:00 0:00:00 1:24:15 1:31:44 0:00:00 0:00:00

P61_binwalk_extractor 0:00:00 0:00:01 0:00:00 0:04:05 0:00:00 0:00:00

P65_package_extractor 0:00:01 0:00:00 0:00:00 0:00:00 0:00:01 0:00:01

P99_prepare_analyzer 0:00:28 0:00:35 0:05:01 0:04:45 0:01:59 0:01:02

S26_kernel_vuln_verifier 0:00:51 0:00:36 0:08:29 0:17:25 0:03:17 0:02:30

S24_kernel_bin_identifier 0:00:48 0:00:32 0:08:26 0:17:22 0:03:13 0:02:27

S12_binary_protection 0:09:44 0:09:55 0:08:24 0:13:09 0:47:31 0:23:03

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 19 of 22

 WR940 T8705 R8000

Module Name PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

S09_firmware_base_version_chec

k 0:48:45 0:57:18 10:42:58 21:15:18 3:37:27 2:02:43

S02_UEFI_FwHunt 0:00:01 0:00:00 1:01:41 1:46:37 0:00:01 0:00:00

S03_firmware_bin_base_analyzer 0:00:21 0:00:16 10:53:07 7:02:49 0:01:18 0:00:39

S04_windows_basic_analysis 0:00:01 0:00:02 0:00:03 0:00:01 0:00:09 0:00:13

S05_firmware_details 0:00:07 0:00:08 0:00:58 0:00:39 0:00:07 0:00:09

S06_distribution_identification 0:00:04 0:00:03 0:00:30 0:00:16 0:00:05 0:00:05

S07_bootloader_check 0:00:11 0:00:06 0:00:43 0:21:18 0:00:16 0:00:11

S08_package_mgmt_extractor 0:00:08 0:00:03 0:07:14 0:11:58 0:00:09 0:00:04

S10_binaries_basic_check 0:02:03 0:02:16 0:01:40 0:00:54 0:09:41 0:06:50

S13_weak_func_check 0:12:19 0:13:35 0:08:50 0:11:17 2:09:45 1:06:04

S14_weak_func_radare_check 0:29:48 0:32:54 0:36:08 0:09:48 2:46:59 1:20:15

S15_radare_decompile_checks 1:42:50 2:04:56 2:38:05 1:20:17 16:29:21 15:11:15

S16_ghidra_decompile_checks n/a n/a n/a n/a n/a n/a

S17_cwe_checker 0:01:25 1:29:16 0:00:27 1:25:56 0:10:31 6:47:38

S18_capa_checker 0:02:18 0:03:46 0:21:02 1:03:31 0:11:55 0:12:29

S19_apk_check 0:00:02 0:00:03 0:00:04 0:00:05 0:00:01 0:00:03

S20_shell_check 0:00:43 0:01:01 0:31:29 0:21:06 0:02:13 0:02:28

S21_python_check 0:00:02 0:00:03 0:13:37 0:07:43 0:00:02 0:00:04

S22_php_check 0:00:38 0:00:58 0:02:25 0:01:33 0:00:41 0:01:01

S23_lua_check 0:00:21 0:00:22 0:17:20 0:07:47 0:01:10 0:00:49

S25_kernel_check 0:02:26 0:04:16 0:03:04 0:01:53 0:03:10 0:03:54

S27_perl_check 0:00:04 0:00:04 0:00:06 0:00:05 0:00:02 0:00:05

S35_http_file_check 0:04:24 0:06:56 0:06:04 0:05:51 0:06:19 0:10:45

S36_lighttpd 0:00:04 0:00:09 0:00:08 0:00:10 0:00:03 0:00:09

S40_weak_perm_check 0:00:09 0:00:18 0:00:18 0:00:14 0:00:04 0:00:10

S45_pass_file_check 0:00:07 0:00:16 0:00:57 0:01:22 0:00:14 0:00:30

S50_authentication_check 0:00:26 0:00:49 0:01:07 0:00:57 0:00:12 0:00:22

S55_history_file_check 0:00:03 0:00:06 0:00:11 0:00:06 0:00:03 0:00:04

S60_cert_file_check 0:00:03 0:00:05 0:01:08 0:01:03 0:07:36 0:00:19

S65_config_file_check 0:00:14 0:00:25 0:01:31 0:01:46 0:00:37 0:00:31

S75_network_check 0:00:05 0:00:08 0:00:19 0:00:15 0:00:07 0:00:06

S80_cronjob_check 0:00:02 0:00:04 0:00:13 0:00:10 0:00:03 0:00:04

S85_ssh_check 0:00:05 0:00:08 0:00:22 0:00:15 0:00:09 0:00:07

S90_mail_check 0:00:02 0:00:02 0:00:05 0:00:04 0:00:03 0:00:02

S95_interesting_files_check 0:00:13 0:00:24 0:00:31 0:00:28 0:00:18 0:00:12

S99_grepit 0:55:15 1:06:06 11:03:09 21:23:05 5:02:12 3:49:06

S100_command_inj_check 0:00:02 0:00:06 0:00:07 0:00:09 0:03:06 0:02:15

S106_deep_key_search 0:00:29 0:00:44 0:02:11 0:04:21 0:00:39 0:00:53

S107_deep_password_search 0:00:59 0:00:49 0:18:12 0:12:16 0:02:46 0:01:12

S108_stacs_password_search 0:00:22 0:00:30 0:07:19 0:09:21 0:01:09 0:01:00

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 20 of 22

 WR940 T8705 R8000

Module Name PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

PC2

Duration

Azure VM

Duration

S109_jtr_local_pw_cracking 1:07:24 1:10:03 0:11:41 0:10:01 0:00:24 0:00:07

S110_yara_check 0:02:56 0:03:28 0:55:44 1:36:16 0:25:33 0:28:57

S115_usermode_emulator 0:06:53 0:08:05 0:00:04 0:00:05 0:31:47 0:29:38

S116_qemu_version_detection 0:05:12 0:09:20 0:00:02 0:00:02 0:05:14 0:19:33

S118_busybox_verifier 0:19:30 0:03:24 9:04:40 18:58:56 1:31:57 0:26:35

L10_system_emulation 1:12:02 7:16:48 0:00:00 0:00:01 0:36:37 0:41:56

L15_emulated_checks_nmap 0:01:07 0:02:03 n/a n/a 0:05:11 0:03:13

L20_snmp_checks 0:00:01 0:00:00 n/a n/a 0:00:01 0:00:01

L22_upnp_hnap_checks 0:00:04 0:00:06 n/a n/a 0:00:01 0:00:04

L23_vnc_checks 0:00:00 0:00:00 n/a n/a 0:00:00 0:00:01

L25_web_checks 0:00:01 0:31:37 n/a n/a 0:00:02 0:00:01

L35_metasploit_check 0:01:24 0:19:42 n/a n/a 0:14:15 0:19:08

L99_cleanup 0:00:02 0:00:01 n/a n/a 0:00:01 0:00:01

F02_toolchain 0:00:03 0:00:02 0:00:04 0:00:03 0:00:04 0:00:05

F05_qs_resolver 0:00:14 0:00:47 0:00:12 0:00:27 0:00:44 0:00:52

F10_license_summary 0:00:05 0:00:05 0:00:05 0:00:15 0:00:13 0:00:12

F15_cyclonedx_sbom 0:00:04 0:00:14 0:00:05 0:00:07 0:00:05 0:00:06

F20_vul_aggregator 0:30:49 0:30:23 0:29:47 0:35:01 0:35:57 0:32:00

F50_base_aggregator 0:00:16 0:00:19 0:00:16 0:00:19 0:00:27 0:00:29

Overall Scan Time 3:30:56 10:48:48 14:20:35 25:45:17 18:09:40 16:53:55

Total Module Time 8:08:06 17:18:00 52:04:49 81:25:06 36:16:32 34:57:32

References

1. Vailshery, L.S. Internet of Things (IoT) – Statistics & Facts. Statista 2024. Available online:

https://www.statista.com/topics/2637/internet-of-things/#topicOverview (accessed on 4 July 2024).

2. EMBA. People in EMBA Organization. GitHub 2025. Available online: https://github.com/orgs/e-m-b-

a/people (accessed on 19 January 2025).

3. CyberNoz. EMBA: Open-Source Security Analyzer for Embedded Devices. CyberNoz 2023. Available

online: https://cybernoz.com/emba-open-source-security-analyzer-for-embedded-devices/ (accessed on 11

October 2024).

4. EMBA. SBOM Environment. GitHub Wiki 2025. Available online: https://github.com/e-m-b-

a/emba/wiki/SBOM-environment (accessed on 11 October 2024).

5. EMBA. AI-Supported Firmware Analysis. GitHub Wiki 2025. Available online: https://github.com/e-m-b-

a/emba/wiki/AI-supported-firmware-analysis (accessed on 11 October 2024).

6. Eckmann, P. EMBA: An Open-Source Firmware Analysis Tool. Medium 2021. Available online:

https://p4cx.medium.com/emba-b370ce503602 (accessed on 21 October 2024).

7. EMBA. Feature Overview. GitHub Wiki 2024. Available online: https://github.com/e-m-b-

a/emba/wiki/Feature-overview (accessed on 11 October 2024).

8. EMBA. EMBA Releases. GitHub 2025. Available online: https://github.com/e-m-b-a/emba/releases/

(accessed on 11 October 2024).

9. EMBA. EMBArk: Graphical Interface for Firmware Analysis. GitHub 2025. Available online:

https://github.com/e-m-b-a/embark (accessed on 19 October 2024).

10. Conti, M.; et al. Internet of Things Security and Forensics: Challenges and Opportunities. arXiv 2018.

https://doi.org/10.48550/arXiv.1807.10438.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 21 of 22

11. TechTarget. White-Box Testing Definition. TechTarget 2025. Available online:

https://www.techtarget.com/searchsoftwarequality/definition/white-box (accessed on 11 November 2024).

12. Verma, A.; Khatana, A.; Chaudhary, S. A Comparative Study of Black Box Testing and White Box Testing.

Int. J. Computer Sciences and Engineering 2017, 5, 301–304.

13. Shwartz, O.; et al. Reverse Engineering IoT Devices: Effective Techniques and Methods. IEEE Internet

Things J. 2018, 5, 4965–4976. https://doi.org/10.1109/JIOT.2018.2875240.

14. Tamilkodi, R.; et al. Exploring IoT Device Vulnerabilities Through Malware Analysis and Reverse

Engineering. In Proceedings of the 5th International Conference on Data Intelligence and Cognitive Informatics

(ICDICI), IEEE, 2024; pp. 1–10.

15. Votipka, D.; et al. An Observational Investigation of Reverse Engineers’ Processes. arXiv 2019.

https://doi.org/10.48550/arXiv.1912.00317.

16. EMBA. The EMBA Book—Chapter 2: Analysis Core. GitHub Wiki 2025. Available online:

https://github.com/e-m-b-a/emba/wiki/The-EMBA-book-%E2%80%90-Chapter-2%3A-Analysis-Core

(accessed on 22 October 2024).

17. Anonymous. Leveraging Automated Firmware Analysis with the Open-Source Firmware Analyzer EMBA.

Medium 2024. Available online: https://medium.com/@iugkhgf/leveraging-automated-firmware-analysis-

with-the-open-source-firmware-analyzer-emba-46d30d587a87 (accessed on 19 November 2024).

18. Aggarwal, A.; Jalote, P. Integrating Static and Dynamic Analysis for Detecting Vulnerabilities. In

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC’06),

IEEE, 2006; Vol. 1.

19. Ferrara, P.; et al. Static Analysis for Discovering IoT Vulnerabilities. Softw. Tools Technol. Transfer 2021, 23,

71–88.

20. EMBA. The EMBA Book—Chapter 3: Analysis Core. GitHub Wiki 2025. Available online:

https://github.com/e-m-b-a/emba/wiki/The-EMBA-book-%E2%80%90-Chapter-3%3A-Analysis-Core

(accessed on 29 November 2024).

21. EMBA. The EMBA Book—Chapter 4: System Emulation. GitHub Wiki 2025. Available online:

https://github.com/e-m-b-a/emba/wiki/The-EMBA-book-%E2%80%90-Chapter-4%3A-System-Emulation

(accessed on 8 November 2024).

22. Goseva-Popstojanova, K.; Perhinschi, A. On the Capability of Static Code Analysis to Detect Security

Vulnerabilities. Inf. Softw. Technol. 2015, 68, 18–33.

23. Zhou, W.; Shen, S.; Liu, P. IoT Firmware Emulation and Its Security Application in Fuzzing: A Critical

Revisit. Future Internet 2025, 17, 19. https://doi.org/10.3390/fi17010019.

24. Komolafe, O.; et al. Reverse Engineering: Techniques, Applications, Challenges, Opportunities. Int. Res. J.

Modernization Eng. Technol. Sci. 2024, 6.

25. EMBA. EMBA GitHub Main Repository. GitHub 2024. Available online: https://github.com/e-m-b-a

(accessed on 8 November 2024).

26. Müller, T. Internet of Vulnerable Things. Technical Report 2022. Available online:

https://raw.githubusercontent.com/otsmr/internet-of-vulnerable-

things/main/Internet_of_Vulnerable_Things.pdf (accessed on 18 November 2024).

27. De Ruck, D.; et al. Linux-Based IoT Benchmark Generator for Firmware Security Analysis Tools. In

Proceedings of the 18th International Conference on Availability, Reliability and Security (ARES ’23), 2023; Article

No. 19, pp. 1–10. https://doi.org/10.1145/3600160.3600181.

28. Al-Said Ahmad, A.; Andras, P. Scalability Analysis Comparisons of Cloud-Based Software Services. J. Cloud

Comput. 2019, 8, 10.

29. Bouras, C.; et al. Techno-Economic Analysis of Cloud Computing Supported by 5G: A Cloud vs. On-

Premise Comparison. In Advances on Broadband Wireless Computing, Communication and Applications;

Springer: Cham, Switzerland, 2023; Vol. 570, pp. 1–12.

30. Fisher, C. Cloud versus Standalone Server Computing. Am. J. Ind. Bus. Manag. 2018, 8, 1991–2006.

31. EMBA. Default Scan Profile. GitHub 2024. Available online: https://github.com/e-m-b-

a/emba/blob/master/scan-profiles/default-scan.emba (accessed on 1 November 2024).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

 22 of 22

32. EMBA. Installation Guide. GitHub Wiki 2024. Available online: https://github.com/e-m-b-

a/emba/wiki/Installation (accessed on 8 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2026 doi:10.20944/preprints202601.0407.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.0407.v1
http://creativecommons.org/licenses/by/4.0/

