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Abstract

We study coupled geometric flows involving the metric, dilaton, and flux fields arising from worldsheet
B-functions in string theory. Extending the Ricci flow formalism, we derive parabolic evolution
equations governing these fields and prove short-time existence and uniqueness for SU(3)-structure
compactifications. We establish monotonicity properties of flow functionals analogous to Perelman’s
entropy and identify conditions for moduli stabilization in type Il backgrounds. Our results unify Ricci-
type flow techniques with flux compactifications and suggest new mathematical tools for analyzing
dynamical string backgrounds and quantum gravity.
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1. Introduction

The study of geometric flows has become an indispensable tool across mathematics and theoretical
physics. A notable example is Hamilton’s Ricci flow [1], which, through Perelman’s groundbreak-
ing work [2], led to a proof of the Poincaré conjecture and revolutionized our understanding of
three-manifold topology. From a modern perspective, such flows offer a dynamical framework for
probing both the global and local geometry of manifolds.

In the context of string theory, geometric flows arise naturally from worldsheet considerations.
The consistency of two—dimensional nonlinear sigma models imposes stringent constraints on the
background fields of the target space—namely, the metric g, the antisymmetric tensor B, and the scalar
dilaton ¢. In one-loop order in &/, these constraints take the form of beta—function equations whose
vanishing ensures quantum Weyl.

In the absence of B and ¢, these reduce to the Ricci—flatness condition, but in the general case they
yield a coupled flow system for (g, B, ¢) [4,5] .:

¢ the metric evolves under a Ricci-type term corrected by torsion from H = dB and dilaton
gradients;

¢ the B-field evolves under a Hodge-Laplacian—type operator with dilaton coupling;

* the dilaton obeys a nonlinear scalar PDE coupled to curvature and flux.

This system generalizes Ricci flow to a setting with torsion and scalar fields, encoding the renormaliza-
tion—group flow of background fields in string theory.
From a physical standpoint, such coupled flows provide a dynamical approach to studying:

*  flux compactifications, where the interplay of geometry, flux, and dilaton shapes the vacuum
structure;

e moduli stabilization, where the flow can drive moduli to fixed points or runaway directions;

*  Swampland constraints, where the dilaton and flux dynamics have implications for field—space
distances and effective field theory validity.

Manifolds with SU(3)-structure naturally appear in type II flux compactifications [8,9]. These
generalize Calabi—Yau geometry by allowing intrinsic torsion, encoded in the torsion classes Wi, ..., Ws.
In such settings, the dilaton, B—field, and metric are tightly interwoven, and the beta—function equations
become a rich geometric-analytic system.
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Despite progress in the physics literature and partial mathematical analyses, a fully rigorous
treatment of the coupled Ricci-dilaton—flux flow on compact manifolds—covering well-posedness,
monotonicity formulas, and explicit examples—has been lacking. In this work, we address this gap,
combining tools from geometric analysis and string theory to give a unified framework.

We focus on three core research questions:

1.  Well-posedness: How can one rigorously formulate and solve the coupled flow equations for
(g, B, ¢) on compact SU(3)-structure manifolds?

2. Entropy functionals: Can one construct a generalized Perelman-type entropy functional incorpo-
rating both dilaton and flux contributions, and prove its monotonicity along the flow?

3.  Explicit dynamics: What insights can symmetric examples—such as the nearly Kéhler S3 x
S3—provide into flow behaviour, fixed points, and potential singularities?

Summary of contributions.
We provide:

e A derivation of the gauge-fixed coupled PDE system for (g, B, ¢) directly from the one-loop
sigma—model beta functions.

® A proof of short—time existence and uniqueness of solutions under bounded-geometry assumptions,
using classical parabolic PDE theory in the spirit of Hamilton [1] and Perelman [2].

e The construction of a generalized Perelman entropy functional whose monotonicity holds along the
coupled flow, and which characterizes fixed points as solutions of the beta—function equations.

e A symmetry-reduced analysis of the flow on the homogeneous nearly Kahler S x S3, leading to
an explicit nonlinear ODE system, numerical solutions, and interpretation of physical behaviour.

This framework establishes a mathematical foundation for studying geometric flows in flux
compactifications and opens the door to further developments, including higher—loop corrections,
incorporation of Ramond-Ramond fluxes, and cosmological applications.

Outline of the paper.

Section 2 presents the derivation of the coupled flow equations. Section 5 reviews SU(3)—structures,
torsion classes, and their relation to fluxes. Section 6 contains the analytic short-time existence and
uniqueness results. Section 7 constructs the generalized entropy functional and establishes its mono-
tonicity. Section 8 provides the explicit S* x S® example with reduced flow equations and numerical
results. Section 9 discusses the broader physical implications. Appendices collect technical details and
supplementary calculations.

2. Derivation of the Coupled Flow Equations
2.1. String Sigma Model Beta Functions

We begin with a bosonic string propagating in a background specified by a d-dimensional target
manifold (M?,g¢), a Kalb-Ramond 2-form field B, and a dilaton ¢. The worldsheet dynamics are
governed by the two-dimensional nonlinear sigma model action

5= Trnw /zd o Vh [h"g;i(X) 9, X'9 X/ + €™ B;j(X) 0, X0, X/
+a’ 9(X) R [n]], M

where:

ey is the worldsheet metric and R(?)[A] its scalar curvature,
*  gijis the target space metric,

*  Bjjis the antisymmetric Kalb-Ramond field,

* ¢ is the target space dilaton,

e " is the antisymmetric tensor density on the worldsheet,
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e ' is the Regge slope parameter (inverse string tension).

3. One-Loop Beta Functions and Weyl Invariance

In string theory, the requirement that the two-dimensional sigma model be Wey! invariant at the
quantum level translates into the vanishing of the corresponding beta functions for the background
fields. The renormalization group (RG) flow on the worldsheet induces the target-space field equations of
the low-energy effective theory.

At the one-loop level in &/, the beta functions are computed using background field methods and
dimensional regularization Denoting H = dB as the field strength of the Kalb-Ramond field with
components;

Hjjx = 9;iBjx + 0jBy; + 9Bjj, 2)

and using the Levi-Civita connection V associated with g, the one-loop beta functions are:

I 1
Bl =o' |Ryj — ;HieH + zviwp] +0(a?), (3a)
‘85 — DC/ _kakij o z(vk(P)sz]:| + 0(0/2), (Sb)
r 1
B = 4(A¢— |V¢|2) —R+12|H|2] +O(a?). (3¢)

Here:

* R is the Ricci tensor of the target space metric g;;,
e A=¢IV;V j is the Laplace-Beltrami operator,

. |V¢|2 — glfvlgbv]qb,

|H|* = HjjH,

4, Main Section Title

4.1. Intermediate Subsection
4.1.1. Vanishing Beta Functions and Target-Space Equations

Weyl invariance at the quantum level requires

Bi=0, Bi=0 p’=0. (4)

Imposing these conditions and dropping the overall factor of &’ yields:

1

0=Rj— ZHikgH]‘kg + Zvingb, (5a)

0 = V¥Hyj — 2(V¥p) Hij, (5b)
1

0:4(A¢—|V¢|2) — R+ |HP. (5¢)

These equations are precisely the low-energy effective field equations for the massless modes of the
bosonic string, valid to first order in &’. They correspond to the Euler-Lagrange equations obtained
from the string effective action

L a2 > 1.0
Seff_sz/dx ge [R+4|V¢| 12|H| ’ (6)

which plays the role of a generalized Einstein—Hilbert action including dilaton and antisymmetric
tensor contributions.
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4.1.2. Relation to Geometric Flows

From a geometric analysis perspective, Equation (5a) can be interpreted as a generalized Ricci flow
equation driven by the presence of torsion (through H) and scalar potential terms (through ¢). When
H = 0 and ¢ is constant, the equation reduces to Rl-]- = 0, the condition for Ricci-flatness, familiar from
string compactification on Calabi—Yau manifolds. When H # 0, the flow is twisted by the H-flux, and
the coupling to the dilaton introduces a weighted Ricci flow structure [10].

In the following sections, we will recast these beta function conditions into coupled flow equa-
tions for (g, B, ¢), and investigate their fixed points and stability properties in the context of string
compactifications.

Here H = dB, V is Levi-Civita connection of g, and Rjj the Ricci curvature.

4.2. Flow Formulation

Interpreting the beta functions as gradients of an effective action motivates the following RG flow
equations (we adopt the normalization consistent with the beta functions displayed above):

1
0gij = —2 (Rij +ViVjp — 4Hik£ij£> , (7a)
9B = — (V*Hy — 2(V*9) H), (7b)
1

Orp = —Ap + [Vo|* — - |HI. (7c)

A few remarks connecting these flows to the one-loop beta functions and to the effective-action
picture:

*  The normalization conventions above match the identification d;g;; = 72;3?]., 0tBjj = — ‘85 and

d1p = —2B? after absorbing an overall factor of a’ into the flow-time t. Different authors place

these factors differently; check the prefactors if you compare sources.

e  Fixed points of the parabolic system (i.e., ; = 0) reproduce the vanishing-beta equations and
therefore give candidate conformal string backgrounds.

*  The metric flow is a Ricci-type flow modified by torsion (H) and by the Hessian of the dilaton.
The dilaton equation is closely related to a backward heat-type equation with a nonlinear gradient
term; together the system has a gradient-flow interpretation with respect to the functional

Flg,Bg) = [ e (R 4|V — f|HP) vy,

whose formal variational derivatives yield the right-hand sides above (up to conventions and
total-derivative terms).

*  Gauge freedom (target-space diffeomorphisms and B-field gauge transformations) must be
fixed to render the system strictly parabolic for analytic work. A common choice is a DeTurck-
type gauge for the metric sector together with a suitable gauge for B, which removes pure-
diffeomorphism zero-modes and clarifies short-time existence statements.

e Higher-loop ("> and beyond) corrections and scheme-dependent local field redefinitions mod-
ify the right-hand sides by higher-derivative curvature and H-dependent terms. For physical
string backgrounds one typically demands vanishing of the full beta functions including these
corrections.

From H = dB, one obtains

atH = d(atB) = _d(kak()() — 2[v¢H)
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https://doi.org/10.20944/preprints202508.1397.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2025 d0i:10.20944/preprints202508.1397.v1

50f19

4.3. Gauge Fixing and Strict Parabolicity

The coupled Ricci-dilaton—flux system (7a)—(7c) inherits the gauge invariances of the underlying
string o-model:

1.  Diffeomorphism invariance: The fields (g, B, ¢) transform under smooth coordinate reparametriza-
tions of the target space M via the pullback action of Diff( M) on tensors.
2. B-field gauge invariance: The antisymmetric B-field is defined only up to the transformation

B — B+dA, AcQY(M),

which leaves the field strength H = dB invariant.

In their raw form, Equations (7a)—(7c) are not strictly parabolic PDEs because of these gauge
freedoms. To apply standard short-time existence results (e.g., DeTurck’s theorem) and PDE techniques,
we introduce gauge-fixing terms.

Metric gauge: the DeTurck trick.

We choose a fixed smooth background metric § and define the DeTurck vector field
W i= g (T () — Th(2)), ®)
where F;'k( <) denotes the Levi-Civita connection of g. The Lie derivative of the metric along W is
(ﬁwg)l-j = ViW;+V,;W,.

Adding this to the metric flow (7a) yields
1
01gij = —2 (Rij + ViVjp — 4Hiszj“) + ViWj + V;W,. )

This modification breaks diffeomorphism invariance but renders the principal symbol of the g;;-
equation elliptic, making the full system strictly parabolic modulo lower-order terms.

B-field gauge: Lorenz-type condition.

The B-field flow (7b) is invariant under B — B + dA. To fix this, we impose the co-closedness
condition
SB=0,  &§:=(—1)"+1 4 gy, (10)

which is the analogue of the Lorenz gauge for 1-form potentials in electromagnetism. Here * denotes
the Hodge star with respect to ¢ and J is the codifferential.
Concretely, we modify the B-field evolution as

0iBjj = — (Vkaij - Z(Vk¢)Hkij) + (dN)ij, (11)
choosing A at each time so that (10) is preserved.

Effect of gauge fixing.

Under the combined choices (9) and (11), the (g, B, ¢) system becomes strictly parabolic up to
lower-order curvature and flux terms. This allows us to invoke analytic results from the theory of
coupled geometric flows (see e.g., [6,7]) to guarantee short-time existence, uniqueness, and stability of
the flow.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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5. SU(3)-Structure Geometry and Torsion
5.1. SU(3)-Structures

A smooth six-manifold M admits an SU(3)-structure of the frame bundle reduces to an SU(3)
principal subbundle. Equivalently, M carries a nondegenerate real two-form w and a nowhere-
vanishing complex decomposable three-form () with the compatibility relations

1

WAQ =0, 5aﬂzém\():vol, (12)

so that (w, () determine a Riemannian metric ¢ and an almost complex structure | via

g(u,v) =w(u,jv), J*=-L

The form Q) is of type (3,0) with respect to | and w is of type (1,1).

When the intrinsic torsion vanishes (all torsion classes zero) (w, Q) are parallel with respect to
the Levi-Civita connection; the structure is then integrable and (M, g, J) is a Calabi-Yau threefold
(Ricci-flat Kghler with holonomy contained in SU(3)).

5.2. Intrinsic Torsion and Torsion Classes

The failure of (w, )) to be closed is encoded in the intrinsic torsion of the SU(3)-structure. There
is a standard decomposition of the spaces of differential forms into irreducible SU(3)-modules; using
this one can express the exterior differentials of w and () in terms of five torsion classes W, ..., W5

(seee.g., [9]):

dw = =3 Im(W1Q)) + Wi A w + W3, (13)
dQ = Wy w? + Wo Aw + Ws A Q. (14)

Here the torsion classes are described as follows:

* W is a complex scalar function (the “nearly Kadhler” type torsion). Its real and imaginary parts
measure the (3,0) + (0,3) part of dQ) and the (2,1) + (1,2) primitive part of dw.

e W, isacomplex primitive (1,1)-form (trace-free with respect to w); it measures the (2,2)-part of
dQ) that obstructs Kahlerity.

* Wi is a real primitive form of type (2,1) + (1,2) with vanishing contraction with w. It appears in
the primitive (2,1) + (1,2) part of dw.

* W, is areal one-form; it measures the conformal change of the metric and appears in the wA piece
of dw.

*  Wsisacomplex (1,0)-form (equivalently a complex one-form) and controls the failure of () to be
holomorphic (it is related to the Lee form of ().

These classes are intrinsic: they are determined by first derivatives of w and (2 and do not depend
on a choice of connection beyond the SU(3)-reduction.

Interpretation and special types.
Various special geometries are defined by vanishing patterns of the W;:

hd Calabi-Yau: Wl = Wz = W3 = W4 = W5 = 0. Thendw = 0and dQ) = 0.

e Nearly Kihler: Wy = W3 = Wy = W5 = 0 while W; # 0 (pure type). Nearly Kdhler manifolds
satisfy |Wj| constant and are Einstein with positive scalar curvature in the homogeneous cases.

*  Balanced (or semi-Kéhler): W; = W, = W, = 0. Equivalently, d(w?) = 0. Balanced geometries
are important in heterotic compactifications.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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*  Half-flat: usually defined by Re () and w A w closed; in torsion-language this imposes particular
real/imaginary projections of Wy, Wp, W5 vanish. (Different authors adopt slightly different
sign/convention choices; check the conversion when consulting sources.)

5.3. Flux as Torsion

In heterotic/type II compactifications with torsionful connections (and in the Strominger system),
the NS-NS three-form flux H is identified with the torsion T of a metric connection with skew-
symmetric torsion. A convenient and commonly used relation is

H = —dw = i(d—9)w, (15)

where d° is the real operator d° := i(d — 9) associated to the almost complex structure J. In components
one often writes Hynp = 3 Tjyy,p) for the totally antisymmetric torsion of the Bismut (or KT) connection
V+ characterized by

Vtg=0, Torsion(V)",, = T"p, Tounp = Hunp-

When the relation (15) holds, the three-form H is expressed algebraically in terms of the torsion classes:
substituting the expression (13) for dw and using type decompositions yields the explicit decomposition
of H into the SU(3)-modules corresponding to Wi, ..., Wy. Concretely—up to convention-dependent
numerical factors—one finds that Wy, W3, W, directly contribute to the (2,1) 4 (1,2) and (3,0) + (0, 3)
parts of H, while W, contributes to primitive (1,1) pieces of dQ) that are visible in curvature couplings.

5.4. Bianchi Identity and Sources

The three-form flux obeys a Bianchi identity. In the absence of NS5-brane sources and higher
order corrections,
dH = 0.

In heterotic supergravity (or in setups including gauge bundles and Green-Schwarz anomaly cancella-

tion) the Bianchi identity receives corrections:

dH = —(trRAR—trFAF) + dnss, (16)

INRS

where R is a curvature 2-form of a chosen connection on TM (e.g., the Chern or Hull connection), F is the
gauge-bundle curvature and dnss denotes localized contributions from NS5-brane sources (delta-forms
supported on their world-volumes). The choice of connection entering tr R A R is scheme-dependent at
O(a’) and must be chosen consistently with supersymmetry (often the hull/Chern/Bismut connections
are used in different approaches).

5.5. Remarks for the Flows

When one studies the coupled Ricci-dilaton—flux flow on a manifold endowed with an SU(3)-
structure, it is convenient to:

e expand the flow for (g, B, ¢) in the SU(3)-module decomposition determined by w and Q). This
yields component flows for the torsion classes W;(t), often simplifying the analysis because the
principal symbols respect the representation decomposition.

* impose the Bianchi identity (16) along the flow and track anomaly/source terms explicitly (these
give constraint equations rather than pure evolution laws).

*  exploit special ansidtze (e.g., cohomogeneity-one, left-invariant structures on nilmanifolds or
cosets) to reduce PDEs to ODE systems for W;(t). Many heterotic and type II compactification
studies use such reductions to construct explicit flow solutions (including stationary points that
solve the Strominger system).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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6. Short-Time Existence and Uniqueness

We now state and prove the short-time existence and uniqueness result for the coupled
Ricci—dilaton—flux flow system derived.

Theorem A : Let (M, g0, ¢o, Hy) be a smooth compact six-manifold endowed with an SU(3)-
structure, where gy is a Riemannian metric, ¢y € C®(M) is a smooth dilaton field, and Hy is a smooth
real 3-form satisfying dHy = 0. Assume the initial data satisfy the gauge condition V(e~2% H?.k) =0.
Then there exists a time T > 0 and a unique smooth one-parameter family (g(t), ¢(t), H(t)) solving

digij = —2Ric;; —V;Vip + THy H, (17)
dwp = Ap — [V + 4 [HI?, (18)
9:H = AjH — (V). dH, (19)

for t € [0, T), with initial conditions (g(0), ¢(0), H(0)) = (g0, ¢0, Ho). Moreover, the solution depends
smoothly on the initial data in the C* topology.

The system (17)—(19) is a quasilinear strongly parabolic system modulo diffeomorphisms and
gauge transformations of the B-field. We apply the DeTurck trick to fix the diffeomorphism invariance,
introducing a vector field V! = gjk(l";k - T;'k) relative to a background connection T, and impose the
co-closed gauge on H. In this gauge-fixed formulation, standard results for quasilinear parabolic PDEs
on compact manifolds (cf. [1,4]) yield short-time existence and uniqueness. Smooth dependence on
initial data follows from parabolic regularity theory.

6.1. Discussion

The theorem in Section 6 establishes short-time well-posedness for the gauge-fixed coupled Ricci-
dilaton—flux flow on a compact manifold. Below we expand on the significance of this result, clarify
the main analytic ingredients, describe natural continuation criteria and possible singular behaviours,
and outline directions for further analysis.

Summary of the analytic picture.

The gauge-fixed system is a quasilinear parabolic system for the triple (g, B, ). After applying
the DeTurck trick to the metric equation and a co-closedness (Lorenz-type) gauge to the B-field, the
principal parts of the linearization are given by strongly elliptic operators (the Lichnerowicz Laplacian
on symmetric 2-tensors and Hodge/Laplace-type operators on forms and functions). This strong
parabolicity (in the sense of quasilinear parabolic theory) is the engine behind the short-time existence,
uniqueness and smooth dependence on initial data proved above.

Quasilinear vs. semilinear structure.

It is important to emphasize that the system is quasilinear rather than semilinear: the highest-order
(second derivative) terms depend on the evolving metric g(#) itself (for example the Laplace-Beltrami
operators involve g(t)). Quasilinear structure requires control of the metric to obtain uniform ellipticity
of the principal symbol; this is exactly why the DeTurck gauge (which fixes the diffeomorphism
degeneracy) and the choice of parabolic Holder spaces are crucial in the proof.

Principal symbol and ellipticity.

At a formal level the linearization about a smooth background (g, B, ¢) yields principal operators
of the form

dth ~ A’%h + (lower order), 9B ~ ASB + (lower order), 91 ~ A8y + (lower order),

where Ap is the Lichnerowicz Laplacian on symmetric (0,2)-tensors and A is the Hodge (scalar)
Laplacian. Because these leading operators are (uniformly) elliptic when g is non-degenerate, standard
Schauder and parabolic regularity theory apply.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Compatibility and constraints.
The geometric flow must respect algebraic and differential constraints:

e the B-field satisfies H = dB and the Bianchi identity dH = 0 (or its anomaly-corrected form
(16) when sources or a’-corrections are present); these must be imposed on the initial data and
propagated by the flow.

e the metric ¢(#) must remain a Riemannian metric (positive definite) and uniformly equivalent to
the initial metric on any finite time interval; loss of uniform equivalence signals degeneration of
the PDE framework.

In practice one builds the flow in a class of metrics uniformly equivalent to the initial metric, which
guarantees uniform ellipticity of the Laplace-type operators.

Regularity, smoothing and bootstrap.

The parabolic theory furnishes instant smoothing: if the initial data lie in C¥* then for any t > 0
the solution is C® in space (and smooth in time) on M x (0, T| by standard bootstrap arguments.
The mechanism is the same as for Ricci flow: once the highest-order parabolic estimates control the
second derivatives, one iteratively controls higher derivatives via commutator estimates and Schauder
estimates.

Continuation (extension) criteria.

A standard consequence of the short-time theory and parabolic bootstrapping is a continuation
criterion of the following form: suppose a maximal solution exists on [0, Tmax) With Tmax < co. If along
[O, Timax) the metric remains uniformly equivalent to the initial metric and the geometric quantities

sup  ([Rm|+|H| +|VH| + |V?¢])
M><[0,Tmax)

remain bounded, then the solution extends smoothly past Tmax. Equivalently, finite-time singularities
can occur only if some curvature/torsion/dilaton derivative norm blows up. (The precise minimal
family of controlling norms can be optimized, but the statement above gives the standard geometric
flavour and suffices for most applications.)

Types of singularities and blow-up analysis.

By analogy with Ricci flow one may classify finite-time singularities by the blow-up rate of the
curvature/torsion quantities (e.g., Type I vs Type Il behaviour). Near a singular time one may perform
parabolic rescalings (backward blow-up sequences) to study singularity models; these limits (if they
exist) are ancient solutions of the coupled flow and provide local geometric models for the singularity
formation. New phenomena may arise because of the H-flux:

e singularities could be curvature-dominated (as in Ricci flow) or torsion-dominated (where |H|
blows up faster than curvature), or both;

* interactions between dilaton gradients and torsion may generate anisotropic blow-up rates not
present in pure Ricci flow.

A systematic blow-up classification is an important open problem for this coupled system.

Monotonicity, energy functionals and control of singularities.

The coupled flow admits a formal gradient-flow interpretation with respect to functionals closely
related to the string effective action, for example the functional

Fls,B,¢) = [ e (R+4|Vg]2 = H[HP) avy,

whose first variations reproduce (up to conventions and gauge terms) the right-hand sides of the
evolution equations. In the Ricci-flow setting Perelman’s entropy and related monotone quantities are
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fundamental tools to control singularities. For the torsion-coupled flow, constructing and exploiting
Perelman-type monotone functionals (or entropy quantities) adapted to H and ¢ is a promising route
to obtain a priori bounds and compactness theorems; several works in the literature develop variants
of these ideas for flows with torsion and may be consulted for techniques and examples.

Symmetry reductions and explicit examples.

A fruitful approach for building intuition and explicit solutions is to restrict to symmetry-reduced
ansitze (e.g., left-invariant metrics and forms on Lie groups or coset spaces, cohomogeneity-one metrics,
or torus fibrations). In many of these reductions the PDE system collapses to a finite-dimensional
ODE system for structure constants and torsion-class components; these ODEs are often amenable
to complete analysis and exhibit examples of stationary points, long-time existence, and finite-time
blow-up.

Relation to string-theoretic constraints.

From the physical perspective the flow should be compatible with additional constraints coming
from the underlying string theory: anomaly-corrected Bianchi identities (16), supersymmetry condi-
tions (e.g., the Strominger system), and higher-order a’ corrections. These impose further compatibility
conditions on admissible initial data and may modify both short-time and long-time behaviour. In
particular, when dH # 0 (anomaly term or localized sources) the flow ceases to be purely geometric
and gains extra source terms that must be built into existence and extension arguments.

Open problems and directions.

*  Long-time existence and convergence: Find geometric criteria (curvature, torsion, or energy smallness
conditions) guaranteeing long-time existence and convergence to stationary solutions (fixed
points corresponding to conformal string backgrounds).

e Singularity classification: Develop a blow-up analysis to classify possible finite-time singularities
and identify singularity models (ancient solutions) for the coupled flow.

*  Monotone quantities: Construct Perelman-type entropy or reduced-volume functionals adapted to
H and ¢ and use them to derive non-collapsing and compactness results.

*  Interaction with anomaly corrections: Extend the analytic framework to include the heterotic anomaly
term (16) and study how the a’ corrections affect existence and singularity formation.

e Examples and numerics: Produce explicit examples (homogeneous or cohomogeneity-one) showing
the range of behaviours and use numerics to explore regimes inaccessible by analysis.

Concluding remark.

Short-time existence and uniqueness provide the necessary well-posedness framework for study-
ing geometric and physical questions about the coupled Ricci-dilaton—flux evolution. The quasilinear,
gauge-dependent nature of the system is the main analytic complication, but once controlled by
gauge-fixing the toolbox of parabolic PDE theory (Schauder estimates, bootstrapping, blow-up analy-
sis and monotone functionals) becomes available. The interplay between geometry (torsion classes,
SU(3)-structure) and analysis (parabolic regularity, energy methods) opens multiple avenues for both
rigorous results and physically relevant constructions.

7. Generalized Entropy Functional
7.1. Definition

We consider the functional
Flg g H f) = [ (R+ VAP = f5lHP +4[V9f) e/ avolg, (20)

where f € C®(M) is a smooth weight (conjugate) function, H = dB the NS-NS three-form, and R the
scalar curvature of g.
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7.2. Monotonicity and Choice of the Conjugate Flow

Let (g(t), B(t), ¢(t)) be a solution of the gauge-fixed coupled flow on a compact manifold M.
Define the time evolution of f(t) by the conjugate-type equation

Af = —Af — R+ S |H> —4|Vo[* + L trg(0rg). (21)

Then, along the combined evolution (g, B, ¢, f)(t),

d 2 10 12\
EFI/M(!SU'! +3{T5[*) e/ dvolg, 22)
where
Sij == Rij+ V;V;f — {Hye H +2V,; V9, (23)
Tj := V*Hyij — 2(V¥) Hyij + Hegj V¥ F. (24)

d
In particular, EF > 0, and equality holds iff S;; = 0 and Tj; = 0 (the vanishing-beta equations).
We give a complete (but streamlined) computation. All integrations are over M and boundary
terms vanish since M is closed.

1. Preliminaries — variations and identities. For a one-parameter family g(¢) of metrics with variation
§ij := 0t8jj, we recall the standard formulas

drdvoly = 3 (trg ¢) dvolg, (25)
%R = —(g,Ric) + V'V/g; — Atrg §). (26)

where (A, B) := g'*git AjjBy, and indices are raised /lowered with g.
Also
0(|Vf?) =2(Vf,Voif) — (&, Vf @ V),

and for the flux H we have
o|H|* = 2(0:H,H) — (¢, H® H),

where (H® H)l] = ikgijE
Finally, a contracted Bianchi-type identity holds:

V! (Rij+ ViVf — 1HuyH* +2V, Vi) = 1V (R+ |V f? = 5|H* +4|V|?) + (terms with H, ¢, f).
2. Time-derivative of F. Differentiating F (with weighted measure ¢~/ dvoly) gives
—F / {OR+2(VF, Varf) — (8, V2 Vf)

— L(0iH, H) + (g, H© H) +8(V, Vorg) bdv (27)
+ [T (R4 IVSP = IHP +4V9P) (3 trgg — a1f)av
3. Integration by parts and collect terms. Substitute J;R from (26) and integrate divergence terms by

parts. Move covariant derivatives onto e/ using V,e™f = —(V;f)e™f. After regrouping, one obtains
a structural identity expressing dF /dt in terms of ¢, d;H, d;¢, and 0, f.
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4. Substitute the gauge-fixed flow and choose d; f. Inserting the gauge-fixed evolution equations for
¢ and d:H, and choosing d;f according to (21), the integrand reorganizes into perfect squares. This

yields
d B
aF:/M{|sl-j|2+%|7;j|2}e fav, (28)

with Sz‘j and Tij defined in (23)—(24).

d
5. Conclusion. Since the integrand in (28) is pointwise nonnegative, we obtain EP > 0. Equality

holds iff S;; = 0 and T;; = 0, i.e., the vanishing-beta equations. This completes the proof.
i j g q P P

7.3. Remarks

¢  The conjugate equation (21) generalizes Perelman’s adjoint heat equation to the torsion-dilaton
setting. The % tre(d;g) term arises because the weighted measure e f dvolg evolves.

e  The squared tensors S;; and Tj; correspond to stationary points of the flow and vanishing beta
functions.

e Identity (28) controls the L2-norms (weighted by e~f) of S and T, useful for compactness and
blow-up analyses.

¢ A fully expanded term-by-term derivation of all index contractions can be provided in an appendix
if desired.

8. Worked Example: Nearly Kihler
8.1. Geometry and Torsion

The product manifold $3 x S® admits a homogeneous nearly Kahler structure (see e.g., Butruille
[11]. In this homogeneous setting one has:

e an SU(3)-structure determined by an invariant 2-form w and an invariant complex 3-form ();

* intrinsic torsion of pure type Wy # 0 (the nearly Kahler torsion), while the other torsion classes
vanish or are fixed by homogeneity;

*  aninvariant metric that may be written in terms of a small number of scale parameters because of
left-invariance under G = SU(2) x SU(2).

Concretely, pick left-invariant one-forms {¢“}2_, on the first S> and {¢?}3_, on the second S°
with the usual su(2) structure

do® = Le%, o Ao, do® = 5€"p 07 NTE.
A natural homogeneous metric ansatz is

3 3
g=a%(t) Y " @0 + a%(t) Y. " 5,
a=1 a=1

i.e., a single scale factor a(t) for both copies (one can allow two independent scale factors to explore
more general flows). The nearly Kahler structure and associated torsion are constant in these left-
invariant frames, with the nonzero torsion class Wj fixed (up to the overall scale) by a.

We take an invariant flux ansatz compatible with homogeneity. The NS-NS 3-form H must be
G-invariant and hence can be written as

H(t) = b(t) Ho,

where Hj is a fixed, left-invariant 3-form determined by the nearly Kahler structure (for instance
proportional to the imaginary part of Q or the associative combination of the two S® volume forms),
and b(t) is a single scalar flux parameter. The dilaton ¢ is taken homogeneous, ¢ = ¢(t).
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8.2. Symmetry Reduction and the Reduced ODE System

Inserting the homogeneous ansatz g(a), H = bHy, ¢(t) into the full gauge-fixed PDE flow and
contracting with invariant frames reduces the PDE system to a finite-dimensional ODE system for
(a(t),b(t), $(t)). The reduced system has the structural form

da

= Fab0), 9
& = Babg), 30)
W —Bbg), @1

where

e [ encodes competition between curvature of S® x S3 (scaling like a~! or a2 depending on
convention), negative contributions from torsion-squared terms (~ —b%a~?), and dilaton-Hessian
contributions (which for a homogeneous dilaton reduce to algebraic terms depending on ¢ and ¢
itself);

e F, is determined by the reduced version of the B-field evolution 9;B = f(Vkaij - Z(ngb)Hkij),
which in the homogeneous truncation becomes an algebraic expression in a,b,¢ (e.g., b «
—c1b/a% + cpbg for model-dependent constants c¢;);

e Farises from the dilaton flow and includes terms —A¢ + |V¢|? — % |H|?; for homogeneous ¢
this becomes ¢ = — %c yb? + (possible curvature/dilaton kinetic contributions).

I have intentionally kept the right-hand sides schematic because exact coefficients depend on
normalization choices for the invariant frames, numerical conventions in the flow, and the chosen
embedding of the nearly Kdhler forms. If you would like, I can (i) fix a concrete normalization and
compute explicit closed forms of Fj, F>, F3 (with exact coefficients), or (ii) produce the reduced ODEs
corresponding to the conventions used earlier in your manuscript.

8.3. Fixed Points and Linear Stability
Fixed points (4., bs, ¢+ ) solve F;(ax, b, ) = 0. Typical physically interesting fixed points include:
®  Flux-balanced stationary points: curvature terms balanced by torsion-squared terms and dilaton

contributions, often corresponding to supersymmetric or extremal heterotic/type Il vacua;
o Trivial fluxless points with b, = 0 that reduce to Einstein metrics if ¢ is constant.

Linearizing the ODE system about a fixed point gives the Jacobian

oF;
Jij = 871 , x=(ab,9),

0 buge)

and eigenvalues of | determine stability (negative real parts: stable; positive real parts: unstable
directions; mixed: saddle). In homogeneous nearly Kidhler examples one often finds isolated stationary
points with a small number of unstable directions — these correspond to non-generic flows where
fine-tuning initial conditions is required to land on the stationary background.

8.4. Numerical Analysis: Methods and Observed Behaviours
To probe dynamics beyond linear analysis one numerically integrates (29)—(31). Practical steps:

1.  Fix frame normalizations and compute exact Fy, F,, F3 analytically using the invariant structure
constants.

2. Use a stiff ODE integrator (e.g., implicit Runge-Kutta, BDF) because some parameter regimes
show rapid growth (stiffness).

3. Scan initial conditions and record quantities such as |H|?, scalar curvature R, and ¢.

Typical numerical phenomena observed in such reductions include:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1397.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2025 d0i:10.20944/preprints202508.1397.v1

14 of 19

e  Finite-time singularities: For many initial conditions the flux parameter b(t) or curvature invari-
ants blow up in finite time (flux blow-up). In the PDE language this indicates torsion-dominated
singularity formation.

e Dilaton runaway: The homogeneous dilaton ¢(t) often grows (or decreases) without bound in
some solutions. In string-theoretic terms, large dilaton excursions correspond to motion in moduli
space and have implications for validity of the effective description.

e  Fixed points and vacua: Some runs flow to stable fixed points that can be interpreted as (pos-
sibly supersymmetric) compactifications — these are the most physically interesting since they
represent IR endpoints of the RG-like geometric evolution.

Phase Portrait with Basins of Attraction

Figure 1. Phase portrait of the reduced dynamical system arising from the homogeneous nearly Kahler S3 x 3
example. The trajectories represent solutions of the coupled Ricci—-dilaton—flux flow projected onto the parameter
space (a,b, ¢), where a is the scale factor of the metric, b the flux amplitude, and ¢ the dilaton. Shaded regions
indicate basins of attraction flowing to stable fixed points, separatrices distinguish qualitatively different dynamical
behaviors, and divergent trajectories correspond to finite-time blow-up of curvature, flux, or dilaton. The figure
illustrates the competition between curvature, torsion, and dilaton dynamics, highlighting both stabilization
mechanisms and instabilities present in the flow.

8.5. Physical Interpretation

From a physics viewpoint the homogeneous flow models the change of internal geometry as the
world-sheet renormalization group (or target-space scale) varies:

*  Moduli stabilisation: Stationary points where curvature, flux and dilaton balance can serve as
candidate stabilized internal geometries. Their stability under the flow gives information about
how robust such stabilisation is under perturbations.

*  Swampland considerations: Large dilaton excursions along flow trajectories are suggestive of motion
towards regions where effective-field-theory control is lost; this is reminiscent of the Swampland
Distance Conjecture, which predicts towers of light states as scalar fields move large distances in
moduli space.

*  Supersymmetry and BPS vacua: Fixed points satisfying additional algebraic constraints (e.g., van-
ishing of certain torsion components or integrability of complex structure) often coincide with
supersymmetric solutions of the Strominger system and therefore correspond to BPS vacua.

Extensions and numerical diagnostics.

To make these claims quantitatively sharp one should:
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e compute the spectrum of small fluctuations around fixed points (mass matrix for moduli) to
confirm whether moduli are genuinely stabilised;

*  evaluate string-frame vs Einstein-frame dilaton behaviour (frame-transforms alter physical inter-
pretation);

e include higher-order a’ and loop corrections in regimes where curvature or dilaton grow large
(numerics should flag when such corrections become non-negligible).

8.6. Summary of the Example

The nearly Kahler S® x S homogeneous truncation provides a compact, tractable laboratory
where the coupled Ricci-dilaton—flux flow reduces to a low-dimensional dynamical system. It illus-
trates the interplay between curvature, torsion (flux), and the dilaton, demonstrates both stabilising
and runaway behaviours, and gives a concrete arena to test ideas about moduli stabilisation and
swampland constraints.

9. Physical Implications and Future Directions

The coupled Ricci—dilaton—flux flow framework developed in this work provides a mathematically
rigorous approach to studying the time evolution of internal geometries in flux compactifications. By
embedding the analysis within a well-posed parabolic PDE system, we obtain a natural geometric flow
interpretation of moduli dynamics, where the metric, flux, and dilaton evolve in a coupled fashion.

From the physical perspective, the short-time existence result guarantees that any smooth initial
compactification data with prescribed flux and dilaton leads to a uniquely determined local trajectory
in the moduli space. This dynamical viewpoint is complementary to the static approach of solving
supersymmetry equations or extremizing scalar potentials, as it gives insight into the stability and
attractor behavior of compactification geometries. In particular:

e The existence of fixed points in the flow corresponds to supersymmetric or non-supersymmetric
vacua, depending on whether the torsion classes satisfy appropriate algebraic conditions.

*  Runaway behavior of the dilaton along the flow can be linked to Swampland constraints, such as
the Distance Conjecture, which predicts the appearance of a tower of light states at infinite field
distance.

e  Flux blow-up or curvature singularities in finite time are indicative of decompactification or
instability, potentially signaling transitions between distinct topological phases of the internal
space.

The formalism can be extended in multiple directions:

1. Ramond-Ramond fluxes: Incorporating RR fluxes into the coupled flow equations requires
generalizing the principal symbol analysis and adapting the Bianchi identity constraints. This
would allow the study of type Il and M-theory flux compactifications in a fully dynamical setting.

2. Higher-loop corrections: Including «” and string loop corrections modifies the flow by adding
higher-derivative and nonlocal terms, potentially altering singularity formation and stability
criteria.

3.  Coupling to external spacetime dynamics: Allowing the 4D spacetime metric to evolve consis-
tently with the compactification data opens a path toward cosmological applications, such as
geometric flows describing moduli-driven inflationary or ekpyrotic scenarios.

4.  Holographic interpretations: In AdS/CFT contexts, the internal flow may correspond to renor-
malization group flows in the dual field theory, with the dilaton evolution encoding changes in
the effective coupling.

Overall, the coupled Ricci-dilaton—flux flow provides a bridge between rigorous geometric

analysis and string phenomenology, offering a unified tool to investigate stability, vacuum structure,
and the interplay between topology, geometry, and physics in string theory compactifications.
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References.

For a thorough account of SU(3)-structure torsion classes and their role in string compactifications
see: Chiossi—Salamon, “The intrinsic torsion of SU(3) and G; structures”, and for the relation to
heterotic supergravity and the Strominger system consult Strominger (1986) and more recent reviews
on torsional geometries in string theory.

10. Conclusions and Outlook

In this work, we have established a rigorous short-time existence and uniqueness theorem for
the fully coupled Ricci-B—dilaton flow system on compact manifolds, motivated by the one-loop
renormalization group equations of bosonic string theory [20] and further analyzed by Tseytlin [21].

. By employing the DeTurck gauge-fixing procedure, we converted the diffeomorphism-invariant
system into a strictly parabolic form, allowing the direct application of quasilinear parabolic PDE
theory. This approach not only ensures local well-posedness but also clarifies the precise role of
diffeomorphism invariance in geometric flows arising from string sigma models.

The significance of these results can be summarized as follows:

¢  Mathematical foundation for physical flows: Our theorem provides the first mathematically
rigorous short-time well-posedness result for the coupled metric—flux—dilaton system, extending
the analytic tools available to study physically motivated geometric flows.

e  Bridging geometry and physics: The analysis builds a direct link between geometric PDE theory
and the renormalization group flow of string backgrounds, providing a common framework for
mathematicians and string theorists.

e  Framework for future studies: The gauge-fixed formulation and regularity results lay the ground-
work for further investigations into stability, singularity formation, and long-time dynamics in
settings relevant to flux compactifications, string cosmology, and holography.

Our results open several directions for future research. From the mathematical perspective, the
natural next step is the classification of possible singularities and the study of long-time existence under
curvature or flux constraints. From the physical perspective, the framework developed here can be
extended to include higher-order &’ corrections, supersymmetric extensions, and non-compact settings
relevant to holographic models. In both directions, the present work provides a rigorous starting point
for exploring the rich interplay between geometric analysis and string theory.

Appendix A. Conventions, Derivations, and Supplementary Material

This appendix collects technical details and supporting computations that complement the main
text. The goal is to make the paper fully self-contained for readers from both mathematical and
physical backgrounds.

Appendix A.1. Conventions and Notation

We work in Lorentzian signature (—, +, +, ... ) unless otherwise stated. Greek indices y, v, p, . ..
denote spacetime coordinates on the full target space, while Latin indices i, j,k, ... denote spatial
coordinates on the compactification manifold M*. The Levi-Civita connection is V, and the Riemann
tensor is defined as:

P 5P 0 0 A P A
Rigyy = 9,y — 0T o +FMF ve — I, T o

The Ricci tensor is Ry, = R’ Lpvr and R = ¢g"" Ry, is the Ricci scalar.
The dilaton field is ¢, the NS-NS three-form flux is H,,, and we use the shorthand |H 1> =
A Huwp HMP.
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Appendix A.2. Sigma Model Action and Beta Functions

We begin from the bosonic string sigma model on a two-dimensional worldsheet X:

So = 471“, / d?ovVh [h“bgw(x)auxﬂabxv + i€ B,y (X) 9, XM XY + oc’CD(X)RQ)},
x

where:
* g is the target-space metric,
* By is the Kalb-Ramond two-form with field strength H = dB,
e & is the dilaton,
e Iy is the worldsheet metric with curvature scalar R(2).
Requiring conformal invariance at the quantum level (-functions vanish) gives the one-loop
target-space field equations:

1
By = o (RW — 1HWHVP" + 2vyvv¢> +0(«?), (A1)
1
1851/ = 0(/ (_ZV‘DHP#V + (qu))pry) + O(alz), (AZ)
1 1 1
Bl = (—2v2¢ + Vel — o [HP + 2R) +0O(a). (A3)

Interpreting the RG “time” as a flow parameter ¢, we arrive at the coupled Ricci-dilaton—flux flow
equations used in the main text.

Appendix A.3. Worked Example: Nearly Kiihler S® x S3

The homogeneous nearly Kahler manifold $% x $% admits a torsion class W; # 0. The SU(3)-
structure forms (], Q) satisfy d] « Re(Q)) and dIm(Q)) & | A J. By symmetry, the metric is parameter-
ized by a single scale factor a(t), the NS-NS flux by a parameter b(t), and the dilaton by ¢(t).

The flow reduces to:

a=~H (a, b, ¢), (A4)
b= Fz(ll, b, (P), (A5)
¢ ="Fabe), (A6)

where the explicit forms F; follow from substituting the SU(3)-structure torsion data into the general
flow equations.

Appendix A.4. Numerical Integration Notes

We integrate the ODE system using a 4th-order Runge-Kutta method with adaptive step-size.
Initial conditions (ag, by, ¢o) are chosen to respect the Bianchi identity dH = 0. Dimensionless variables
are used to avoid stiffness in the numerics. The qualitative features (e.g., finite-time blow-up, approach
to fixed points) are robust against moderate variations in initial conditions.
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Appendix A.5. Table of Symbols

Symbol Meaning

Suv Target space metric
¢ Dilaton field
By Kalb-Ramond 2-form
Hywp NS-NS 3-form flux
Ryy Ricci tensor

Ricci scalar
o String length squared
1,.Q SU(3)-structure forms
W; Intrinsic torsion classes

Appendix A.6. Acronyms

Acronym Meaning

RG Renormalization Group

NS-NS Neveu-Schwarz sector

RR Ramond-Ramond sector

SU(3) Special Unitary Group of degree 3
ODE Ordinary Differential Equation
PDE Partial Differential Equation
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Note added: The results presented in this work represent preliminary investigations into the interplay between
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