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Abstract: Calcium (Ca?*) is a macro-mineral essential for the growth, development, yield, and quality
of vegetables and fruits. It performs structural, enzymatic, and signaling functions in plants. This
review outlines Ca?* translocation from soil to fruit via the plant xylem network, emphasizing the
importance of Ca* compartmentalization within fruit cell organelles in developing the Ca?-
deficiency disorder, blossom-end rot (BER). The causes and possible control measures of BER are also
discussed. Soil available Ca? enters the root apoplast with the water flow and moves towards the
xylem via apoplastic or symplastic routes. The transpiration force and growth of organs determine
the movement of Ca?-containing xylem sap to aerial plant parts, including fruits. The final step of
fruit-Ca?>* regulation is the partitioning among cellular compartments, which determines
susceptibility to Ca?-deficiency disorders such as BER. Depleting cytosolic and apoplastic Ca** due
to excessive deposition in organelles such as the vacuole may lead to disintegration of the plasma
membrane, resulting in BER, even at high Ca?" availability at the blossom end of the fruit. BER
management requires cultural and physiological practices that ensure Ca? translocation to the fruit
and proper Ca? compartmentalization. The use of BER-resistant and Ca?*-efficient cultivars may also
help in BER management. Therefore, a comprehensive understanding of Ca? dynamics in plants is
crucial for managing BER, reducing production costs, minimizing environmental impact, and
enhancing crop productivity.

Keywords: BER; Ca?*-deficiency disorder; cellular organelles; Ca?-transportation; Ca?-
compartmentalization

1. Introduction

Calcium (Ca?") as a macro-mineral is essential for plant growth and development [1-3], and is
found within plants in higher quantities than any other divalent inorganic cations. When hydrated,
Ca? is a big cation with a 41.2 A ionic radius [4]. Among the macronutrients, Ca?* is third after
nitrogen (N) and potassium (K) in terms of quantity in a plant body, which reflects its essentiality for
the plant. The plant requires 1-3 mM Ca? for proper growth and development [5]. It plays roles in
membrane and cell wall stabilization, cell function, signal transduction, growth and development,
gene expression, and stress resistance [6—10]. Ca?*is required for every cellular compartment, such as
cell wall, apoplast, plasma membrane, cytosols, and organelles suspended within cytosols, e.g.,
vacuoles, endoplasmic reticulum (ER), plastid, Golgi apparatus, and nucleus (Fig.1). Ca*
concentration varies from 107 M to 10 M across the cell organelles. Though cytoplasm contains 107
M calcium at the resting stage, it increases to 105 to 104 M in the storage organelles and 10 M in the
extracellular milieu [11,12]. The Ca?* content of mitochondrial and nuclear matrices is similar to that
of the cytosol. The free Ca?* content in cytosol and vacuoles is 100-200 nM and 1-10 mM, respectively
[13,14], and 60% of the plant Ca? remains as calcium pectate. Ca* content in plants varies greatly;
shoot-Ca? ranges from 0.1%-5%, while fruit-Ca?  varies from 0.2%-0.3% of total dry mass [15]. The
proportion of Ca? in specific tissues can be more than 10% without affecting plant growth and
development [4].
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Calcium is essential for cell wall integrity, membrane permeability, and stability and plays a role
in the signaling route as a messenger [15-18]. The available Ca? enters the root apoplast with the
water flow [19], and moves towards the xylem, following either apoplastic or symplastic routes [20].
Along the xylem water flow, Ca* is transported to the leaves and fruits based on their transpiration
strength during the daytime, while at night, root pressure does the job [21]. Poor Ca? translocation
to the fruit or leaf tip can result in Ca?* deficiency disorders, e.g., blossom-end rot (BER), tip
burn, blackheart, brown heart, bitter pit, empty pod, and fruit cracking (Table 1) [20,22-26].

Among numerous Ca?-deficiency disorders, BER is most prevalent and causes substantial
economic losses worldwide. BER often initiates at the fruit blossom part (away from the peduncle)
during early fruit growth stages (2-3 weeks following anthesis) [27-37]. Insufficient Ca?" supply to
the rapidly growing fruit tissue causes the disintegration of the plasma membrane and lysis of the
middle lamella, resulting in cell plasmolysis and a water-soaked appearance. Subsequent drying
develops sunken, brown, and black spots that are limited to the fruit blossom end or can encompass
the entire fruit [38]. BER incidence is positively correlated with root’s relative water content, fruit
number per plant, potassium (K*) and vitamin C levels of fruits and negatively correlated with plant
height, leaf chlorophyll content, total yield, and fruit Ca? content in tomato [39,40].

Though agricultural soils are not usually low in Ca?, Ca?*-deficiency disorders are numerous
and cause significant economic losses worldwide. Ca?* deficiency is usually not manifested by the
unavailability of soil Ca%; instead, it is the soil’s inability to supply sufficient Ca? to the affected plant
parts [23]. By being phloem immobile, Ca?* cannot be translocated from the available sources (mature
leaves and peduncle-end of fruits) to the deficient sinks (young-growing leaves and blossom-end of
fruit). Therefore, Ca?* fertilization generally does not overcome these physiological disorders, and
thus, these disorders (e.g., BER) are complex and challenging to solve. Though the genes linked to
calcium deficiency disorders are not well-documented, expression of Ca? /H* antiporters (CAXs)
such as CAX1 and sCAX1 [41-45], and calreticulin (CRT) [44,46] may play a role in this regard [47].
There is no straightforward solution for these disorders. Moreover, the uncertainty of the onset of
these deficiency disorders complicates the issues regarding their workable solutions [23]. The present
study discusses the route of calcium translocation within plants and the causes and control of BER,
the most devastating Ca?-deficiency disorder.
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Figure 1. Calcium compartmentalization within a plant cell. Calcium is required for every part of a plant cell
and is an essential mineral. Calcium plays a pivotal role in cell structures such as the cell wall pectin and the
plasma membrane, as a signaling molecule in the cytosol, and as a cofactor for several enzymes. Most calcium

is found in the vacuoles, which function as an ion balance and pH mediator.

2. Function of Calcium in Plants

Ca? performs numerous plant functions [15] as a structural component of cells, enzymatic
regulation, and signal transduction [48]. Ca?* contributes to growth and development via cellular
growth, metabolism, and signaling [49].

2.1. Structural Role of Calcium

Calcium maintains cell wall integrity [15,50], cell division and cell elongation [51,52], cell
expansion [53], membrane permeability and membrane stability [50,54], and assembly of
microtubules [55].

The plant cell wall contains carbohydrates (cellulose, hemicellulose, pectin), proteins,
particularly structural ones, and lignin (secondary cell wall). Cell wall Ca* mainly represents Ca?*
bindings in the middle lamella that glue adjacent cells and maintain cell wall integrity. Ca?*is unique
among other inorganic elements, which are not usually integral components of cell walls except
nitrogen (N). Cell wall Ca? generally binds with pectin, a polymer of a diverse group of pectic
polysaccharides, including homogalacturonans, rhamnogalacturonan I, and rhamnogalacturonan II.

Homogalacturonans are polymers of galacturonic acid in a fashion of a(1-4) linkage. Ca?* forms a
tight linkage between the charged carboxyl (COO-) group of galacturonic acid [56], through which it
provides cell wall strength. Pectin forms a gel-like structure by binding with Ca? molecules in a
reversible fashion that aids in tightening (binding with Ca?*) and loosening (Ca? removal) of the cell
wall. During the biosynthesis of sugar residues in the Golgi apparatus, the charged carboxyl group
can be esterified with methyl, acetyl, or unknown groups that prevent the binding of Ca?" [56], and
keep the cell wall loose. Cell walls are also loosened by the degradation of Ca2-pectate by
polygalacturonase (PG), and the activity of PG is inhibited by high Ca?* concentration [57]. The PG
activity is increased in Ca?-deficient tissue, leading to middle lamella disintegration, primary cell
wall degradation, and cell death. Ca? cannot bind to methylated pectin residue. Pectin methyl
esterase (PME) removes the methyl group from methylated pectin and opens up free binding sites
for Ca?, where Ca? binds to form a strong electrovalent bond [58]. Demethylation of pectin by PME
action favors the further degradation of pectin by enzymes like endo-polygalacturonase, exo-
polygalacturonase, 3-galactosidases, and pectate lyases [59,60].

Besides strengthening the cell wall, Ca?* plays a role in stabilizing and functioning of the plasma
membrane. The plasma membrane is composed of phospholipid bilayers held together by proteins.
Ca?, on the apoplast side of the plasma membrane, binds to the carboxylic group of protein and the
phosphate group of phospholipid and thus stabilizes the membrane, allowing a proper membrane
selective permeability. The requirement of Ca? increases due to an increase in heavy metals [61],
aluminum (Al*), sodium (Na*) [62], and protons (H*) in the external environment. Other cations can
replace the Ca?, but their role is not in proper membrane functioning. Ca? in high concentration is
required to restrain the unfavorable effects. For plants growing in soil with a higher concentration of
other cations, the Ca? requirement increased substantially to ensure optimum plant growth and
development [63]. Replacement of Ca* with Na*, heavy metals, or Al*® can cause salinity, heavy
metal, or aluminum toxicity, respectively [64,65]. Membrane instability is prevalent under freezing,
low temperature, and anaerobiosis [4]. Unstable membranes are prone to loss of low molecular
weight solutes, such as potassium (K*) and sugars. It can also cause an influx of toxic ions (e.g., the
heavy metal Al*%) in the cytosol. A high concentration of free Ca?* in the apoplast prevents the loss of
solutes and helps to avoid potential toxicity from toxic elements. Lack of Ca? results in a leaky
membrane that causes loss of cell material, impairment of cell metabolism, and subsequent cell death.
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Ca?stabilizes the cell wall by binding with pectin, the cell membrane, and the proteins and lipids
at the membrane surfaces [48,66]. Ca?*influences vesicles - full of materials and enzymes for cell wall
and membrane construction - incorporation into the plasma membrane [53]. Moreover, Ca? is
required for regulating ion uptake, pH, carbohydrate translocation, the activity of the oxygen-
evolving complex, and as a counteraction in the vacuoles for all types of anions [4,16].

2.2. Enzymatic Role of Calcium

Ca? can promote or demote enzyme activity essential for cell growth and development. The
activity of a-amylase is stimulated by high Ca? concentration during starch breakdown in
germinating cereal seeds, in which Ca?" ion stabilizes amylase [67]. However, high Ca? concentrations
may inhibit enzyme activity [23], as has been shown with cytosolic enzyme fructose-1,6-
bisphosphatase (FBPase) (Figure 2), which regulates sucrose synthesis from triosephosphate (TP) in
the cytosol. A slight increase in Ca?* concentration can markedly inhibit the activity of that particular
enzyme [4]. Ca? is also a cofactor of several enzymes, e.g., 14-lactonase, phosphoinositide
phospholipase C, N-acetylgalactoseaminyltransferase, and affects the synthesis and transport of
those enzymes [68].

/ ‘ Role of calcium ‘ \

Structural Signaling

| Cytosolic perturbation |
| a-amylase activity | |

Cell wall integrity | ‘ Membrane stability ‘

‘ Cell division ‘ | Cell expansion | ‘ FBPase and PG activity 1|

Figure 2. Calcium plays structural, enzymatic, and signaling functions. Activities of a-amylase are seen during
seed germination; fructose 1,6 bisphosphatase (FBPase) is a regulatory enzyme in the sucrose biosynthesis
pathway; polygalacturonase (PG) hydrolyzes the alpha-1,4 glycosidic bonds between galacturonic acid residues

of pectin.

2.3. Calcium and Signal Transduction

The interest in Ca? in recent years has gained momentum due to its role as a secondary
messenger, particularly for developmental and environmental cues [4]. It plays a crucial role as a
signaling molecule for signaling pathways [69]. Ca** acts as a universal signaling molecule [70], and
plays a role in plants' growth, development, and stress management. Environmental stressors initiate
cytosolic Ca? spikes, activating downstream gene expression and adaptation in adverse conditions
[70]. Understanding Ca* dynamics may help develop and engineer climate-smart crop varieties [70].
Ca? is a stress-response element. Upon sensing stresses, it conveys signals to the downstream protein
kinases, leading to phenotypic responses that may result in stress tolerance [71-74]. It also contributes
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to immunity by activating immune responses [75]. Characterizing the Ca?" channels, pumps, and
binding proteins is required to comprehend the role of stress signals on Ca? homeostasis and
adaptive responses [76]. It will improve understanding of how specific stress signals modulate Ca?*
homeostasis to orchestrate adaptive responses [76].

In response to stimuli, Ca? transduces signals to the other end upon binding with calmodulin,
a calcium protein in the cytosol [17,77-79]. Plants maintained a very low (100 to 200 nM) cytosolic
[Ca?], which skyrocketed up to 2 uM at the stimulated state [80]. Plants maintain very low cytosolic
[Ca?] to serve as a messenger, to prevent precipitation of inorganic phosphate, and to minimize
competition for binding sites with magnesium [4]. The role of Ca?* as a messenger is possible due to
very low cytosolic [Ca?] and chemistry [20]. Any signal - intensity of light, day length, temperature,
salinity, drought, osmotic and oxidative stresses, aluminum toxicity, mechanical injury, anoxia,
nodulation, and pathogen attack - exerts an abrupt change in cytosolic [Ca*] and initiates a Ca?-
signaling pathway [20,78,81]. Besides, the pathway is also activated by various developmental cues,
such as germination, cell division and elongation, circadian rhythms, tropic responses, senescence,
and apoptosis [4]. The Ca?-signaling event is location- and time-specific and vital for encoding
specific cellular responses [82]. This signaling is subject to judicious regulations as a marked increase
in Ca?-concentration activates Ca*-dependent enzymes, which are harmful to a cell. Therefore, very
tight regulation is in place for Ca*-signaling processes through the coordinated activities of calcium
proteins, calcium channels, and efflux systems.

2.3.1. Calcium Proteins

Changes in cytosolic [Ca?] are detected by specific proteins that either relay or respond to the
messages. Upon binding with Ca?, relay proteins such as calmodulin undergo conformational
changes that enable them to interact with a target protein to regulate its function [83,84]. Response
proteins such as Ca?-dependent protein kinases (CDPKs) bind with Ca?, followed by a
conformational change that initiates their intrinsic kinase activity. Cytosolic Ca?-binding proteins
include calmodulins (CaMs), CaM-like proteins, annexins, calcineurin B-like (CBL) proteins, and
CDPKs. Calmodulins bind with CaM-binding transcription activators (CAMTAs) and are responsible
for gene expression [85,86]. Calmodulins and similar proteins initiate responses to developmental or
environmental cues and pathogen attack; CBL to cold, drought, salinity, and wounding; and CDPKs
to various stimuli [4]. Plant annexins are associated with cell elongation, membrane repair, the
secretory process, salinity, and drought stresses [87]. Several Ca?-binding proteins, e.g., calreticulin,
calnexin, calsequestrin, and BiP (Binding Immunoglobulin protein), are found in the ER and are
responsible for protein folding, Ca? homeostasis, and modifications at the post-translational stage

[4].

2.3.2. Calcium Channels

The membrane-bound calcium channels channel Ca? in the cell cytosol from the apoplast space,
vacuoles, and ER. The channels are voltage-sensitive and are called depolarization-activated calcium
channels (DACCs), hyperpolarization-activated calcium channels (HACCs), and voltage-insensitive
calcium channels (VICCs) [84,88,89]. The membrane-bound K* channel [outward-rectifying (Ca? -
permeable) K+ channel, KORC] is also considered a calcium-permeable DACC [90]. Calcium channels
are activated and perform specific roles to different environmental and developmental signals, such
as DACCs, which are activated by stresses such as low temperatures [20,91]; HACCs by pathogen
attack, oxidative stresses, cell elongation, and tropism [20,78,92]; and VICCs maintains steady-state
cytosolic Ca?* at resting stage of cell [20]. Ca?" channels are also found in the tonoplast and ER
membrane, allowing Ca2+ to enter the cytosol. Tonoplast-bound channels include HACC, SV (slow-
vacuolar), inositol phosphates (IP3, Inositol-1,4,5-triosephosphate; IP6), and cADPR (cyclic ADP-
ribose). Tonoplast IP3 may be involved in turgor regulation, cell elongation, tropism, salt stress, and
hyperosmotic stress [20,93-95], and cADPR in cold adaptations, desiccation tolerance, stomatal
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behavior, circadian rhythms, and pathogen attack [4]. The IP3, cADPR, and NAADP receptors are
also found in the membrane of the ER [20].

2.3.2. Calcium Efflux Systems

Plant cells tightly regulate cytosolic [Ca?]. Therefore, extra Ca?* is expelled out to the vacuoles,
apoplast, ER, and plastid through active transporters such as Ca*-ATPases and H*/ Ca?*-antiporters
(CAX) [20] to aid in proper metabolism in cytoplasm, to restore intra- and extracellular Ca?-stores,
and to remove divalent cations [96-101]. As Ca>transporters, Ca?>-ATPases have high-affinity but
low-capacity attributes, and H*/Ca*-antiporters are the opposite [102]. Ca2*-ATPases are located in
organelle membranes such as vacuolar membranes (tonoplast), ER membranes, plastid, and cell [103—
109], and ER-type calcium ATPases are found in the Golgi, ER, and endosomes [110-112]. CAX are
found in the plasma membrane and the vacuolar membrane (tonoplast) [84,102,113-115]. Ca?* serves
as the coordinator for cell wall and cytoplasm communication [116].

3. Plant Calcium Uptake by the Root System

The soil Ca?* may not ensure its availability for the plant unless it has a vigorous system to
uptake available Ca?". The Ca?in solution enters with water into the young, un-suberized root. Ca*
generally enters through the root tip where the suberized endodermis (Casparian strip) [117] is
absent, and where the suberized endodermis is broken due to new root growth [52,118]. The
Casparian strip is a barrier to apoplastic solute movement, while suberization blocks Ca?* transfer in
endodermal cells [52,118,119]. Thus, the root is the first gateway of entering Ca?* from the soil solution
into the plant system. Intact roots with profuse new growth (volume and size) may exploit more soil
volume, which favors higher Ca? uptake. Impaired root systems due to hard soil, waterlogged
conditions, pathogen attacks, damage by insects and animals, and nematode infestation can reduce
Ca?uptake.

4. Calcium Uptake Through Foliar Application

Foliar application of Ca? can increase leaf- and fruit-Ca? and reduce deficiency disorders. Foliar
application of Ca* strengthens cell walls [120], and tomato leaves absorb 90% of foliar calcium
chloride application [121]. Foliar application of Ca* @ 0.9% increases fruit Ca* and decreases BER in
tomatoes [122]. Foliar application of 150% of the recommended dose of calcium nitrate decreases
cabbage tip burn [123]. Tip burn of two mini Chinese cabbages (QYH and HN) disappears due to
applications of 4-6 mmol.L' Ca? [124]. Foliar spray of eggshell solutions increases the Ca?" content
on the aerial part of tomato plants and decreases BER in fruits [125]. Calcium foliar application
increases defense mechanisms against diseases [120]. Spraying with CaCl: or Ca(NOs)2 controls
blackheart, a Ca?* deficiency disorder in celery [126,127]. Ca?-spraying in the form of ‘Calciogreen’
or ‘CaCl2’ or with other calcium formulations either decreases or effectively controls deficiency
disorders, including BER in tomato and bell pepper [128-130]. However, Ca?" has minimal mobility
within the phloem [131], and thus foliar Ca?-application may not improve fruit-Ca? status [132].
Therefore, foliar absorption and Ca?* transport are yet to be clarified [121].

5. Calcium Uptake Through the Fruit

One of the leading causes of Ca?* application is to increase fruit Ca?* content to reduce deficiency
disorders. Soil or foliar applications, decreasing competition at the root zone, and ameliorating plant
and environmental issues are all indirect approaches to increasing fruit Ca* content. Applying Ca?*
directly to the fruit surface can be another approach. However, it is complex to maintain sufficient
fruit Ca2+[133]. It is noteworthy to recall a four-decade-old comment about the BER complexity - “‘the
number of possible interactions that can affect Ca?* uptake and distribution is so great that in the near
future, we are unlikely to see the development of cultural practices that will eliminate Ca?* deficiency,
without a direct application of Ca? to the susceptible organ’’[134]. Ca?* applied to the apple fruit
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surface may penetrate the fruit epidermis [135,136], preferably at 40-50 days after full bloom [137],
probably through trichomes and stomata. Young apple fruitlets take up less exogenous Ca?* than
mature fruit [138]; penetration of Ca? into the fruit depends on the retention time of the solution on
the fruit surface and the concentration of the applied solution [137]. Applying 1.33 g calcium-
nitrate/polybag decreases BER in tomatoes [139]. Ca2* @100 ppm reduces BER incidence in susceptible
tomato accession (Solanum lycopersicum lycopersicum) by 5-11% [40]. Bone meal decreases BER in
tomato ‘Cobra F1’ by increasing fruit Ca? content [140]. Ca?" application improves the quality of
cucumber, Ca? content in leaves and peels in pomegranate, and reduces phenolics and flavonoids in
cherries [141-143]. Instead of fruit calcium (pedicel, proximal half, and distal half) content, Ca?/ K*
and their relative % in the pedicel are associated with the BER in peppers [144]. BER-resistant peppers
express defense responses against calcium-deficient stressors [144]. However, direct Ca?* application
can decrease BER symptoms but cannot control the disorder completely; moreover, exogenous Ca?*
may leak out easily [145,146]. Detection of BER at early stages may lead to appropriate control
measures to minimize postharvest losses, as the success rate of detecting BER by fluorescence and
image analysis at this stage is above 86% [147].

6. Calcium Translocations

6.1. Calcium Translocations Within the Plant

The soil available Ca?* enters the root apoplast with the water flow and moves through the xylem
following either apoplastic or symplastic routes [19,20]. The apoplastic routes consist of cell walls and
intercellular spaces, with Ca? traveling following water potential gradients [52,148], and, for the
symplastic pathway — made up of cytoplasm — Ca* moves through plasmodesmata [52,148]. The
apoplastic route is considered the principal route of Ca? translocation [20,24,148]. However, the
Casparian strip along this route restricts further Ca2* movement to the xylem. Therefore, Ca?* enters
the root either through the unrubberized endodermis of the root tip [117], or where the endodermis
has been broken due to the growth of a new root [24,52,118,148]. Once Ca? is in the xylem sap, its
further movement within the shoot is regulated by the xylem flow of water, xylem water potential
[149-151], and cation exchange capacity (CEC) of the xylem cell wall. Ca? moves mainly with the
xylem flow of water from root to shoot [24]. The canopy's transpiration force and plant growth drive
the xylem water flow. Xylem water potential depends on dissolved solutes, and xylem cell wall CEC
on available binding sites for Ca* in the xylem cell wall. Along with xylem water flow, Ca* is
transported to the fruits and storage tissues, and this movement is aided by the leaf transpiration
strength during the day time and root pressure at night [21].

6.2. Leaf or Fruit?

What determines whether the xylem sap containing Ca?* will move toward the leaf or the fruit?
It is the transpiration force and organ growth [149-151]. Transpiration from leaf and fruit surfaces
triggers water flow towards them. The leaf, being a strong transpiring organ and a higher mass
accumulator than fruit [53,149], results in most of the Ca?* being deposited in the leaf. Fruit sap uptake
can be facilitated by either reducing leaf transpiration or enhancing stomatal closure, leading to better
Ca? uptake and thus minimizing BER [24,149,150,152]. Ca?* content does not decrease in the leaves
by being phloem-immobile; instead, it may increase due to dehydration during senescence [153,154].

6.3. Calcium Translocation Within the Fruit

Xylem sap Ca? enters the fruit through the peduncle and is distributed within the fruit based
mainly on the xylem network. Being phloem immobile, Ca?* accumulation within the fruit depends
on fruit transpiration. Fruit transpiration rate is lower than that of leaves, resulting in a low Ca?*
supply to the fruit. High N causes fruit expansion, leading to reduced Ca?* availability to fruit through
dilution [33,155], resulting in BER. Though high [K*] and [Mg?*] may replace plasma membrane Ca%,
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they cannot substitute the function of Ca?in the membrane [156,157], which may also lead to loss of
membrane permeability and make the fruit susceptible to Ca?* deficiency disorders. Compared to the
total fruit Ca?, the relative Ca? contents, such as the ratios N/Ca?, K*/Ca?, Mg?/Ca?, (K* +Mg?")/Ca?,
are better predictors of Ca?* deficiency disorders such as BER [158-160]. Fruits can also regulate Ca?*
translocation by altering aquaporin activity and cell wall properties [161].

7. Calcium Compartmentalization Within the Cell

Partitioning of Ca?* within cellular compartments is the final step of Ca? regulation. Fruit
sensitivity to Ca?* deficiency disorders is triggered by modifying cellular Ca?*-partitioning [41,162].
Ca? compartmentalization is regulated by the capacity of binding Ca?" to the cell wall and the
presence of Ca?* channels, ATPases, and exchangers in the membranes of organelles [163]. The cellular
plasma membrane is located between the apoplast and cytosol. Apoplastic Ca?* includes water-
soluble plasma membrane and cell wall Ca?" [53]. Water-soluble Ca?* stabilizes the plasma membrane
by binding phosphate and carboxylate from phospholipids and proteins, respectively, and keeps it
functional [48,65]. A certain threshold of water-soluble Ca?* is always maintained in the apoplast to
avoid membrane damage and leakiness [65,164] and replacement of Ca?* with other ions can damage
the membrane [60,165]. Cell wall Ca? binds with the pectin matrix to obtain the rigidity of the cell
wall. Newly synthesized pectic polysaccharides are highly methyl-esterified. Removal of a methyl
group by pectin methyl esterases (PMEs) creates a carboxylate group with which Ca?* binds strongly
[57,166].

The Ca?* concentration of organelles varies greatly, and the cell maintains a certain Ca?* threshold
level for its function. The vacuole is the biggest store of Ca?» maintaining 1-10 mM Ca?" [20,167].
Other Ca* storage sites are the ER (1-5 mM) [168], chloroplast (0.1-10 uM) [169,170], mitochondria
(0.2-1.2 uM) [169,170], nucleus (0.1-0.2 uM) [171], and cytosol (100-200 nM) [80] (Figure 1).

8. Calcium Deficiency Disorders

Ca? deficiency in crop plants can cause numerous disorders that are responsible for significant
crop losses. An economically crucial Ca*-related disorder is BER. Symptoms of BER include the
development of dry, brown/black, sunken spots at the blossom end of fruits, leading to rotting that
may cover a significant part of fruits in peppers, tomatoes, watermelon, eggplant, and squash
[20,22,24,172] (Figure 3). Ca?deficiency leads to physiological disorders in tomatoes, peppers, apples,
and watermelons [173,174]. Ca?" deficiency causes cell death in the apical meristem [175], and
weakens the cell wall, leading to disease and pest susceptibility [176].

Tip burn is another relevant physiological disorder. It is characterized by necrosis of rapidly
growing young leaves in cabbage, Chinese cabbage, Brussels sprouts, lettuce, chervil, chicory,
escarole, onion, fennel, and potatoes [23,25,177-180] (Table 1). Other disorders include bitter pit — the
development of brown/black depressed spots on the blossom end of fruit — in apples [20,134,158];
blackheart — collapsing of young leaf tissue that turned black, usually at the center (heart) of the plant
—in celery [126,181]; brown heart — necrosis of the tip of young leaves that cover the entire leaf later
- in leafy vegetables [20]; empty pod — poor or no development of seed kernel results in empty
pod/shell — in peanut [20]; and fruit cracking — splitting of skin or cuticle — in apple, tomatoes, and
cherry [20] (Table 1). Besides deficiency, Ca*-toxicity is reported in crop plants such as gold
spot/yellowish flecks — tiny flecks develop around the calyx and shoulder of fruit — in tomato [184],
and Ca?-toxicity halted germination and growth of vegetables [23].
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Figure 3. Blossom-end rot (BER) in tomato and bell pepper fruits. Blossom-end rot affects the distal end of the
fruit and occurs during the first few weeks of fruit growth. BER is considered a calcium deficiency disorder that
other environmental conditions can exacerbate. In advanced stages, dry, sunken, black/brown symptoms appear
that can cover the entire blossom part of the fruit. Upper panel: BER in tomato; middle panel: development of
BER in bell pepper while in the plant; and bottom panel: different stages of development of BER symptoms in
bell pepper (from left to right: very low, low, moderate, high, and very high BER). Photos are from the first
author’s experiments conducted in Athens, GA, USA, from December 2015 to April 2018.

Tip burn is another relevant physiological disorder. It is characterized by necrosis of rapidly
growing young leaves in cabbage, Chinese cabbage, Brussels sprouts, lettuce, chervil, chicory,
escarole, onion, fennel, and potatoes [23,25,177-180] (Table 1). Other disorders include bitter pit — the
development of brown/black depressed spots on the blossom end of fruit — in apples [20,134,158];
blackheart — collapsing of young leaf tissue that turned black, usually at the center (heart) of the plant
— in celery [126,181]; brown heart — necrosis of the tip of young leaves that cover the entire leaf later
- in leafy vegetables [20]; empty pod — poor or no development of seed kernel results in empty
pod/shell — in peanut [20]; and fruit cracking — splitting of skin or cuticle — in apple, tomatoes, and
cherry [20] (Table 1). Besides deficiency, Ca*-toxicity is reported in crop plants such as gold
spot/yellowish flecks — tiny flecks develop around the calyx and shoulder of fruit — in tomato [184],
and Ca*-toxicity halted germination and growth of vegetables [23].

Table 1. Calcium deficiency disorders of crops.

Deficiency

Crops Description Reference
symptoms

Bell ’ . .
Blossom-end -, D PPer Blossom-end rot in fruit and vegetables
tomato,

rot develops dry, brown/black, sunken spots,
watermelon,

[20,22,24,172,182,183]
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eggplant, leading to rotting that may cover most of the
Squash fruit.

Young leaf tissue collapsed and turned

Blackheart Cel 126,181
ackheat eery black, usually at the center (heart) of celery. [ ]
Bitter pit Apple Development of brown/bla}ck depressed [20,134,158]
spots on the fruits.
Empty pod Peanut Poor or. no development of the seed kernel [20]
results in an empty pod/shell of the peanut
Cabbage,
. Chinese The tips of rapidly growing young leaves [23,25,178]
Tip burn ,
cabbage, other become necrotic
cabbages
Brussels . . . .
sprouts, Necrosis of the tip of rapidly growing young [23,179,180]
leaves
lettuce
Tip of rapidl i 1
Chervil ip of rapidly growing yf)ung eaves 23,177]
become necrotic
Chicory,
escarole, Necrosis of tip of rapidly growing young 23]
onion, fennel, leaves
potatoes
Brown heart Leafy Necrosis of tip of young leaves that cover [20]
vegetables the entire leaf later
Fruit cracking Tomato, Splitting of skin or cuticle [20]
cherry, apple

8.1. Genesis of Blossom-End Rot Development

BER is a costly Ca? deficiency disorder that decreases the yield and quality of the produce,
leading to significant economic losses. The Ca?* content of the Earth's crust is 3.64%, higher than most
minerals [185]. The inadequacy of soil Ca?* for plant growth is rare [1]. Soil Ca? is found in bound,
exchangeable, and soluble forms. Bound Ca? occurs in the form of Ca-minerals, e.g., calcite,
dolomite, and apatite [1,185], and is not readily available to the plant. Exchangeable Ca? remains
bound with the soil in negative sites (cation exchange capacity, CEC). It can be available to the plants
based on soil pH and the presence of other competing cations. The soil solution Ca?" is readily
available for the plants to be taken up. Soil solution Ca?* depends on the weathering of parent rock
material, the mineralization of primary minerals and soil organic matter, soil pH, fertilization, and
diffusion along the gradient [2]. Just the presence of Ca?* in the soil may not ensure its availability to
the plant. Ca?* depends on water availability, the competition of Ca?* with other cations, medium pH,
salinity, root growth, anoxia, root zone temperature, and root damage by pathogens, insects, and
nematodes [186]. Ca?* can be supplied to the plants by applying Ca?* in the soil and on leaf and fruit
surfaces.

Cations decrease while anions increase Ca* uptake by the plants. The presence of cations such
as K, manganese (Mn?*), magnesium (Mg?), ammonium (NH+), Al ¥, and Na* antagonize
[24,34,187], and anions such as nitrate (NOs") and phosphate (PO4*") synergize Ca? uptake by the
plant root system. Although soil contains about 10 times more Ca?* than K, the uptake of Ca? is lower
than that of K+ [65], which might be due to the higher valency of Ca?* [15]. NH4+* competes with Ca?*
to be taken up by the plants. Moreover, high N fertilization promotes shoot growth, which diverts
absorbed Ca? to the leaf instead of the fruit because of the higher leaf transpiration rate than the fruit
[53,188]. At high soil calcium availability, fruit Ca?-deficiency disorder may not appear. However, at
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a low calcium availability, BER can appear due to depletion of apoplastic Ca?* content. BER may also
occur at high calcium availability due to improper Ca* compartmentalization (Figure 4).

Soil Ca** availability (high/low)

‘ High supply of Ca®* to the distal fruit ‘ ‘ Low supply of Ca®* to the distal fruit ‘

! !

Proper Ca® Improper Ca?*

compartmentalization compartmentalization \

| Depletion of apoplastic Ca® ‘
‘ Functioning membrane ‘ l

‘ Membrane leakiness, cell death ‘

!

‘ Fruit with no Ca?*-deficiency disorder ‘ | Fruit with Ca?*-deficiency disorder ‘

Figure 4. Calcium availability affects the development of calcium deficiency disorder blossom-end rot (BER). At
high soil calcium availability, fruit Ca*-deficiency disorder may not appear. However, at low calcium
availability, deficiency disorder appears through depletion of apoplastic calcium and subsequent membrane

leakiness. However, BER may occur at high calcium availability due to improper calcium compartmentalization.

8.2. Incidence of BER Based on Variety, Season, and Truss

The incidence of BER may vary from variety to variety, as reported from cultivated peppers and
tomatoes. Ca?* deficiency, differential fruit growth rate, and variation in xylem development are
considered the basis of this variability [189]. Ca*-efficient cultivars absorbed Ca?* more efficiently
than Ca*-inefficient cultivars when the availability of Ca? is low on the substrate. Thus, Ca**-efficient
cultivars could be selected against BER, but the difficulty is that they yield poorly. However, no
significant difference in BER susceptibility has been found between efficient and inefficient varieties
[189]. Tomato varieties ‘Calypso’ and ‘Spectra’ showed higher incidences of BER than ‘Counter’ [190];
‘Petomech II' higher than ‘IPA-L’ [191]; ‘Celebrity” higher than ‘Rutgers,” ‘Mountain Pride’, and
‘Mountain Spring’ [192]; STEP 158 (breeding line) higher than ‘Rutgers” and ‘Doublerich’ [193], and
‘Boludo’ higher than ‘Daniela’ [194]. Elongated tomato varieties are more susceptible to BER [195].
BER never occurs in small-fruit and wild tomato cultivars [53]. Lack or excess of minerals may cause
deficiency disorders [196,197]. A low fruit apoplastic calcium, which results in leaky cell membranes,
leads to BER development [198]. BER occurs in tomatoes if the calcium concentrations of the lateral
ends of green fruits are < 0.2 pmol g [199]. The fruit growth rate of the BER-susceptible tomato
accession (Solanum lycopersicum lycopersicum) is higher than the BER-resistant one (Solanum
lycopersicum cerasiforme), however, it is not clear whether this may contribute to BER development
[186]. Phytohormones may also affect BER incidence. Foliar spray of ABA reduces BER incidence by
increasing calcium availability [38,199], and gibberellins increase it through increasing oxidative
stresses in plants [200]. ABA increases, and GA decreases calcium accumulation [144]. Thus, applying
ABA or GA inhibitors (paclobutrazol and prohexadione-Ca?) may decrease BER in peppers [144].
Transport and homeostasis of calcium ions are crucial for preventing BER in peppers [144].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0305.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2025 d0i:10.20944/preprints202506.0305.v1

12 of 27

Pepper varieties with larger final fruit sizes and faster growth rates, such as ‘Marconi” and ‘J27’,
had higher sensitivity to BER than ‘Jerid’, which produces a smaller final fruit size [202]. No incidence
of BER has been reported from wild-type tomatoes (small fruit size). This observation indicates that
BER might be associated with larger fruits under favorable growth conditions that influence rapid
fruit growth. ‘Marmande’ tomatoes had a higher BER incidence than cherry, cocktail, or round
tomatoes [203]. Pygmy fruits, having no rapid growth phase, usually do not develop BER [204]. BER-
affected tomatoes ripen earlier and are smaller than healthy fruit [205].

The onset of BER can vary based on trusses and seasons. Frequent incidence of BER was
observed with the first truss [36] followed by a subsequent decrease [31,206,207], or increase [207,208].
Basal fruits of a truss had more severe BER than the others [28]. Based on seasons, BER incidence can
increase or decrease from the first to the upper trusses [151,190].

9. Control of BER

BER, a critical physiological disorder for several vegetables, has been studied for over a century,
although the mechanism is unclear. Most researchers agree that this condition is a Ca?-deficiency
disorder, and supplying sufficient Ca* to the fruit may prevent the symptom development. However,
the Ca route from soil to the target organ, i.e., fruit, is not straightforward. Many factors are in action
on the journey of Ca? from the soil to the fruit. Moreover, it is not the effect of a single factor, rather
a combined effect of one or more factors [24], such as low soluble soil Ca?*, high Mg?, NH*, and K*
concentrations, high salinity, inconsistent soil moisture (high, low or fluctuating), rapid fruit growth
rate, poor xylem network towards the blossom end of the fruit, high temperature, and high or low
transpiration of the target organ [24]. Cultural management approaches should favor Ca?
translocation to the fruit to control BER. However, the transport of Ca?* to the fruit may not ensure
BER control, as cellular Ca?* partitioning is the final and most crucial control level for this disorder
[163]. Reports show severe BER incidence in the distal part of the fruit despite high Ca?-concentration
[211]. Moreover, no BER symptoms when the Ca2?-supply was low in the case of slow-growing plants
[212] (Figure 3). The relatively high Ca? concentration in the BER-affected fruit might be explained
through abnormal cellular partitioning, such as transport of abundant Ca? to the vacuoles, which
may cause Ca?" deficiency in other sub-cellular organelles and may develop BER. Moreover, an
unanticipated change in cellular Ca? concentration response to environmental stimuli or hormonal
effects may cause localized Ca?* deficiency, leading to BER development [163].

BER occurs due to abiotic stresses, high temperature, drought, salinity, water logging, higher
transpiration, production of ROS, and low availability of ascorbic acid [195,214]. Control of BER is
complicated due to the involvement of many changing and unpredictable abiotic factors, and proper
management can only reduce the incidence rate [36]. Spraying calcium on the fruit during the
developmental stage reduces BER incidence [53]. Spraying should be started at the early stage of the
fruit and, of course, before the onset of BER, and it needs to be continued for the entire development
stage. However, spraying may not be effective [195]. Balanced fertilizer and avoiding vigorous foliage
growth may help reduce BER [195]. Shade net may also reduce BER incidence [215-219]. However,
the incidence of BER in tomatoes is positively correlated with fruit plant?!, K content, root relative
water content, firmness, vitamin C, titratable acidity, and peroxidase, and negatively correlated with
calcium content [39]. A high calcium concentration (e.g., 20 mmol.L') decreases growth [plant height,
diameter, biomass production (leaf, stem, root, and total)], physiological attributes [photosynthesis,
stomatal conductance, transpiration, and chlorophyll content (chlorophyll a; chlorophyll b)], enzyme
levels (superoxide dismutase, catalase, and peroxidase), and water use efficiency in poplar seedlings
[49]. Therefore, correctly understanding calcium nutrition helps reduce crop cultivation costs,
minimize environmental pollution, and boost crop production [220].

Cultural and physiological crop management that ensures Ca?* transportation to the fruit and
appropriate cellular distribution may reduce the incidence of BER. The selection of BER-resistant and
Ca?-efficient cultivars may also help to reduce BER incidence. Controlling or skipping calcium
deficiency disorders may include modifications of watering, light, temperature, transpiration, and
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application of mulching and growth regulators. Using resistant varieties and customization of
planting and harvesting (early planting and harvesting) may help skip calcium deficiency disorders
[23]. Understanding the molecular mechanisms of BER may help in better managing the disorder
[221].With the combination of appropriate management practices and BER-resistant cultivars, the
incidence of this disorder may be eliminated in the future [53].

10. Conclusions

Calcium is a crucial element for plant growth and development. Though soils worldwide are
not typically deficient in Ca?, Ca?-deficiency disorders in crops are numerous and cause substantial
yield loss. Among the Ca?-deficiency disorders, BER is widely prevalent worldwide. The complex
route of Ca? from soil to the appropriate cellular compartments, such as the cytosol depends on
multiple factors, e.g., soil (moisture availability, the competition of Ca?* with other cations, pH,
anoxia, and salinity), plant [genotypes, growth habit (dwarf, tall), xylem network, root and shoot
growth, yield, root damaged by pathogens, insects, and nematodes], and environment [temperature
(air and root zone), relative humidity, vapor pressure deficit, and transpiration] that renders it
difficult to control BER. Moreover, the cellular Ca? compartmentalization, particularly in the
vacuoles, depletes cytosolic Ca? levels and may disintegrate the plasma membrane, leading to BER
development despite having high Ca?* content in the blossom end of the fruit. Therefore, possible
ways of minimizing and controlling BER include i) an integrated approach that ameliorates soil,
plant, and environmental factors towards supplying sufficient Ca?* into the cells; ii) appropriate
cultural and physiological management of crops; iii) a favorable environment; and iv) BER-resistant
and Ca*-efficient cultivars. Other approaches that include agronomic, physiological, breeding, and
molecular methods may also contribute to minimizing BER occurrence.
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