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Abstract: Calcium (Ca2+) is a macro-mineral essential for the growth, development, yield, and quality 
of vegetables and fruits. It performs structural, enzymatic, and signaling functions in plants. This 
review outlines Ca2+ translocation from soil to fruit via the plant xylem network, emphasizing the 
importance of Ca2+ compartmentalization within fruit cell organelles in developing the Ca2+-
deficiency disorder, blossom-end rot (BER). The causes and possible control measures of BER are also 
discussed. Soil available Ca2+ enters the root apoplast with the water flow and moves towards the 
xylem via apoplastic or symplastic routes. The transpiration force and growth of organs determine 
the movement of Ca2+-containing xylem sap to aerial plant parts, including fruits. The final step of 
fruit-Ca2+ regulation is the partitioning among cellular compartments, which determines 
susceptibility to Ca2+-deficiency disorders such as BER. Depleting cytosolic and apoplastic Ca2+ due 
to excessive deposition in organelles such as the vacuole may lead to disintegration of the plasma 
membrane, resulting in BER, even at high Ca2+ availability at the blossom end of the fruit. BER 
management requires cultural and physiological practices that ensure Ca2+ translocation to the fruit 
and proper Ca2+ compartmentalization. The use of BER-resistant and Ca2+-efficient cultivars may also 
help in BER management. Therefore, a comprehensive understanding of Ca2+ dynamics in plants is 
crucial for managing BER, reducing production costs, minimizing environmental impact, and 
enhancing crop productivity. 

Keywords: BER; Ca2+-deficiency disorder; cellular organelles; Ca2+-transportation; Ca2+-
compartmentalization 
 

1. Introduction 

Calcium (Ca2+) as a macro-mineral is essential for plant growth and development [1–3], and is 
found within plants in higher quantities than any other divalent inorganic cations. When hydrated, 
Ca2+ is a big cation with a 41.2 Å ionic radius [4]. Among the macronutrients, Ca2+ is third after 
nitrogen (N) and potassium (K) in terms of quantity in a plant body, which reflects its essentiality for 
the plant. The plant requires 1-3 mM Ca2+ for proper growth and development [5].  It plays roles in 
membrane and cell wall stabilization, cell function, signal transduction, growth and development, 
gene expression, and stress resistance [6–10]. Ca2+ is required for every cellular compartment, such as 
cell wall, apoplast, plasma membrane, cytosols, and organelles suspended within cytosols, e.g., 
vacuoles, endoplasmic reticulum (ER), plastid, Golgi apparatus, and nucleus (Fig.1). Ca2+ 

concentration varies from 10-7 M to 10-3 M across the cell organelles. Though cytoplasm contains 10-7 
M calcium at the resting stage, it increases to 10-5 to 10-4 M in the storage organelles and 10-3 M in the 
extracellular milieu [11,12].  The Ca2+ content of mitochondrial and nuclear matrices is similar to that 
of the cytosol. The free Ca2+ content in cytosol and vacuoles is 100–200 nM and 1–10 mM, respectively 
[13,14], and 60% of the plant Ca2+ remains as calcium pectate. Ca2+ content in plants varies greatly; 
shoot-Ca2+ ranges from 0.1%-5%, while fruit-Ca2+ varies from 0.2%-0.3% of total dry mass [15]. The 
proportion of Ca2+ in specific tissues can be more than 10% without affecting plant growth and 
development [4].  
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Calcium is essential for cell wall integrity, membrane permeability, and stability and plays a role 
in the signaling route as a messenger [15–18]. The available Ca2+ enters the root apoplast with the 
water flow [19], and moves towards the xylem, following either apoplastic or symplastic routes [20]. 
Along the xylem water flow, Ca2+ is transported to the leaves and fruits based on their transpiration 
strength during the daytime, while at night, root pressure does the job [21]. Poor Ca2+ translocation 
to the fruit or leaf tip can result in Ca2+ deficiency disorders, e.g., blossom-end rot (BER), tip 
burn, blackheart, brown heart, bitter pit, empty pod, and fruit cracking (Table 1) [20,22–26].  

Among numerous Ca2+-deficiency disorders, BER is most prevalent and causes substantial 
economic losses worldwide. BER often initiates at the fruit blossom part (away from the peduncle) 
during early fruit growth stages (2-3 weeks following anthesis) [27–37]. Insufficient Ca2+ supply to 
the rapidly growing fruit tissue causes the disintegration of the plasma membrane and lysis of the 
middle lamella, resulting in cell plasmolysis and a water-soaked appearance. Subsequent drying 
develops sunken, brown, and black spots that are limited to the fruit blossom end or can encompass 
the entire fruit [38]. BER incidence is positively correlated with root’s relative water content, fruit 
number per plant, potassium (K+) and vitamin C levels of fruits and negatively correlated with plant 
height, leaf chlorophyll content, total yield, and fruit Ca2+ content in tomato [39,40]. 

Though agricultural soils are not usually low in Ca2+, Ca2+-deficiency disorders are numerous 
and cause significant economic losses worldwide. Ca2+ deficiency is usually not manifested by the 
unavailability of soil Ca2+; instead, it is the soil’s inability to supply sufficient Ca2+ to the affected plant 
parts [23]. By being phloem immobile, Ca2+ cannot be translocated from the available sources (mature 
leaves and peduncle-end of fruits) to the deficient sinks (young-growing leaves and blossom-end of 
fruit). Therefore, Ca2+ fertilization generally does not overcome these physiological disorders, and 
thus, these disorders (e.g., BER) are complex and challenging to solve. Though the genes linked to 
calcium deficiency disorders are not well-documented, expression of Ca2+ /H+ antiporters (CAXs) 
such as CAX1 and sCAX1 [41–45], and calreticulin (CRT) [44,46] may play a role in this regard [47]. 
There is no straightforward solution for these disorders. Moreover, the uncertainty of the onset of 
these deficiency disorders complicates the issues regarding their workable solutions [23]. The present 
study discusses the route of calcium translocation within plants and the causes and control of BER, 
the most devastating Ca2+-deficiency disorder. 
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Figure 1. Calcium compartmentalization within a plant cell. Calcium is required for every part of a plant cell 
and is an essential mineral. Calcium plays a pivotal role in cell structures such as the cell wall pectin and the 
plasma membrane, as a signaling molecule in the cytosol, and as a cofactor for several enzymes. Most calcium 
is found in the vacuoles, which function as an ion balance and pH mediator. 

2. Function of Calcium in Plants 

Ca2+ performs numerous plant functions [15] as a structural component of cells, enzymatic 
regulation, and signal transduction [48]. Ca2+ contributes to growth and development via cellular 
growth, metabolism, and signaling [49]. 

2.1. Structural Role of Calcium 

Calcium maintains cell wall integrity [15,50], cell division and cell elongation [51,52], cell 
expansion [53], membrane permeability and membrane stability [50,54], and assembly of 
microtubules [55].  

The plant cell wall contains carbohydrates (cellulose, hemicellulose, pectin), proteins, 
particularly structural ones, and lignin (secondary cell wall). Cell wall Ca2+ mainly represents Ca2+ 

bindings in the middle lamella that glue adjacent cells and maintain cell wall integrity. Ca2+ is unique 
among other inorganic elements, which are not usually integral components of cell walls except 
nitrogen (N). Cell wall Ca2+ generally binds with pectin, a polymer of a diverse group of pectic 
polysaccharides, including homogalacturonans, rhamnogalacturonan I, and rhamnogalacturonan II. 
Homogalacturonans are polymers of galacturonic acid in a fashion of α(1–4) linkage. Ca2+ forms a 
tight linkage between the charged carboxyl (COO-) group of galacturonic acid [56], through which it 
provides cell wall strength. Pectin forms a gel-like structure by binding with Ca2+ molecules in a 
reversible fashion that aids in tightening (binding with Ca2+) and loosening (Ca2+ removal) of the cell 
wall. During the biosynthesis of sugar residues in the Golgi apparatus, the charged carboxyl group 
can be esterified with methyl, acetyl, or unknown groups that prevent the binding of Ca2+ [56], and 
keep the cell wall loose. Cell walls are also loosened by the degradation of Ca2+-pectate by 
polygalacturonase (PG), and the activity of PG is inhibited by high Ca2+ concentration [57]. The PG 
activity is increased in Ca2+-deficient tissue, leading to middle lamella disintegration, primary cell 
wall degradation, and cell death. Ca2+ cannot bind to methylated pectin residue. Pectin methyl 
esterase (PME) removes the methyl group from methylated pectin and opens up free binding sites 
for Ca2+, where Ca2+ binds to form a strong electrovalent bond [58]. Demethylation of pectin by PME 
action favors the further degradation of pectin by enzymes like endo-polygalacturonase, exo-
polygalacturonase, β-galactosidases, and pectate lyases [59,60]. 

Besides strengthening the cell wall, Ca2+ plays a role in stabilizing and functioning of the plasma 
membrane. The plasma membrane is composed of phospholipid bilayers held together by proteins. 
Ca2+, on the apoplast side of the plasma membrane, binds to the carboxylic group of protein and the 
phosphate group of phospholipid and thus stabilizes the membrane, allowing a proper membrane 
selective permeability. The requirement of Ca2+ increases due to an increase in heavy metals [61], 
aluminum (Al+3), sodium (Na+) [62], and protons (H+) in the external environment.  Other cations can 
replace the Ca2+, but their role is not in proper membrane functioning. Ca2+ in high concentration is 
required to restrain the unfavorable effects. For plants growing in soil with a higher concentration of 
other cations, the Ca2+ requirement increased substantially to ensure optimum plant growth and 
development [63]. Replacement of Ca2+ with Na+, heavy metals, or Al+3 can cause salinity, heavy 
metal, or aluminum toxicity, respectively [64,65]. Membrane instability is prevalent under freezing, 
low temperature, and anaerobiosis [4]. Unstable membranes are prone to loss of low molecular 
weight solutes, such as potassium (K+) and sugars. It can also cause an influx of toxic ions (e.g., the 
heavy metal Al+3) in the cytosol. A high concentration of free Ca2+ in the apoplast prevents the loss of 
solutes and helps to avoid potential toxicity from toxic elements. Lack of Ca2+ results in a leaky 
membrane that causes loss of cell material, impairment of cell metabolism, and subsequent cell death.  
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Ca2+ stabilizes the cell wall by binding with pectin, the cell membrane, and the proteins and lipids 
at the membrane surfaces [48,66]. Ca2+ influences vesicles - full of materials and enzymes for cell wall 
and membrane construction - incorporation into the plasma membrane [53]. Moreover, Ca2+ is 
required for regulating ion uptake, pH, carbohydrate translocation, the activity of the oxygen-
evolving complex, and as a counteraction in the vacuoles for all types of anions [4,16].  

2.2. Enzymatic Role of Calcium 

Ca2+ can promote or demote enzyme activity essential for cell growth and development. The 
activity of α-amylase is stimulated by high Ca2+ concentration during starch breakdown in 
germinating cereal seeds, in which Ca2+ ion stabilizes amylase [67]. However, high Ca2+ concentrations 
may inhibit enzyme activity [23], as has been shown with cytosolic enzyme fructose-1,6-
bisphosphatase (FBPase) (Figure 2), which regulates sucrose synthesis from triosephosphate (TP) in 
the cytosol. A slight increase in Ca2+ concentration can markedly inhibit the activity of that particular 
enzyme [4]. Ca2+ is also a cofactor of several enzymes, e.g., 1,4-lactonase, phosphoinositide 
phospholipase C, N-acetylgalactoseaminyltransferase, and affects the synthesis and transport of 
those enzymes [68].  

 

Figure 2. Calcium plays structural, enzymatic, and signaling functions. Activities of α-amylase are seen during 
seed germination; fructose 1,6 bisphosphatase (FBPase) is a regulatory enzyme in the sucrose biosynthesis 
pathway; polygalacturonase (PG) hydrolyzes the alpha-1,4 glycosidic bonds between galacturonic acid residues 
of pectin. 

2.3. Calcium and Signal Transduction 

The interest in Ca2+ in recent years has gained momentum due to its role as a secondary 
messenger, particularly for developmental and environmental cues [4]. It plays a crucial role as a 
signaling molecule for signaling pathways [69]. Ca2+ acts as a universal signaling molecule [70], and 
plays a role in plants' growth, development, and stress management. Environmental stressors initiate 
cytosolic Ca2+ spikes, activating downstream gene expression and adaptation in adverse conditions 
[70]. Understanding Ca2+ dynamics may help develop and engineer climate-smart crop varieties [70]. 
Ca2+ is a stress-response element. Upon sensing stresses, it conveys signals to the downstream protein 
kinases, leading to phenotypic responses that may result in stress tolerance [71–74]. It also contributes 
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to immunity by activating immune responses [75]. Characterizing the Ca2+ channels, pumps, and 
binding proteins is required to comprehend the role of stress signals on Ca2+ homeostasis and 
adaptive responses [76]. It will improve understanding of how specific stress signals modulate Ca2+ 
homeostasis to orchestrate adaptive responses [76]. 

In response to stimuli, Ca2+ transduces signals to the other end upon binding with calmodulin, 
a calcium protein in the cytosol [17,77–79]. Plants maintained a very low (100 to 200 nM) cytosolic 
[Ca2+], which skyrocketed up to 2 µM at the stimulated state [80]. Plants maintain very low cytosolic 
[Ca2+ ] to serve as a messenger, to prevent precipitation of inorganic phosphate, and to minimize 
competition for binding sites with magnesium [4]. The role of Ca2+  as a messenger is possible due to 
very low cytosolic [Ca2+] and chemistry [20]. Any signal - intensity of light, day length, temperature, 
salinity, drought, osmotic and oxidative stresses, aluminum toxicity, mechanical injury, anoxia, 
nodulation, and pathogen attack - exerts an abrupt change in cytosolic [Ca2+] and initiates a Ca2+-
signaling pathway [20,78,81]. Besides, the pathway is also activated by various developmental cues, 
such as germination, cell division and elongation, circadian rhythms, tropic responses, senescence, 
and apoptosis [4]. The Ca2+-signaling event is location- and time-specific and vital for encoding 
specific cellular responses [82]. This signaling is subject to judicious regulations as a marked increase 
in Ca2+-concentration activates Ca+-dependent enzymes, which are harmful to a cell. Therefore, very 
tight regulation is in place for Ca2+-signaling processes through the coordinated activities of calcium 
proteins, calcium channels, and efflux systems.  

2.3.1. Calcium Proteins 

Changes in cytosolic [Ca2+] are detected by specific proteins that either relay or respond to the 
messages. Upon binding with Ca2+, relay proteins such as calmodulin undergo conformational 
changes that enable them to interact with a target protein to regulate its function [83,84]. Response 
proteins such as Ca2+-dependent protein kinases (CDPKs) bind with Ca2+, followed by a 
conformational change that initiates their intrinsic kinase activity. Cytosolic Ca2+-binding proteins 
include calmodulins (CaMs), CaM-like proteins, annexins, calcineurin B-like (CBL) proteins, and 
CDPKs. Calmodulins bind with CaM-binding transcription activators (CAMTAs) and are responsible 
for gene expression [85,86]. Calmodulins and similar proteins initiate responses to developmental or 
environmental cues and pathogen attack; CBL to cold, drought, salinity, and wounding; and CDPKs 
to various stimuli [4]. Plant annexins are associated with cell elongation, membrane repair, the 
secretory process, salinity, and drought stresses [87]. Several Ca2+-binding proteins, e.g., calreticulin, 
calnexin, calsequestrin, and BiP (Binding Immunoglobulin protein), are found in the ER and are 
responsible for protein folding, Ca2+ homeostasis, and modifications at the post-translational stage 
[4]. 

2.3.2. Calcium Channels 

The membrane-bound calcium channels channel Ca2+ in the cell cytosol from the apoplast space, 
vacuoles, and ER. The channels are voltage-sensitive and are called depolarization-activated calcium 
channels (DACCs), hyperpolarization-activated calcium channels (HACCs), and voltage-insensitive 
calcium channels (VICCs) [84,88,89]. The membrane-bound K+ channel [outward-rectifying (Ca2+ -
permeable) K+ channel, KORC] is also considered a calcium-permeable DACC [90]. Calcium channels 
are activated and perform specific roles to different environmental and developmental signals, such 
as DACCs, which are activated by stresses such as low temperatures [20,91]; HACCs by pathogen 
attack, oxidative stresses, cell elongation, and tropism [20,78,92]; and VICCs maintains steady-state 
cytosolic Ca2+ at resting stage of cell [20]. Ca2+ channels are also found in the tonoplast and ER 
membrane, allowing Ca2+ to enter the cytosol. Tonoplast-bound channels include HACC, SV (slow-
vacuolar), inositol phosphates (IP3, Inositol-1,4,5-triosephosphate; IP6), and cADPR (cyclic ADP-
ribose). Tonoplast IP3 may be involved in turgor regulation, cell elongation, tropism, salt stress, and 
hyperosmotic stress [20,93–95], and cADPR in cold adaptations, desiccation tolerance, stomatal 
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behavior, circadian rhythms, and pathogen attack [4]. The IP3, cADPR, and NAADP receptors are 
also found in the membrane of the ER [20]. 

2.3.2. Calcium Efflux Systems 

Plant cells tightly regulate cytosolic [Ca2+]. Therefore, extra Ca2+ is expelled out to the vacuoles, 
apoplast, ER, and plastid through active transporters such as Ca+-ATPases and H+/ Ca2+-antiporters 
(CAX) [20] to aid in proper metabolism in cytoplasm, to restore intra- and extracellular Ca2+-stores, 
and to remove divalent cations [96–101]. As Ca2-transporters, Ca2+-ATPases have high-affinity but 
low-capacity attributes, and H+/Ca+-antiporters are the opposite [102]. Ca2+-ATPases are located in 
organelle membranes such as vacuolar membranes (tonoplast), ER membranes, plastid, and cell [103–
109], and ER-type calcium ATPases are found in the Golgi, ER, and endosomes [110–112]. CAX are 
found in the plasma membrane and the vacuolar membrane (tonoplast) [84,102,113–115]. Ca2+ serves 
as the coordinator for cell wall and cytoplasm communication [116].  

3. Plant Calcium Uptake by the Root System 

The soil Ca2+ may not ensure its availability for the plant unless it has a vigorous system to 
uptake available Ca2+. The Ca2+ in solution enters with water into the young, un-suberized root. Ca2+ 
generally enters through the root tip where the suberized endodermis (Casparian strip) [117] is 
absent, and where the suberized endodermis is broken due to new root growth [52,118]. The 
Casparian strip is a barrier to apoplastic solute movement, while suberization blocks Ca2+ transfer in 
endodermal cells [52,118,119]. Thus, the root is the first gateway of entering Ca2+ from the soil solution 
into the plant system. Intact roots with profuse new growth (volume and size) may exploit more soil 
volume, which favors higher Ca2+ uptake. Impaired root systems due to hard soil, waterlogged 
conditions, pathogen attacks, damage by insects and animals, and nematode infestation can reduce 
Ca2+ uptake.  

4. Calcium Uptake Through Foliar Application 

Foliar application of Ca2+ can increase leaf- and fruit-Ca2+ and reduce deficiency disorders. Foliar 
application of Ca2+ strengthens cell walls [120], and tomato leaves absorb 90% of foliar calcium 
chloride application [121]. Foliar application of Ca2+ @ 0.9% increases fruit Ca2+ and decreases BER in 
tomatoes [122]. Foliar application of 150% of the recommended dose of calcium nitrate decreases 
cabbage tip burn [123].  Tip burn of two mini Chinese cabbages (QYH and HN) disappears due to 
applications of 4-6 mmol.L-1 Ca2+ [124]. Foliar spray of eggshell solutions increases the Ca2+ content 
on the aerial part of tomato plants and decreases BER in fruits [125]. Calcium foliar application 
increases defense mechanisms against diseases [120]. Spraying with CaCl2 or Ca(NO3)2 controls 
blackheart, a Ca2+ deficiency disorder in celery [126,127]. Ca2+-spraying in the form of ‘Calciogreen’ 
or ‘CaCl2’ or with other calcium formulations either decreases or effectively controls deficiency 
disorders, including BER in tomato and bell pepper [128–130]. However, Ca2+ has minimal mobility 
within the phloem [131], and thus foliar Ca2+-application may not improve fruit-Ca2+ status [132]. 
Therefore, foliar absorption and Ca2+ transport are yet to be clarified [121]. 

5. Calcium Uptake Through the Fruit 

One of the leading causes of Ca2+ application is to increase fruit Ca2+ content to reduce deficiency 
disorders. Soil or foliar applications, decreasing competition at the root zone, and ameliorating plant 
and environmental issues are all indirect approaches to increasing fruit Ca2+ content. Applying Ca2+ 
directly to the fruit surface can be another approach. However, it is complex to maintain sufficient 
fruit Ca2+ [133]. It is noteworthy to recall a four-decade-old comment about the BER complexity - ‘‘the 
number of possible interactions that can affect Ca2+ uptake and distribution is so great that in the near 
future, we are unlikely to see the development of cultural practices that will eliminate Ca2+ deficiency, 
without a direct application of Ca2+ to the susceptible organ’’[134]. Ca2+ applied to the apple fruit 
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surface may penetrate the fruit epidermis [135,136], preferably at 40-50 days after full bloom [137], 
probably through trichomes and stomata. Young apple fruitlets take up less exogenous Ca2+ than 
mature fruit [138]; penetration of Ca2+ into the fruit depends on the retention time of the solution on 
the fruit surface and the concentration of the applied solution [137]. Applying 1.33 g calcium-
nitrate/polybag decreases BER in tomatoes [139]. Ca2+ @100 ppm reduces BER incidence in susceptible 
tomato accession (Solanum lycopersicum lycopersicum) by 5-11% [40]. Bone meal decreases BER in 
tomato ‘Cobra F1’ by increasing fruit Ca2+ content [140]. Ca2+ application improves the quality of 
cucumber, Ca2+ content in leaves and peels in pomegranate, and reduces phenolics and flavonoids in 
cherries [141–143]. Instead of fruit calcium (pedicel, proximal half, and distal half) content, Ca2+/ K+ 
and their relative % in the pedicel are associated with the BER in peppers [144]. BER-resistant peppers 
express defense responses against calcium-deficient stressors [144]. However, direct Ca2+ application 
can decrease BER symptoms but cannot control the disorder completely; moreover, exogenous Ca2+ 

may leak out easily [145,146]. Detection of BER at early stages may lead to appropriate control 
measures to minimize postharvest losses, as the success rate of detecting BER by fluorescence and 
image analysis at this stage is above 86% [147]. 

6. Calcium Translocations 

6.1. Calcium Translocations Within the Plant 

The soil available Ca2+ enters the root apoplast with the water flow and moves through the xylem 
following either apoplastic or symplastic routes [19,20]. The apoplastic routes consist of cell walls and 
intercellular spaces, with Ca2+ traveling following water potential gradients [52,148], and, for the 
symplastic pathway – made up of cytoplasm – Ca2+  moves through plasmodesmata [52,148]. The 
apoplastic route is considered the principal route of Ca2+ translocation [20,24,148]. However, the 
Casparian strip along this route restricts further Ca2+ movement to the xylem. Therefore, Ca2+ enters 
the root either through the unrubberized endodermis of the root tip [117], or where the endodermis 
has been broken due to the growth of a new root [24,52,118,148]. Once Ca2+ is in the xylem sap, its 
further movement within the shoot is regulated by the xylem flow of water, xylem water potential 
[149–151], and cation exchange capacity (CEC) of the xylem cell wall. Ca2+ moves mainly with the 
xylem flow of water from root to shoot [24]. The canopy's transpiration force and plant growth drive 
the xylem water flow. Xylem water potential depends on dissolved solutes, and xylem cell wall CEC 
on available binding sites for Ca2+ in the xylem cell wall. Along with xylem water flow, Ca2+ is 
transported to the fruits and storage tissues, and this movement is aided by the leaf transpiration 
strength during the day time and root pressure at night [21]. 

6.2. Leaf or Fruit? 

What determines whether the xylem sap containing Ca2+ will move toward the leaf or the fruit? 
It is the transpiration force and organ growth [149–151]. Transpiration from leaf and fruit surfaces 
triggers water flow towards them. The leaf, being a strong transpiring organ and a higher mass 
accumulator than fruit [53,149], results in most of the Ca2+ being deposited in the leaf. Fruit sap uptake 
can be facilitated by either reducing leaf transpiration or enhancing stomatal closure, leading to better 
Ca2+ uptake and thus minimizing BER [24,149,150,152]. Ca2+ content does not decrease in the leaves 
by being phloem-immobile; instead, it may increase due to dehydration during senescence [153,154]. 

6.3. Calcium Translocation Within the Fruit 

Xylem sap Ca2+ enters the fruit through the peduncle and is distributed within the fruit based 
mainly on the xylem network. Being phloem immobile, Ca2+ accumulation within the fruit depends 
on fruit transpiration. Fruit transpiration rate is lower than that of leaves, resulting in a low Ca2+ 
supply to the fruit. High N causes fruit expansion, leading to reduced Ca2+ availability to fruit through 
dilution [33,155], resulting in BER. Though high [K+] and [Mg2+] may replace plasma membrane Ca2+, 
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they cannot substitute the function of Ca2+ in the membrane [156,157], which may also lead to loss of 
membrane permeability and make the fruit susceptible to Ca2+ deficiency disorders. Compared to the 
total fruit Ca2+, the relative Ca2+ contents, such as the ratios N/Ca2+, K+/Ca2+, Mg2+/Ca2+, (K+ +Mg2+)/Ca2+, 
are better predictors of Ca2+ deficiency disorders such as BER [158–160]. Fruits can also regulate Ca2+ 

translocation by altering aquaporin activity and cell wall properties [161]. 

7. Calcium Compartmentalization Within the Cell 

Partitioning of Ca2+ within cellular compartments is the final step of Ca2+ regulation. Fruit 
sensitivity to Ca2+ deficiency disorders is triggered by modifying cellular Ca2+-partitioning [41,162]. 
Ca2+ compartmentalization is regulated by the capacity of binding Ca2+ to the cell wall and the 
presence of Ca2+ channels, ATPases, and exchangers in the membranes of organelles [163]. The cellular 
plasma membrane is located between the apoplast and cytosol. Apoplastic Ca2+ includes water-
soluble plasma membrane and cell wall Ca2+ [53]. Water-soluble Ca2+ stabilizes the plasma membrane 
by binding phosphate and carboxylate from phospholipids and proteins, respectively, and keeps it 
functional [48,65]. A certain threshold of water-soluble Ca2+ is always maintained in the apoplast to 
avoid membrane damage and leakiness [65,164] and replacement of Ca2+ with other ions can damage 
the membrane [60,165]. Cell wall Ca2+ binds with the pectin matrix to obtain the rigidity of the cell 
wall. Newly synthesized pectic polysaccharides are highly methyl-esterified. Removal of a methyl 
group by pectin methyl esterases (PMEs) creates a carboxylate group with which Ca2+ binds strongly 
[57,166].  

The Ca2+ concentration of organelles varies greatly, and the cell maintains a certain Ca2+ threshold 
level for its function. The vacuole is the biggest store of Ca2+, maintaining 1-10 mM Ca2+  [20,167]. 
Other Ca2+ storage sites are the ER (1-5 mM) [168], chloroplast (0.1-10 µM) [169,170], mitochondria 
(0.2-1.2 µM) [169,170], nucleus (0.1-0.2 µM) [171], and cytosol (100-200 nM) [80] (Figure 1).  

8. Calcium Deficiency Disorders 

Ca2+ deficiency in crop plants can cause numerous disorders that are responsible for significant 
crop losses. An economically crucial Ca2+-related disorder is BER. Symptoms of BER include the 
development of dry, brown/black, sunken spots at the blossom end of fruits, leading to rotting that 
may cover a significant part of fruits in peppers, tomatoes, watermelon, eggplant, and squash 
[20,22,24,172] (Figure 3). Ca2+ deficiency leads to physiological disorders in tomatoes, peppers, apples, 
and watermelons [173,174]. Ca2+ deficiency causes cell death in the apical meristem [175], and 
weakens the cell wall, leading to disease and pest susceptibility [176].  

Tip burn is another relevant physiological disorder. It is characterized by necrosis of rapidly 
growing young leaves in cabbage, Chinese cabbage, Brussels sprouts, lettuce, chervil, chicory, 
escarole, onion, fennel, and potatoes [23,25,177–180] (Table 1). Other disorders include bitter pit – the 
development of brown/black depressed spots on the blossom end of fruit – in apples [20,134,158]; 
blackheart – collapsing of young leaf tissue that turned black, usually at the center (heart) of the plant 
– in celery [126,181]; brown heart – necrosis of the tip of young leaves that cover the entire leaf later 
– in leafy vegetables [20]; empty pod – poor or no development of seed kernel results in empty 
pod/shell – in peanut [20]; and fruit cracking – splitting of skin or cuticle – in apple, tomatoes, and 
cherry [20] (Table 1). Besides deficiency, Ca2+-toxicity is reported in crop plants such as gold 
spot/yellowish flecks – tiny flecks develop around the calyx and shoulder of fruit – in tomato [184], 
and Ca2+-toxicity halted germination and growth of vegetables [23]. 
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Figure 3. Blossom-end rot (BER) in tomato and bell pepper fruits. Blossom-end rot affects the distal end of the 
fruit and occurs during the first few weeks of fruit growth. BER is considered a calcium deficiency disorder that 
other environmental conditions can exacerbate. In advanced stages, dry, sunken, black/brown symptoms appear 
that can cover the entire blossom part of the fruit. Upper panel: BER in tomato; middle panel: development of 
BER in bell pepper while in the plant; and bottom panel: different stages of development of BER symptoms in 
bell pepper (from left to right: very low, low, moderate, high, and very high BER). Photos are from the first 
author’s experiments conducted in Athens, GA, USA, from December 2015 to April 2018. 

Tip burn is another relevant physiological disorder. It is characterized by necrosis of rapidly 
growing young leaves in cabbage, Chinese cabbage, Brussels sprouts, lettuce, chervil, chicory, 
escarole, onion, fennel, and potatoes [23,25,177–180] (Table 1). Other disorders include bitter pit – the 
development of brown/black depressed spots on the blossom end of fruit – in apples [20,134,158]; 
blackheart – collapsing of young leaf tissue that turned black, usually at the center (heart) of the plant 
– in celery [126,181]; brown heart – necrosis of the tip of young leaves that cover the entire leaf later 
– in leafy vegetables [20]; empty pod – poor or no development of seed kernel results in empty 
pod/shell – in peanut [20]; and fruit cracking – splitting of skin or cuticle – in apple, tomatoes, and 
cherry [20] (Table 1). Besides deficiency, Ca2+-toxicity is reported in crop plants such as gold 
spot/yellowish flecks – tiny flecks develop around the calyx and shoulder of fruit – in tomato [184], 
and Ca2+-toxicity halted germination and growth of vegetables [23]. 

Table 1. Calcium deficiency disorders of crops. 

Deficiency 
symptoms 

Crops Description Reference 

Blossom-end 
rot 

Bell pepper, 
tomato, 

watermelon, 

Blossom-end rot in fruit and vegetables 
develops dry, brown/black, sunken spots, 

[20,22,24,172,182,183] 
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eggplant, 
Squash 

leading to rotting that may cover most of the 
fruit. 

Blackheart Celery 
Young leaf tissue collapsed and turned 

black, usually at the center (heart) of celery. 
[126,181] 

Bitter pit  Apple 
Development of brown/black depressed 

spots on the fruits. 
[20,134,158] 

Empty pod  Peanut 
Poor or no development of the seed kernel 
results in an empty pod/shell of the peanut 

[20] 

Tip burn  

Cabbage, 
Chinese 

cabbage, other 
cabbages 

The tips of rapidly growing young leaves 
become necrotic 

[23,25,178] 
 

 
Brussels 
sprouts,  
lettuce 

Necrosis of the tip of rapidly growing young 
leaves 

[23,179,180] 

 Chervil  
Tip of rapidly growing young leaves 

become necrotic 
[23,177] 

 

Chicory, 
escarole, 

onion, fennel, 
potatoes  

Necrosis of tip of rapidly growing young 
leaves 

[23] 

Brown heart 
Leafy 

vegetables 
Necrosis of tip of young leaves that cover 

the entire leaf later 
[20] 

Fruit cracking 
Tomato, 

cherry, apple 
Splitting of skin or cuticle [20] 

8.1. Genesis of Blossom-End Rot Development  

BER is a costly Ca2+ deficiency disorder that decreases the yield and quality of the produce, 
leading to significant economic losses. The Ca2+ content of the Earth's crust is 3.64%, higher than most 
minerals [185]. The inadequacy of soil Ca2+ for plant growth is rare [1]. Soil Ca2+ is found in bound, 
exchangeable, and soluble forms. Bound Ca2+ occurs in the form of Ca2+-minerals, e.g., calcite, 
dolomite, and apatite [1,185], and is not readily available to the plant. Exchangeable Ca2+ remains 
bound with the soil in negative sites (cation exchange capacity, CEC). It can be available to the plants 
based on soil pH and the presence of other competing cations. The soil solution Ca2+ is readily 
available for the plants to be taken up. Soil solution Ca2+ depends on the weathering of parent rock 
material, the mineralization of primary minerals and soil organic matter, soil pH, fertilization, and 
diffusion along the gradient [2]. Just the presence of Ca2+ in the soil may not ensure its availability to 
the plant. Ca2+ depends on water availability, the competition of Ca2+ with other cations, medium pH, 
salinity, root growth, anoxia, root zone temperature, and root damage by pathogens, insects, and 
nematodes [186]. Ca2+ can be supplied to the plants by applying Ca2+ in the soil and on leaf and fruit 
surfaces.  

Cations decrease while anions increase Ca2+ uptake by the plants. The presence of cations such 
as K+, manganese (Mn2+), magnesium (Mg2+), ammonium (NH4+), Al 3+, and Na+ antagonize 
[24,34,187], and anions such as nitrate (NO3-) and phosphate (PO43−) synergize Ca2+ uptake by the 
plant root system. Although soil contains about 10 times more Ca2+ than K+, the uptake of Ca2+ is lower 
than that of K+ [65], which might be due to the higher valency of Ca2+ [15]. NH4+ competes with Ca2+ 

to be taken up by the plants. Moreover, high N fertilization promotes shoot growth, which diverts 
absorbed Ca2+ to the leaf instead of the fruit because of the higher leaf transpiration rate than the fruit 
[53,188]. At high soil calcium availability, fruit Ca2+-deficiency disorder may not appear. However, at 
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a low calcium availability, BER can appear due to depletion of apoplastic Ca2+ content. BER may also 
occur at high calcium availability due to improper Ca2+ compartmentalization (Figure 4). 

 

Figure 4. Calcium availability affects the development of calcium deficiency disorder blossom-end rot (BER). At 
high soil calcium availability, fruit Ca2+-deficiency disorder may not appear. However, at low calcium 
availability, deficiency disorder appears through depletion of apoplastic calcium and subsequent membrane 
leakiness. However, BER may occur at high calcium availability due to improper calcium compartmentalization. 

8.2. Incidence of BER Based on Variety, Season, and Truss 

The incidence of BER may vary from variety to variety, as reported from cultivated peppers and 
tomatoes. Ca2+ deficiency, differential fruit growth rate, and variation in xylem development are 
considered the basis of this variability [189]. Ca2+-efficient cultivars absorbed Ca2+ more efficiently 
than Ca2+-inefficient cultivars when the availability of Ca2+ is low on the substrate. Thus, Ca2+-efficient 
cultivars could be selected against BER, but the difficulty is that they yield poorly. However, no 
significant difference in BER susceptibility has been found between efficient and inefficient varieties 
[189]. Tomato varieties ‘Calypso’ and ‘Spectra’ showed higher incidences of BER than ‘Counter’ [190]; 
‘Petomech II’ higher than ‘IPA-L’ [191]; ‘Celebrity’ higher than ‘Rutgers,’ ‘Mountain Pride’, and 
‘Mountain Spring’ [192]; STEP 158 (breeding line) higher than ‘Rutgers’ and ‘Doublerich’ [193], and 
‘Boludo’ higher than ‘Daniela’ [194]. Elongated tomato varieties are more susceptible to BER [195]. 
BER never occurs in small-fruit and wild tomato cultivars [53].  Lack or excess of minerals may cause 
deficiency disorders [196,197]. A low fruit apoplastic calcium, which results in leaky cell membranes, 
leads to BER development [198]. BER occurs in tomatoes if the calcium concentrations of the lateral 
ends of green fruits are < 0.2 µmol g-1 [199]. The fruit growth rate of the BER-susceptible tomato 
accession (Solanum lycopersicum lycopersicum) is higher than the BER-resistant one (Solanum 
lycopersicum cerasiforme), however, it is not clear whether this may contribute to BER development 
[186]. Phytohormones may also affect BER incidence. Foliar spray of ABA reduces BER incidence by 
increasing calcium availability [38,199], and gibberellins increase it through increasing oxidative 
stresses in plants [200]. ABA increases, and GA decreases calcium accumulation [144]. Thus, applying 
ABA or GA inhibitors (paclobutrazol and prohexadione-Ca2+) may decrease BER in peppers [144]. 
Transport and homeostasis of calcium ions are crucial for preventing BER in peppers [144]. 
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Pepper varieties with larger final fruit sizes and faster growth rates, such as ‘Marconi’ and ‘J27’, 
had higher sensitivity to BER than ‘Jerid’, which produces a smaller final fruit size [202]. No incidence 
of BER has been reported from wild-type tomatoes (small fruit size). This observation indicates that 
BER might be associated with larger fruits under favorable growth conditions that influence rapid 
fruit growth. ‘Marmande’ tomatoes had a higher BER incidence than cherry, cocktail, or round 
tomatoes [203]. Pygmy fruits, having no rapid growth phase, usually do not develop BER [204]. BER-
affected tomatoes ripen earlier and are smaller than healthy fruit [205]. 

The onset of BER can vary based on trusses and seasons. Frequent incidence of BER was 
observed with the first truss [36] followed by a subsequent decrease [31,206,207], or increase [207,208]. 
Basal fruits of a truss had more severe BER than the others [28]. Based on seasons, BER incidence can 
increase or decrease from the first to the upper trusses [151,190].  

9. Control of BER 

BER, a critical physiological disorder for several vegetables, has been studied for over a century, 
although the mechanism is unclear. Most researchers agree that this condition is a Ca2+-deficiency 
disorder, and supplying sufficient Ca2+ to the fruit may prevent the symptom development. However, 
the Ca2+ route from soil to the target organ, i.e., fruit, is not straightforward. Many factors are in action 
on the journey of Ca2+ from the soil to the fruit. Moreover, it is not the effect of a single factor, rather 
a combined effect of one or more factors [24], such as low soluble soil Ca2+,  high Mg2+, NH4+, and K+ 

concentrations, high salinity, inconsistent soil moisture (high, low or fluctuating), rapid fruit growth 
rate, poor xylem network towards the blossom end of the fruit, high temperature, and high or low 
transpiration of the target organ [24]. Cultural management approaches should favor Ca2+ 

translocation to the fruit to control BER. However, the transport of Ca2+ to the fruit may not ensure 
BER control, as cellular Ca2+ partitioning is the final and most crucial control level for this disorder 
[163]. Reports show severe BER incidence in the distal part of the fruit despite high Ca2+-concentration 
[211]. Moreover, no BER symptoms when the Ca2+-supply was low in the case of slow-growing plants 
[212] (Figure 3). The relatively high Ca2+ concentration in the BER-affected fruit might be explained 
through abnormal cellular partitioning, such as transport of abundant Ca2+ to the vacuoles, which 
may cause Ca2+ deficiency in other sub-cellular organelles and may develop BER. Moreover, an 
unanticipated change in cellular Ca2+ concentration response to environmental stimuli or hormonal 
effects may cause localized Ca2+ deficiency, leading to BER development [163].  

BER occurs due to abiotic stresses, high temperature, drought, salinity, water logging, higher 
transpiration, production of ROS, and low availability of ascorbic acid [195,214]. Control of BER is 
complicated due to the involvement of many changing and unpredictable abiotic factors, and proper 
management can only reduce the incidence rate [36]. Spraying calcium on the fruit during the 
developmental stage reduces BER incidence [53]. Spraying should be started at the early stage of the 
fruit and, of course, before the onset of BER, and it needs to be continued for the entire development 
stage. However, spraying may not be effective [195]. Balanced fertilizer and avoiding vigorous foliage 
growth may help reduce BER [195]. Shade net may also reduce BER incidence [215–219]. However, 
the incidence of BER in tomatoes is positively correlated with fruit plant-1, K content, root relative 
water content, firmness, vitamin C, titratable acidity, and peroxidase, and negatively correlated with 
calcium content [39]. A high calcium concentration (e.g., 20 mmol.L-1) decreases growth [plant height, 
diameter, biomass production (leaf, stem, root, and total)], physiological attributes [photosynthesis, 
stomatal conductance, transpiration, and chlorophyll content (chlorophyll a; chlorophyll b)], enzyme 
levels (superoxide dismutase, catalase, and peroxidase), and water use efficiency in poplar seedlings 
[49]. Therefore, correctly understanding calcium nutrition helps reduce crop cultivation costs, 
minimize environmental pollution, and boost crop production [220].  

Cultural and physiological crop management that ensures Ca2+ transportation to the fruit and 
appropriate cellular distribution may reduce the incidence of BER. The selection of BER-resistant and 
Ca2+-efficient cultivars may also help to reduce BER incidence. Controlling or skipping calcium 
deficiency disorders may include modifications of watering, light, temperature, transpiration, and 
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application of mulching and growth regulators. Using resistant varieties and customization of 
planting and harvesting (early planting and harvesting) may help skip calcium deficiency disorders 
[23]. Understanding the molecular mechanisms of BER may help in better managing the disorder 
[221].With the combination of appropriate management practices and BER-resistant cultivars, the 
incidence of this disorder may be eliminated in the future [53]. 

10. Conclusions 

Calcium is a crucial element for plant growth and development. Though soils worldwide are 
not typically deficient in Ca2+, Ca2+-deficiency disorders in crops are numerous and cause substantial 
yield loss. Among the Ca2+-deficiency disorders, BER is widely prevalent worldwide. The complex 
route of Ca2+ from soil to the appropriate cellular compartments, such as the cytosol depends on 
multiple factors, e.g., soil (moisture availability, the competition of Ca2+ with other cations, pH, 
anoxia, and salinity), plant [genotypes, growth habit (dwarf, tall), xylem network, root and shoot 
growth, yield, root damaged by pathogens, insects, and nematodes], and environment [temperature 
(air and root zone), relative humidity, vapor pressure deficit, and transpiration] that renders it 
difficult to control BER. Moreover, the cellular Ca2+ compartmentalization, particularly in the 
vacuoles, depletes cytosolic Ca2+ levels and may disintegrate the plasma membrane, leading to BER 
development despite having high Ca2+ content in the blossom end of the fruit. Therefore, possible 
ways of minimizing and controlling BER include i) an integrated approach that ameliorates soil, 
plant, and environmental factors towards supplying sufficient Ca2+ into the cells; ii) appropriate 
cultural and physiological management of crops; iii) a favorable environment; and iv) BER-resistant 
and Ca2+-efficient cultivars. Other approaches that include agronomic, physiological, breeding, and 
molecular methods may also contribute to minimizing BER occurrence.  
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