Pre prints.org

Article Not peer-reviewed version

On the Oscillatory Behavior of a Class of
Mixed Fractional Order Nonlinear
Differential Equations

George E. Chatzarakis i , N. Nagajothi, M. Deepa, Vadivel Sadhasivam

Posted Date: 24 January 2025
doi: 10.20944/preprints202501.1732.v1

Keywords: fractional differential equation; Riccati technique; oscillation

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/2018575
https://sciprofiles.com/profile/1709348

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 January 2025 d0i:10.20944/preprints202501.1732.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

On the Oscillatory Behavior of a Class of Mixed
Fractional Order Nonlinear Differential Equations

G. E. Chatzarakis "*, N. Nagajothi 2, M. Deepa ® and V. Sadhasivam *

School of Pedagogical and Technological Education (ASPETE), Department of Electrical and Electronic Engineering
Educators, Marousi 15122, Athens, Greece

Department of mathematics, Nandha Engineering college(Autonomous), Erode -52. M. Deepa

Department of mathematics, Pavai arts and science college for women, Rasipuram - 637 401. V. Sadhasivam

Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College (Affli. to Periyar
University), Rasipuram - 637 401, Namakkal Dt. Tamil Nadu, India

*  Correspondence: geaxatz@otenet.gr and gea.xatz@aspete.gr

Abstract: This article deals with the investigation of the oscillatory behavior of a class of mixed
fractional order nonlinear differential equations based on conformable fractional derivative and the
Liouville right - sided fractional derivative by using a generalized Riccati technique and an integral
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1. Introduction

The theory and applications of fractional differential equations are contained in many monographs
and articles [1-8,10-24]. Over the last years, the fractional order differential equations have proved to be
the most valuable and effective tools in the modeling of several phenomena in various fields of science
and engineering. In fact, we can find numerous applications on the design of fractional control systems.
The electrical properties of nerve cell membranes and the propagation of electrical signals are both
characterized by fractional order derivatives.The Fractional Adevective - Dispersive equation has been
the model basis for simulating transport in porous media. This model has been applied to laboratory
and field experiments. The fundamental explorations of the mechanical, electrical and thermal
constitutive relations of various engineering materials such as viscoelastic polymers, are modeled
successfully. In the area of financial markets, fractional order models have been recently used to
describe the probability distribution of log prices in the long time - limit which is useful to characterize
the natural variability in prices in the long term. See for example [1,7,8,12,13,16,18,20,21,25].

Fractional differentials and integrals provide more accurate models of the above aforementioned
system. There are several kinds of definitions for fractional derivatives and integrals such as the
Riemann - Liouville definition, the Caputo definition, the Liouville right-sided definition on the half
axis R, which are all based on integrals with singular kernels and exhibiting non - local behaviors
which fail to satisfy the product, quotient and chain rules. In contrast, 2014, Khalil et al, introduced a
limit based definition analogous to that for standard derivatives. See [2—4,11,19].

In recent years, there has been an increasing interest in obtaining sufficient conditions for oscilla-
tory and nonoscillatory behavior of different classes of fractional differential equations. The oscillation
theory of fractional differential equations with Liouville right - sided definition has been studied by
many authors Chen [6], Xu [22], Han [9], Pan [15] and with damping term investigated by some other
author’s Qi [17], Zheng [23,24].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In 2013, Xu [22] investigated the oscillatory behavior of class of nonlinear fractional differential
equations of the following form

(a(t) [(r(t)g(Dix(t))’H”)' - F<t, /tw(v - t)“x(v)dv> =0 fort >ty > 0.

In the same year, Zheng and Feng [23] discussed the oscillatory behavior of the following equation

Y

(a) [ (2] ]") + )] (rir D201 ]
—af(([Te-n @) —o

for t € [tg,0), 0 < a < 1.In 2017, Pavithra and Muthulakshmi [14] studied the oscillatory behavior
for the class of nonlinear fractional differential equations with damping term of the following form

U

(a0 [ (rwsx0)]]") + 0] (r0)s (D x(1))]]
- F<t, /too(v - t)“x(v)dv) =0 fort>tg>0.

In 2020, G. E. Chatzarakis et al, investigated the Oscillatory Properties of a Certain Class of Mixed
Fractional Differential Equations with the conformable fractional derivative and the Riemann-Liouville
left-sided fractional derivative. From the above quoted literature, we have observed that the Liouville
right-sided fractional derivative together with classical integer order derivative are used for (2 + «)
order nonlinear differential equations. To the best of the author’s knowledge, it seems that there has
been no work done with conformable and Liouville right-sided derivatives in the fractional order
differential equations.

Motivated by this gap, the authors have initiated the following oscillation problem of a class of
mixed fractional order nonlinear differential equation of the form

Tas [r2(8) f2 (Toy (r1 () f1 (DT x(8))) )] + £ 72 P(t) f2 (Tay (r1. () 1 (DY x(1))))
— F(t,/ (v— t)“lx(v)dv> =0,t>t>00<4g;<1,i=1,2,3 (1.1)
t
where D*! denotes the Liouville right-sided fractional derivative and T,,, Ty, denotes the conformable

fractional derivatives.
Throughout this paper, we will assume that the following conditions hold:

(A1) RO) = fi (o35, P(0) € Cllto ), Ra)
(A2) ra(t) € C%([to,00),R+)), 71 (t) € C2T([ty, 00),R+)), [~ fz—l[eR(ls)rz(s)]d“ZS = oo

(A3) (a)f; € C*2T% (R, R) is an increasing and odd function and there exist positive constants J;

such that ]% < é; > 0 for xf;(x) # 0, where i=1,2 and let § = 615y;
i
(b) ffl € C(R,R) with u flfl (u) > 0 for u # 0, and there exist some positive constants A;

such that £, (uv) > A;f; (u) £ (0) for uv # 0,i=1,2, where A = A1Ay;

(Ag) F(t,K) € Cl([tg,o0) x R,R;)) there exists a function Q(t) € C!([tg,o0),R.)) such that
F(t,K)

> Q(t) for K # 0t > t.

f2(K) o

By a solution of (1.1), we mean a function x(t) € C(Ry,R) such that [ (v —t)™“x(v)dv €
CY(R4,R),r(t)f1(DYx(t)) € C*2*3 (R, R) and satisfies (1.1) on [tg, o).

A nontrivial solution of (1.1) is called oscillatory if it has arbitrary large zeros, otherwise it is

called nonoscillatory. (1.1) is called oscillatory if all of its solutions are oscillatory.
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The main purpose of this paper is to extend and generalize all the results established in [6,9,14,15,
17,22-24] to the mixed fractional differential equations (1.1) and to provide a detailed discussion of the
main results by making use of the generalized Riccati technique and integral averaging method.

This paper is organized as follows: In Section 2, we recall the basic definitions of Liouville right-
sided derivative and conformable fractional derivatives along with basic lemmas concerning the above
set of derivatives. In Section 3, we present some new results of oscillation of solutions of (1.1). In
Section 4, examples are provided to illustrate the main results.

2. Preliminaries

Before starting our analysis of (1.1), we have to explain the meaning of the operators D* x(t) and
Tu(f)(t). For the sake of completeness let us provide the essentials of fractional calculus according to
Liouville right-sided approach and Khalil’s conformable fractional derivative. Let us first define the
Liouville right-sided operator.

Definition 2.1 ([12]). The Liouville right-sided fractional derivative of order a of x(t) is defined by
D* x(t) = — 1_a dt/ (v — )~ x(v)dv, t € Ry = (0, 00),

where T (.) is the gamma function defined by T (t) = [;” e~%s'"1ds,t € R,.
Lemma 2.1 ([6]). Let x(t) be a solution of (1.1) and

K(t) = /t " v =) x(v)dv. @.1)
Then

K'(t) = —T(1 — a) D x(t). (22)

Next, we give the definition of the conformable fractional derivative proposed by Khalil et al [11].

Definition 2.2. Given a function f : [0,00) — R. Then the conformable fractional derivative of f of order w, is
defined by

Ta(f)(t) — lim f(t+€tl_a) _f(t)

e—0 €

forall t > 0,a € (0,1). If fis a- differentiable in some (0,a),a > 0,and lim,_,+ f\9)(t) exists, then define

F(0) = lim f®)(2).

t—0t

We will sometimes write f®) (t) for To(f)(t), to denote the conformable fractional derivatives of f of order w.

Some properties of conformable fractional derivative:
Leta € (0,1] and f and g be « - differentiable at a point t > 0. Then

(Py) Ta(t?) = ptP~* forall p € R.
(Py) To(A) = 0, for all constant functions f(t) = A.
(BT =15 1)
4) TlX( ) gﬂgik
(Ps) If, in addition, f is differentiable, then T, (f)(t) = '~ ""jl{ (t).

d0i:10.20944/preprints202501.1732.v1
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Definition 2.3 ([19]). Let a € (0,1} and 0 < a < b. A function f : [a,b] — R is a-fractional integrable on
[a,b] if the integral

/ab f(x)dgx == /ﬂbf(x)x"‘_ldx

exists and is finite.

Lemma 2.2 ([2]). Let f : (a,b) — R be differentiable and 0 < a < 1. Then, for all t > a we have
LTE(f)(8) = f(t) = f(a). (23)
The following inequality is taken from Hardy et al [10], used in the sequel.
Lemma 2.3. If X and Y are nonnegative, then
mXY"™ 1 X" < (m—1)Y",m > 1. (2.4)

3. Main Results

In this section, we will present some new oscillation criteria for (1.1).

Lemma 3.1. Assume that x(t) is an eventually positive solution of (1.1). If

© 1 B
W 1 <rl(s)>ds—oo (3.1)

and

T L (Tl 1% R e
fo fll(rl(r)/r le(eR(é)rZ(g)/é et Q(s)d%S)daz‘:)dT— , (3.2)

then there exists a sufficiently large T, such that Ty, (r1(s) 1 (D2 x(s))) < 0on [T, o), and one of the following
two conditions holds:

(i) DY x(t) < 0 on [T, )

(i) D" x(t) > 0 on [T, ), and lim;_,o K(t) = 0.

Proof. Lett; > ty be such that x(t) > 0 on [t;,00) and so K(f) > 0 on [t;,c0). Thus by (1.1) and (A4),
we have

Ty, [eR<f>r2(t) Fo(Tay (1 (8) f1 (Dilx(t))))} > ROQ(H) fo(K(1)) > 0,t € [t, ), (3.3)

which means that eR")ry(t)fa(Tu, (r1(t) f1(D¥x(t)))) is strictly increasing on [t;,0). Conse-
quently, we can conclude that Ty, (r1(t) f1 (D2 x(t))) is eventually of one sign. We claim that
Ty, (r1(t) f1(D%x(t))) < 0 on [ty,00), where t, > t; is sufficiently large. Otherwise, there exists
a sufficiently large t3 > t; such that Ty, (r1(¢) f1 (D™ x(t))) > 0 on [t3,00). Then for t € [t3,00) and
using Lemma 2.2, we get

ri(t) f1(Dx(t)) —r1(t3) f1 (D x(t3))
1 R On(s)] Ty (1) (DY x(5)))
= . fgl [eR(s)rz(s)]

Ay,
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n (B (DY x(8)) ~r1(t) i (DY x(13))
> f [eMra(ta) | Ty (11 (1) 1 (DY x(15)))
t ! . (3.4)

" TR

From (A;), we have lim;_. 71 () fi (D™ x(t)) = oo, which implies that for some sufficiently large
ty > t3, r1(t)f1 (D™ x(t)) > 0. Thus, it is obvious that

1 (t)fl (D‘flx(t)) > 1’1(t4)f1 (DDLIX(M)) =c>0,te [t4, 00) (35)

From(A3), we have

and therefore

1 _ K'(t) ~
f (1’1(1‘)) < /\1T(1—061)f1_1(c)l t € [ty,00). (3.6)

Integrating (3.6) from ¢4 to t, we obtain

/fl (,,1 ) = I f("fj))ﬁ 1<C), t € [ty,00).

Letting t — oo, it follows that

/f1 (r S)ds<oot€[t4, )

which contradicts (3.1). Therefore Ty, (r1(t)f1 (D™ x(t))) < 0 on [tp, o).

From, (A3), we get that D" x(t) is eventually one sign. Consequently, there are two possibilities: (i)
D" x(t) < 0 on [T, ) (ii) D"'x(t) > 0 for on [T, ) for sufficiently large T. Suppose D*'x(t) > 0 for
t € [T, 00), for sufficiently large T > t,. Thus, K'(t) < 0,t € [T, ), and we have lim;_,o K(t) = I.
Now we claim that I = 0. Otherwise, assuming ! > 0 then K(¢) > [ on [T, o). By (3.3) we have

T [eR(t)VZ(t)fZ(Ttxz (r(t)fi (D@x(t))))} > ef0Q( ()

fort € [T,c0). a3 - integrating the above inequality from t to co and using Lemma 2.2, we can derive

K1) fo(Tua (n (01 (D2x(1))) = (1) [ eI Q(s)s.

t

From (Aj3), we have that

1 o
Tay (11 (8) f1 (DY x(1))) < —Aalfy LR(W /t eR(S)Q(s)dass] (3.7)
fort € [T, c0).
ay -integrating both sides of (3.7) from t to oo, we obtain

—r (O£ (DYx(1) < —Aal / IS LR )1@(5) /;ogR(S)Q(s)d%S}dazg
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fort € [T, c0).

oty (4 [ g o)

Applying Lemma 2.1 and (A3)(b), we have

r(If,%ZAffl(’)fﬁ( /fz LR ot g)/ k0Q das]dazé)- (3.8)

Integrating both sides of (3.8) from T to t, we obtain

K(t) < K(T)

CAT(1—a))f / fr <7’1 / fr Lm% >/ eR(”Q(s)d%s}daza)dr. (3.9)

Letting t — oo and using (3.2), we get lim;_, K(t) = —oo. This contradicts K(f) > 0. The proof of the
lemma is complete. [J

Lemma 3.2. Suppose that x(t) is an eventually positive solution of (1.1) such that Ty, (r1(t) fi (D™ x(t))) <
0, D" x(t) < 0 on [t1,00), where t; > tq is sufficiently large. Then

K'(t) > —oI'(1— uq)Rl(tlrt)eR(t)r:(élf))j;(T‘xz (n()A(D2x(1)))) (3.10)
1
and
K(t) > —8T(1 = a)Ry (11, ek Dra (1) fo (Tuy (1 (1)1 (DU (1)), G.11)
where Ry (t1,t) ftl eR(s) )dazs, Re(t1,8) = ttl Ri’ll((t:;)S)

Proof. Asin Lemma 3.1, we deduce that eR()ry(t) fo (T, (1 () f1 (D™ x(t)) ) ) is strictly increasing on
[t1,00). So, we have

r(t) £ (Dx(t)) < /tlt eR)ry (s) T, (rl(s)fl(Dailx(s)))d

ROrs (s) #2°

< ROy ()T, (1 (1) f1(DYx (1)) /tlt eRll”z(S)

= Ry (t1, )eRBry(£) T, (r1(t) f1 (DY (1)) ).

AayS

From (Aj3), we obtain

mm<DZm>sﬁwﬁ@ﬁﬂm
< Ry (1, D)eROry (1) T, (r1(8) f1 (D x(1)))

which implies that,

K'(t) > _or(1 - Dil)Rl(tlft)eR(t)rzr(tz{)z(Taz (mn(t)f1(DYx(1)))) '
1

d0i:10.20944/preprints202501.1732.v1
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Integrating the above inequality from £, to t, we obtain
K() - K(t) > /t Il — )Ry (tl,S)eR(S)wfs(){)z (Tay (r1(s) f1 (D" x(s)))) ]
tl 1

> 001~ )X Or(0)fo (Tey ( (0 (D2x(1)))) [ B

no r1(s)

S

Consequently,

K(t) > —6T(1 — aq)Ra(ty, )eROry () fo (T, (11 (1) f1 (D x(1)))).

The proof of the lemma is complete. [

Theorem 3.1. Assume that (3.1), (3.2) hold and suppose that f}(v) exists such that f}(v) > u for some p > 0
and for all v # 0. If there exist two functions ¢(t) € C*3([tg, c0),Ry), n(t) € C*3([ty, 00), [0, 00)) such that

[ (2000 — pls)y'(6) + L ar (1 - )R (T, 5)2(6) -

[27(5)p(s)s' ol (1~ a)Ry(T,s) + q>’<s>r1<s>}2> P
4r1(5)¢(5)s1— 4oT (1 — 1) Ry (T, 5) 5=

(3.12)

for sufficiently large T, where Ry (T, s) is defined in Lemma 3.2, then every solution of (1.1) is oscillatory or
lim;_ K(t) = 0.

Proof. Suppose that (1.1) has a nonoscillatory solution x(t) on [ty, o). Without loss of generality, we

may assume that x(t) > 0 on [t;, ) for t; > to. By Lemma 3.1, we have Ty, (r1(t) f1 (D2 x(t))) < 0,

t € [tp, o) for some sufficiently large t, > t; and either D" x(t) < 0 on [tp,00) or lim;_,c K(t) = 0.
First, suppose that D*'x(t) < 0 on [t,c0). We define the generalized Riccati function

() = o(0) (eR(t)rz(t)fz(Taz (n(HA(D2x(1)))) H(t)),

(KD (3:13)

when w(t) > 0 on [f, ).
Now, differentiating (3.13) for a3 times with respect to t for ¢ € [tp, o),

Toy(?) =Ta3¢<t>( R R ())))+ﬂ(t>>

=

f2(K(t))

(
ROn(b) fo (Tuy (r1 (1) f1 (D2 x(1))) )
+¢(t)Tvc3< (K(t )) + (1) Tz (1)

|5

Then, making use of (1.1), (3.3), (A3) and (3.10) it follows that

/() <5 D) - ot Q( 1 + o) (1)

+ ()R Oy (1) fo (T, (r1 () f1 (DY x(1)) ) ) %0
" —0T (1 — 1) Ry (t1, ))eROro(£) fo (T, (r1 (1) f1 (DM x(1))))
r () (f2(K (1))

— ¢(H)e" Q) + (1) (1)
 p(Hpt T (1 — aq)Ry (t, 1) (w(t) - M){

r1(t) ¢(t)
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/(1) < = GO 4 g0y (1)~ LA T (1 - )10, 070
[2(B)g (1)t~ pusT(1 — 1) Ry (t1, 1) + ¢/ (D1 ()] (3.14)
an(Op(OI=poT (1 —a)Ri(,t) |

Integrating the above inequality from t; to t, we obtain,

[ (#0000 = gls)(6) + L 0T (1 - ) o (T,5)2)

)’
[zﬂ(s)(P(S)sl_"%yér(l — ’Xl)Rl(T, S) + <P/(S)7’1 (S)]Z
- 4r1(s)p(s)s1=%3udT (1 — a1) Ry (T, s) >d5 < w(ty) —w(t) < w(ty)

and letting t — co, we get a contradiction to (3.12). The proof of the theorem is complete. [

Theorem 3.2. Assume that (3.1) and (3.2) hold. If there exist two functions ¢(t) € C*3([tg, 00), Ry ), n(t) €
C*3([tp, 0), [0, 00)) such that

® [ ¢(s)eRE)Q(s)s ! ) 4 96)
/T ( 5 —¢(s)n'(s) + @‘%F(l — 1) Ry (T, )% (s)
 29(s)¢(s)T (1 — )Ry (T, 8) + ¢ ()14 (S)]2>ds e
4r1(s)p(s)oT (1 — a1)R1(T, s)

(3.15)

for sufficiently large T, where Ry (T, s) is defined in Lemma 3.2, then every solution of (1.1) is oscillatory or

Proof. Suppose that (1.1) has a nonoscillatory solution x(t) on [tg, o). Without loss of generality, we
may assume that x(¢) > 0 on [t;, ) for t; > to. By Lemma 3.1, we have Ty, (r1(t) fi (D2 x(t))) <0,
t € [tp, o) for some sufficiently large t, > t; and either D*'x(t) < 0 on [fp, %) or lim¢_e K(t) = 0.

Assume that D"'x(t) < 0 on [t,00). Let us define the generalized Riccati function as follows,

w(t) = ¢(t) (jR(t)rZ(t)fZ(TM nOADZXO)) n(t>>,

K(t)

(3.16)

when w(t) > 0 on [f;,0). The rest of the proof is similar to that of the Theorem 3.1. [J
Next, we discuss some new oscillation criteria for (1.1) by using integral average method.

Theorem 3.3. Let Dy = {(t,s) : t >s > to}and D = {(t,s) : t > s > to}.
Assume that (3.1), (3.2) hold and there exists a function H € C'(ID;R) is said to belong to the class P if
(Ty) H(t,t) =0 fort > to, H(t,s) > 0 on Dy,
(T2) H has a continuous and non positive partial derivative on Dy with respect to the second variable and

hfgit}PH( v L Ht9) [¢<s>eR<s>Q<s>s“31 — P (s)
i)) 15T (1~ ay)Ry(T, 8)(5)

[ (S) ()1a3}45r(1—a)R (TS)+¢() ()]2 B
4ry(s)p(s)s1~ ”‘3y(511(11—¢x1)R1(T,S) ds = oo (3.17)

for all sufficiently large T, where ¢, 11 are defined as in Theorem 3.1. Then every solution of (1.1) is oscillatory or
im0 K(t) = 0.

d0i:10.20944/preprints202501.1732.v1
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Proof. Suppose that (1.1) has a nonoscillatory solution x(t) on [ty, c0). Without loss of general-
ity, we may suppose that x(f) > 0 on [t;,00) for some large t; > f;. By Lemma 3.1, we have
Tu, (r1(t) (D™ x(t))) < 0, t € [tp,00) for some sufficiently large t, > t; and either D"'x(t) < 0
on [tp, c0) or lim_ye K(#) = 0.

Now, we assume D*'x(t) < 0 on [tp, 00) for some sufficiently large t, > t1. Let w(t) be defined as
in Theorem 3.1. By (3.14), we have

(RO — gt (1) + j’l({})ﬂ-wm )R (b D)

27())p()F =T (1 — ar) Ry (2, 1) + ¢/ () (1)) /
- 41’1(t)¢(t)t1“"3;4(51}(1ial)Rl(tzlt) — < (1), (3.18)

Multiplying both sides by H(t,s) and then integrating it with respect to s from t, to t yields
t
() |[0(6)e 1005051 = (51 ()
5]
+ @517“3‘14(5F(1 — a1)Ry (2, 8)17%(s)
r1(s)

[29(s)9(s)s' = uOT (1 = m1)Ru(t,8) + ¢'(s)ra(s)]” t :
- 471(S)¢(S)51—“3H5F(] — al)Rl(tz,S) ]ds < —/ H(t,s)w (s)ds

< H(t, fg)w(tz) < H(t, to)w(tg).

Then,
[ 10,9 g0 = g9 9

+ ji((ss))sl_%y&l"(l — al)Rl(tz,s)172(s)

20695 T (1 —a)Ry (12,9) + ¢ ()9
4r1(s)p(s)s1 =% udT(1 — 1) Ry (¢, 8)

9(5)e"1Q(s)s™ 1 — p(s)n'(s)

)
H(t, to /
fo

)
T ((i)) ST (1 — aq) Ry (t2, 8)77°(s)

 [20(5)p(s)s'0uST (1 — a1)Ry (ba,5) + @' (5)r1(5)]
471 (s)¢p(s)sT % puoT (1 — a1) Ry (12, ) ds + H(t, to)w(ta).

Therefore

hrnsupH(t1 ) /t H(t,s) [(p(s)eR(s)Q(s)s"‘rl —¢(s)n'(s)+

t—o0

;li((s))slﬂtswsr(l — al)Rl(fzrs)Wz(S)_
[217(5)4)(5)51—@”(51"(1 —wa1)Ry(f2,8) + 4,/(5)71(5)]2

4r1(5)(5)5—%3 46T (1 — a1) Ry (2, 9) ds < oo,

which contradicts (3.17). The proof of the theorem is complete. O
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In this theorem, if we take H(t,s) for some special functions such as (t —s)™ or log (;) , then we

can obtain some corollaries as follows.

Corollary 3.1. Assume that (3.1), (3.2) hold and

t

lim sup(t_l)m /to (t—s)™ |:¢(S)6R(S)Q(S)sﬂé31 —¢(s)y'(s)

t—00 tO
+ ;i((i))sl“{u&l"(l —a1)Ry(T,s)%(s)
[24(5)p(s)s 8T (1 — &1) Ry (T, 5) + ¢/ (5)r1(5) ]
4r1(s)p(s)s1=%udT (1 — a1) Ry (T, s)

ds = o0

for sufficiently large T. Then every solution of (1.1) is oscillatory or lim; ;e K(t) = 0.

Corollary 3.2. Assume that (3.1), (3.2) hold and

t
lim sup

P e gty J, (81 1089|0101 — 6 (9
+ LS T (- )R (7517200

[27(s)(s)s' " pT (1 — a1 )Ry (T, 5) + ¢/ ()7 (s)]
4r1(s)P(s)s! 4 udl (1 — a1)Ry (T, s)

ds = o0

for sufficiently large T. Then every solution of (1.1) is oscillatory or lim;_,e K(t) = 0.

4. Examples

In this section, we give some examples to illustrate our main results.

Example 4.1. Consider the fractional differential equation

(o) ()

_ th (/tw(v _ t)—%x(u)dy) =0 fort>1. (4.1)

This corresponds to (1.1) with ry(t) = r1(t) = 1,01 =
filx) = x,ﬁ < 6 = 1,f(x) = x,P(t

where tM = Q(t). Then, we have

[t P(s) 9
R(t) = /to S =l 1<
) 1 0 31
b RO rE] /1 g B

and
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Furthermore,

L e

/ / e Hdzdr = 49M 1 izodr:oo.

e

On the other hand, for sufficiently large T, we get

R(T t)*/tLd sf/tls“rldsfl/ts%_lds—>oo(t—>oo)
1(1,t) = @™ Jre =) .

T eRG)py

Thus we can take T* > T such that Ry (T,t) > 1fort € [T*,c0).
Letting ¢(s) = s%,q(s) =0,u=16=1

7061 ple) (5) + LS80 - ) R (T, )7 (5) -
T r1(s)

[21()p(s)s oL (1 = )Ry (T,5) + ¢/ (5)ra(5)]”
4r1(s)p(s)s1 =% udT (1 — a1)Ry (T, s)

T+ q { ] | 81
T s 196f $ 196/

provided M > 196 \F Hence, all the conditions of Theorem 3.1 are satisfied. Therefore, every solution of (4.1) is
oscillatory or lim;_,. K(t) = 0.

{EM— ]ds — 00,

Example 4.2. Consider the fractional differential equation

T3 {(Z—i—cost) (T3 (D% ( )))] +t13t3<T; <D%x(t)>)

- MS (/ (v— t)_%x(v)dv) =0 fort>1. 4.2)
t7 \Jt
This corresponds to (1.1) with ro(t) = 2+ cost,r1(t) = Ly = 3,00 = 3,
0 =3 A1) = x5 <q =1 fx) =xP(t) =17,

F(t,K) = Q1) ([ (v — t)™Mx(v)dv), where X = Q(t). Then, we have

5
7

R(t):/tt P(S)ds:/t s ds <

1
o 72(s) 1 2+coss 2

-~

and

0 1 -1

1
_ >
to fy HeR)ry( daz / \f(2 + coss) ds 2 3\/5/1

[ee] 3 1
$77'ds = oo.
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In addition, we can get

/to fl (T](S))ds_/l ds = co.
Furthermore,

(L [T (L [T ke ) )
to fl (71(7)/1' f2 (eR(‘:)rz(g)/ér € Q(S)d“3s dﬂézg dr
VAR T YA B a3—1 )azl )
N to fl (1’1(’()/1— f2 (eR(g)rz(C)/g e Q(S)S ds | ¢ dac¢ |dt
_ 00 oo 1 00 \/EM ;71 %71
7/1 /T [\/E(2+cos§) e ds]é dgdr

> f/f/f(/; 1ds)§3—1dgdr—oo

On the other hand, for sufficiently large T, we get

t
Ri(T,t) = / #dﬂézs = / S S— A TN oot — 00).
T eR()py \f(2+coss)

Thus we can take T* > T such that Ry(T,t) > 1 fort € [T*,c0).
Letting ¢(s) =1,y(s) =0,u=1,6p =6 =1.

00 s)eRE) QO (s)s%~ s
[T (PR o)+ £ - Ra(T 200

T ) r1(s)

_ [20(5)p(s)ST (1 — a)Ry(T,8) + ¢ (5)rs <s>12>ds
4r1(s)¢(s)or' (1 — aq)R1 (T, s)

oo 001
> / \/EMS_;S_%dS:/ —ds — oo,
T T S

Hence, all the conditions of Theorem 3.2 are satisfied. Therefore, every solution of (4.2) is oscillatory or
im0 K(t) = 0.

Example 4.3. Consider the fractional differential equation

T3 {(2 + cos t) (T1 (D% ( )) )] 138 (Ti (Déx(ﬂ))

- th </ (v— t)%x(v)dv) =0 fort>1. (4.3)
t
This corresponds to (1.1) with ro(t) = 2+ cost,r1(t) = Ly = 3,00 = §,
“3:%rfl(x)* rf()<5l 1,f2(x):x,P():t3
F(t,K) = Q(t) ([;" (v — t)™™x(v)dv), where 3 = Q(t).
Then, we have
s 1
R <=
(#) = /torzs 2+coss 5_2

and

1
0 1 0 g1

1 (¢S]
TR s = ds >
to f{l[eR(S)rZ(s)] 425 /1 Ve(2+ coss) = 3ye Ji
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In addition, we can get

/to fl (T](S))ds_/l ds = co.
Furthermore,

R (RN LY (R S () ) )

to fl (7’1<T)/T f2 (eR(‘:)rz(g)/ér € Q(S)d“3s dﬂézg dr
VAR T YA B a3—1 )azl )
B to fl <1’1 / f2 (eR(é)rz(C)/C e Q(s)s ds )¢ dac¢ |dt
_ © /eM 5.1 -

/ / [ (2+cos§) 3 dS}C dgdt

Z?/l / </(_; Sds)grldgdr—oo

On the other hand, for sufficiently large T, we get

t
Ri(T,t) = / #dﬂézs = / S SE— Y PN oot — 00).
T eR()py \f(2+coss)

Thus, we can take T* > T such that Ry(T,t) > 1 fort € [T*, o).
Letting ¢(s) = s%,q(s) =0,u=10=1and H(ts) =log(l).

imsup ;7 [ H(1,5) [ (K01 = g9 (9

t—o0 (

to)
(S)) 1— agy(gr( )Rl(T/S)WZ(S)

t,
L ¢
r(s
L

1(s)p(s)s' =T (1 — )Ry (T,5) + ¢/ (s)r1 (s >]2]ds
471( s)¢(s)st e udl (1 — ay)Rq(T,s)

t—rc0 Ogt(
1 i t 81 1
— li — ([ 10gt|VeM — —2 |24
i logt( r %8s [“E 196ﬁ}s S)
T t 81 1
— i / logt |veM — —% |24
Htlliljp log ( T 8 [\/E 196\/5} s7°

+/ log- [\[M_ws\/>}l s>—>00,

provided M > 152 r Hence all the conditions of Theorem 3.3 are satisfied. Therefore, every solution of (4.3)

is oscillatory or lim; . K(t) = 0.

Conclusion

In this article, the authors have derived some new oscillation results for a class of mixed fractional
order nonlinear differential equations with conformable fractional derivative and Liouville right-sided
fractional derivative, by using the generalized Riccati technique and integral averaging method. This
work extends and generalizes some of the results in the known literature [5,8,13,14,16,21-23] to the
mixed fractional differential equations. Some illustrative examples are given to test the effectiveness of
our newly established results.
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