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Abstract: The asymptotic behavior of the analytic solutions of a family of singularly perturbed 

q-difference-differential equations in the complex domain is studied. Different asymptotic expansions 

with respect to the perturbation parameter and to the time variable are provided: one of Gevrey 

nature, and another of mixed type Gevrey and q−Gevrey. This asymptotic phenomena is observed 

due to the modification of the norm established on the space of coefficients of the formal solution. 

The techniques used are based on the adequate path deformation of the difference of two analytic 

solutions, and the application of several versions of Ramis-Sibuya theorem. 

Keywords: Gevrey asymptotic expansions; q-Gevrey asymptotic expansions; singularly perturbed; 

formal solution.  

 

MSC: 35R10, 35C10, 35C15, 35C20 

 

 

1. Introduction 

In the present study, a family of singularly perturbed linear q-difference-differential equations of 

the form 

 

under initial data 

P(ϵktk+1∂t)∂Su(t, z, ϵ) = P(t, z, ϵ, ∂t, ∂z, σq)u(t, z, ϵ), (1) 

 

(∂j u)(t, 0, ϵ) = φ (t, ϵ), 0 ≤ j ≤ S − 1, (2) 

is studied. In the previous problem, ϵ acts as a small complex perturbation parameter, and σq stands 

for the dilation operator on t variable defined by σq f (t) = f (qt), for some fixed q > 1. In (1), S, k 

are positive integers, P(τ) ∈ C[τ], and the symbol P(t, z, ϵ, τ1, τ2, τ3) is a polynomial in (t, z, τ1, τ2, τ3) 

with holomorphic coefficients on some neighborhood of the origin with respect to the perturbation 

parameter. The functions φj(t, ϵ) are polynomials with respect to t variable, with holomorphic 

coefficients on some neighborhood of the origin in ϵ. It is worth mentioning the irregular nature 

of the differential operator in both P(ϵktk+1∂t), and inside P in the form of polynomial operators in 

ϵktk+1∂t. The precise shape of the main problem and the concrete assumptions considered in it are 

determined in detail in Section 2.1. 

There is an increasing interest on the study of the asymptotic behavior of the solutions to 

q−difference-differential equations in the complex domain. This is the case of the recent works 

by H. Tahara [14], H. Yamazawa [18] and H. Tahara and H. Yamazawa [15]; the authors and J. Sanz [8] 

and with T. Dreyfus [3]. A different approach via Nevalinna theory is developped in [16,17]. The 

importance of applications of q-difference equations in the knowledge of wavelets or tsunami and 

rogue waves is evidenced in recent advances in the field such as [12,13]. 

In the present work, we construct solutions u(t, z, ϵ) of the main problem (1), (2) which are 

bounded holomorphic functions defined on T × DR × E, where T and E stand for finite sectors of the 

complex plane with vertex at the origin, and DR stands for the open disc of radius R > 0. The main 

purpose of the present work is to show that the function E ∋ ϵ '→ u(t, z, ϵ) shows different asymptotic 
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expansions with respect to the perturbation parameter ϵ when modifying the norm considered in 

the space of coefficients, the space of holomorphic and bounded functions defined on T × DR. The 

symmetric situation with respect to T ∋ t '→ u(t, z, ϵ) is also considered. 

The appearance of such phenomena is due to the existence of small divisors involved in the 

main equation, in contrast to [10]. In the seminal work [10], the second author studies the asymptotic 

solutions with respect to ϵ of equations of the form 

 
D 

Q(∂z)u(qt, z, ϵ) = ∑ ϵ∆ℓ tdℓ cℓ(t, z, ϵ)Rℓ(∂z)u(qδℓ t, z, ϵ) + f (t, z, ϵ), (3) 
ℓ=1 

where q > 1, D ≥ 2, δℓ, ∆ℓ, dℓ are non-negative integers for 1 ≤ ℓ ≤ D. The functions cℓ(t, z, ϵ) for 

1 ≤ ℓ ≤ D and f (t, z, ϵ) are bounded holomorphic functions on Dr × {z ∈ C : |Im(z)| ≤ β′} × Dϵ0 , for 

some r, β′, ϵ0 > 0. Q(τ) and Rℓ(τ) for 1 ≤ ℓ ≤ D are polynomials with complex coefficients. All these 

elements are subjected to further hypotheses not mentioned here for the sake of simplicity. 

In [10], the technique used to solve asymptotically the problem is to construct the analytic solutions 

to (3) in the form of a q−Laplace transform of order k, for some k > 0 which depends on the elements 

of the problem. This causes the absence of two distinguished asymptotic expansions (even when 

modifying the norm considered for the function spaces involving the variables (t, z)) in contrast to 

the present situation. In that work, no small divisor appear in the main problem under study, all the 

asymptotic expansions obtained there being of q−Gevrey type with respect to ϵ. 

The main inspiration of the present study is [1], where the authors deal with the formal solutions 

to systems of dimension N ≥ 1 of the form 

ϵαxpσq,x(y)(x, ϵ) = F(x, ϵ, y), (4) 

where p, α are non-negative integers, q ∈ C is such that |q| > 1, α > 0, and F(x, ϵ, y) is analytic on some 

neighborhood of the origin in C × C × CN, with F(0, 0, 0) = 0 and DFy(0, 0, 0) being an invertible 

matrix. Indeed, the unique formal solution of (4) 
 ∞ ∞ 

yˆ(x, ϵ) = ∑ yn(ϵ)xn = ∑ un(x)ϵn 

 
is such that 

n=0 n=0 

(1) for p > 0, all yn converge on some common neighorhood of the origin, whereas un converges on 

the disc of radius r/|q|⌊n/α⌋ for some r > 0 and there exist C = C(q), A = A(q) > 0 such that for 

all n ≥ 0 one has 

 sup y CAn q 
n2 

, sup u  x  CAn. 

|ϵ|≤r 

|
 

n(ϵ)| ≤ | | 2p 

|ϵ|≤r/|q|⌊n/α⌊ 

|

 
n( )| ≤ 

(2) for p = 0, yn and un converge on the disc of radius r/|q|n/α and r/|q|⌊n/α⌋, respectively, for some 

r > 0, and there exist C = C(q), A = A(q) > 0 such that for all n ≥ 0 one has 

sup 
|ϵ|≤r/|q|n/α 

|yn(ϵ)| ≤ CAn, sup 
|ϵ|≤r/|q|⌊n/α⌊ 

|un(x)| ≤ CAn. 

 

Observe in the previous result that the coefficients of the formal solutions might be defined 

in shrinking neighborhoods of the origin, determining power series which have null radius of 

convergence. 

The procedure followed to solve (1), (2) analytically is to search for solutions in the form of a 

Laplace transform of order k (see Section 5) which transforms the main problem into an auxiliary 

convolution equation, whose analytic solution satisfies appropriate bounds in order to recover an 
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analytic solution to the main equation via Laplace transform (see Proposition 1). Sharp bounds satisfied 

by the solutions to the auxiliary convolution equation are also available, leading to the construction 

of a finite family of analytic solutions to (1), (2), say (up,1(t, z, ϵ))0≤p≤ς1 −1, for some integer ς1 ≥ 2, 

with up,1 ∈ Ob(T × D × Ep) for all 0 ≤ p ≤ ς1 − 1. Here, T stands for a bounded sector in C with 

vertex at the origin, D is a neighborhood of the origin, and Ep is a bounded sector with vertex at 

the origin belonging to a good covering in C⋆ (see Definition 8). Another finite family of analytic 

solutions to (1), (2), say (up,2(t, z, ϵ))0≤p≤ς2 −1, for some integer ς2 ≥ 2, is also constructed. For every 

0 ≤ p ≤ ς2 − 1, the solution up,2(t, z, ϵ) remains analytic on Tp × D × E, where E is some bounded 

sector in C with vertex at the origin, and so it is Tp, which is an element of a good covering in C⋆. 

The main results of the present work determine the asymptotic behavior of the two families of 

analytic solutions from two radically different topological points of view. It is proved in Theorem 3 the 

existence of a formal power series in the perturbation parameter, with coefficients in some Banach space 

of functions which asymptotically approaches each of the analytic solutions in (up,1(t, z, ϵ))0≤p≤ς1 −1. 

The asymptotic approximation is measured by means of a L1 − q−relative-sup-norm. Such norm 

is defined on a larger set of formal power series in one of their variables with coefficients being 

holomorphic functions on some shrinking neighborhood of the origin (see Definition 3). Under this 

measurement, the asymptotic behavior is of Gevrey nature (see (29)). On the other hand, when 

incorporating the classical L1-sup norm in the asymptotic approximation, then mixed Gevrey and 

q−Gevrey asymptotic expansions emerge, as it is proved in Theorem 4. We recall that previous results 

in the field have also observed such multiscaled asymptotics, such as [7]. Theorems 3 and 4 are put 

forward in a symmetric manner regarding time variable, leading to Gevrey and q-Gevrey asymptotic 

relations for the analytic solutions (up,2(t, z, ϵ))0≤p≤ς2 −1, in Theorems 5 and 6. The technique used in 

the preceeding results leans on the application of the classical version of the so-called Ramis-Sibuya 

theorem (Theorem 7 (RS) in Section 6) and a q−analog of Ramis-Sibuya theorem (Theorem 8 (q−RS) in 

Section 6). 

In brief, the work states different asymptotic expansions with respect to ϵ and t regarding different 

sets of analytic solutions to the main problem under study (1), (2): one of Gevrey order 1/k and another 

of mixed type Gevrey and q−Gevrey, when modifying the norm set on the space of coefficients of the 

formal solution. In addition to this, Gevrey order expansions of order 1/k have been observed in both 

variables t and ϵ by setting appropriate norms on the spaces of holomorphic functions involved. 

The paper is structured as follows. Section 2.1 is devoted to precise the main problem under study. 

In the next subsections, we provide different families of analytic solutions (Theorems 1 and 2) by fixing 

concise geometries in the problem. The first main results on the asymptotic behavior of the previous 

families of analytic solutions are stated in Section 3 (Theorems 3 and 4) by determining different norms 

in the space of coefficients of the formal solution. Symmetric results regarding the time variable 

(Theorems 5 and 6) are stated in Section 4. The work concludes with two annex which complete 

known facts about Laplace transform and its main properties and several versions of Ramis-Sibuya 

type theorems, appealed in the paper. 

Notation: 

We write N := {1, 2, 3, . . .} and N0 := N ∪ {0}. 

For every r > 0 and z0 ∈ C, we write D(z0, r) for the open disc centered at z0 and radius r, and 

for simplicity we denote Dr := D(0, r). 

Given a nonempty open set U ⊆ C, and a complex Banach space E, Ob(U, E) stands for the set 

of bounded holomorphic functions h : U → E which determines a Banach space with the norm of 

the supremum. For simplicity, we write Ob(U) instead of Ob(U, C). We also denote the set of formal 

power series in the variable z and coefficients in E by E[[z]]. 
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2. Statement of the Main Problem and Analytic Solution 

In this section, we state the main Cauchy problem under study in the present work and provide 

analytic solutions to it in adequate domains. The procedure heavily rests on the study developed 

in [11], and therefore most of the details are omitted, in order to enhance the main purpose of the 

present study, i.e. to focus on the appearance of different related asymptotic occurrence related to such 

analytic solutions. 

2.1. Statement of the Main Problem 

Let k, S be positive integers. Fix q > 1, and ϵ0 > 0. 

Let A ⊆ N4 be a finite set, and ∆ℓ ∈ N for every ℓ ∈ A.  We assume that for every 

ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) ∈ A  

ℓ2 < S, S ≥ ℓ2 + ℓ3, ∆ℓ ≥ ℓ0, (5) 

h 
and fix a polynomial cℓ(z, ϵ) = ∑h∈Iℓ 

cℓ,h(ϵ)z  ∈ Ob(Dϵ0 )[z], for some finite set Iℓ ⊆ N. We 

assume that cℓ(0, ϵ) ≡ 0. The following hypotheses are also fulfilled: there exists ∆ ≥ 1/2 such that 

 

2(ℓ2 − h)∆ + ℓ0 + kℓ1 − 2(S − 1)∆ > 0, ∆ max 0, 2(ℓ2 h) 1 (  h + ℓ2)2∆ < min 
a∈{S−1,S} 

a(ℓ0 + kℓ1) − a2∆, — 2∆ℓ3 + ℓ0 + kℓ1 > 0,  (6) 

for all h ∈ Iℓ and ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) ∈ A. 

Remark: Less restrictive conditions than those appearing in (6) can be assumed. We have decided to 

adopt (6) for the sake of simplicity. Observe moreover that the assumptions (5) and (6) are compatible 

whenever ℓ0 + kℓ1 for (ℓ0, ℓ1, ℓ2, ℓ3) ∈ A is large enough, together with suitable choices of the remaining 

constants. 

For every 0 ≤ j ≤ S − 1, we consider a polynomial in time variable, say φj(t, ϵ) ∈ (Ob(Dϵ0 ))[t], 

such that φj(0, ϵ) ≡ 0 for 0 ≤ j ≤ S − 1. 

Let P(τ) ∈ C[τ] with P(0) ̸= 0, and such that there exists k1 > 0 with 

kdeg(P) ≥ kℓ1 + ℓ0 + 2k1ℓ3 log(q), for ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) ∈ A. (7) 

The main problem under consideration is the following singularly perturbed linear Cauchy 

problem 

P(ϵktk+1∂t)∂Su(t, z, ϵ) = ∑ 
ℓ=(ℓ0,ℓ1,ℓ2,ℓ3 )∈A 

ϵ∆ℓ c (z, ϵ)tℓ0

  

(ϵktk+1∂t)ℓ1 ∂ℓ2 u
  

(qℓ3 t, z, ϵ), (8) 

with Cauchy data  

(∂j u)(t, 0, ϵ) = φ (t, ϵ), 0 ≤ j ≤ S − 1. (9) 

2.2. Construction of Analytic Solutions to the Main Problem 

The strategy to find analytic solutions to (8), (9) is to search for functions in the form of a Laplace 

transform of order k along well chosen directions γ ∈ R to be determined. More precisely, we search 

for solutions 

u(t, z, ϵ) = k 
∫ 

ω(u, z, ϵ) exp

  −  u  k
  

du 
, 

for some suitable function ω under suitable growth properties at infinity regarding its first variable. 
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k 

z 

j 

z 

p=0 

 
Sς  1 

  

sup |ωp,n(u, ϵ)| ≤ C3 
  1  

n!|u| exp
 

k1 log2(|u| + u0) + α log(|u| + u0)
 

, (14) 

— 

 

 

In view of the properties displayed in Propositions 9 and 10 on Laplace transform, we reduce the 

problem to solve the following auxiliary Cauchy problem 
 

∂Sω(u, z, ϵ) = ∑ ϵ∆ℓ 
cℓ(z, ϵ) 

(k(qℓ3 u)k1 )ℓ1 (∂ℓ2 ω)(qℓ3 u, z, ϵ) 
z 

ℓ=(ℓ0,ℓ1,ℓ2,ℓ3)∈A,ℓ0=0 
P(kuk ) 

z
 ∑ ∆ cℓ(z, ϵ) uk  ∫ uk 

k ℓ0  1
 1/k k 1/k ds 

+ ϵ 
ℓ=(ℓ0,ℓ1,ℓ2,ℓ3)∈A,ℓ0≥1 

ℓ −ℓ0 
 

 

P(kuk ) Γ  
ℓ0

 
 

(u s) k − (k(qℓ3 s 
0 

) )ℓ1 (∂ℓ2 ω)(qℓ3 s , z, ϵ) 
s 

, (10) 

 

with Cauchy data  

(∂zω)(u, 0, ϵ) = Pj(u, ϵ), 0 ≤ j ≤ S − 1, (11) 

where Pj for 0 ≤ j ≤ S − 1 is determined from φj from the properties of Laplace transform (see 

Proposition 8 and Corollary 1). Indeed, one can express φj as the Laplace transform of order k of some 

polynomial Pj(u, ϵ) ∈ (Ob(Dϵ0 ))[u]. More precisely, one has that Pj(u, ϵ) = ∑h∈Jj 
pj,h(ϵ)uh, for some 

finite subset Jj ⊆ N, and all 0 ≤ j ≤ S − 1. In this situation, φj(t, ϵ) = ∑h∈Jj 
Γ(h/k)pj,h(ϵ)th, for all 

0 ≤ j ≤ S − 1, where Γ(·) stands for Gamma function. 

A finite family of analytic solutions to (10), (11) is now constructed from the following associated 

geometric configuration to the problem, on adequate domains. 

The following result is a parametric version of Proposition 5 in [11], whose proof can be adapted 

without any difficulty to this setting. We only give a sketch of the points to be adapted in our 

framework. 

Proposition 1. Let ς ≥ 2 be an integer. We consider a set U = (Up)0≤p≤ς−1 of unbounded sectors with vertex 

at the origin which satisfies that all the roots of the polynomial u '→ P(kuk ) belong to C \  
− 

Up . Assume 

conditions (5), (6) and (7) hold. Then, there exists R > 0 such that for every 0 ≤ p ≤ ς − 1 a series 

n 

ωp(u, z, ϵ) = ∑ ωp,n(u, ϵ) 
n! 

(12) 
n≥0 

 

can be constructed determining a holomorphic function on Up × DR × Dϵ0 , which solves the auxiliary Cauchy 

problem (10), (11). Moreover, there exist C3 > 0, u0 > 1, α ≥ 0 and k1 > 0 stated in (7) with 

|ωp(u, z, ϵ)| ≤ 2C3|u| exp
 

k1 log2(|u| + u0) + α log(|u| + u0)
 

, (13) 

 

for all u ∈ Up, z ∈ DR and ϵ ∈ Dϵ0 . In addition to this, each function ωp,n(u, ϵ) satisfies the following 

properties: 

a. For every 0 ≤ p ≤ ς − 1 and n ≥ 0, the function (u, ϵ) '→ ωp,n(u, ϵ) belongs to O(Up × Dϵ0 ) with 

 

ϵ∈Dϵ0 

b. 
for all u ∈ Up.

 

(2R)n 

For every n ≥ 0 there exists an analytic function ωn(u, ϵ), which is a common analytic extension of 

(u, ϵ) '→ ωp,n(u, ϵ) for all 0 ≤ p ≤ ς − 1. This analytic continuation is defined on DRn × Dϵ0 with 

Rn = R0/qn, for some small enough R0 > 0 such that 

DR
0 

∩ {u ∈ C : P(kuk) = 0} = ∅. 

Moreover, there exist C1, C2 > 0 such that 

sup |ωn(u, ϵ)| ≤ C1(C2)n 
 n!  

|u|, (15) 

ϵ∈Dϵ0 qn2 ∆ 
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0 

p=0 

 
S 

  

z 

 

 

for u ∈ DRn , where ∆ is introduced in (6). 

c. For every 0 ≤ p ≤ ς − 1 and n ≥ 0, the function (u, ϵ) '→ ωp,n(u, ϵ) is bounded holomorphic on the 
sectorial annulus 

Ap,h =

  

u ∈ Up : 
 R0  ≤ |u| ≤ 

R0

 

 

qh+1 qh 

for all 0 ≤ h ≤ n − 1, existing C5, C6 > 0 with 

sup |ωp,n(u, ϵ)| ≤ C5(C6)n 
 n!  

|u|, (16) 

ϵ∈Dϵ0 qh2 ∆ 

for all u ∈ Ap,h, where ∆ is fixed in (6). 

Proof. The proof of Proposition 5 in [11] can be directly adapted to this parametric framework under 

the action of the perturbation parameter ϵ. More precisely, the third element in the assumption (5) 

guarantees that 

sup |ϵ|∆ℓ−ℓ0 ≤ ϵ∆ℓ−ℓ0 
, 

ϵ∈Dϵ0 

for every ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) ∈ A. The polynomial nature of the coefficients cℓ(z, ϵ) = ∑h∈Iℓ 
 

 

cℓ,hzh ∈ 

Ob(Dϵ0 )[z] allows us to upper estimate 

sup |cℓ(z, ϵ)| ≤ ∑  

sup |cℓ,h(ϵ)|

! 

|z|h. 

ϵ∈Dϵ0 
 

h∈Iℓ ϵ∈Dϵ0 

Taking the above facts into consideration, the proof follows directly from that of Proposition 5 

in [11].  

At this point, one can achieve the construction of actual solutions to the main Cauchy 

problem (8), (9). For that purpose, we introduce the following geometric definition. 

 

Definition 1. Let ς ≥ 2 be an integer. Let us consider a finite set of bounded sectors E = (Ep)0≤p≤ς−1 which 

conforms a good covering in C⋆ (see Definition 8). Associated to E let us choose a bounded sector with vertex at 

the origin, T ⊆ DrT for some rT > 0, and a family U = (Up)0≤p≤ς−1 of unbounded sectors with vertex at the 

origin, under the following conditions: • The roots of u '→ P(kuk ) belong to C \ 
ς−1 

Up , • For every 0 ≤ p ≤ ς − 1, there exists ∆p > 0 such that for all t ∈ T and ϵ ∈ Ep a direction γp ∈ R 

exists (which depends on t and ϵ) such that 

- Lγp = [0, ∞)e
√−1γp ⊆ Up ∪ {0}, and 

- cos(k(γp − arg(ϵt))) > ∆p. 

We say that the tuple {T , U } is admissible with respect to the good covering E . 

Theorem 1. Let ς1 ≥ 2. Let {T , U1 = (Up,1)0≤p≤ς1 −1} be an admissible set with respect to a given good 

covering E = (Ep)0≤p≤ς1 −1 (following Definition 1). Take for granted the assumptions made in Section 2.1 on 

the elements involved in the main Cauchy problem (8), (9). 

Then, for every 0 ≤ p ≤ ς1 − 1, there exists a solution up,1 of (8), (9) which is holomorphic and bounded 

on T × DR × Ep. Such solution is of the form 

n 

up,1(t, z, ϵ) = ∑ up,1,n(t, ϵ) 
n! 

, (t, z, ϵ) ∈ T × DR × Ep, (17) 
n≥0 
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k 

p=0 

 
S 

  

z 

p,1,n 
L ϵt u 

p,2,n 
Lγ̂ p 

p,2,n ϵt u 

 

with 

u (t, ϵ) = k 
∫ 

ω 
 

 

(u, ϵ) exp

  −  u  k
  

du 
, (18) 

 
 

for every n ≥ 0, and all (t, ϵ) ∈ T × Ep. Here, Lγp = [0, ∞)e
√−1γp , where γp is determined in Definition 1, 

and ωp,1,n represents the coefficient ωp,n in (12) of Proposition 1 for the set U = U1. 

Proof. Let 0 ≤ p ≤ ς1 − 1, and consider the function ωp constructed in Proposition 1 for the covering 

U = U1, that we denote ωp,1 with coefficients ωp,1,n. The function ωp is a solution of the auxiliary 

problem (10), (11). We write ωp in the form (12) and recall that its growth with respect to u at infinity, 

displayed in (14), allows us to apply Laplace transform of order k along direction γp. The construction 

of the admissible set with respect to the good covering E guarantees that 

up,1,n(t, ϵ) = Lγp 
(ωp,1,n(u, ϵ))(ϵt, ϵ) 

is holomorphic and bounded in T × Ep. Moreover, from the bounds in (14) the expression in (17) 

determines a bounded holomorphic function in T × DR × Ep. The properties of Laplace transform in 

Section 5 guarantee that (17) determines an actual solution of (8), (9). 

A symmetric construction can be followed by interchanging the role of the variables ϵ and t in 

the previous construction to achieve analytic solutions to the main problem in different families of 

domains. In this respect, Definition 1 reads as follows. 

 

Definition 2. Let ς ≥ 2 be an integer. Let us consider a finite set of bounded sectors T = (Tp)0≤p≤ς−1 

which conforms a good covering in C⋆. Associated to T one chooses a bounded sector with vertex at the origin, 

E ⊆ Dϵ0 , and a family U = (Up)0≤p≤ς−1 of unbounded sectors with vertex at the origin, under the following 

conditions: • The roots of u '→ P(kuk ) belong to C \ 
ς−1 

Up , •  For every 0 ≤ p ≤ ς − 1, there exists ∆̂ p > 0 such that for all ϵ ∈ E and t ∈ Tp a direction γ̂ p  ∈ R exists 

(which depends on t and ϵ) such that 

- Lγˆp = [0, ∞)e
√−1γˆp ⊆ Up ∪ {0}, and 

- cos(k(γ̂p − arg(ϵt))) > ∆̂ p. 

We say that the tuple {E, U } is admissible with respect to the good covering T . 

The following symmetric result to Theorem 1 is also valid, following the same arguments as above 

for its proof. 

Theorem 2. Let ς2 ≥ 2. Let {E, U2 = (Up,2)0≤p≤ς2 −1} be an admissible set with respect to a given good 

covering T = (Tp)0≤p≤ς2 −1 (in the sense of Definition 2). Assume the hypotheses made in Section 2.1 on the 

elements involved in the construction of the main Cauchy problem (8), (9) hold. Then, for every 0 ≤ p ≤ ς2 − 1, 
there exists a solution up,2 of (8), (9) which is holomorphic and bounded on Tp × DR × E . Such solution is of 

the form 
n 

up,2(t, z, ϵ) = ∑ up,2,n(t, ϵ) 
n! 

, (t, z, ϵ) ∈ Tp × DR × E, (19) 
n≥0 

with 

u (t, ϵ) = k 
∫ 

ω (u, ϵ) exp

  −  u  k
  

du 
, (20) 

for every n ≥ 0, and all (t, ϵ) ∈ Tp × E . Here, Lγˆp = [0, ∞)e
√−1γˆp , is determined in Definition 2 and where 

ωp,2,n represents the coefficient ωp,n in (12) of Proposition 1 for the set U = U2. 

γp 

p,1,n 
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b 

R 

n! 

 ̈ n n¨∞ 

1 1 

p 
1 1 

 

3. Asymptotic Behavior of the Analytic Solutions, I 

In this section, we provide two results regarding the asymptotic expansions of the previous 

analytic solutions determined in Theorem 1 with respect to the perturbation parameter regarding 

each of the elements in a good covering E = (Ep)0≤p≤ς1 −1, for some fixed ς1 ≥ 2. The main first 

result of the present work determines classical Gevrey asymptotic expansions by introducing L1 − 
q−relative-sup-norms on the partial functions (t, z) '→ up,1(t, z, ϵ), constructed in Theorem 1, for each 

fixed ϵ ∈ Ep, and all 0 ≤ p ≤ ς1 − 1, whereas the second result deals with uniform sup-norms on the 

partial functions (t, z). 

 

Definition 3. let q > 1 be a real number. We fix a bounded sector with vertex at the origin T . Let us consider 

the set Oq(T )[[z]] of formal power series h of the form 

h(t, z) = ∑ hn(t) 
zn 

, 
 

 

where hn ∈ Ob(T ∩ D1/qn ) for every n ≥ 0. 
Let R1 > 0 be a real number. 

n≥0 
n! 

q We denote by EL ;q;R the vector space of formal power series h ∈ O (T )[[z]] of the form h(t, z) = 

zn b ∑n≥0 hn(t) n! , where hn ∈ Ob(T ∩ D1/qn ) for every n ≥ 0, such that the L1 − q−relative-sup-norm of h, 

defined by 
 h(t, z)  L ;q;R := ∑ sup 

n 
|hn(t)|  1 , 

1 1 

 

is finite. 

n≥0 t∈T ∩D1/qn 
n! 

 
Proposition 2. The pair (EL

1;q;R1 
, ·  L1;q;R1 

) is a complex Banach space. The vector space Ob(T × DR) is 

contained in EL
1;q;R1 

provided that R > R1. 

Proof. First, observe that any formal power series h(t, z) = ∑ 

 h(t, z)  L1;q;R1 
= 0 entails that hn ≡ 0 in T ∩ D1/qn . 

 

n≥0 hn(t) z
n

 

 ∈ EL1;q;R1 

 

such that 

Let (hp )p be a Cauchy sequence in EL ;q;R . Let us write hp(t, z) = ∑ hp(t) z
n 

, for every ≥1 1 1 
p 

n≥0  n n! 

p ∈ N. It is clear that for every n ∈ N0, the sequence (hn)p≥1 is a Cauchy sequence in the Banach space 

(Ob(T ∩ D1/qn ), · ∞), where · ∞ stands for the supremum norm with 

¨
h

p − h
q ̈  ϵn! 

< 

 

(21) 

 

for all p, q ∈ N with p, q ≥ p0 for some p0 ∈ N whenever hp − hq 
 L ;q;R < ϵ. Therefore, for 

every n ∈ N0 there exists Hn ∈ Ob(T ∩ D1/qn ) such that (hn)n≥0 converges in sup norm to Hn. By 
considering the formal power series H(t, z) = ∑ Hn(t) z

n 
it is direct to check that H is an element 

of p n≥0 n! 

EL
1;q;R1 

, with H being the limit of (h )p≥0 in such space. 

From now on, we resume the assumptions and constructions related to the main problem (8), (9) 

in Section 2.1. In addition to this, we consider ς1 ≥ 2 and an admissible set {T , U1 = (Up,1)0≤p≤ς1 −1} 

with respect to a given good covering E = (Ep)0≤p≤ς1 −1 (in the sense of Definition 1). Theorem 1 

guarantees the existence of a finite family of solutions up,1(t, z, ϵ) to (8), (9), for 0 ≤ p ≤ ς1 − 1, 
holomorphic and bounded in T × DR × Ep, of the form (17) with (18), for some R > 0. Let us fix 

0 < R1 < R. 

R n 
1 
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|ϵ|k 

p 

ϵ) 
ϵt u 

− ϵ) 
ϵt u n! 

ωn (u, ϵ) exp — 
n! 

,  (24) 
Cγp ,γp+1 ,Rn+1 

ϵt u 

 

Proposition 3. Under the assumptions of Theorem 1, for every 0 ≤ p ≤ ς1 − 1 there exist Ap, Bp > 0 such 

that 

¨up
 +1,1(t, z, ϵ) − up,1(t, z, ϵ)¨ 

 

L1;q;R1 
≤ Ap exp

  − 
Bp

  

, (22) 

valid for every ϵ ∈ Ep ∩ Ep+1, where we have identified uς1,1 := u0,1 and Eς1 := E0, provided that 0 < R1 < R 

is small enough. 

Proof. Let 0 ≤ p ≤ ς1 − 1 and fix ϵ ∈ Ep ∩ Ep+1. In view of (17) and (18), one can write 

up+1,1(t, z, ϵ) − up,1(t, z, ϵ) 
 

in the form 

 

k 

∫ 

 

 

 

 

u, exp

 

 

 

 u  k
  

du 
k 
∫
 

 

 

 

 

u, exp

 

 

 

  u  k
  

du 
! 

zn 

. (23) 

One can apply b.  in Proposition 1 taking ς1 in place of ς and U1 = (Up,1)0≤p≤ς1 −1 in place of 

U = (Up)0≤p≤ς−1. Then, for all n ≥ 0, the functions u '→ ωp,1,n(u, ϵ) and u '→
n 

ωp+1,1,n(u, ϵ) have 

a common analytic continuation, say u '→ ωn(u, ϵ) on DRn , with Rn = R0/q , for some R0 > 0. 

This entails that the integration path appearing in the previous difference can be deformed by the 

application of Cauchy theorem. Hence, up+1,1(t, z, ϵ) − up,1(t, z, ϵ) equals 

= 

 

k 
∫
 ω (u, ϵ) exp

  −  u  k
  

du − k 
∫
 

 
ω (u, ϵ) exp

  −  u k
  

du
 ∑ 

n≥0 

 
Lγp+1 ,Rn+1 

p+1,1,n ϵt u 
 

Lγp ,Rn+1 
p,1,n ϵt u 

∫  u k
  

du 
! 

zn 

 

where Lγj ,R  n+1 = [Rn+1, ∞)e
√−1γj for j = p, p + 1 and Cγ ,γ  

p+1 

 
,Rn+1 stands for the oriented arc of circle 

centered at the origin, of radius Rn+1, from the point Rn+1e
√−1γp to Rn+1e

√−1γp+1 . Let us provide 

upper bounds for the previous elements. Let us define 

 
I (γ ) := k 

∫
 

 

ω (u, ϵ) exp

  −  u  k
  

du
 . 

1 p+1 
Lγp+1,Rn+1 

p+1,1,n 
 

  

ϵt u 

In view of statement a. in Proposition 1 and the fact that {T , U1} is admissible with respect to E, one 

has that I1(γp+1) is upper bounded by 

γp+1 γp 

∑ 
n≥0 L 

ωp+1,1,n ( — 
L 

ωp,1,n ( — 

+k 
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3 Rn 
R 

1 ( + ( 0) 
|ϵt| ( (γp+1 − (ϵ ))) 

≤ kC3 
Rn n! exp k1 log (r + u0) + α log(r + u0) — 

2
 ∆p+1 

≤ kC3 
Rn n! exp — 

2
 k1 log (r + u0) + α log(r + u0) 

1( p+1) = 
0 

( + ( 0) — 
2

 < 

qn2 ∆ qn+1 
exp

 cos(k(θ − arg(ϵt))) 

R 

 

kC  
1 

n! 

∫ ∞
 

 

exp
 

k log2 r u 

 

log r 

 

u
  

exp

 

 

  
r
  k 

cos k arg  t 

! 

dr 
 

1 
∫ ∞ 

2
 

 

 

 

1
  

r
  k ! 

  

1
  

r
  k ! 

 

1 1
  

Rn+1

 k
 

   

 

! ∫ ∞ 

 

× exp  − 
2

 

 
2 

 
 

|ϵt| 
∆p+1 dr 

  

1
  

r
  k ! 

× exp  − 
2

 
|ϵt| ∆p+1 dr 

1 1
  

Rn+1

  k 
!

 

 

 

with 

≤ kC3 J1(∆p+1) 
Rn n! exp  − 

2
  

 

|ϵt| 
∆p+1 , 

J  ∆ 

∫ ∞ 

exp
 

k 

 

log2 r u 

 

log r 

 

u
  

exp

 

 
1
 

r 
 

 

 k ∆ 

 

! 

dr ∞. 
Taking into account that Rn+1 = R0/qn+1 we conclude from the previous expression that 

 sup I 
 

kC J  ∆ 
 1 

n! exp

 

 1
  

R0
  k ∆ 

! 

. (25) 

 

t∈T ∩D1/qn 

1(γp+1) ≤ 3 1( p+1) Rn 
— 

2 q|ϵ| p+1 

 

An analogous reasoning yields 

I (γ ) := k 
∫
 

 

 

ω (u, ϵ) exp

  −  u  k
  

du
  

2 p 

 

is upper estimated 

Lγp ,Rn+1 

p,1,n 
 

  

ϵt u 

 
sup I 

 
kC J  ∆ 

 1 
n! exp

 

 1
  

R0
  k ∆ 

! 

. (26) 

 

 

Finally, we consider 

 

t∈T ∩D1/qn 

2(γp) ≤ 3 1( p) 
Rn — 

2 q|ϵ| p 

 
I (γ , γ ) := k 

∫
 

 

ω (u, ϵ) exp

  −  u  k
  

du
 . 

3 p p+1 n 
Cγp ,γp+1,Rn+1 

 
  

ϵt u 

Regarding statement b. in Proposition 1 and the parametrization u(θ) = R0/qn+1eiθ for θ between γp 

and γp+1, one arrives at the existence of ∆̃ 
p,p+1 > 0 such that 

 

∫ γp+1 

 

  

 

n n! R0 
 

R0/qn+1 k 
!

 
 

 

n n!R0  
R0/qn+1 k 

 ̃

!
 ≤ k|γp+1 − γp|C1(C2) 

qn2 ∆+n+1 
exp  −

 |ϵt| 
∆p,p+1 .  (27) 

n+1 

R 

ϵ0r T 

γ p 

0) + α + — 

n+1 

exp 
|ϵt| 

|ϵt| 
∆p+1 

n+1 

exp 

1 0) + α + p+1 

I3(γp, γp+1) ≤ k C1(C2) — 
|ϵt| 

dθ 
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q 

— 
 ̈

k 

¨up+1,1(t, z, ϵ) − up,1(t, z, ϵ)¨
L1;q;R1

 

p = 
0 

qk 2 
p p,p+1 

 

This entails 
 

 sup I , k 

 

 

C  C  n n!R0 

 

 exp

 

 

 

  
R0

  k ∆̃ 

 ! 

. (28) 

 

t∈T ∩D1/qn 

3(γp γp+1) ≤ |γp+1 − γp| 1( 2) 
 

 

qn2 ∆+n+1 
— 

q|ϵ| p,p+1 

Collecting the information in (25), (26) and (28), one arrives at 

 

 

1 1
  

R0

  k 
!

 ≤ ∑ 
n≥0 

2kC3 max{J1(∆p), J1(∆p+1)} 
Rn exp  − 

2
 

q|ϵ| 
min{∆p, ∆p+1} 

n R0   
R0

  k ˜ !! 

n

 

+k|γp+1 − γp|C1(C2) 

 

The choice of R1 < R yields (22) with 

qn2 ∆+n+1 
exp  −

 

 
 

q|ϵ| 
∆p,p+1 R1 . 

A : 

 
R1

 n

 

(C2R1)n 
!
 

2kC
  max J  ∆  , J  ∆ k  C R

  
, 

 

 
and 

p = ∑ R 
n≥0 

 
 

+ ∑ n2 ∆+n+1 
n≥0 

3 { 1( p) 1(  p+1)} + |γp+1 − γp | 1  0 

B : 
Rk 

min

  
1 

min 
 ∆ , ∆ , ∆̃ 

 

. 

 
 

 

Proposition 3 guarantees that Theorem 7 (RS) (see Section 6) can be applied when considering the 

next Banach space of functions. 

Theorem 3. Under the assumptions of Theorem 1, there exists a formal power series uˆ1(t, z, ϵ) = ∑ u1,n(t, z) ϵ
n ∈ EL ;q;R [[ϵ]] satisfying that there exist C, M > 0 such that for all N ≥ 0 one has 

n≥0 n! 1 

up,1( 
 ̈

1 

t, z, 

 

 

N 

ϵ) ∑ 
n=0 

 

 

 

u1,n ( 

 

t, z 

 

ϵn 
) 

n! ¨ 

 

 

 

 

L1;q;R1 

 ≤ CMN+1Γ  
N + 1

 

 

 

 

|ϵ| 

 

 
N+1, (29) 

for all 0 ≤ p ≤ ς1 − 1 and all ϵ ∈ Ep. In other words, ϵ '→ uˆ1(t, z, ϵ) is the common Gevrey asymptotic 

expansion of order 1/k of the analytic solution ϵ '→ up,1(t, z, ϵ), as a function with values in EL
1;q;R1 

in Ep, for 

all 0 ≤ p ≤ ς1 − 1. 

Proof. For all 0 ≤ p ≤ ς1 − 1, consider the function up,1(t, z, ϵ) constructed in Theorem 1, and define 

the map Gp(ϵ) by ϵ '→ up,1(t, z, ϵ) for ϵ ∈ Ep, which is viewed as a function with values in the Banach 

space (EL1;q;R1 , · L
1;q;R1 

). Observe that one can apply Theorem 7 (RS) in view of Proposition 3, in 

order to achieve the existence of uˆ1(t, z, ϵ) ∈ EL
1;q;R1 

[[ϵ]] with the required properties. 

In the second part of this section we provide a different asymptotic expansion with respect to the 

perturbation parameter, under the action of a different norm compared to that in the first part. The 

main result of this section guarantees q-Gevrey asymptotic expansions relating the formal and the 

analytic solutions by incorporating the classical L1-sup norm as follows. The procedure rests on the 

approach in [11]. 

{ p+1} 
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R 

 ̃  ̃

k 

— 
 ̈

p,1( ϵ) ∑ 
n=0 

1,n ( ) 
n! k 

2 |ϵ| 

 

 

Definition 4. let q > 1 be a real number. We fix a bounded sector with vertex at the origin T . Let us consider 

the set Ob(T )[[z]] of formal power series h of the form 

h(t, z) = ∑ hn(t) 
zn 

, 
 

n≥0 
n! 

 

where hn ∈ Ob(T ) for every n ≥ 0. 

Let R1 > 0 be a real number. 

We denote by EL
1;R1 

the vector space of formal power series h ∈ Ob(T )[[z]] of the form h(t, z) = ∑ hn(t) z
n 
, where hn ∈ Ob(T ) for every n ≥ 0, such that the L1−sup-norm of h, defined by 

n≥0 n!  

 
 h(t, z)  L ;R 

 
n 

:= ∑ sup |hn(t)|  1 , 
1  1 

 

 

is finite. 

n≥0 t∈T n! 

 

The proof of the next result is analogous to that of Proposition 2, so it is omitted. 

 
Proposition 4. The pair (EL

1;R1 
, ·  L1;R1 

) is a complex Banach space. The vector space Ob(T × DR) is 

contained in EL
1;R1 

provided that R > R1. 

Remark: Observe that Ob(T )[[z]] ⊆ Oq(T )[[z]] for all q > 1. Furthermore, EL ;R 
 ⊆ EL ;q;R for all 

b 1  1 1 1 

q > 1 and we have the next inequality  h  L1;q;R1 
≤  h  L1;R1 

for all h ∈ EL
1;R1 

. 

In this section, we resume the assumptions and constructions associated to (8), (9) of Section 2.1. 

We also fix a good covering E = (Ep)0≤p≤ς1 −1 for some ς1 ≥ 2, and an admissible set (in the sense of 

Definition 1) {T , U1 = (Up,1)0≤p≤ς1 −1} associated to the previous good covering. Let up,1(t, z, ϵ) ∈ 
Ob(T × DR × Ep) be the analytic solution to (8), (9) for 0 ≤ p ≤ ς1 − 1, for some fixed R > 0. We also 

choose 0 < R1 < R. 

Proposition 5. Under the assumptions of Theorem 1, for every 0 ≤ p ≤ ς1 − 1 and 0 < R1 < R, there exist 

Ap, Bp > 0 such that 

¨up
 +1,1(t, z, ϵ) − up,1(t, z, ϵ)¨ 

L1;R1 
≤ Ã p  ( B̃ p )NΓ  

N
  

qN
2 /2|ϵ|N , 

for every ϵ ∈ Ep ∩ Ep+1, where we have identified uς1,1 := u0,1 and Eς1 := E0. 

Proof. The proof of Theorem 1 [11] can be followed point by point, by considering uniform bounds 

with respect to t ∈ T , and by assuming that ϵ plays the role of t variable in Theorem 1 of [11], together 

with the estimates in Proposition 1. 

From the previous result, one achieves the following second asymptotic relation of Gevrey mixed 

order (1/k; (q, 1)). 

Theorem 4. Under the assumptions of Theorem 1, there exists a formal power series u˜ˆ1(t, z, ϵ) = ∑ u˜1,n(t, z) ϵ
n ∈ EL ;R [[ϵ]] satisfying that there exist C, M > 0 such that for all N ≥ 0 one has 

n≥0 
 

 

n! 1  1 

 

¨
u t, z, 

 

 

N ϵn 

u˜ t, z  

 

CMN+1Γ  
N + 1

  

q 
(N+1)2 

 

 
N+1, (30) 

 

 

for all 0 ≤ p ≤ ς1 − 1 and all ϵ ∈ Ep. 

L1;R1 

 ̈

 ̈
≤ 
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b 

R 

 ̃  ̃

 − 

! 

1 1 

 

Proof. One can define the map Gp(ϵ) for 0 ≤ p ≤ ς1 − 1 as in the proof of Theorem 3 and apply 

Theorem 8 (q-RS) (see Section 6) in virtue of Proposition 5. 

4. Asymptotic Behavior of the Analytic Solutions, II 

In this section, we describe the asymptotic behavior of the analytic solutions of (8), (9) with respect 

to the time variable, near the origin. We proceed in a similar manner to Section 3, by fixing an element 

in a good covering T , and providing the asymptotic properties regarding different norms on the partial 

sums (z, ϵ) '→ up,2(t, z, ϵ), for each t ∈ Tp and all 0 ≤ p ≤ ς2 − 1: an L1 − q−relative-sup norm, and 

the uniform sup-norm on the partial functions (z, ϵ). 
In accordance to Definition 3, one can state the following symmetric definition. 

 

Definition 5. let q > 1 be a real number. We fix a bounded sector with vertex at the origin E . Let us consider 

the set Oq(E)[[z]] of formal power series g of the form 

g(z, ϵ) = ∑ gn(ϵ) z
n 

, 
 

 

where gn ∈ Ob(E ∩ D1/qn ) for every n ≥ 0. 
Let R1 > 0 be a real number. 

n≥0 
n! 

q We denote by FL ;q;R the vector space of formal power series g ∈ O (E)[[z]] of the form g(z, ϵ) = 

zn b ∑n≥0 gn(ϵ) n! , where gn ∈ Ob(E ∩ D1/qn ) for every n ≥ 0, such that the L1 − q−relative-sup-norm of g, 

defined by 
 g(z, ϵ)  L ;q;R := ∑ sup 

n 
|gn(ϵ)|  1 , 

1 1 

 

is finite. 

n≥0 ϵ∈E∩D1/qn 
n! 

 

Remark: We adopt the same notation for the norm in Definition 3 for simplicity. The pair 

(FL
1;q;R1 

, ·  L1;q;R1 
) is a complex Banach space. Besides, the vector space Ob(DR × E) is contained in 

FL
1;q;R1 

provided that R > R1. 

Returning to the main problem (8), (9), we take for granted the assumptions made on it in 

Section 2.1. Let us first fix ς2 ≥ 2 and a family of admissible domains which determines the geometry 

of the problem. We choose a finite family of sectors T = (Tp)0≤p≤ς2 −1, which determines a good 

covering in C⋆ (see Definition 8). Associated to such good covering, we consider a tuple {E, U2 = 

(Up,2)0≤p≤ς2 −1} which is admissible with respect to the good covering T (see Definition 2). We assume 

E ⊆ Dϵ0 . Theorem 2 provides with a family of holomorphic solutions up,2(t, z, ϵ), for 0 ≤ p ≤ ς2 − 1, 

of the main problem (8), (9), which are holomorphic and bounded in Tp × DR × E, for some R > 0. 

In addition to this, the form of such solutions is determined by (19) with (20) for all n ≥ 0. Let 

0 < R1 < R. 

 

Proposition 6. We take for granted the assumptions made in Theorem 2. Then, for every 0 ≤ p ≤ ς2 − 1 there 

exist Ap, Bp > 0 such that 

 

¨up+1,2 

 

(t, z, ϵ) − u 

 

 

p,2 

 

(t, z, ϵ)¨ 

 

 

L1;q;R1 

 ≤ Ãp 
exp 

B̃ p 
, 

|t|k 

for every t ∈ Tp ∩ Tp+1, where uς2,2 and Tς2 stand for u0,2 and T0, respectively, provided that R1 > 0 is small 

enough. 
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q 

¨up+1,2(t, z, ϵ) − up,2(t, z, ϵ)¨
L1;q;R1

 

k 

 

Proof. The proof of this result heavily rests on that of Proposition 3. We only give details on the steps 

in which this proof differs from that. 

Let us fix 0 ≤ p ≤ ς2 − 1 and t ∈ Tp ∩ Tp+1. We write the difference of two consecutive 

solutions up+1,2(t, z, ϵ) − up,2(t, z, ϵ) in the form (23), with Lγˆj in place of Lγj for j ∈ {p, p + 1}. 

Once again, one can apply b. in Proposition 1, by substituting ς by ς2 and U2 = (Up,2)0≤p≤ς2 −1 

replacing U = (Up)0≤p≤ς−1. For each n ≥ 0, an analogous analytic continuation u '→ ωn(u, ϵ) of the 

functions u '→ ωp,2,n(u, ϵ) and u '→ ωp+1,2,n(u, ϵ) for all ϵ ∈ E allows us to rewrite the difference of 

the consecutive solutions in the form of (24), with Lγˆj ,Rn+1 
and Cγˆp ,γˆp+1,Rn+1 

instead of Lγj ,Rn+1 
and 

Cγp ,γp+1,Rn+1 
, for j ∈ {p, p + 1}. From the proof of Proposition 3, we derive 

 
I  ̂ kC J ∆̂  1 

n! exp

 

 
1
  

Rn+1

 k ∆̂ 

! 

, 

 

 
leading to 

1(γp+1) ≤ 3 1( p+1) Rn 
— 

2 |ϵt| p+1 

 sup I  ̂
 

kC J  ∆̂ 1 
n! exp

 

 1
  

R0
  k ∆̂ 

! 

. (31) 

ϵ∈E∩D1/qn 
1(γp+1) ≤ 3 1( p+1) Rn 

— 
2 q|t| p+1 

It is straight to achieve the bounds 

 sup I  ̂
 

kC J  ∆̂  1 
n! exp

 

 1
  

R0
  k ∆̂ ! 

. (32) 

 

ϵ∈E∩D1/qn 

2(γp) ≤ 3 1( p) 
Rn — 

2 q|t| p 
 

Finally, taking (27) into account, we arrive at 
 

 
n n!R0 

 

 

 
R0/qn+1 k ˜ˆ !

 

I3(γ̂p, γ̂p+1) ≤ k|γ̂p+1 − γ̂p|C1(C2) 

 

for some ∆̂̃ 
p,p+1 > 0, which leads us to 

qn2 ∆+n+1 
exp  −

 |ϵt| 
∆p,p+1 , 

 sup  I ˆ ,  ̂ k  ̂  ̂ C C  n n!R0
 
 exp

 

 
  

R0
  k ∆̂̃ 

! 

. (33) 

 

ϵ∈E∩D1/qn 

3(γp γp+1) ≤ |γp+1 − γp| 1( 2) 
 

 

qn2 ∆+n+1 
— 

q|t| p,p+1 

In view of (31), (32) and (33) we have 

 

 

 

 ̂  ̂ 1 1
  

R0
 k  ̂  ̂

!

 ≤ ∑ 
n≥0 

2kC3 max{J1(∆p), J1(∆p+1)} 
Rn exp  − 

2
 

q|t| 
min{∆p, ∆p+1} 

k  ̂  ̂ C  C  n 
R0

 exp

 

 
  

R0
  k ∆̂̃ !! 

Rn.

 

The choice of R1 < R and 

+ |γp+1 − γp| 1( 2) qn2 ∆+n+1 — 
q|t| 

p,p+1 1 

A  ̃ :  
R1

 n (C2R1)n 
!
 

2kC
 max J  ∆̂ , J  ∆̂ k  ̂  ̂ C R

  
, 

and 

p = ∑ R 
n≥0 

+ ∑ n2 ∆+n+1 
n≥0 

3 { 1( p) 1(  p+1)} + |γp+1 − γp | 1  0 

B  ̃ : 
Rk 

min

  
1 

min ∆̂ , ∆̂ , ∆̂̃ 

p = 
q 

0 

allows us to conclude the result.  

2 
{ p p+1} p,p+1 
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— 
 ̈

k 

R 

 ̃  ̃

k 

— 
 ̈

p,2( ϵ) ∑ 
n=0 

2,n ( ϵ) 
n!

 
k 

2 | | 

 

 

The following result is a consequence of the classical Ramis-Sibuya Theorem 7 (RS), whose proof 

can be adapted from that of Theorem 3 to the good covering T . 

Theorem 5. Under the assumptions of Theorem 2, there exists a formal power series uˆ2(t, z, ϵ) = ∑ u2,n(z, ϵ) t
n ∈ FL ;q;R [[t]] satisfying that there exist C˜, M̃ > 0 such that for all N ≥ 0 one has 

n≥0 n! 1 

up,2( 
 ̈

1 

t, z, 

 

 

N 

ϵ) ∑ 
n=0 

 

 

u2,n(z, 

 

 

tn 
ϵ) 

n! ¨ 

 

 

 

 

L1;q;R1 

 ≤ C̃ M̃  N+1Γ N + 1
 

 

 

 

|t|N+1, (34) 

for all 0 ≤ p ≤ ς2 − 1 and all t ∈ Tp. Equivalently, the formal power series t '→ uˆ2(t, z, ϵ) is the common 

Gevrey asymptotic expansion of order 1/k of the analytic solution t '→ up,2(t, z, ϵ), as a function with values in 

FL
1;q;R1 

in Tp, for all 0 ≤ p ≤ ς2 − 1. 

As a final step in the asymptotic study of the solutions to the main problem, we describe the 

results obtained when considering the classical L1-sup norm, in accordance with [11]. The symmetric 

version of Definition 4 reads as follows. 

 

Definition 6. let q > 1 be a real number. We fix a bounded sector with vertex at the origin E . Let us consider 

the set Ob(E)[[z]] of formal power series g of the form 

g(z, ϵ) = ∑ gn(ϵ) z
n 

, 

n≥0 
n! 

 

where gn ∈ Ob(E) for every n ≥ 0. 

Let R1 > 0 be a real number. 

We denote by FL
1;R1 

the vector space of formal power series g ∈ Ob(E)[[z]] of the form g(z, ϵ) = ∑ gn(ϵ) z
n 

, where gn ∈ Ob(E) for every n ≥ 0, such that the L1-sup-norm of g, defined by 
n≥0 n!  

 
 g(z, ϵ)  L ;R 

 
n 

:= ∑ sup |gn(ϵ)|  1 , 
1  1 

 

 

is finite. 

n≥0 ϵ∈E n! 

 

As a result, one can follow the proof of Theorem 1 [11], assuming uniform bounds with respect to 

ϵ ∈ E, to arrive at the following result. 

 

Proposition 7. Under the assumptions of Theorem 2, for every 0 ≤ p ≤ ς2 − 1 and 0 < R1 < R, there exist 

Ap, Bp > 0 such that 

 

¨up
 

 

+1,2(t, z, ϵ) − up,2(t, z, ϵ)¨ 

 

 

L1;R1 
≤ Ã p  ( B̃ p )NΓ  

N
  

qN
2 /2|t|N , 

for every t ∈ Tp ∩ Tp+1, with uς2,2 := u0,2 and Tς2 := T0. 

Finally, a direct application of Theorem 8 (q-RS) to Proposition 7 leads us to the last asymptotic 

result on the behavior of the analytic solutions of the main problem. 

Theorem 6. Under the assumptions of Theorem 2, there exists a formal power series u˜ˆ2(t, z, ϵ) = ∑ u˜2,n(z, ϵ) t
n ∈ FL ;R [[t]] satisfying that there exist C˜, M̃ > 0 such that for all N ≥ 0 one has 

n≥0 
 

 

n! 1  1 

 

¨
u t, z, 

 

 

N tn 

u˜ z,  

 

C̃ M̃  N+1Γ N + 1
 

q 
(N+1)2 

 

 

t N+1, (35) 
 

 L1;R1 

 ̈

 ̈
≤ 
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k 

k 

k t u 

k k 

h=0 k h=0 k 

Ld (kuk f (u))(t) = tk+1∂t

  

Ld ( f (u))(t)
 

 

 

 

for all 0 ≤ p ≤ ς2 − 1 and all t ∈ Tp. 

5. Annex I: Laplace Transform 

In this annex, we briefly describe the definition of Laplace transform and its main properties 

considered in the present work. We omit its proofs which can be found in previous research by the 

authors such as [7]. 

In the whole section, (E, ·  E) stands for a complex Banach space. 

Definition 7. Let k ∈ N and choose an unbounded sector Sd,δ := {z ∈ C⋆ : |arg(u) − d| < δ}, for some 

d ∈ R and δ > 0. Let f ∈ O(Sd,δ, E), continuous in Sd,δ ∪ {0}, such that two constants C, K > 0 exist with 

 f (u)  E ≤ C|u| exp
 

K|u|k
 

, u ∈ Sd,δ. (36) 

The Laplace transform of order k of f along direction d is 

Ld ( f (u))(t) = k 
∫
 f (u) exp

  −  u k
  

du 
, 

 

where Lγ = [0, ∞)eiγ ⊆ Sd,δ ∪ {0} and the value of γ ∈ R depends on t, with cos(k(γ − arg(t))) ≥ δ1 for 

some δ1 > 0. 

Ld ( f (u))(t) defines a holomorphic and bounded function in O(Sd,θ,R1/k , E), with Sd,θ,R1/k = 

D(0, R1/k ) ∩ Sd,θ/2, where π < θ < π + 2δ and 0 < R < δ1/K. 

Proposition 8. Let k ∈ N and d ∈ R. Let f ∈ O(C, E) such that there exist C, K > 0 with 

 f (u)  E ≤ C|u| exp
 

K|u|k
 

, u ∈ C. 

 

Then, Ld ( f (u)) : D → E defines a holomorphic function on some neighborhood of the origin, D, and it holds 

that  

Ld ( f (u))
 (p) 

(0) = Γ  n  

f (p)(0), 
k k 

for every p ∈ N0. 

Corollary 1. In the situation of the previous result, one has that Laplace transform of order k of the polynomial 

p(u) = ∑m ahuh ∈ E[u] is the polynomial Ld (p(u))(t) = ∑m Γ 
 

h
  

ahth ∈ E[t]. 

 

Proposition 9. Under the hypotheses of Definition 7, the function u '→ kuk f (u) and, for all m ∈ N, the 

convolution product u '→ um ⋆k f (u) given by 

m uk ∫ uk 

k
 
 

m  1 1  ds 
k − 

u  ⋆k f (u) = Γ m  
0  

(u − s) f (s k ) 
s 

, 

admit Laplace transform of order k along direction d with 

 

k k 

 

and 
Ld (u '→ (um ⋆k f (u))) (t) = tmLd ( f (u))(t), 

k k 

for all t ∈ Sd,θ,R1/k and 0 < R < δ1/K. 

k 

Lγ 
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p=0 

|ϵ|k p
 

— 
 ̈

k 

 

Proposition 10. Let q > 1 and δ ≥ 1. Under the hypotheses of Definition 7, the function u '→ f (qδu) admits 

Laplace transform of order k along direction d and one has that 

Ld ( f (qδu))(t) = Ld ( f (u))(qδt), 
k k 

for every t ∈ Sd,θ,R1/k and 0 < R < δ1/(Kqkδ ). 

6. Annex II: Ramis-Sibuya Type Theorems 

In this section, we recall different versions of Ramis-Sibuya theorem (RS theorem), whose classical 

statement can be found in [4], Lemma XI-2-6. Such type of results have been previously successfully 

applied in the asymptotic study of analytic solutions to many functional problems: a classical RS 

theorem in the asymptotic study of the solutions to partial differential equations in the complex domain 

in [2,5] and also a close version to the previous one adapted to multi-index sectors [6], another RS-type 

theorem adapted to the more general framework of strongly regular sequences in [9], also a q-Gevrey 

version of RS theorem in the framework of q-difference-differential equations in [7], a mixed (Gevrey 

and q-Gevrey) version of RS theorem in the study of q-difference-differential problems in [11]. 

Let ς ≥ 2 be an integer. In the whole section, (E, ·  E) stands for a complex Banach space. 

Definition 8. A finite family E = (Ep)0≤p≤ς−1 consisting of bounded sectors with vertex at the origin is said 

to be a good covering in C⋆ whenever the following conditions are satisfied: • Ej ∩ Ej+1 ≠ ∅ for every 0 ≤ j ≤ ς − 1 (by convention, we define Eς := E0). • For every three indices p1, p2, p3 ∈ {0, . . . , ς − 1} such that pi ̸= pj for i, j ∈ {1, 2, 3} with i ̸= j, then 

one has Ep1 ∩ Ep2 ∩ Ep3 = ∅. • There exists a neighborhood of 0 ∈ C, say D, such that 
Sς−1 

Ep = D \ {0}. 

We recall the classical Ramis-Sibuya theorem. 

 

Theorem 7 (RS). Let (Ep)0≤p≤ς−1 be a good covering in C⋆. Let Gp : Ep '→ E be a holomorphic map for all 

0 ≤ p ≤ ς − 1 such that the following conditions hold: • Gp ∈ Ob(Ep, E) for 0 ≤ p ≤ ς − 1. • Given 0 ≤ p ≤ ς − 1, the cocycle Θp(ϵ) := Gp+1(ϵ) − Gp(ϵ) is exponentially flat of order k on 

Zp := Ep ∩ Ep+1 (we write Gς := G0), i.e. there exist Ap, Bp > 0 such that 

 

 Θ(ϵ)  E ≤ Ap exp

  − 
 Bp 

  

, ϵ ∈ Ep ∩ E 
 

+1. 

 

Then, there exists a formal power series, common for every 0 ≤ p ≤ ς − 1, Ĝ(ϵ) = ∑n≥0 Gnϵn ∈ E[[ϵ]], such 

that Gp admits Gˆ as its Gevrey asymptotic expansion of order 1/k on Ep, for all 0 ≤ p ≤ ς − 1, meaning that 
there exist C, M > 0 with 

 

 

 

for all N ≥ 0 and ϵ ∈ Ep. 

N 

Gp(ϵ) ∑ 
 ̈

n=0 

 

Gnϵn 
¨E 

≤ CMN+1Γ  
N + 1

 

 

 

|ϵ| 

 

N+1, 

 

A mixed Gevrey and q−Gevrey version of Ramis-Sibuya theorem is also available. 

 

Theorem 8 (q−RS). Let (Ep)0≤p≤ς−1 be a good covering in C⋆. Let Gp : Ep '→ E be a holomorphic map for 

all 0 ≤ p ≤ ς − 1 such that the following conditions hold: • Gp ∈ Ob(Ep, E) for 0 ≤ p ≤ ς − 1. 
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≥ ∈ Ep 

— 
 ̈

 • Given 0 ≤ p ≤ ς − 1, the cocycle Θp(ϵ) := Gp+1(ϵ) − Gp(ϵ) satisfies that there exist Ap, Bp > 0 with 

 Θ( )   ≤ A (B )NΓ  
N

  

q 
N2 

| 
 
|N ,  ∈ E ∩ E , 

ϵ  E p p 

 

valid for all N ≥ 1. 

k 
2 ϵ ϵ p p+1 

Then, there exists a formal power series, common for every 0 ≤ p ≤ ς − 1, Ĝ(ϵ) = ∑n≥0 Gnϵn ∈ E[[ϵ]], such 

that Gp admits Gˆ as its Gevrey asymptotic expansion of mixed order (1/k; (q, 1)) on Ep, for all 0 ≤ p ≤ ς − 1, 

meaning that there exist C, M > 0 with 

N ¨
G G  n ̈  

CMN+1Γ  
N + 1

  

q 
(N+1)2  N+1, 

for all N 0 and ϵ 

¨ 

. 

p(ϵ) ∑ 
n=0 

nϵ ≤ 

E 

 
 

k 
2 |ϵ| 
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