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Abstract: The asymptotic behavior of the analytic solutions of a family of singularly perturbed
g-difference-differential equations in the complex domain is studied. Different asymptotic expansions
with respect to the perturbation parameter and to the time variable are provided: one of Gevrey
nature, and another of mixed type Gevrey and g-Gevrey. This asymptotic phenomena is observed
due to the modification of the norm established on the space of coefficients of the formal solution.
The techniques used are based on the adequate path deformation of the difference of two analytic
solutions, and the application of several versions of Ramis-Sibuya theorem.
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1. Introduction

In the present study, a family of singularly perturbed linear g-difference-differential equations of
the form
P(etk+101)05u(t, z, €) = P(t, z, €, 01, 0=, Ox)ul(t, z, €), )

under initial data
(0u)(t,0,€) = @i(te) 0=<j=<S-1, (2)

is studied. In the previous problem, € acts as a small complex perturbation parameter, and g; stands
for the dilation operator on f variable defined by o;f(t) = f(gt), for some fixed g > 1. In (1), S, k
are positive integers, P(r) € C[7], and the symbol P(¢, z, €, T1, T2, T3) is a polynomial in (¢, z, Ti, T2, T3)
with holomorphic coefficients on some neighborhood of the origin with respect to the perturbation
parameter. The functions @;(t, €) are polynomials with respect to t variable, with holomorphic
coefficients on some neighborhood of the origin in €. It is worth mentioning the irregular nature
of the differential operator in both P(e**19;), and inside P in the form of polynomial operators in
€t**19;. The precise shape of the main problem and the concrete assumptions considered in it are
determined in detail in Section 2.1.

There is an increasing interest on the study of the asymptotic behavior of the solutions to
g-difference-differential equations in the complex domain. This is the case of the recent works
by H. Tahara [14], H. Yamazawa [18] and H. Tahara and H. Yamazawa [15]; the authors and ]. Sanz [8]
and with T. Dreyfus [3]. A different approach via Nevalinna theory is developped in [16,17]. The
importance of applications of g-difference equations in the knowledge of wavelets or tsunami and
rogue waves is evidenced in recent advances in the field such as [12,13].

In the present work, we construct solutions u(t, z, €) of the main problem (1), (2) which are
bounded holomorphic functions defined on T x Dr x E, where T and E stand for finite sectors of the
complex plane with vertex at the origin, and Dk stands for the open disc of radius R > 0. The main
purpose of the present work is to show that the function E 3 € '- u(t, z, €) shows different asymptotic
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expansions with respect to the perturbation parameter € when modifying the norm considered in
the space of coefficients, the space of holomorphic and bounded functions defined on T x Dr. The
symmetric situation with respectto T 3t '— uf(t, z, €) is also considered.

The appearance of such phenomena is due to the existence of small divisors involved in the
main equation, in contrast to [10]. In the seminal work [10], the second author studies the asymptotic
solutions with respect to € of equations of the form

D

Q(@)ulgt, z, €) = ; erl il cp(t, z, ) Re(9:)u(g®t, z, €) + f(t,z, €), 3)
=1

where g > 1, D = 2, 8y, A¢, de are non-negative integers for 1 < £ < D. The functions ce(t, z, €) for
1<¥<Dand f(t z, €) are bounded holomorphic functions on Dr x {z € G : |Im(z)| < 8} x De,, for
some r, B, €0 > 0. Q(r) and Re(1) for 1 < £ < D are polynomials with complex coefficients. All these
elements are subjected to further hypotheses not mentioned here for the sake of simplicity.

In [10], the technique used to solve asymptotically the problem is to construct the analytic solutions
to (3) in the form of a g-Laplace transform of order k, for some k > 0 which depends on the elements
of the problem. This causes the absence of two distinguished asymptotic expansions (even when
modifying the norm considered for the function spaces involving the variables (¢, z)) in contrast to
the present situation. In that work, no small divisor appear in the main problem under study, all the
asymptotic expansions obtained there being of q-Gevrey type with respect to €.

The main inspiration of the present study is [1], where the authors deal with the formal solutions
to systems of dimension N = 1 of the form

€xroy:(y)(x, €) = F(x, €, ), 4)

where p, a are non-negative integers, g € Cis such that |g| > 1, a > 0, and F(x, €, y) is analytic on some
neighborhood of the origin in C x C x CN, with F(0, 0, 0) = 0 and DF,(0, 0, 0) being an invertible
matrix. Indeed, the unique formal solution of (4)

[o9]

y(x, e = Z yn(€)xn = Z un(x)er
=0

n n=0
is such that

(1) forp > 0, all y» converge on some common neighorhood of the origin, whereas u» converges on
the disc of radius r/|q|l"/"’J for some r > 0 and there exist C = C(g), A = A(g) > 0 such that for

all n = 0 one has
'12
sup ly CAnq sup lu x
w(€)| < | |2 ()] =

|elsr le|sr/|q]lm/al

CA",

(2) for p = 0, y» and u» converge on the disc of radius r/|q|"/°’ and r/|q|l”/“J, respectively, for some
r > 0, and there exist C = C(g), A = A(g) > 0 such that for all n = 0 one has

sup  |ya(€)| < CA~, sup |un(x)| = CA~
lel<r/lql/@ lel=r/lqlt/el

Observe in the previous result that the coefficients of the formal solutions might be defined
in shrinking neighborhoods of the origin, determining power series which have null radius of
convergence.

The procedure followed to solve (1), (2) analytically is to search for solutions in the form of a
Laplace transform of order k (see Section 5) which transforms the main problem into an auxiliary
convolution equation, whose analytic solution satisfies appropriate bounds in order to recover an
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analytic solution to the main equation via Laplace transform (see Proposition 1). Sharp bounds satisfied
by the solutions to the auxiliary convolution equation are also available, leading to the construction
of a finite family of analytic solutions to (1), (2), say (up1(t, z, €))osp<¢, -1, for some integer ¢1 = 2,
with up1 € O(T x D x Ep) for all 0 < p < ¢1 — 1. Here, T stands for a bounded sector in C with
vertex at the origin, D is a neighborhood of the origin, and E; is a bounded sector with vertex at
the origin belonging to a good covering in C* (see Definition 8). Another finite family of analytic
solutions to (1), (2), say (up2(t, z, e))OSpng_l, for some integer ¢z = 2, is also constructed. For every
0 < p = ¢2 — 1, the solution up2(t, z, €) remains analytic on Ty x D x E, where E is some bounded
sector in C with vertex at the origin, and so it is Tp, which is an element of a good covering in C*.

The main results of the present work determine the asymptotic behavior of the two families of
analytic solutions from two radically different topological points of view. It is proved in Theorem 3 the
existence of a formal power series in the perturbation parameter, with coefficients in some Banach space
of functions which asymptotically approaches each of the analytic solutions in (up1(t, z, e))OSpsgl_l.
The asymptotic approximation is measured by means of a L1 — g-relative-sup-norm. Such norm
is defined on a larger set of formal power series in one of their variables with coefficients being
holomorphic functions on some shrinking neighborhood of the origin (see Definition 3). Under this
measurement, the asymptotic behavior is of Gevrey nature (see (29)). On the other hand, when
incorporating the classical Li-sup norm in the asymptotic approximation, then mixed Gevrey and
g-Gevrey asymptotic expansions emerge, as it is proved in Theorem 4. We recall that previous results
in the field have also observed such multiscaled asymptotics, such as [7]. Theorems 3 and 4 are put
forward in a symmetric manner regarding time variable, leading to Gevrey and g-Gevrey asymptotic
relations for the analytic solutions (up2(t, z, €))ospsc,-1, in Theorems 5 and 6. The technique used in
the preceeding results leans on the application of the classical version of the so-called Ramis-Sibuya
theorem (Theorem 7 (RS) in Section 6) and a g-analog of Ramis-Sibuya theorem (Theorem 8 (g-RS) in
Section 6).

In brief, the work states different asymptotic expansions with respect to € and ¢ regarding different
sets of analytic solutions to the main problem under study (1), (2): one of Gevrey order 1/k and another
of mixed type Gevrey and q-Gevrey, when modifying the norm set on the space of coefficients of the
formal solution. In addition to this, Gevrey order expansions of order 1/k have been observed in both
variables t and € by setting appropriate norms on the spaces of holomorphic functions involved.

The paper is structured as follows. Section 2.1 is devoted to precise the main problem under study.
In the next subsections, we provide different families of analytic solutions (Theorems 1 and 2) by fixing
concise geometries in the problem. The first main results on the asymptotic behavior of the previous
families of analytic solutions are stated in Section 3 (Theorems 3 and 4) by determining different norms
in the space of coefficients of the formal solution. Symmetric results regarding the time variable
(Theorems 5 and 6) are stated in Section 4. The work concludes with two annex which complete
known facts about Laplace transform and its main properties and several versions of Ramis-Sibuya
type theorems, appealed in the paper.

Notation:

We write N := {1, 2,3,...} and No := N U {0}.

For every r > 0 and zo € C, we write D(zo, r) for the open disc centered at zo and radius r, and
for simplicity we denote D := D(0, 7).

Given a nonempty open set U € C, and a complex Banach space E, Os(U, E) stands for the set
of bounded holomorphic functions /4 : U — E which determines a Banach space with the norm of
the supremum. For simplicity, we write 0»(U) instead of 0»(U, C). We also denote the set of formal
power series in the variable z and coefficients in E by E[[Z]].
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2. Statement of the Main Problem and Analytic Solution

In this section, we state the main Cauchy problem under study in the present work and provide
analytic solutions to it in adequate domains. The procedure heavily rests on the study developed
in [11], and therefore most of the details are omitted, in order to enhance the main purpose of the
present study, i.e. to focus on the appearance of different related asymptotic occurrence related to such
analytic solutions.

2.1. Statement of the Main Problem

Let k, S be positive integers. Fix ¢ > 1, and €0 > 0.

Let A © N#%be a finite set, and A¢ € N for every £ € A. We assume that for every

£ = (bo, 01,02, 03) €A
{2 <SS, S=4{:+ s Ar = o, (5)

h
and fix a polynomial ct(z,€) = Yne, cer(€)z € On(Dg,)lz], for some finite set Ir © N. We
assume that c£(0, €) = 0. The following hypotheses are also fulfilled: there exists A = 1/2 such that

2002 - WA + Lo + kb1 - 2(S-1)A > 0,

Amax{O,Z(ﬂz— h-3- A h+ 0220 < min  a(fo + kb1) - a2A,
a€{S-1,S}

— 2005+ o+ kb1 >0, (6)

forall i € Ir and £ = (o, ¥1, 2, ¥3) € A.

Remark: Less restrictive conditions than those appearing in (6) can be assumed. We have decided to

adopt (6) for the sake of simplicity. Observe moreover that the assumptions (5) and (6) are compatible
whenever Yo + kb1 for (o, £1, 2, £3) € Ais large enough, together with suitable choices of the remaining
constants.

Forevery 0 < j < S -1, we consider a polynomial in time variable, say @i(t, €) € (Ou(D¢,))[t],
such that ¢j(0,€) =0for0<j<S-1.
Let P(7) € C[r] with P(0)/= 0, and such that there exists k1 > 0 with

kdeg(P) = kl1 + o + 2kil3log(g),  for £ = (Lo, €1, 2, ¥3) € A. (7)

The main problem under consideration is the following singularly perturbed linear Cauchy
problem

P(e"%+101)d5u(t, z, €) = > erlep(z, e)tto  (ekt+10)0102u (g3t z, €), 8

=00 l1,02,03 )eA

with Cauchy data
(@)t 0,€) = @it e), 0<j=<S-1 ©

2.2. Construction of Analytic Solutions to the Main Problem

The strategy to find analytic solutions to (8), (9) is to search for functions in the form of a Laplace
transform of order k along well chosen directions y € R to be determined. More precisely, we search
for solutions

J K
u(t,z,€) =k 1, w(,z €)exp - 1’5 dff,

for some suitable function w under suitable growth properties at infinity regarding its first variable.
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In view of the properties displayed in Propositions 9 and 10 on Laplace transform, we reduce the
problem to solve the following auxiliary Cauchy problem

, €
B,z €) = y e 18D gty 0t gl z, 9
: ) z
L£=(bo,01,65,05)€A Lo=0 u o
Az ek ey 0 1/k k 1/k ds
+ Z e -t W —s)k~ (k(qef‘s ) )91(3€zw)(q€35 , 2, €) s (10)

-
k
_O=(o,0:,0>,03)eA Lo=1 P(ku ) r % 0

with Cauchy data

@w)(w,0,€) = Pu,e), 0<j<S-1, (11)

where Pjfor 0 < j< S- 1 is determined from ¢; from the properties of Laplace transform (see
Proposition 8 and Corollary 1). Indeed, one can express ¢;j as the Laplace transform of order k of some
polynomial Pj(u, €) € (0s(Deo))[u]. More precisely, one has that Pi(u, €) = Zhel]- pin(€)ut, for some
finite subset J; € N, and all 0 < j < S - 1. In this situation, @i(f, €) = Zhe]]- T'(h/K)pin(e)th, for all
0 <j < S-1, where I'(:) stands for Gamma function.

A finite family of analytic solutions to (10), (11) is now constructed from the following associated
geometric configuration to the problem, on adequate domains.

The following result is a parametric version of Proposition 5 in [11], whose proof can be adapted
without any difficulty to this setting. We only give a sketch of the points to be adapted in our
framework.

Proposition 1. Let ¢ = 2 be an integer. We consider a set U = (Up)ospsc-1 of unbounded sectors with vertex

at the origin which satisfies that all the roots of the polynomial u'— P(ku*) belong to C %gpz(l; Up . Assume
conditions (5), (6) and (7) hold. Then, there exists R > 0 such that for every 0 < p < ¢ - 1a series

n
z

Wy, z,€) = 3 wplu, €) (12)
n=0 ’

can be constructed determining a holomorphic function on Uy x Dr x Deo , which solves the auxiliary Cauchy
problem (10), (11). Moreover, there exist C3 > 0, uo > 1, a = 0 and k1 > 0 stated in (7) with

|wp(u, z, €)] < 2Cs|ul exp kilog2(|u| + uo) + alog(|u| + uo) , (13)

forallu € Uy, z € Drand € € De,. In addition to this, each function wy.(u, €) satisfies the following
properties:

a. ForeveryO<p<c¢-1andn =0, thefunction (u, €) "= wpn(u, €) belongs to O(Up x D¢,) with

1
sup |wpns(u, €)] < Cz
€€D¢, (ZR)n

forall u € Up.

b.  Foreveryn = 0 there exists an analytic function wn(u, €), which is a common analytic extension of
(1, €) '= wpnlu, € forall0 < p <= ¢— 1. This analytic continuation is defined on Dr, x De, with
Rn = Ro/q", for some small enough Ro > 0 such that

n!lul exp kilog?(|u| + wo) + alog(|u| + uo) , (14)

Dr,Nn{u € C: P(ku*) = 0} = 0.

Moreover, there exist C1, C2 > 0 such that

n!

sup |wn(u, €)] < C1(Cz)» |ul, (15)

€€Dk, qnz A
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for u € Dr,, where A is introduced in (6).
C. ge%ﬁ%ﬁ%r?nﬁl% < ¢-1andn = 0, the function (u,€) '= wpx(u, €) is bounded holomorphic on the
Apn = ueUp:ﬁsMs&
qh+1 qh
forall 0 < h <n-1,existing Cs, Ce > 0 with

n!

sup |wps(u, €)| < Cs(Ce)" u], (16)

2
€ €D€0 qh A

for all u € Apn, where A is fixed in (6).

Proof. The proof of Proposition 5 in [11] can be directly adapted to this parametric framework under
the action of the perturbation parameter €. More precisely, the third element in the assumption (5)
guarantees that
_ Ap—4,
sup |€|A! b < EOQ ‘,
€€Dk,

for every £ = (o, ¥1,¥2,¥3) € A. The polynomial nature of the coefficients ci(z, €) = ety 7c£_hzh =
0s(De,)[z] allows us to upper estimate
!

sup |cez,€)] < Y. sup [cen@)] |z|"

€€Dk, help €€Dk,

Taking the above facts into consideration, the proof follows directly from that of Proposition 5
in[11]. O

At this point, one can achieve the construction of actual solutions to the main Cauchy
problem (8), (9). For that purpose, we introduce the following geometric definition.

Definition 1. Let ¢ = 2 be an integer. Let us consider a finite set of bounded sectors E = (Ep)ospsc-1 which
conforms a good covering in C* (see Definition 8). Associated to E let us choose a bounded sector with vertex at
the origin, T S Dy for some rr > 0, and a family U = (Up)osp=c-1 of unbounded sectors with vertex at the
origin, under the following conditions:

S
e Theroots of u '— P(ku*) belong to C \ §:10 Uy,
e Forevery0 < p < ¢~ 1, there exists Ap > 0 such that forall t € T and € € Ep a direction y» € R
exists (which depends on t and €) such that

N
- Ly, = [0,0)e Wy < U, U {0}, and
- cos(k(yy — arg(er))) > Ap.

We say that the tuple {T ,U} is admissible with respect to the good covering E.

Theorem 1. Let ¢1 = 2. Let {T , Us = (Up1)osp=¢, -1} be an admissible set with respect to a given good
covering E = (Ep)ospsc, -1 (following Definition 1). Take for granted the assumptions made in Section 2.1 on
the elements involved in the main Cauchy problem (8), (9).

Then, for every 0 < p < ¢1 — 1, there exists a solution up1 of (8), (9) which is holomorphic and bounded
on T x Dr x Ep. Such solution is of the form

n
wpatz,0) = 3 upinlt € (42,0 € T x DexEy, (17)

n=0
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with i
u k du
Upiy (t€) =k . W1, (1, €) exp - p - (18)
Yp

foreveryn = 0, and all (t, €) € T x E,. Here, Ly, = [0, o)e “Wp, where yp is determined in Definition 1,
and wp,1,» represents the coefficient Wy in (12) of Proposition 1 for the set U = Us.

Proof. Let 0 < p < ¢1 - 1, and consider the function wy constructed in Proposition 1 for the covering
U = Uy, that we denote wp1 with coefficients wp1,.. The function wpis a solution of the auxiliary
problem (10), (11). We write wy in the form (12) and recall that its growth with respect to u at infinity,

displayed in (14), allows us to apply Laplace transform of order k along direction Y. The construction
of the admissible set with respect to the good covering E guarantees that

T/lp,l,n(t, €) = I_kyp (U.Jp,l,n(u, €))(€t, E)

is holomorphic and bounded in T x E,. Moreover, from the bounds in (14) the expression in (17)
determines a bounded holomorphic function in T x Dr x E,. The properties of Laplace transform in
Section 5 guarantee that (17) determines an actual solution of (8), (9). O

A symmetric construction can be followed by interchanging the role of the variables € and ¢ in
the previous construction to achieve analytic solutions to the main problem in different families of
domains. In this respect, Definition 1 reads as follows.

Definition 2. Let ¢ = 2 be an integer. Let us consider a finite set of bounded sectors T = (Tp)ospsc-1
which conforms a good covering in C*. Associated to T one chooses a bounded sector with vertex at the origin,
E € De,, and a family U = (Up)ospsc-1 of unbounded sectors with vertex at the origin, under the following
conditions:

Sc
e Theroots of u '— P(ku*) belong to C \ p:10 Uy,
e Forevery 0 < p < ¢-1, there exists AAp > 0 such that for all € € E and t € Ty a direction ¥ € R exists
(which depends on t and €) such that

v
- Lv}j = [0, )e TV ¢ Up U {0}, and
- cos(k(pp — arg(er))) > Ap.
We say that the tuple {E, U} is admissible with respect to the good covering T .

The following symmetric result to Theorem 1 is also valid, following the same arguments as above
for its proof.

Theorem 2. Let ¢z = 2. Let {E, Uz = (Up,Z)Ospsgz -1} be an admissible set with respect to a given good
covering T = (Tp)ospsg, -1 (in the sense of Definition 2). Assume the hypotheses made in Section 2.1 on the

elements involved in the construction of the main Cauchy problem (8), (9) hold. Then, for every 0 < p< ¢2 - 1,
there exists a solution upz of (8), (9) which is holomorphic and bounded on Ty x Dr x E . Such solution is of

the form
n
up2(t,z,€) = 3 up2nlt, €) ;—, (t,z,€) € Ty x Dr x E, (19)
n=0 )
with
I u k du
Upon (t,€) =k Wy (1, €) exp - o - (20)

r

v
foreveryn =0, and all (t,€) € Ty x E. Here, Ly, = [0, )e “YY7¥, is determined in Definition 2 and where

Wy,2n represents the coefficient wpn in (12) of Proposition 1 for the set U = Ua.
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3. Asymptotic Behavior of the Analytic Solutions, I

In this section, we provide two results regarding the asymptotic expansions of the previous
analytic solutions determined in Theorem 1 with respect to the perturbation parameter regarding
each of the elements in a good covering E = (Ep)osp=¢, -1, for some fixed ¢1 = 2. The main first
result of the present work determines classical Gevrey asymptotic expansions by introducing L1 -
g-relative-sup-norms on the partial functions (¢, z) '= up1(t, z, €), constructed in Theorem 1, for each
fixed € € Ey, and all 0 < p < ¢1 - 1, whereas the second result deals with uniform sup-norms on the
partial functions (¢, z).

Definition 3. let g > 1 be a real number. We fix a bounded sector with vertex at the origin T . Let us consider
the set 0T )[[z]] of formal power series h of the form

W2 = 3
n!

n=0

where hn € Ou(T N D1yqn) for every n = 0.

Let R1 > 0 be a real number.

We denote by EL r the vector space of formal power series h € Oh"(T )11 of the form h(t,z) =

N 11
Suz0 hn(t) ;- where hn € Ou(T N D1/qn) for every n = 0, such that the L1 - q-relative-sup-norm of h,
defined by
IhED L e = 3 sup  Jha(d] RE,
o1 soteT ND1 g n!

is finite.

Proposition 2. The pair (EL gk, |- Lyg:R,) 18 @ complex Banach space. The vector space Oo(T x Dr) is
contained in Ev R, provided that R > Ru.

Proof. First, observe that any formal power series h(f,z) = Y ,.0 hn(t) 71”—, € Ep,;5r, such that

h(t, z . = 0entailsthat i = 0in T N _D1/gn. "
I L)cJ“c L(lh’?’l){,} be a Cauchy sequence in ELl;/q[;]R . Let us write hr(t,z) = ¥,  hv(t)=, for every

21 1 1 nz0 n n’
p € N. Itis clear that for every n € No, the sequence (hZ)pﬂ is a Cauchy sequence in the Banach space
(Ou(T N D1ygn), 1 &), where || stands for the supremum norm with

en!

Ry

(21)

for all p,q € N with p,q 2 po for some po € N whenever [i¥ - k||, .z | < € Therefore, for

every n € No there exists H. € O)(T N D1/g) such that (#h)x=0 converges in sup norm to Hx. By
considering the formal power series H(,z) = H.(t)z itis direct to check that H is an element
of P n=0 7l

EL;;q;r,, with H being the limit of (h )p=0 in such space. U

From now on, we resume the assumptions and constructions related to the main problem (8), (9)
in Section 2.1. In addition to this, we consider ¢1 = 2 and an admissible set {T, U1 = (Up1)o<p=¢, -1}
with respect to a given good covering E = (Ep)osps¢, -1 (in the sense of Definition 1). Theorem 1
guarantees the existence of a finite family of solutions upi(t, z, €) to (8), (9), for 0 < p<¢1 -1,
holomorphic and bounded in T x Dr x E;, of the form (17) with (18), for some R > 0. Let us fix
0< R1 <R
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Proposition 3. Under the assumptions of Theorem 1, for every 0 < p < ¢1 - 1 there exist Ap, By > 0 such
that

BP
< Apexp - — (22)

“upi1alt, z, €) - upalt, z, € ,
p P |€|k

Li;q;R1

valid for every € € Ep N Ep+1, where we have identified u¢, 1 := uoa and Eq := Eo, provided that 0 < R1 < R
is small enough.

Proof. Let 0 < p < ¢1 -1 and fix € € Ey N Ep+1. In view of (17) and (18), one can write

l/lp+1,1(t, z, €) - Mp,l(t, zZ, E)

in the form
1
J x J T on
u du u k du z
Z k wp+1,1_n(u, eexp — — — -k Wy1n(u, €) exp — — - — (23)
n=0 Ly,q €t u Lyp €t u n!
One can apply b. in Proposition 1 taking ¢1 in place of ¢ and Ui = (Up1)ospsc,-1 in place of

U = (Up)ospsc-1. Then, for all n = 0, the functions u '— wp,1,:,(u, €) and u '-> wp+1,1.(1, €) have
a common analytic continuation, say u '= ws(u, €) on Dr,, with R« = Ro/q", for some Ro > 0.
This entails that the integration path appearing in the previous difference can be deformed by the
application of Cauchy theorem. Hence, up+11(t, z, €) — up1(t, z, €) equals

p J k
u du “k u du

= k w (w,€)exp - w (e exp -
,gb va+1’Rn+1 priln ?t 7 Ly Rys1 pln ?t 7 '
I u k du zZ"
+k wn(u, €)exp — — — (24)
CVI’"Vp+1'er+1 et
v

where Ly, Rs1 = [Ru+1, 0)e ~Wi forj = p,p +1andCy ¥ priRis stands fo& the oriented arc of circle

centered at the origin, of radius Ru+1, from the point Ru+ie ~V» to Ru+1e “Wp+1, Let us provide
upper bounds for the previous elements. Let us define
I k
u
I(y )=k w (u,€)exp -

1 p+1 I p+1,1n
Vp+1'Rn+1

du

et u

In view of statement a. in Proposition 1 and the fact that {T , U1} is admissible with respect to E, one
has that I1(yy+1) is upper bounded by
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1
1 Jo .k :
kC3ﬁTl! exp kilog?(r + ug) + qlog(r + uy) exp — Tl cos(k (yp+1 — arg(et))) dr
Ru+1
1 Jo gk
—nl 2 e - — A
<kCs it R . exp kilog (r + uo) + alog(r + uo) €xp 2 e p+1
X 1
xexp - A d
p 2 |€t| p+1 r
'y
1 1 Rn+1 k * 2
< kCs R711! exp —3 ] p+1 R exp kilog (r + uo) + alog(r + uo)

. N i
exp |€t| p+1! r

2
1 1 Rus1 *
< ! - - A ,
kCsJ1(Ap+1) g™ exp 5 |€t| o+l
with
I . e
® r
]1(Ap+1) = . exp kilog?(r+ up) + alog(r + uy) exp —3 art Apiq dr < oo,

Taking into account that Ru+1 = Ro/q"+1 we conclude from the previous expressipn that
1
sup I kCJ A n! exp 1 R k . (25)

1lyp+1) = 3 1( ) -5 = p+l
t€T NDy/gn v prt R 2 qlel

An analogous reasoning yields

f K
d
I(y):=k w (y,e)exp - " "
2 1, - -
g Lyy Ryt1 P €t u
is upper estimated 1
1
sup [ kC ] (A n!exp 1 R kA . (26)
= 31 = 5
t€T ND1/gn 2(y») ») Rn 2 qle] p
Finally, we consider
J u k du
I(y,y )=k w (u,€)exp -
3 +1 n - —
P CVP Yp+ 1Ry 41 €t u

Regarding statement b. in Proposition 1 and the parametrization u(6) = Ro/q”“e"e for 6 between
and yp+1, one arrives at the existence of Zp_pﬂ > 0 such that

f % +1 Kk
p+1 » n!' Ro Ry/q"
I(yp, Yp+1) < k CC) —apsr &P — i cos(k(6 - arg(et)) 46
Yr q q |€t| .
n  nlRo Ro/q"+1 k- i
< klyp+1 - yp| C1(C2) prIeTE) P T Bpp+1 (27)
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This entails 1
sup I ( , ) k C.c.n 1!Ro exp Ro kA : (28)
< _ - - =
- 3Wp Vp+) = yper - vl T1(T2) ey gle] et
Collecting the information in (25), (26) and (28), one arrives at
"Llerl,l(t, z, E) - up,l(t, z, E)"L R 1
R 1 1 Ro *
< E) 2kC3z max{J1(4Ap), J1(Ap+1)} RSP~ ql—el min{Ap, Ap+1}
n Ro Ry . !
- R E— _ — A Ry
+klyp+1 = yplC1(Co) ey exp le pp+1 f
The choice of R1 < R yields (22) with
) Ry (C2R1)" 2kC Mmax ](A ),] (A ) k| | CR ,
= — _— 3 1 1 1)} + -
4 nzz:o R + ngo Y { P p+1)} Yp+1=Vpl 1 0
and
R 1 -
By, := q—k min °, min {8p,Bpia}, Bppia
O

Proposition 3 guarantees that Theorem 7 (RS) (see Section 6) can be applied when considering the
next Banach space of functions.

that forall N = 0 one I

Theorem 3. Ulnder the mptions of Theorem 1, there exists a formal power series u'i(t,z,€) =
uin(t,z)€ € éL iR Es]lfs tisfying that there exist C, M > 0 sucitt ! as
n=0 n’ 11
1 1( al e N+1 N+
Ltz e) — 3w (h2) - < CMN+1T lel ™, (29)
n=0 " LugRi

forall0 < p< ¢1 — 1 andall € € Ep. In other words, € '= u*1(t, z, €) is the common Gevrey asymptotic
expansion of order 1/k of the analytic solution € '> upa(t, z, €), as a function with values in EL g, in Ey, for
al0sps<s¢i-1

Proof. Forall 0 < p < ¢1 - 1, consider the function up,1(f, z, €) constructed in Theorem 1, and define
the map Gy(€) by € '= up1(t, z, €) for € € E, which is viewed as a function with values in the Banach
space (EL;gR,, | H1;q;R1)' Observe that one can apply Theorem 7 (RS) in view of Proposition 3, in
order to achieve the existence of u"1(,z, €) € S [[€]] with the required properties. (]

In the second part of this section we provide a different asymptotic expansion with respect to the
perturbation parameter, under the action of a different norm compared to that in the first part. The
main result of this section guarantees g-Gevrey asymptotic expansions relating the formal and the
analytic solutions by incorporating the classical Li-sup norm as follows. The procedure rests on the
approach in [11].


https://doi.org/10.20944/preprints202312.1393.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2023 doi:10.20944/preprints202312.1393.v1

12 of 19

Definition 4. let g > 1 be a real number. We fix a bounded sector with vertex at the origin T . Let us consider
the set Oo(T )[[z]] of formal power series h of the form

W2 = 3
n!

n=0

where hn € Ou(T ) for every n = 0.
Let R1 > 0 be a real number.
5 Wl ol FEILRR S ST B L S WAl /o D) =
n=0 n

2 g ==Y sup ()] RL,
Ul a0 teT n!

is finite.
The proof of the next result is analogous to that of Proposition 2, so it is omitted.

Proposition 4. The pair (EL r,, ||| .r,) is a complex Banach space. The vector space O(T x Dr) is
contained in EL g, provided that R > Ru.

Remark: Observe that Os(T )[[z]] & Oqu )[z]] for all 4 > 1. Furthermore, EL ¢ < Er iR for all
1 1 1

1
q> 1and we have the next inequality [|i[| 0.z, < [I1],;g, forallh € Ev g, .

In this section, we resume the assumptions and constructions associated to (8), (9) of Section 2.1.
We also fix a good covering E = (Ep)Ospsgl -1 for some ¢1 = 2, and an admissible set (in the sense of
Definition 1) {T , U1 = (Up,1)osp<c, -1} associated to the previous good covering. Let up(t, z, €) €
Ou(T x Dr x Ep) be the analytic solution to (8), (9) for 0 < p < ¢1 - 1, for some fixed R > 0. We also
choose 0 < R1 < R.

Proposition 5. Under the assumptions of Theorem 1, for every 0 < p < ¢1-1and 0 < R1 < R, there exist
Ap, By > 0 such that

N 2

—_— N°/2 € N
k q | | )

"up+1;1(tl Zl E) - ul’,l(t; Zr E) R1 < Ap (EP)NF

Ly
for every € € Ep N Ep+1, where we have identified u¢ 1 := uoa and Eq := Eo.

Proof. The proof of Theorem 1 [11] can be followed point by point, by considering uniform bounds
with respect to t € T, and by assuming that € plays the role of ¢ variable in Theorem 1 of [11], together
with the estimates in Proposition 1. [J

From the previous result, one achieves the following second asymptotic relation of Gevrey mixed
order (1/k; (g, 1)).

uwin(t,z)¢ € ErL & satisfying that there exist C, M > 0 such that for all N = 0 one has

n! 1

Theorem 4. Under_the [f5ﬁ4mption,s of Theorem 1, there exists a _formal power series itz €) =
€
n=0 1

N+1 on? g
— 1 2 e

p (30)

. N 7N -
(3
pi(tze) = ) Lﬁ_n(t,z)m . < CMN*Ir
n=0 L1;R1

forall0 < p < ¢1-1andall € € Ep.
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Proof. One can define the map Gy(€) for 0 < p < ¢1 - 1 as in the proof of Theorem 3 and apply
Theorem 8 (g-RS) (see Section 6) in virtue of Proposition 5. [

4. Asymptotic Behavior of the Analytic Solutions, II

In this section, we describe the asymptotic behavior of the analytic solutions of (8), (9) with respect
to the time variable, near the origin. We proceed in a similar manner to Section 3, by fixing an element
in a good covering T , and providing the asymptotic properties regarding different norms on the partial
sums (z, €) "= upa(t, z, €), foreach t € Tpand all 0 < p < ¢2 - 1: an L1 - g-relative-sup norm, and
the uniform sup-norm on the partial functions (z, €).

In accordance to Definition 3, one can state the following symmetric definition.

Definition 5. let g > 1 be a real number. We fix a bounded sector with vertex at the origin E. Let us consider
the set OYE)[[z]] of formal power series g of the form

5z = Y g,
n!

n=0

where gn € O(E N D1/qn) for every n = 0.

Let R1 > 0 be a real number.

We denote by Fr jr the vector space of formal power series g € OZ(E)[[Z]] of the form g(z,€) =

n 1 1
=0 gn(€) , fi-where gn € Ou(E N D1/qn) for every n = 0, such that the L1 - q—relative-sup-norm of g,
defined by
8@ Ol igr == 3 sup  |gule)] RE,
11 n!

n=0 €EEﬂDl/qn

is finite.

Remark: We adopt the same notation for the norm in Definition 3 for simplicity. The pair
(Frygry ||l Lug:R,) IS @ complex Banach space. Besides, the vector space Ox(Dr x E) is contained in

Fi..q:r, provided that R > Ru.

Returning to the main problem (8), (9), we take for granted the assumptions made on it in
Section 2.1. Let us first fix ¢z =2 2 and a family of admissible domains which determines the geometry
of the problem. We choose a finite family of sectors T = (Tp)OSpng—l, which determines a good
covering in C* (see Definition 8). Associated to such good covering, we consider a tuple {E, Uz =
(Up2)ospsc, -1} which is admissible with respect to the good covering T (see Definition 2). We assume
E € D¢,. Theorem 2 provides with a family of holomorphic solutions up2(t, z, €), for 0 < ps¢-1,
of the main problem (8), (9), which are holomorphic and bounded in Ty x Dr x E, for some R > 0.
In addition to this, the form of such solutions is determined by (19) with (20) for all n = 0. Let
0<R1 <R

Proposition 6. We take for granted the assumptions made in Theorem 2. Then, for every 0 < p < ¢2 — 1 there
exist Ay, By > 0 such that

| <

. _ . - exp
”p+1,2(t; Z,€6) - U p2 (t,z,€) LugRs < Ap _

=

It

for every t € Ty N Tp+1, where ug,2 and Tez stand for uo2 and To, respectively, provided that R1 > 0 is small
enough.
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Proof. The proof of this result heavily rests on that of Proposition 3. We only give details on the steps
in which this proof differs from that.

Letus fix 0 < p< ¢2 -1 and t € Ty N Tp+1. We write the difference of two consecutive
solutions up+1,2(t, z, €) - up2(t, z, €) in the form (23), with LVA]. in place of Ly, forj € {p,p+1}.
Once again, one can apply b. in Proposition 1, by substituting ¢ by ¢z and Uz = (Up2)osp=c,-1
replacing U = (Up)ospsc-1. For each n = 0, an analogous analytic continuation u '— wx(u, €) of the
functions u '—= wp2:(u, €) and u '—= wy+1.2:(u, €) for all € € E allows us to rewrite the difference of
the consecutive solutions in the form of (24), with Ly, r,,,and Cy, ., R,,,instead of L, r,,,and

Cyp'yp+1'Rn+l, forj € {p,p + 1}. From the proof of Proposition 3, we derive

n k
I - kCJ A ! n!exp 1 Ryss A ,
1(yp+1) < 3 1( P“)ﬁ 32 W p+1
leading to !
- 1
sup [ ~ kCJ (A n! exp 1 R ko . (31
EEEﬂDl/qn 1(Vp+1) = 31 p+1) Rn 2 qltl p+1
It is straight to achieve the bounds 1
A~ 1
sup [ ° kC | (A nlexp 1 R k“A . (32)
= 31 = 5 T
€€EEND /gn 2(y») 2 Rn 2 qlt P
Finally, taking (27) into account, we arrive at
1
) n  nlRo Ro/qn+1 k_ )
3(Pp, Vp+1) <k|Pp+1 - Pp|Ci(C2) Wexp T T e Appr1 s
for some ZWH > 0, which leads us to 1
sup I(A,“ ) k" " c.c.n n!Ro  exp Ry ‘s : (33)
< _ - —_
S 3(Vp Vp+1 lype1 = vl "1(72) ey a1l pp+1
Inview of (31), (32) and (33) we have
Tupe12(t, 7, €) - upa(t, z, e')"Ll;q;R1 ) . k o !
1 Ro )
< ; 2kC3 maXUl(Ap), ]1(Ap+1)} RyfeXp - 2* m mll’l{Ap, Ap+1}
k" ~C Cnr Ro exp Ro ks 1
-l 1(2) AT — E App+1 Ro
q
The choice of R1 < R and .
A R, " (C2R)" - max ] A ,] A k° "~ CR ,
p =) R + ) Py e 3 {10 10 prd}+ Wpser =Vl 1 0
n=0 n=0 q
and . Rk R N
B : min + min A A LA
4 :T? 2 {vr p+1} pp+1
q

allows us to conclude the result. O
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The following result is a consequence of the classical Ramis-Sibuya Theorem 7 (RS), whose proof
can be adapted from that of Theorem 3 to the good covering T .

Theorem 5. Llndelg the S n;ptzons of Theorem 2, there.exists a hf ormal_ power_series u'2(t,z,€) =
> L; Tfs

Uzn(z, €) tisfying that there exist C , M > 0 suc thatfor all N = 0 one has
n=0 n! 1
up2( ¢ < ( )tn" <& M N+1p N+1 pN+L 34
2tz ) = 3 U2z, €) - — (34)
Li;giR1

forall0 < p< ¢2 — 1 and all t € Tp. Equivalently, the formal power series t '= u"2(t, z, €) is the common
Gevrey asymptotic expansion of order 1/k of the analytic solution t '= up2(t, z, €), as a function with values in
FrLigr, in Ty, forall0<sp<¢g -1

As a final step in the asymptotic study of the solutions to the main problem, we describe the
results obtained when considering the classical Li-sup norm, in accordance with [11]. The symmetric
version of Definition 4 reads as follows.

Definition 6. let q > 1 be a real number. We fix a bounded sector with vertex at the origin E . Let us consider
the set Ou(E)[[z]] of formal power series g of the form

g(z€) =), gn(E)i,
n

n=0

where gn € Ou(E) for every n = 0.
Let R1 > 0 be a real number.

I Gt R e T LR

n=0

llg(z, )l R = > sup |gn(€)] Rf
! n=0 €€E

is finite.

As a result, one can follow the proof of Theorem 1 [11], assuming uniform bounds with respect to
€ € E, to arrive at the following result.

Proposition 7. Under the assumptions of Theorem 2, for every 0 < p < ¢2—1and 0 < R1 < R, there exist
Ap, By > 0 such that

N

.. - ~ - 2
tpiralt, 2, €) = upat, 2,0 g < Ap(BpNT 2= gV 214N,

for every t € Ty N Tp+1, with ug,2 := uo2 and Tz := To.

Finally, a direct application of Theorem 8 (q-RS) to Proposition 7 leads us to the last asymptotic
result on the behavior of the analytic solutions of the main problem.

Theorem 6. Under the umptions of Theorem 2, there exists a lformal r series z(t Z,€) =
wan(z, €)f €FLr [ﬁi satisfying that there exist C, M > 0 suc that for a l >0 on
n=0 n!
h N (A T a7 N+1 N +1 (N+1)2
Ap2(tz,€) = Y uin(z€) =C MM q [£[N+1, (35)
=~ n! k
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forall0 = p<¢-landallt € Ty

5. Annex I: Laplace Transform

In this annex, we briefly describe the definition of Laplace transform and its main properties
considered in the present work. We omit its proofs which can be found in previous research by the
authors such as [7].

In the whole section, (E, ||| o) stands for a complex Banach space.

Definition 7. Let k € N and choose an unbounded sector Sis := {z € C* : |arg(u) - d| < 8}, for some
d € Rand 6 > 0. Let f € 0(Saz, E), continuous in Sas U {0}, such that two constants C,K > 0 exist with

lfwl g < Clulexp Klul* , u€ Sis (36)

The Laplace transform of order k of f along direction d is

)
LAGFa® =k fwexp - “°
Ly t u

where L, = [0, )e!Y € Sis U {0} and the value of v € R depends on t, with cos(k(y - arg(t))) = 1 for
some &1 > 0.
L‘f{(f(u))(t) defines a holomorphic and bounded function in O(Saerii, E), with Sigrix =

D(0, RY*) N Sue/2, where T, < 8 < T+ 26 and 0 < R < &1/K.

Proposition 8. Let k € Nand d € R. Let f € O(C, E) such that there exist C, K > 0 with

|f)|l g < Clulexp Klul* , ueC.

Then, L4(f (1)) : D — E defines a holomorphic function on some neighborhood of the origin, D, and it holds

h
et ) Doy =1 2 fo),
k k

for every p € No.
Corollary 1. In the situation of the previous result, one has that Laplace transform of order k of the polynomial

p(u) = Yp_o anul € E[u] is the polynomial I.kd(p(u))(t) =¥n_oT % anth € E[t].

Proposition 9. Under the hypotheses of Definition 7, the function u '— ku* f(u) and, for all m € N, the
convolution product u '= u™ x« f(u) given by

uk Iuk m 1 1@

i % fu) = — wrog 7 fsi) .

S

> |

admit Laplace transform of order k along direction d with
LiGeus Fa))(®) = #4180 LG(F))(®)

and

L: (u'> (um *x f(u) (t) = t'”L:(f(u))(t),

forallt € Sygrikand 0 < R < 61/K.

doi:10.20944/preprints202312.1393.v1
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Proposition 10. Let g > 1 and & = 1. Under the hypotheses of Definition 7, the function u'— f(q°u) admits
Laplace transform of order k along direction d and one has that

L:( f(g®u)(t) = Lz( f@))(g®h),

for every t € Sygrix and 0 < R < &1/(Kg®).

6. Annex II: Ramis-Sibuya Type Theorems

In this section, we recall different versions of Ramis-Sibuya theorem (RS theorem), whose classical
statement can be found in [4], Lemma XI-2-6. Such type of results have been previously successfully
applied in the asymptotic study of analytic solutions to many functional problems: a classical RS
theorem in the asymptotic study of the solutions to partial differential equations in the complex domain
in [2,5] and also a close version to the previous one adapted to multi-index sectors [6], another RS-type
theorem adapted to the more general framework of strongly regular sequences in [9], also a g-Gevrey
version of RS theorem in the framework of g-difference-differential equations in [7], a mixed (Gevrey
and g-Gevrey) version of RS theorem in the study of g-difference-differential problems in [11].

Let ¢ = 2 be an integer. In the whole section, (E, |-||) stands for a complex Banach space.

Definition 8. A finite family E = (Ep)ospsc-1 consisting of bounded sectors with vertex at the origin is said
to be a good covering in C* whenever the following conditions are satisfied:

e EiNEj+1/= @ for every 0 < j < ¢ - 1 (by convention, we define E¢ := Eo).
e For every three indices p1, p2, p3 € {0,..., ¢~ 1} such that pi/= pj for i,j € {1, 2, 3} with i/= j, then
one has Ep1 N Epz2 N Epz = Q.

Sc-
e There exists a neighborhood of 0 € G, say D, such that %40E, = D\ {0}.

We recall the classical Ramis-Sibuya theorem.

Theorem 7 (RS). Let (Ep)ospsc-1 be a good covering in C*. Let Gp : Ep '—= E be a holomorphic map for all
0 < p = ¢ - 1such that the following conditions hold:

e Gp € Ou(Ep,E) for0<sp=<¢-1.
e Given 0 < p < ¢-1, the cocycle Op(€) := Gp+1(€) = Gpl€) is exponentially flat of order k on
Zp := Ep N Ep+1 (we write G¢ := Go), i.e. there exist Ap, By > 0 such that

_Bp

eeE N Ep+1.

Then, there exists a formal power series, common for every 0 < p< ¢—- 1, G(e) = Y=o Gne" € E[[€]], such

that Gy admits G~ as its Gevrey asymptotic expansion of order 1/kon By, forall 0 < p< ¢~ 1, meaning that
there exist C, M > 0 with

N .
Gp(E) — Z Gren .. < CMN+1T N+1 |€|N+1’
. E
n=0

forall N = 0 and € € Ep.
A mixed Gevrey and g-Gevrey version of Ramis-Sibuya theorem is also available.

Theorem 8 (9-RS). Let (Ep)osp<c-1 be a good covering in C*. Let Gp : Ep '= E be a holomorphic map for
all 0 < p < ¢ - 1 such that the following conditions hold:

e Gy € OuEpE)for0sp=<sg¢-1.
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e Given 0 < p < ¢ -1, the cocycle Op(€) := Gp+1(€) — Gp(€) satisfies that there exist Ay, By > 0 with

e[ =A BN = g ||V, €E NE ,
€ E Py r € € p pn

valid for all N = 1.

Then, there exists a formal power series, common for every0 < p< ¢- 1, G(e) = =0 Gne® € E[[€]], such
that Gp admits G asits Gevrey asymptotic expansion of mixed order (1/k; (g, 1)) on Ep, forall0 < p< ¢- 1,
meaning that there exist C, M > 0 with

e Yoo oyt N1 q(N+1)2 N+1
Spe) =) e L < —_— 2 |e]
n=0 E k

forall N = Oand € € Ep.
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