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Abstract

Integrated hydrogen-electricity system(IHES) have gained widespread attention, yet distributed
energy sources like photovoltaic(PV) and wind turbines(WT) power within them exhibit strong
uncertainty and intermittency, posing key challenges of scheduling complexity and instability.
Electricity price regulation, as a core mechanism in integrated IHES operation, can promote
renewable energy absorption, optimize resource allocation, and enhance operational economy.
However, uncertainties in IHES hinder accurate electricity price formulation, easily leading to
delayed scheduling responses and increased cumulative operational costs. To address these issues,
this paper establishes PEMEL and PEMFC models considering power-efficiency, incorporates their
lifespan impacts into IHES scheduling, and integrates an electricity price regulation mechanism for
energy imbalance. It constructs dynamic equations for the demand and response sides, scheduling
electricity prices and IHES components via fuzzy weights and dynamic adjustment coefficients.
Simulation results show that compared with fixed pricing, the proposed dynamic pricing reduces
economic indices by an average of 15.3%, effectively alleviating energy imbalance and optimizing
component energy supply. It also cuts PEMEL life attenuation by 21.59% and increases PEMFC
utilization by 54.8%, providing theoretical and methodological support for efficient, stable IHES
operation.

Keywords: integrated hydrogen-electricity system; day-ahead dispatch optimization; electricity
prices; PEMEL/PEMEFC lifespan degradation

1. Introduction

Energy generated from traditional resources such as fossil fuels causes air pollution in the short
term. In the long run, it leads to an increase in atmospheric carbon dioxide, thereby triggering global
warming [1]. Therefore, vigorously developing renewable energy and clean energy is one of the
crucial approaches and goals for promoting the current energy transition and achieving global carbon
neutrality [2]. In recent years, hydrogen has gradually attracted attention due to its unique
advantages of zero carbon emissions, storability, transportability, and multi-energy conversion
capabilities [3].The IHES, consisting of fuel cell(FC), hydrogen storage tank(HST), electrolyzer(EL),
and supplementary batteries, can realize the functions of hydrogen production and storage, which is
conducive to achieving zero emissions in the energy system. The energy supply of the IHES is highly
dependent on distributed energy sources such as PV and wind power. However, the output of such
energy sources is significantly affected by natural conditions, exhibiting characteristics of
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intermittency, volatility, and randomness [4].In addition, electric loads are also influenced by factors
such as users’ living habits and seasonal climate, featuring large intraday peak-valley differences and
sudden demand surges [5]. On the other hand, the deployment of new technologies such as electric
vehicles(EVs) and hydrogen fuel cell vehicle(HFCVs) introduces greater complexity and uncertainty
to load forecasting [6].The superposition of prediction deviations on both the energy supply and
demand sides makes it difficult to achieve temporal matching in the multi-energy conversion chain
of the IHES. Aspects such as the hydrogen production power of EL and the charging-discharging
strategies of batteries all rely on accurate supply and demand forecasting schemes. Consequently, the
decline in forecasting accuracy will make it difficult for the IHES to meet the preset economic dispatch
targets [7].

Scholars have conducted extensive research on various issues in IHES; in terms of new energy
forecasting, Emrani et al. [8] constructed a wind and PV power generation forecasting model based
on on-site meteorological data, and by acquiring meteorological data, they predicted PV output
power using a coupled model of solar irradiance and temperature, forecasted wind power output
based on local wind speed piecewise functions and high wind speed characteristics, and verified the
critical role of accurate forecasting in improving the economy and reliability of energy systems. Mellit
et al. [9] took a specific PV system as the research object, investigated the forecasting performance of
deep learning algorithms with different time steps and frameworks, validated the performance,
training efficiency, and accuracy of the single Deep Learning Neural Network (DLNN) model, and
demonstrated the application value of the single DLNN model in PV and wind power forecasting.
Mirza et al. [10] proposed a hybrid deep learning model integrating ResNet, Inception modules, and
bidirectional weighted LSTM/GRU for short-term and medium-term forecasting of wind and PV
power based on wind and PV data from the State Grid Corporation of China and wind farm data
from South Africa, and verified its accuracy and stability in wind and PV power forecasting. Sarmas
et al. [11] constructed four basic LSTM models, used Support Vector Regression (SVR) to build a
meta-learner that dynamically fuses the forecasting results of the basic models to adapt to the
characteristics of different PV systems, and validated the model’s accuracy in PV power forecasting
using power generation data from a PV plant in Portugal. After confirming that accurate renewable
energy forecasting is a prerequisite for ensuring the efficient operation of IHES, the academic
community has also carried out extensive basic and applied research on the structural design of the
system itself to provide theoretical and experimental support for multi-energy conversion and
supply-demand balance: Li et al. [12], in their research on IHES for net-zero energy buildings,
configured a hydrogen energy subsystem consisting of an EL, a high-pressure HST,FC, and
meanwhile realized a power coordination scheme using max-min game theory to achieve the goal of
zero-carbon emission buildings; Shao et al. [13] proposed a structural framework for IHES that
incorporates a hydrogen transportation subsystem, where hydrogen production stations powered by
renewable energy produce and compress hydrogen, the hydrogen is then transported by trailers and
finally stored in hydrogen refueling stations to supply hydrogen loads, filling the gap in the
transportation aspect of IHES; Du et al.[14]proposed an off-grid-grid-connected hybrid design for
IHES, which integrates a cooling-waste heat recovery module and auxiliary equipment, recovers
waste heat generated during the operation of PEMEL and PEMFC through heat exchange plates, and
optimizes the operating status of equipment via multiphase flow and thermal balance modeling to
effectively reduce the frequency of PEMEL start-ups and shutdowns, thus enabling more efficient
operational coordination of the hydrogen-electric coupling system. The aforementioned studies have
explored IHES under different application scenarios from various perspectives, but few studies have
considered the efficiency decline of EL and FC caused by their lifespan reduction—which in turn
leads to decreased hydrogen production by EL and thus affects the operation of IHES [15];
additionally, the electric load exhibits significant peak-valley differences due to the randomness of
EVs and HFCVs, making system dispatch optimization more challenging.

On the other hand, on the load side of IHES, with the popularization of new energy
vehicles(NEVs), the strong uncertainties exist in users’ choices of charging/hydrogen refueling time
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and variations in travel routes, resulting in the load side exhibiting characteristics of large peak-valley
differences and high volatility. Among existing studies on NEVs, for instance, Hussain et al. [16]
proposed a local demand management model that integrates vehicle-to-vehicle (V2V) services with
the welfare maximization-soft actor-critic (SAC) deep reinforcement learning approach. By means of
dynamic pricing and charging-discharging optimization, and on the basis of considering the
differences in EVs owners’ sensitivity to remaining battery capacity, battery degradation, and
incentive prices, this model effectively alleviates the problem of distribution network transformer
overload under high EV penetration rates, and realizes the coordinated optimization of owners’
welfare and power grid security. Eghbali et al. [17] put forward a scenario-based stochastic model;
by fitting probability distribution functions for three types of uncertain parameters of NEVs, namely
arrival time, departure time, and driving distance, and simultaneously combining with demand
response programs, this model achieves the optimal dispatch of IHESs containing multiple energy
sources and multiple ESS under the objective of minimizing the total system cost. Habib et al. [18]
proposed a three-stage stochastic optimization structure, which generates parameter scenarios based
on the normal distribution to address the uncertainty of NEVs; by combining vehicle-to-grid (V2G)
technology, demand response, and energy storage, this structure realizes the optimal operation of a
distribution system with four IHESs, thereby reducing costs and improving system performance. Wu
et al. [19] proposed a two-layer model predictive control strategy, which samples the EV connection
time and initial SOC, incorporates uncertainty sampling for extreme scenarios, and combines with
EV arrival feedback to handle the uncertainty of EVs. This strategy optimizes the charging and
discharging processes to reduce prediction errors and minimize the power exchange between the
IHES and the main grid.

Given the aforementioned characteristics of volatility and randomness in source-load
forecasting, researchers have conducted extensive studies on the dispatch optimization of IHES to
improve the economic efficiency and stability of IHES. For example, Dong et al. [20] focused on the
dispatch optimization of IHES, with hydrogen-water hybrid energy storage as the core. They adopted
scenario-based algorithms to handle uncertainties and mixed-integer programming to clarify the
relationships among multiple energy sources; this deterministic dispatch approach effectively
reduced operating costs and increased the utilization rate of renewable energy. Zheng et al. [21]
addressed the dispatch of biomass-integrated IHES, using Monte Carlo simulation to handle source-
load uncertainties such as electric load and photovoltaic output. Combined with load shifting
algorithm optimization, and under the consideration of time-of-use electricity prices and demand
response, their work effectively mitigated the impact of source-load uncertainties on dispatch. For
the hydrogen-electric hybrid energy storage system in IHESs with wind and photovoltaic generation,
Li et al. [22] constructed a distributionally ambiguous set based on the Wasserstein distance, and
applied distributed robust optimization to handle the source-load uncertainties of wind and
photovoltaic output. They established a capacity optimization model targeting system economy and
reliability, realizing the coordinated configuration of hydrogen and electric energy storage. Dong et
al. [23] focused on the dispatch optimization of isolated hydrogen IHES.First, they used a
bidirectional LSTM-CNN model to predict wind and photovoltaic output as well as load, thereby
reducing source-load forecasting errors; then, they combined Monte Carlo simulation to generate
stochastic scenarios for quantifying source-load uncertainties; finally, they applied deep
reinforcement learning to solve the stochastic optimization dispatch problem involving energy
storage capacity degradation, achieving the minimization of the IHES life-cycle cost. For hybrid IHES
with green hydrogen production, Kim et al. [24] constructed a multi-period, multi-time-scale
stochastic optimization model. They used Markov decision processes combined with deep Q-
networks to handle source-load uncertainties, and simultaneously employed Monte Carlo simulation
to generate stochastic scenarios of wind and photovoltaic output and load, realizing the coordinated
optimization of capacity investment and energy management. Wu et al. [25] targeted IHES with
hydrogen fuel cell stations, adopting a data-driven chance-constrained approach to handle the
source-load uncertainties of wind and photovoltaic output as well as electric-hydrogen load, while
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using distributed robust optimization to address electricity price uncertainties. Through converting
the problem into a mixed-integer linear programming via an affine strategy, they achieved system
dispatch optimization. Based on the above studies, it can be concluded that existing works have
effectively handled source-load uncertainties through various methods such as scenario-based
algorithms, Monte Carlo simulation, and distributed robust optimization, providing technical
support for the dispatch optimization of IHES [26,27]. However, most of these studies take fixed time-
of-use electricity prices or static electricity prices as constraints, and have not fully explored the core
value of dynamic electricity price regulation in addressing source-load fluctuations and optimizing
dispatch strategies [28].

Compared with traditional IHES based on EL/HST/FC, research considering HFCVs and
hydrogen refueling stations remains relatively limited. References [13,18,25] have discussed and
explored this topic, but they do not account for the lifespan impact of two critical components:
PEMEL and PEMEC. Furthermore, in most studies, the randomness of NEVs and their characteristic
of significant peak-valley differences are often overlooked, which may lead to misjudgments
regarding the hydrogen production capacity of PEMEL and the hydrogen absorption capacity of new
energy sources. In addition, electricity prices—an important means of regulating demand response —
are usually neglected. Therefore, this paper proposes a day-ahead dispatch optimization scheme for
IHES that considers the impact of electricity prices on demand response. This scheme incorporates
the lifespan-efficiency effects of PEMFC and PEMEL, and predicts the load side based on the
probability density function of vehicle owners” behaviors. To summarize, the contributions of this
paper are as follows:

(1) A lifespan-efficiency model for PEMFC and PEMEL is established, which accounts for the
impact of PEMFC and PEMEL lifespans on efficiency. Additionally, lifespan degradation models for
PEMEFC and PEMEL under different operating conditions are developed to enhance the accuracy and
reliability of hydrogen prediction in IHES.

(2) A load forecasting model for NEVs is constructed. Based on the probability density function
of vehicle owners’ behaviors, Monte Carlo simulation is used to predict daily driving mileage,
charging start time, and required electricity demand of NEVs, and finally load curves on the load
side under different scenarios are obtained.

(38) A dynamic pricing strategy considering demand response is proposed. First, dynamic
balance equations for the power supply side and load side are established; the system is then divided
into several different operating states based on the energy imbalance between the power supply side
and load side. Subsystems are weighted and combined using fuzzy weights, and linear matrix
inequality (LMI) equations are applied to enable the system to meet preset performance requirements.

The remaining parts of this paper are organized as follows: Section 2 presents detailed
mathematical models; Section 3 introduces the electricity pricing strategy and the algorithm for
mathematical constraints; case studies are illustrated in Section 4; and finally, conclusions are given
in Section 5.

2. System Configuration and Mathematical Model

As shown in Figure 1, this section introduces an integrated hydrogen-electric coupling system
referenced from the Ningbo Hydrogen-Electric Coupled DC IHES Demonstration Project in China.
In the proposed system, PV panels and wind turbine systems generate electricity to supply power to
IHES loads and NEVs. The system stores surplus energy during periods of high renewable energy
generation and compensates for energy shortages through energy storage devices when renewable
energy generation is low. The IHES includes the EVs and HFCVs on the load side. On one hand,
PEMEL produce hydrogen by electrolyzing water using surplus electricity, and the hydrogen is then
stored in hydrogen storage tanks to supply HFCVs. On the other hand, the hydrogen in the storage
tanks can be further used by PEMFC to generate additional electricity for the system. In addition,
lithium-ion batteries are utilized as energy storage devices in this paper, ensuring greater flexibility
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for power applications. The main function of the main grid is to fill the energy gap, thereby
maintaining the energy balance between the supply side and the demand side.

Source Side Demand Side
e Electricity | y :43
Hydrogen : 1 o - o ﬁ -
WT PV HFCV EV Load
) 2 L 2 . 4
acnd 7 DC/DC a AC/DC
DC
BUS

Main Grid
Boost| 7| peme |7 Eﬁ) 7 Ipc/pe

Hydrogen dispenser

o

Hydrogen Tank  Battery
H, production side Energy storage side

Figure 1. System Architecture Diagram.

2.1. Mathematical Modeling

To quantitatively characterize the operational mechanisms of each component, clarify the
coupling relationships between different energy flows, and provide a reliable mathematical basis for
subsequent day-ahead dispatch optimization, this section will introduce the mathematical models of
each component. These models are constructed to address the core challenges of the integrated
hydrogen-electric coupling system, including the nonlinearity of energy conversion, the coupling
constraints between power and hydrogen networks, and the impact of device degradation on system
efficiency

2.1.1. Photovoltaic Panels (PV)

The main power generation unit in this system relies on PV technology, where PV panels convert
solar radiation into electrical energy. PV power generation devices form a power generation array by
connecting multiple PV cells in series and parallel. The corresponding power generation mainly
depends on solar irradiance, PV cell temperature, and power generation efficiency. It omits the
analytical modeling of complex internal physical processes such as carrier transport and PN junction
characteristics in traditional models, and accurately reflects the external characteristics of component
power output through the calibration of efficiency and photovoltaic radiation. This approach can
simplify the model to a certain extent while still capturing the essential characteristics of photovoltaic
power generation. Its mathematical model is as follows[20]:

P = NUPVAPVG(I) (1)
1000
Apy denotes the effective radiation area on the PV panel; N is the number of PV cells; and G(r)

indicates the solar irradiance value. Among them, 77, is related to the radiation intensity and ambient

temperature, and its specific expression is shown as follows:
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NOCT -20
My = Mpy rer 1-a(T,y +G———————Tpy) (2)
800
Where 17, .- denotes the efficiency of the solar photovoltaic panel under reference conditions,
o represents the temperature coefficient, NOCT stands for the operating cell temperature under
standard test conditions, and 7,,,. is the reference temperature of the solar photovoltaic panel[30].

2.1.2. Wind Turbine Systems (WT)

In the WT system, the WT drives a permanent magnet synchronous generator to generate
electricity, and its output power is converted into direct current through a rectifier and a boost
converter for energy supply. The rectifier and boost converter ensure that the power quality meets
the requirements of the IHES DC bus. The losses in the rectifier and converter are neglected herein.
Therefore, the DC output of the wind system is equal to the wind energy captured by the wind blades,
and its specific modeling is as follows[31]:

1
])lWT = E P,,,ﬂ’nir"s:/rcp,wr (2)

where p,;, denotes the air density, v,, represents the wind speed, 7, is the radius of the rotor blades,

and the rotor efficiency C, yris a function of the tip speed ratio and the pitch angle .

1.1.3. Proton Exchange Membrane Electrolyzer(PEMEL)

When the power generated by renewable energy exceeds the demand of electrical loads, the
surplus electricity will be supplied to the PEMEL, which consumes electricity and converts water into
hydrogen and oxygen. In this system, a PEMEL is used, and its mathematical model is as follows[32]:

VtEL = Eoc + Vact + Vcon + Vohm (3)

is the activation potential, V, , is the concentration

on

where E,,. is the open-circuit voltage, V,

ct

overpotential, and ¥V, is the ohmic overpotential, which are given by the following equations:

[0, £5°) |

2RT, . ) 2RT, . )
Vv = FEL arcsin h( l_EL )+ FEL arcsin h( l‘EL )

E E + RTy,
F

oc = o
2

act

20, 21,
iy,an io,ca (4)
V. o= -—RTEL In l-ii
con }’[F imax
V. =I1.R

ohm EL™ “ohm

In the above equations, E, =1.229-0.85x10*(7,, —7,,,), R is the gas constant, F' is the Faraday
constant, and I, =i,, *4,, is the stack temperature of the PEMEL. Here, i, is the operating current,
where 2i, ., and i, ., represent the current density and the cross-sectional area of the electrode,
respectively[33]. In addition, and R ,, denote the exchange current densities in the anode and cathode,

respectively; R, is the ohmic resistance of the PEMEL; and i, is the defined maximum current

ohm
density. The amount of hydrogen produced by the PEMEL per unit time is as follows:
A

Ny, e = TELEL (5 )

The efficiency of the PEMEL is the ratio between the energy of hydrogen produced per unit time
and the input power[34]. Under the conditions where the basic parameters, operating temperature,
and pressure of the PEMEL are determined, the mass of hydrogen produced by the PEMEL per unit
time can be determined, and thus the efficiency of the PEMEL can be calculated as follows:
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0, = P, H, EL
EL
Py
PHZ,EL Ny, e (H, )QHHV,HZ v, (6)
Py = VtELiELAEL

In the equation, 7,, represents the efficiency of the PEMEL, B, ;. is the power of hydrogen
produced by the PEMEL, P, is the input power of the PEMEL, and Qy.4, and ¥, denote the higher
heating value of hydrogen and the molar volume of hydrogen, respectively.

2.1.4. Proton Exchange Membrane Fuel Cell(PEMFC)

As described in the structure of the aforementioned IHES, when the power generated by the PV
and WT is insufficient, the PEMFC will consume the hydrogen in the HST to provide electrical energy
to the load. The system in this paper uses a PEMFC. The mathematical model of the PEMFC is as
follows[35-37]:

VrFC = Eoc - Vact - Vcon - Vohm (7)

is the activation potential, V, ,is

con

Similar to the PEMEL, where E,,. is the open-circuit voltage, V,

ct

the concentration overpotential, and ¥,  is the ohmic overpotential, which are given by the following
equations:
AG AS RT,. 05
=" 4+ — _FC -
Eoc F OF (TFC Tref)+ SF [ln (PH2 Po, ):|

Po

5.08x10° eXI;(_498/TFC)]+§4TFC In (IFC) (8)

Ve =&+ &5 + & T ln(

VL‘()YI = bl eXp (bZIFC)
Vo = LR

ohm

ohm

In the above equations, AG is the Gibbs free energy change, AS is the entropy change, 7,.is the
cell current, is the operating temperature of the cell, and 5 and b, are empirical coefficients obtained
from experimental fitting. Similar to the modeling of the PEMEL, the gas pressures of hydrogen used
in the PEMEFC, po, and pu,, are calculated through balance equations, and & (i=1,2,3,4) is a fixed
parameter of the PEMFC[38]. Similarly, the rate of hydrogen consumption per unit time by the
PEMEC can be obtained from the following equation:

I
Ry, rc = ﬁ

EL

©)

Similar to the PEMEL, the efficiency of the PEMFC is the ratio of the output power to the energy
of the consumed hydrogen[39]:

Prec
Npe =—F— —
P, H,,FC
Pec =Vielre (10)
P, i, ke My, re (H,) QHHV,HZ v,

In the equation, 7, represents the efficiency of the PEMFC, Py, 1 is the power generated by the
PEMEFC from hydrogen, P,.is the input power of the PEMFC, and Oy s, and V, denote the higher
heating value of hydrogen and the molar volume of hydrogen, respectively.

Similarly, in References[39,40],the efficiency-power relationships of PEMFC and PEMEL are
introduced, which are similar to those discussed in this paper.As shown in Figure 2 is the efficiency-
power curve of the PEMEL and the PEMFC. It can be seen from Figure 2 that as the input power
increases, the efficiency of PEMEL improves rapidly, reaching a maximum efficiency of
approximately 85% at 25% of the rated power, and then gradually decreases as the power of the
PEMEL increases, with the efficiency being only about 67.8% at the rated power. However, the
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hydrogen production amount is the largest at this point. The gradual decrease in the efficiency of
PEMEL can be attributed to the ohmic resistance in PEMEL and the reduction in current efficiency.

Moreover, as shown in Figure 2(b) is the efficiency-power curve of the PEMFC, whose general
shape is similar to that of PEMEL. However, due to the accumulation of multiple losses in its
“electricity-chemistry-electricity” reverse process, the efficiency of the fuel cell is lower than that of
PEMEL. As can be seen from the figure, the efficiency reaches a maximum value of approximately
50.37% at 20% of the rated power, and only about 35.07% at the rated power. Therefore, it can be seen
that when the power generated by WT and PV systems is unstable, it will cause significant
fluctuations in the efficiency of the PEMFC and PEMEL. It is necessary to consider the efficiency of
the PEMFC and PEMEL during IHES dispatching, and compensate for the efficiency of PEMEL and
the PEMFC through the ESS.

o
o
@
=
T

%
s
T
o
o
T

=~
=
w
=
T

—— Efficiency of PEMEL
—— PEMEL Hydrogen Production

—— Efficiency of PEMFC
—— PEMFC Power Production

Efficiency of PEMEL n, (%)
b
Efficiency of PEMFC 1. (%)
PEMFC Power Peneration(Kw)

o
b
=
n
T

PEMEL Hydrogen Production(Nm?®)

P S S 0 S S S R S 0
00 01 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 07 08 09 1.0
Unit value of EL power Unit value of FC power

(a) (b)

Figure 2. Efficiency-Power Curves of PEMEL and PEMFC(a) Power-efficiency curve of the PEMEL(b) Power-
efficiency curve of the PEMFC.

2.1.5. Degradation Models of PEMFC and PEMEL

In references [41-43], the principles of degradation mechanisms for PEMFC and PEMEL are
introduced. The degradation principles of the two are similar, mainly stemming from the chemical
degradation of membrane materials, the dissolution and agglomeration of catalyst layers, and the
mechanical failure of the electrode-membrane interface under humidity and thermal cycles.
Therefore, in this paper, it is considered to establish the same degradation modeling method for both.

The continuous operation of PEMFC and PEMEL will cause degradation of internal components,
leading to lifespan attenuation of PEMEL and PEMFC. Moreover, the lifespan attenuation of PEMFC
and PEMEL varies under different operating conditions. When PEMEL and PEMEL operate stably,
there will be a certain amount of lifespan attenuation. When fluctuations occur in WT and PV power
generation, the input power of PEMEL will fluctuate frequently and start/stop frequently,
accelerating lifespan attenuation. In addition, when the output exceeds the rated power, the lifespan
attenuation of PEMFC and PEMEL will also accelerate. Therefore, in this paper, four different
operating conditions of PEMFC and PEMEL are set to measure the lifespan attenuation under
different conditions, namely low-power operation, high-power operation, fluctuating operation, and
start-stop operation. Each operating condition has a different attenuation coefficient. Under low-
power and high-power operating conditions, the attenuation coefficients are lower, so the lifespan
attenuation is relatively slow; under fluctuating operating conditions, the attenuation coefficients are
higher, and the greater the fluctuation, the faster the lifespan attenuation; frequent start-stops have
the greatest impact on the lifespan of PEMFC and PEMEL.

Taking the PEMEL as an example, the lifespan models established under different operating
conditions are as follows:
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EL ELy TEL,I
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Dz,( - 7‘2 Uz 11
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D},t - )\’3 |Pt _Pt-l |/Prate

D = hiF (AR, A%

on,t

D™ = iinf (12)

t=0 i=1

L =D™ [ 2 (13)
Ly = (e -1 )| 2 (14)

In the equation, D} respectively represent the lifespan attenuation amounts of the PEMEL under
the four different operating conditions, andi=1,2,3,4 respectively denote the operating states of the
PEMEL under the four different conditions: low-power operation, high-power operation, energy
fluctuation, and frequent start-stops. 4" represents the attenuation coefficient under different
operating conditions, with values taken as 2.25x 107,2.75x107,2.75x10° and 5.25x10° here. P*- is

rate

the rated power of the PEMEL; . is the rated attenuation coefficient of the PEMEL; D** and L"* are
the total efficiency attenuation amount and equivalent lifespan attenuation amount of the PEMEL
within a scheduling cycle, respectively; L and 77;" are the rated efficiency and limit efficiency of the

rate

PEMEL, respectively; L is the rated lifespan of the PEMEL.

rate

1 and 1, in (6) and (10) vary according to the attenuation given by the following equation:

_ EL/FC EL/FC EL/FC EL/FC
Nerire = (Lmte e /Lmte )ﬂ’rate (15)

2.1.6. Energy Storage Systems(ESS)

In this paper, lithium battery modules and hydrogen storage tanks are considered as the energy
storage system, where the hydrogen produced by the PEMEL is charged into the hydrogen storage
tanks. The hydrogen storage tanks are not only responsible for refueling HFCVs but also can supply
hydrogen to PEMFC for energy provision; lithium batteries can ensure the stability of the system,
generate electricity when the power generated by distributed energy sources is insufficient, store
energy when the generated power is sufficient, and can provide support for peak shaving and valley
filling of electrical loads. The mathematical modeling of the energy storage system in this paper is
shown in (15) and (16) as follows:

ESS,ch pESS ch ESS dis
ESS gss BT AL ES B At ESS
SOCt :SOCt—At -‘thESS(I—Mt )-Wﬂt (16)
u FCHV
SOHtHss _ SOCLISASz + PrELﬁstS (1 _utHS ) _ BFCSSZ ule _ Zi:o Ht,[ :S'SFCHV (h[) (17)
Cap Cap Cap

In the equation, P and P*** are the charging and discharging powers of the lithium battery

F-% and " denote the charging and discharging efficiencies of the lithium

at time t,respectively; 7
battery,respectively; Cap™ represents the battery capacity; u” is a binary variable controlling the
charging and discharging of the lithium battery, whereu” =1indicates the discharging state and
u” =0 indicates the charging state. Similar to the state of charge of the lithium battery, the hydrogen
storage state of the hydrogen storage tank is shown in (16), where P** and P"* are the actual operating
electrical powers of the PEMEL and the PEMFC, respectively; Cap™ is the capacity of the hydrogen
storage tank; A" is the required hydrogen refueling amount of the i-th HFCVs at time t; and

O reny (B ) represents a binary variable indicating whether the i-th vehicle needs refueling.
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2.1.7. EVs and HFCVs

With the popularization of EVs in recent years, the large-scale integration of EVs will bring
issues such as power fluctuations and grid overload to the IHES, and the uncertainty of EVs owners’
behaviors will also significantly affect the charging characteristics of EVs.In addition, the impact of
random refueling loads from HFCVs on hydrogen refueling stations is similar to that of charging
loads from EVs on charging stations[44].Therefore, it is quite necessary to implement reasonable
scheduling and optimization strategies for EVs. Considering that HFCVs and EVs have similar
characteristics, in this paper, probability distributions are used to model the start charging time and
daily driving distance of EVs and HFCVs, as shown in the following equations:

1 (SC+24— pg. Y’
exp| — ,0<8C< -12
o 5 p{ 5 5;C Hsc
PDF (SC) = o i (18)
L exp| - _ﬁ’“) o —12< SC <24
N278 265
! (SC—psc)’
PDF(DD)=———exp| —~——+3¢)_
(D) =—— 5 DD exp{ 2o (19)

Considering the daily driving distance of EVs, the SOC or SOH when arriving at the charging
station/hydrogen refueling station can be expressed as follows:

CEV/HV —dP, KM

SOC / SOH = (20)

EV/IHV
Wherein, C;, ,, represents the battery capacity of the EVs or HFCVs, and dP,,, denotes the
energy consumption for the driving distance to the next charging station/hydrogen refueling station.

3. Optimization Strategies for Integrated Hydrogen-Electric System

Based on the aforementioned mathematical model, to address the problems of supply-demand
imbalance, system instability, and inefficient demand response caused by the uncertainty of
renewable energy output, this paper proposes a dispatch strategy for IHES based on fuzzy-weighted
dynamic pricing[45]. The strategy operates as follows: first, the fuzzy weight method is used to
decompose the system’s nonlinear characteristics into multi-state subsystems, and dynamic weights
are assigned according to the system’s energy state to match real-time scenarios; second, the baseline
electricity price is determined based on the subsystem state, and a price adjustment term is calculated
by combining the energy imbalance value, enabling the electricity price to be linked to supply and
demand to guide both the supply and load sides; finally, LMI equation is solved to design control
gains, which satisfy the performance criteria, realize the coordinated dispatch of multi-energy
components, balance economy and stability, and resolve supply-demand imbalance.

3.1. LSTM Projected Source-Load Side

In the context of formulating dynamic pricing strategies for the power market, accurately
predicting the source - load side conditions is crucial. Dynamic pricing needs to adapt to real - time
fluctuations in power generation and consumption, and precise source - load prediction provides the
foundation for rational price adjustments. As illustrated in Figure 3, it presents the flowchart of the
LSTM - based prediction for the source-load side data.The following LSTM - based process helps
achieve this prediction. In data preprocessing, historical generation and load data undergo
imputation, outlier removal, and normalization to refine it for analysis. Time-series samples are then
constructed, and the dataset partitioned for LSTM training.Next, in LSTM, processed data passes
through the forget gate, input gate, and cell status update. The output gate generates predictions,
with loss calculation evaluating accuracy. This source-load prediction underpins dynamic pricing
strategy formulation.
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Figure 3. Flowchart of LSTM-Based Source-Load Side Prediction.

3.2. Dynamic Pricing Strategy

To achieve effective coordinated scheduling of multi-energy components in the hydrogen-
electric coupling, it is essential to establish a dynamic pricing mechanism that can accurately reflect
the real-time supply-demand relationship and guide the operation of both supply and demand
sides[45]. This dynamic pricing strategy serves as a core signal bridge.on one hand, it quantifies the
impact of renewable energy output uncertainty on the system’s energy balance; on the other hand, it
regulates the power generation behavior of supply-side adjustable devices and the energy
consumption behavior of demand-side loads through price signals, thereby mitigating supply-
demand imbalances and improving system stability and economic efficiency. To lay a rigorous
mathematical foundation for this dynamic pricing strategy, it is first necessary to construct dynamic
equations that characterize the response laws of the supply and demand sides to price changes. These
equations will explicitly describe how the supply-side power generation and demand-side energy
consumption adjust with real-time electricity prices, while incorporating factors such as renewable
energy uncertainty, device operating constraints, and user demand elasticity. Such modeling ensures
that the subsequent pricing strategy is not only theoretically sound but also capable of simulating
and guiding the actual operation of the IHES. Next, the dynamic equations for the supply side and
demand side in the dynamic pricing strategy will be introduced to enable the scheduling of various
components of the IHES through electricity prices. Dynamic equation of the supply side:

Pyt )= p, (0 + 200~ (b, +4,(0)+¢, p, (0) - ke(d) @1

Wherein, p, (k +1) represents the total power generation of the IHES system at time k+1; 7,
denotes the power generation response time constant; (k) is the real-time electricity price at time k;
Eg stands for fixed costs such as equipment depreciation and maintenance; A, (k) reflects the impact
of uncertainties like the output volatility of renewable energy; c, is the power generation elasticity
coefficient, which reflects the sensitivity of power generation to electricity prices—whenc¢, >0, a rise
in electricity prices will prompt an increase in the power generation of adjustable power generation
equipment; and e(k) represents the energy imbalance.Dynamic equation of the demand side:

p,(k+1) = p, (k) +TT—"‘[A(k) (B, + A, () + ¢, p, (k) )~ ke(h)] 22)

In a similar manner to the dynamic equation of the supply side, p, (k +1) represents the electricity
demand at time k+1; 7, denotes the demand response time constant; b, is the marginal benefit of the
demand side, which reflects customers” basic willingness for electricity demand; A, (k) reflects the
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volatility impact caused by uncertainties; and ¢, is the demand elasticity coefficient, which indicates
the sensitivity of the demand side to changes in electricity prices.Dynamic equation of energy
imbalance:
e(k+1) = e(k)+ T, (p, (k) +in(k) = p, (k)) (23)

Wherein, in(k) represents the power generated by renewable energy; e(k) denotes the energy
imbalance at time k, which is a core signal triggering changes in electricity prices; and 7, is a discrete
fixed time step.Therefore, based on the above equations, the overall dynamic state equation of the
IHES can be expressed as the following state-space system:

T Tyl;g Th '
k=] p,[k] p,lKk] elk]] ,bd[k]{—‘r - 0} (24)
g d
w[k]:[A [k] A,[k] in(k)]T oL L (25)
8 ¢ T T, 7,
- ) )
_5% o LK Lo o
Tg T‘g Tg
Tc T
4= 0 1-=-—=% 0 |,B,=| 0 = 0 (26)
7, 7,
T, -7, 1 0 0 T

Wherein, 4, is the system matrix, B, is the disturbance input matrix, b,[k]is the constant vector,
and B, is the input matrix of price signals. Thus, the system can be characterized in the following form:
x[k +1]= A, x[k]+ B,A[k]+ B,wlk]+b,[k] 27)
Dynamic pricing strategy: firstly, in order to handle the nonlinear dynamic system, the system
is decomposed into several subsystems through the following equations, where each subsystem
corresponds to a different operating state (such as high power generation, low demand, or
equilibrium state, etc.):

Ax[k]+b, k1= b, (x[k]) A, x[k]+A, (28)

Wherein, 4, (x(k)) is the fuzzy weight of the current state, which is dynamically assigned
according to the current membership function x(k) ,and A is the approximation error, %, (x(k)) as
shown in the following formula:

(D kDE,, (p [KDF,; (e[k])

h,, (x(k)) =
> E (D LK) E, ., (p,[KDF, . (e[k])

(29)

Similarly, the electricity price regulation strategy can be obtained by the weighted combination
of each subsystem and the supply-demand adjustment term, as follows:

Alk]= ﬁhm ({[k))K, x[k]-a - tanh (?J (30)

ref

Wherein, Zh (x[k]K,x[k] is the system benchmark price, which is generated based on the

m=1

operating state of each subsystem; —« - tanh (e[k]/ e,ef) is the electricity price adjustment term derived

from the power imbalance value, o determining the fluctuation range of electricity prices. By
integrating equations (28) and (30) into equation (29), the following formula can be obtained:

x[k+1]= Zh (x[k) A, x[k]+ Bifk] (31)
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Wherein, 4, =4, +B.K,, B=[B, B.], ikl=[wlk] A[k]] . To address the uncertainty in
renewable energy generation, the control gains K, are designed via linear matrix inequalities, while
ensuring the satisfaction of the performance criteria 7, :

X (2lkT 2Lk] - y*wikT wik]) < 0 (32)
k=0

Where z[k]=[e[k] &A[k] nAA[k]]",yis the fluctuation attenuation level coefficient; £ and 7 are
used to prevent significant fluctuations in pricing. To satisfy K, in equation (31), we can solve the
LMI equation:

-0 04, oc" OB
40 -0 0 0 | 0
co o0 -1 0
B'"O 0 0 I

(33)

3.2. Day-Ahead Scheduling Optimization and Constraints

Day-ahead scheduling is based on historical data to predict various load demands and
renewable energy generation for the next day. Combined with historical variable electricity prices
and the constraints of various devices, it takes the total economic cost as the objective function to
formulate a full-day advance scheduling plan. Therefore, in the day-ahead scheduling stage,
predicting various load demands and renewable energy generation is a key step. This section will
introduce the prediction methods, objective function, and various constraints used.

3.2.1. Objective Function for Day-Ahead Scheduling
minY"" (5 +CH 40T+ + O +CIC+C)

CrBESS _ ZtT Cs ( pBESS | PBESS) At

ch,t dis,t
HESS __ EL FC
C™ =3 s (P™ +P") At
Grid __ Grid Grid
Ct Prtce (P P )

sell t buy,t
c? = T P At (34)
t =1 Cor !y

= ZtT:I CWTPIWTAt

CrC =" coammcAt+ (L LS )CEE

t rate inv

Zt 1 o&m ELAt + (LEL /Lratz )fof

Equation (34) presents the objective function of day-ahead scheduling aimed at maximizing

revenue, which includes the operating costs of the energy storage system C/*** and C/"*, the cost of
purchasing electricity from the grid C”" , the operating costs of renewable energy (C”” and C/'" ), and
the operating costs of the PEMEL and PEMFC ( C/° and C** ). Among them, and respectively
represent the configuration replacement costs of the PEMEL and PEMFC.

2.2.2. Electrical Power and Hydrogen Power Balance Constraints

The electrical power balance of the system is shown in (35), where the distributed energy sources
operating in the IHES must be able to meet the load demands within the IHES. When the energy
supplied by distributed energy sources is insufficient, external power grids will be used for energy
supply to ensure that the load demands are met. The hydrogen power balance is shown in (36), which
takes into account the hydrogen refueling amount of hydrogen fuel cell vehicles at time t.

PtGrid +P’WT +})[PV +RFC +BBEES,dis — PtLaad +REL +PtBEES,ch +PtEV (35)

(1 ”HS)”HZﬂ + nHz,H — uuanz . + Z HFCEVSé\FCEVb (hi) (36)
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where P is the electrical power exchanged with the external power grid at time t; P"" and P”"
are the power generation of wind and photovoltaic at time t;is the predicted charging power of EVs
obtained by the Monte Carlo simulation method in Section 2; Pf"”" is the electrical power of the basic
load in the IHES; P***** and P*"***" are the discharging or charging power of the battery; " and P**
are the operating electrical power of the PEMFC and PEMEL. In (36), where N/* and N/ represent
the amount of hydrogen output or input by the PEMEL and PEMFC at time t. Herein, N/* is positive
when the hydrogen storage tank releases hydrogen, and negative when the hydrogen storage tank
stores hydrogen; H/ " is the hydrogen refueling amount of HFCVs at time t.

3.2.3. ESS Constraints

0 < sz:fSS < (1 _MtBESS )PBESS,max (37)
0< PdeSE;S‘S < utBESSPBESS,max (3 8)
SOCBESS,min < SOC[BESS < SOCBESS,max (39)

Equations (37) and (38) represent the charging and discharging power limits of the battery,

BESS

respectively. The binary variable u,

indicates the charging/discharging state of the battery at time
t . Equation (39) represents the SOC limit of the energy storage .

3.2.4. Hydrogen Energy Constraints

O S PtEL S (1 _ utHESS )PEL,max (40)
0 < P,FC < utHESSPFC,max (41)
SOHIIESS,min < SOHtIIESS < SOHIIESS,max (42)

Equations (40) and (41) respectively restrict the electrical power of the PEMEL and the PEMFC.

HESS

The binary variable u,

represents the hydrogen storage state of the HESS at time t . Equation (42)
represents the hydrogen storage state constraint of the hydrogen storage tank. Since the hydrogen in
the storage tank should be available for HFCVs, the SOH constraint of the hydrogen in the storage

tank must be maintained above 20%.

3.2.5. Distributed Energy Resources and Grid Power Constraints

_})tGrid,max < RGrid < })tGrid,max (43)
0 < })tWT < PWT,max (44)
OS})[PV SPPV,max (45)

Equations (44) and (45) respectively restrict the maximum power of wind power generation and
photovoltaic power generation, while equation (43) limits the maximum electrical power exchanged
between the IHES and the power grid.

3.2.6. External power grid constraints
R = Bty + " By, (46)
In the equation, P?, and P;%  denote the electrical power purchased by the IHES from the

Grid .t Grid ,t

external power grid and the electrical power sold to the external power grid, respectively. u”” and

sell

u*" are logical variables that prevent the IHES from simultaneously purchasing and selling electricity

from/to the external power grid
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3.2.7. System Flow Chart

Figure 4 systematically expounds the method of wind-solar load data prediction and dynamic
electricity price strategy scheduling based on LSTM. Firstly, historical data of wind, PV ,and load are
collected, and a system model is constructed, covering component models such as PV, WT,BAT, HST,
PEMEL, PEMFC, as well as models of EVs and HFCVs. Meanwhile, constraints such as energy
balance, system components, energy storage, and the main grid are considered, and mathematical
modeling of PEMEL and PEMFC is carried out, including polarization curves and system efficiency
curves. In the Methodological section, the wind-solar load data are first preprocessed, the data set is
divided, and the LSTM model is constructed and trained to output the prediction results. Then, based
on the predicted data, dynamic equations for the power supply side and the demand side are
constructed to judge the energy imbalance situation. Furthermore, electricity prices are adjusted and
dispatchable units (PEMFC, BAT) are scheduled, and finally, the system scheduling results are output.
The entire process is closely connected, providing an effective technical path for the optimal operation
of wind-solar-storage systems.

System Architecture Optimization Parameter
\
= \
= S Predicted ?A ﬁ @ |
Q ) ! |
=2 4 e i
- E Source-Load Data |
Data preprocessing and |
prediction |
\
‘ Constructing system dynamic
E } energy balance equation
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) 2 s Uil il \ storage constraint; Main grid constraint.
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Figure 4. Flowchart of the Algorithm.

4. Discussion

In this section, a case study is conducted on the virtual IHES described in Figure 1 to verify the
feasibility of the proposed method. The simulation verification is performed in Matlab using the
Gurobi solver on a Windows PC desktop, which is equipped with an Intel Core i7-9750H CPU and
16GB RAM. The system parameters and simulation parameters are provided in the Appendix.

4.1. Source-Load Side Electricity Prediction

In this section, the historical short-term forecast data and historical data of photovoltaic and
wind power output in a certain area of Ningbo are selected as the dataset, and the conventional deep
learning model LSTM is used to predict their short-term power generation and electricity
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consumption. The data spans from January 1, 2019 to December 31, 2019. Due to their variable nature,
the sampling frequency for wind and photovoltaic power is set to 15 minutes, while the load varies
to a smaller extent in a certain period, so the sampling frequency is set to 1 hour. Both the predicted
and measured data sequences have a length of 35040. After the data is processed, the training set and
test set are divided in a ratio of 0.8 to 0.2. Figure 5 shows the monthly predicted data of photovoltaic
power, wind power, and load respectively.
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Figure 5. Monthly predicted data of photovoltaic power generation, wind power generation, and load(a)
Photovoltaic predicted data(b) Wind predicted data(c) Load predicted data.

The Figure 6 illustrate the prediction errors of a certain method for PV, WT and Load power. For
PV power prediction, the coefficient of determination R’ reaches 0.99, with a mean absolute error
(MAE) of 1.6 and a root mean square error (RMSE) of 3.17, indicating that the predicted values are in
good agreement with the actual values, and the prediction accuracy is relatively high. In terms of WT
power prediction, the R* is 0.99, the MAE is 2.76, and the RMSE is 4.8, which also shows that the
prediction results are highly consistent with the actual situation. For load power prediction, the R’
is 0.97, the MAE is 4.05, and the RMAE is 5.92, reflecting a relatively ideal prediction effect. Overall,
this method has high accuracy and reliability in predicting wind, solar, and load power, and can
provide strong support for the energy scheduling of IHES.
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Figure 6. Monthly predicted data error comparison of photovoltaic power generation, wind power generation

and load(a) Photovoltaic error comparison(b) Wind error comparison(c) Load error comparison.

4.2. Monte Carlo Simulation of Load for EVs/HFCV's

As shown in Figure 6, it is the probability density function of the random behavior of vehicle

owners based on historical data. It is assumed that there are 20 new EVs and 10 HFCVs in this IHES.
As shown in Figure 7(a), it is the arrival time of electric vehicles and hydrogen fuel cell vehicles at
charging stations/hydrogen refueling stations. It can be seen that there are usually more vehicles
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arriving at 18:00 p.m., and the charging peak usually occurs at this time. As shown in Figure 7(b), it
is the probability density function of the average daily driving mileage of vehicles. As shown in
Figure 8, it is the daily demand load curve of EVs and HFCVs obtained by the Monte Carlo method
under high load and low load conditions.
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Figure 7. PDF of Vehicle Owners’ Probabilistic Behaviors(a) PDF of arrival time for EVs and HFCVs(b) PDF of
daily mileage for EVs and HFCVs.
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demand curve.

After completing the prediction of wind and PV power output, base load, and the load curves
of EVs/HFCVs based on the LSTM model, it is necessary to classify the operating scenarios according
to the daily total power generation to further clarify the system scheduling direction under different
supply-demand matching states. Specifically, the daily total wind-PV power generation is taken as
the core basis for classification. With reference to the distribution characteristics of historical wind-
PV power generation data over 6-12 months, the 60th percentile is adopted to set the threshold for
high wind-PV power generation. A day is classified as a “high-power generation day” when its daily
power generation exceeds this 60th percentile threshold; similarly, a day is identified as a “high-load
day” when its daily load surpasses the 60th percentile threshold of load. This scenario classification
enables targeted analysis of the scheduling effects of the dynamic pricing strategy under different
supply-demand backgrounds and provides clear scenario boundaries for the subsequent verification
of optimized system operation. The specific scenario classification is presented in Table 1.

Judgment of Daily Total Judgment of Daily

Scenario Category Power Generation Total Load Examples
High-Power Generation > 60% (historical daily > 60% (historical daily Sunny
& High-Load Day power generation data) load data) days+working days

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1896.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2025 d0i:10.20944/preprints202508.1896.v1

18 of 28
Low-Power Generation Cloudy
. <60% <60% days+summer
& High-Load Day .
working days
Low-Power Generation <60% > 60% Ralny
& Low-Load Day daystholidays

4.3. Prediction Results and Electricity Price Regulation Effects

Figure 9(a) depicts the 24-hour daily variation characteristics of photovoltaic output, wind
power output, and net load under high wind-solar generation and high load conditions. Wind power
exhibits instability and strong time-variability with multiple daily peaks and troughs; photovoltaic
output follows a typical daytime pattern—negligible from 0:00-4:00, rising slowly from 5:00, and
peaking between 10:00-12:00. Load power remains generally high with minor fluctuations, being
higher in the morning and evening (peak at 18:00, trough at 14:00). The load curve’s double-peak
feature is closely linked to residential and industrial electricity consumption habits.

Similar to Figure 9(a), Figure 9(b) shows daily variations under low wind-solar generation and
low load conditions, where low wind power output fails to meet load demand. Overall, significant
grid electricity purchases are required during early mornings or periods of insufficient photovoltaic
output to meet demand. Here, dynamic pricing effectively incentivizes users to adjust consumption
by reflecting real-time grid supply-demand tensions, reducing peak demand and easing purchase
pressure.

Compared to fixed pricing, dynamic pricing prompts users to reduce consumption during high-
price periods (avoiding costs from concentrated purchases), enhances system economic efficiency
and operational safety, optimizes grid resource allocation, lowers reserve capacity needs, and
improves overall energy utilization —ultimately reducing both purchase costs and operational risks.

320 - . . T T 250
200 |
=240 . -
5 —C— Ppy, 5 —o— Py,
§ —— Py § 150 ——p,,
P ) -
n_:mn 3 '/\NH/\ %PX e % /\/-;/\\ Prous
b= \_ AT ‘€ 100 ) v J
i JOAN E A / AN
2 80 o - S ) R
7 N\ b 50 AN \X\
/ \ AN //‘\../ Vad \
X ., "
0 ‘ / ~ ~ \‘K, 0 L /”"r‘/ L L A
0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time Time
(a) (b)

Figure 9. Comparison of New Energy Power Generation and Load Forecasting(a) Typical day with high WT and
PV power generation and high load(b) Typical day with low WT and PV power generation and low load.

Figure 10 presents the scheduling status of load levels and dispatchable units under the dynamic
pricing strategy and the constant electricity price strategy. Through comparative analysis of Figures
10(a) and (b), it can be seen that the dynamic pricing strategy shows significant differences in the
scheduling of loads and dispatchable units. Taking 11:00 as an example, compared with the constant
pricing strategy, the load at this time increases by 4.2%. This phenomenon indicates that in the case
of excess wind and solar energy, the dynamic pricing strategy can effectively stimulate load growth
by means of reducing electricity prices, thereby achieving more energy consumption. When the
power generation of wind and solar energy decreases sharply, for example, at 1:00 at night, the
photovoltaic power generation is scarce, and wind power generation is also difficult to meet the load
demand. The dynamic pricing strategy successfully reduces the load by increasing the electricity
price. At the same time, dispatching dispatchable energy sources such as proton exchange membrane
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fuel cells and lithium batteries not only reduces the dependence of the IHES on the main grid, but
also optimizes the economy of system operation. In the working conditions corresponding to (e) and

(f), since the power generation of wind and solar energy is continuously in a scarce state, and the

energy reserves of the energy storage system will also be gradually exhausted. At this time, the

dynamic pricing strategy continuously suppresses the load demand by increasing the electricity price

according to the characteristics of energy imbalance in the IHES. This is because even during periods

with relatively sufficient wind and solar power generation such as during the day, there is still an

energy imbalance between the power supply side and the demand side. Compared with the constant

electricity price strategy, the dynamic pricing strategy reduces the 24-hour total load by 16.2%, which

fully verifies the effectiveness of the dynamic pricing strategy under this working condition.
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Figure 10. Electricity Price on Dispatched Units and Load Reduction(a) Case I dynamic pricing strategy

scheduling situation(b) Case I constant price strategy scheduling situation(c) Case II dynamic pricing strategy

scheduling situation(d) Case II constant price strategy scheduling situation(e) Case III dynamic pricing strategy

scheduling situation(f) Case III constant price strategy scheduling situation.
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4.4. Operation and Degradation of PEMEL and PEMFC

Figure 11 shows the relevant scheduling of hydrogen component operation under different
scenarios. From the perspective of the service life of PEMEL and PEMFC, dynamic pricing guides the
power output of PEMEL and PEMEC to closely match the peak periods of new energy generation
through real-time price signals, which improves the load utilization rate and operational stability of
the equipment, and avoids frequent start-stop of PEMEL and PEMFC, thereby extending their service
life. Secondly, this strategy effectively promotes the local consumption of volatile new energy such
as WT power and PV power, reduces the curtailment of wind and PV power, and improves the
utilization efficiency of renewable energy. Finally, from the economic perspective, PEMEL operate
continuously during low electricity price periods to ensure sufficient hydrogen in the storage tanks,
and PEMEFC operate during high electricity price periods to provide necessary electrical energy
supplement. By optimizing load distribution and energy conversion, dynamic pricing significantly
improves the economic efficiency of the system, reduces operating costs and increases overall

revenue.
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Figure 11. Scheduling and Operation Results of Hydrogen Components(a) Case I dynamic pricing strategy
hydrogen components scheduling situation(b) Case I constant price strategy hydrogen components scheduling
situation(c)Case II hydrogen components scheduling situation(d) Case II hydrogen components scheduling
situation(e) Case III hydrogen components scheduling situation(f)Case III hydrogen components scheduling
situation scheduling situation.

Figure 12 presents the lifespan degradation of PEMEL and PEMFC across cases. As shown in
Figure (a), PEMEL exhibit a significantly lower average degradation rate than in Figure 12(b),
attributed to their continuous operation during sufficient wind-solar generation. This avoids frequent
start-stops, keeps equipment in optimal operating ranges, and reduces wear from high loads or
cycling.

In contrast, PEMFC show slightly higher degradation under dynamic pricing than fixed pricing.
This arises because PEMFC must operate longer during early mornings and nights (when PV output
is low) to sustain essential loads. Under fixed pricing, ineffective scheduling leads to brief,
intermittent operation, causing greater degradation from frequent start-stops—whereas dynamic
pricing yields higher overall IHES benefits despite this.

For system flexibility, dynamic pricing allows mode adjustments: in Case 3 (low renewables,
high load), increasing PEMFC output meets demand. Though this raises fuel cell degradation, it
enhances system responsiveness and slightly boosts overall revenue. Compared to fixed pricing,
dynamic pricing also aligns user behavior with price signals, reducing transferable loads, peak-valley
gaps, and unnecessary fluctuations—validating its effectiveness.
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Figure 12. Degradation of PEMEL and PEMFC(a) Dynamic pricing strategy degradation(b) Constant electricity
price degradation.
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Average Degradation Rate(x107)/V

4.5. Day-Ahead Scheduling Results

Figure 13 compares day-ahead scheduling under dynamic and fixed pricing across three
scenarios. In Scenario I, as photovoltaic generation is unavailable at night, substantial grid electricity
must be purchased between 0:00-6:00 and 20:00-24:00 to maintain essential loads. Figures 8(a) and (b)
show optimized scheduling for Case I under the two pricing strategies, with regular load variations
across periods. For example, prices rise between 1:00-4:00 under dynamic pricing, reducing demand;
between 10:00-12:00, higher renewable output lowers prices, boosting load response while energy
storage charges for use during shortfalls. Fixed pricing, by contrast, fails to signal real-time supply-
demand, leaving user behavior unconstrained —causing large, irregular load fluctuations that hinder
system stability and resource allocation. Overall, dynamic pricing aids peak shaving and valley filling,
shifting demand to stabilize IHES operation.

Figures 13(c) and (d) show Case II scheduling. Dynamic pricing curbs peak loads via higher
prices—e.g., 17:00 load drops 13.2% vs. fixed pricing, as users reduce or shift demand. It also shifts
load to low-price periods with high renewables, such as a 22.74% load increase at 6:00, easing peak
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grid pressure. Combined with energy storage, this enables dual optimization of peak shaving and
renewable utilization, unlike rigid user behavior under fixed pricing, which struggles with renewable
output fluctuations.

Similarly, Case III results (Figures 13(e) and (f)) show dynamic pricing slightly higher under
extreme conditions, as insufficient renewables require price hikes to suppress demand. It sets high
prices at 7:00 (peak) to cut purchases or boost storage discharge, and low prices at 1:00 (off-peak) to
encourage buying/charging. This reduces total energy costs by 5.19% vs. fixed pricing. Dynamic
pricing also smooths load curves by shifting demand to off-peak periods, cutting daily peak load by
17.4% and easing grid pressure. Lower prices between 12:00-16:00 further incentivize charging and

storage.
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Figure 13. Day-ahead scheduling results of three different scenarios(a) Case I dynamic pricing strategy system
scheduling result(b) Case I constant price strategy system scheduling result(c)Case II dynamic pricing strategy
system scheduling result(d) Case II constant price strategy system scheduling result(e) Case III dynamic pricing

strategy system scheduling result(f)Case III constant price strategy system scheduling result.
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4.6. IHES Operation Cost Results

Figure 14 shows the costs of the IHES under the dynamic pricing strategy and fixed pricing
strategy. It can be seen from the figure that under most conditions, the output of distributed energy
is insufficient to meet the demand of essential loads, so it is necessary to purchase electricity from the
main grid, making the electricity purchase cost account for a large proportion of the operation cost.
In addition, the operation cost rises sharply under extreme conditions, Case III. This is because
insufficient wind and solar power generation under such conditions necessitates purchasing
electricity from the main grid. However, the cost of the dynamic pricing strategy is about 5.123%
lower than that of the fixed pricing strategy. Moreover, under various conditions, the dynamic
pricing strategy can adjust the operation of each component to ensure they run within appropriate
ranges, thereby reducing the IHES operation cost. Particularly in Case II, with sufficient wind and
solar power generation, there is a larger adjustable range. As indicated in Figure 13(c) and (d), the
dynamic pricing strategy can store electricity when wind and solar generation is abundant for use in
periods of insufficient generation (such as morning and evening), which helps reduce costs in such
scenarios. Therefore, it is evident that the dynamic pricing strategy can reduce costs to a certain extent
compared with the fixed pricing strategy across different scenarios.
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Figure 14. Comparison of IHES operation costs(a) Case I comparison of operation costs(b) Case I comparison of

operation costs(c) Case III comparison of operation costs.

5. Conclusions

This paper develops a robust electricity price-regulated day-ahead scheduling optimization
framework for IHES, incorporating the life degradation characteristics of PEMEL and PEMFC to
address multi-dimensional uncertainties arising from the interaction between economic optimization
objectives and energy production-consumption in IHES scheduling. Firstly, considering the
nonlinear life-efficiency characteristics of PEMEL and PEMFC affected by multi-factor coupling, a life
degradation model accounting for operating conditions is constructed and embedded into the
objective function of the optimization model. Secondly, a robust electricity price regulation model is
established, which solves by constructing the overall dynamic equations of the IHES, combined with
fuzzy weights for regulatory robustness adjustment and an electricity price adjustment mechanism,
to obtain optimized electricity price schemes and operating states of each component. Additionally,
to tackle the significant randomness from electric vehicle integration and dual uncertainties caused
by users’ subjective behavior patterns, a probability density function of user behavior is built, and
charging curves with load characteristics are generated via Monte Carlo scenario
simulation.Simulation results demonstrate that: at the economic dispatch level, the proposed
dynamic pricing strategy reduces economic indicators by an average of 15.3% compared with fixed
pricing, effectively alleviating energy imbalance and optimizing component energy supply
scheduling. In terms of equipment performance, PEMEL life degradation is reduced by 21.59% on
average, and PEMFC utilization is increased by 54.8%. In conclusion, dynamic pricing can effectively
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regulate energy imbalance, lower operating costs, improve fuel cell utilization, and slow PEMEL
degradation, providing theoretical and methodological support for efficient and stable IHES
operation.
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Abbreviations

The following abbreviations are used in this manuscript:

PV Photovoltaic
WT Wind Turbines
PGEV Plug-in Hybrid Electric Vehicles
CHP Combined Heat and Power
DERs Distributed Energy Resources
HEFCVs Hydrogen Fuel Cell Vehicles
HESS Hydrogen Energy Storage Systems
BESS Battery Energy Storage Systems
ESS Energy Storage Systems
HST Hydrogen Storage Tank
SOC State Of Charge
SOH State Of Hydrogen
IHES Integrated Hydrogen-Electric System
DLNN Deep Learning Neural Network
SVR Support Vector Regression
LMI Linear Matrix Inequality
NEVs New Energy Vehicles
V2G Vehicle-to-Grid
va2v Vehicle-to-Vehicle

Appendix A

Appendix A.1

Table Al. Values of parameters in PEMEL.

Parameters Value
prLma 30 (kW)
PEL,min 0 (kW)

Ter 298 (K)
Ty 25 (°C)

Table A2. Values of parameters in PEMFC.

Parameters Value
presmax 20 (kW)
PF 'C,min 0 (kW)
AG 236.483 (J/mol)
AS -164.025 (J/mol)
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Topr 298 (K)
g -0.9514
S 0.00312
& 7.4x10-5
& -1.87x10-4
b, 3x10-5(V)
b, 8x10-3(cm?/mA)

Table A3. Values of parameters in BESS.

Parameters Value
PBESS,max 40 (kW)
PBESS,min 0 (kw)

Cyo 370 (kWh)

SOCBESS,max 90 (%)

SOCBESS,min 10 (%)

Table A4. Values of parameters in HST.

Parameters Value
Clpss 150 (m?)

SOH "ESS-max 90 (%)

SOHHESS,min 10 (%)

Table A5. Values of parameters in PV, WT and Grid.

Parameters Value
plrroma 250 (kW)
prYomax 160 (kW)
PGrl'd,m'dx 300 (kW)
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