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Abstract 

Integrated hydrogen-electricity system(IHES) have gained widespread attention, yet distributed 
energy sources like photovoltaic(PV) and wind turbines(WT) power within them exhibit strong 
uncertainty and intermittency, posing key challenges of scheduling complexity and instability. 
Electricity price regulation, as a core mechanism in integrated IHES operation, can promote 
renewable energy absorption, optimize resource allocation, and enhance operational economy. 
However, uncertainties in IHES hinder accurate electricity price formulation, easily leading to 
delayed scheduling responses and increased cumulative operational costs. To address these issues, 
this paper establishes PEMEL and PEMFC models considering power-efficiency, incorporates their 
lifespan impacts into IHES scheduling, and integrates an electricity price regulation mechanism for 
energy imbalance. It constructs dynamic equations for the demand and response sides, scheduling 
electricity prices and IHES components via fuzzy weights and dynamic adjustment coefficients. 
Simulation results show that compared with fixed pricing, the proposed dynamic pricing reduces 
economic indices by an average of 15.3%, effectively alleviating energy imbalance and optimizing 
component energy supply. It also cuts PEMEL life attenuation by 21.59% and increases PEMFC 
utilization by 54.8%, providing theoretical and methodological support for efficient, stable IHES 
operation. 

Keywords: integrated hydrogen-electricity system; day-ahead dispatch optimization; electricity 
prices; PEMEL/PEMFC lifespan degradation 
 

1. Introduction 

Energy generated from traditional resources such as fossil fuels causes air pollution in the short 
term. In the long run, it leads to an increase in atmospheric carbon dioxide, thereby triggering global 
warming [1]. Therefore, vigorously developing renewable energy and clean energy is one of the 
crucial approaches and goals for promoting the current energy transition and achieving global carbon 
neutrality [2]. In recent years, hydrogen has gradually attracted attention due to its unique 
advantages of zero carbon emissions, storability, transportability, and multi-energy conversion 
capabilities [3].The IHES, consisting of fuel cell(FC), hydrogen storage tank(HST), electrolyzer(EL), 
and supplementary batteries, can realize the functions of hydrogen production and storage, which is 
conducive to achieving zero emissions in the energy system. The energy supply of the IHES is highly 
dependent on distributed energy sources such as PV and wind power. However, the output of such 
energy sources is significantly affected by natural conditions, exhibiting characteristics of 
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intermittency, volatility, and randomness [4].In addition, electric loads are also influenced by factors 
such as users’ living habits and seasonal climate, featuring large intraday peak-valley differences and 
sudden demand surges [5]. On the other hand, the deployment of new technologies such as electric 
vehicles(EVs) and hydrogen fuel cell vehicle(HFCVs) introduces greater complexity and uncertainty 
to load forecasting [6].The superposition of prediction deviations on both the energy supply and 
demand sides makes it difficult to achieve temporal matching in the multi-energy conversion chain 
of the IHES. Aspects such as the hydrogen production power of EL and the charging-discharging 
strategies of batteries all rely on accurate supply and demand forecasting schemes. Consequently, the 
decline in forecasting accuracy will make it difficult for the IHES to meet the preset economic dispatch 
targets [7]. 

Scholars have conducted extensive research on various issues in IHES; in terms of new energy 
forecasting, Emrani et al. [8] constructed a wind and PV power generation forecasting model based 
on on-site meteorological data, and by acquiring meteorological data, they predicted PV output 
power using a coupled model of solar irradiance and temperature, forecasted wind power output 
based on local wind speed piecewise functions and high wind speed characteristics, and verified the 
critical role of accurate forecasting in improving the economy and reliability of energy systems. Mellit 
et al. [9] took a specific PV system as the research object, investigated the forecasting performance of 
deep learning algorithms with different time steps and frameworks, validated the performance, 
training efficiency, and accuracy of the single Deep Learning Neural Network (DLNN) model, and 
demonstrated the application value of the single DLNN model in PV and wind power forecasting. 
Mirza et al. [10] proposed a hybrid deep learning model integrating ResNet, Inception modules, and 
bidirectional weighted LSTM/GRU for short-term and medium-term forecasting of wind and PV 
power based on wind and PV data from the State Grid Corporation of China and wind farm data 
from South Africa, and verified its accuracy and stability in wind and PV power forecasting. Sarmas 
et al. [11] constructed four basic LSTM models, used Support Vector Regression (SVR) to build a 
meta-learner that dynamically fuses the forecasting results of the basic models to adapt to the 
characteristics of different PV systems, and validated the model’s accuracy in PV power forecasting 
using power generation data from a PV plant in Portugal. After confirming that accurate renewable 
energy forecasting is a prerequisite for ensuring the efficient operation of IHES, the academic 
community has also carried out extensive basic and applied research on the structural design of the 
system itself to provide theoretical and experimental support for multi-energy conversion and 
supply-demand balance: Li et al. [12], in their research on IHES for net-zero energy buildings, 
configured a hydrogen energy subsystem consisting of an EL, a high-pressure HST,FC, and 
meanwhile realized a power coordination scheme using max-min game theory to achieve the goal of 
zero-carbon emission buildings; Shao et al. [13] proposed a structural framework for IHES that 
incorporates a hydrogen transportation subsystem, where hydrogen production stations powered by 
renewable energy produce and compress hydrogen, the hydrogen is then transported by trailers and 
finally stored in hydrogen refueling stations to supply hydrogen loads, filling the gap in the 
transportation aspect of IHES; Du et al.[14]proposed an off-grid-grid-connected hybrid design for 
IHES, which integrates a cooling-waste heat recovery module and auxiliary equipment, recovers 
waste heat generated during the operation of PEMEL and PEMFC through heat exchange plates, and 
optimizes the operating status of equipment via multiphase flow and thermal balance modeling to 
effectively reduce the frequency of PEMEL start-ups and shutdowns, thus enabling more efficient 
operational coordination of the hydrogen-electric coupling system. The aforementioned studies have 
explored IHES under different application scenarios from various perspectives, but few studies have 
considered the efficiency decline of EL and FC caused by their lifespan reduction—which in turn 
leads to decreased hydrogen production by EL and thus affects the operation of IHES [15]; 
additionally, the electric load exhibits significant peak-valley differences due to the randomness of 
EVs and HFCVs, making system dispatch optimization more challenging. 

On the other hand, on the load side of IHES, with the popularization of new energy 
vehicles(NEVs), the strong uncertainties exist in users’ choices of charging/hydrogen refueling time 
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and variations in travel routes, resulting in the load side exhibiting characteristics of large peak-valley 
differences and high volatility. Among existing studies on NEVs, for instance, Hussain et al. [16] 
proposed a local demand management model that integrates vehicle-to-vehicle (V2V) services with 
the welfare maximization-soft actor-critic (SAC) deep reinforcement learning approach. By means of 
dynamic pricing and charging-discharging optimization, and on the basis of considering the 
differences in EVs owners’ sensitivity to remaining battery capacity, battery degradation, and 
incentive prices, this model effectively alleviates the problem of distribution network transformer 
overload under high EV penetration rates, and realizes the coordinated optimization of owners’ 
welfare and power grid security. Eghbali et al. [17] put forward a scenario-based stochastic model; 
by fitting probability distribution functions for three types of uncertain parameters of NEVs, namely 
arrival time, departure time, and driving distance, and simultaneously combining with demand 
response programs, this model achieves the optimal dispatch of IHESs containing multiple energy 
sources and multiple ESS under the objective of minimizing the total system cost. Habib et al. [18] 
proposed a three-stage stochastic optimization structure, which generates parameter scenarios based 
on the normal distribution to address the uncertainty of NEVs; by combining vehicle-to-grid (V2G) 
technology, demand response, and energy storage, this structure realizes the optimal operation of a 
distribution system with four IHESs, thereby reducing costs and improving system performance. Wu 
et al. [19] proposed a two-layer model predictive control strategy, which samples the EV connection 
time and initial SOC, incorporates uncertainty sampling for extreme scenarios, and combines with 
EV arrival feedback to handle the uncertainty of EVs. This strategy optimizes the charging and 
discharging processes to reduce prediction errors and minimize the power exchange between the 
IHES and the main grid. 

Given the aforementioned characteristics of volatility and randomness in source-load 
forecasting, researchers have conducted extensive studies on the dispatch optimization of IHES to 
improve the economic efficiency and stability of IHES. For example, Dong et al. [20] focused on the 
dispatch optimization of IHES, with hydrogen-water hybrid energy storage as the core. They adopted 
scenario-based algorithms to handle uncertainties and mixed-integer programming to clarify the 
relationships among multiple energy sources; this deterministic dispatch approach effectively 
reduced operating costs and increased the utilization rate of renewable energy. Zheng et al. [21] 
addressed the dispatch of biomass-integrated IHES, using Monte Carlo simulation to handle source-
load uncertainties such as electric load and photovoltaic output. Combined with load shifting 
algorithm optimization, and under the consideration of time-of-use electricity prices and demand 
response, their work effectively mitigated the impact of source-load uncertainties on dispatch. For 
the hydrogen-electric hybrid energy storage system in IHESs with wind and photovoltaic generation, 
Li et al. [22] constructed a distributionally ambiguous set based on the Wasserstein distance, and 
applied distributed robust optimization to handle the source-load uncertainties of wind and 
photovoltaic output. They established a capacity optimization model targeting system economy and 
reliability, realizing the coordinated configuration of hydrogen and electric energy storage. Dong et 
al. [23] focused on the dispatch optimization of isolated hydrogen IHES.First, they used a 
bidirectional LSTM-CNN model to predict wind and photovoltaic output as well as load, thereby 
reducing source-load forecasting errors; then, they combined Monte Carlo simulation to generate 
stochastic scenarios for quantifying source-load uncertainties; finally, they applied deep 
reinforcement learning to solve the stochastic optimization dispatch problem involving energy 
storage capacity degradation, achieving the minimization of the IHES life-cycle cost. For hybrid IHES 
with green hydrogen production, Kim et al. [24] constructed a multi-period, multi-time-scale 
stochastic optimization model. They used Markov decision processes combined with deep Q-
networks to handle source-load uncertainties, and simultaneously employed Monte Carlo simulation 
to generate stochastic scenarios of wind and photovoltaic output and load, realizing the coordinated 
optimization of capacity investment and energy management. Wu et al. [25] targeted IHES with 
hydrogen fuel cell stations, adopting a data-driven chance-constrained approach to handle the 
source-load uncertainties of wind and photovoltaic output as well as electric-hydrogen load, while 
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using distributed robust optimization to address electricity price uncertainties. Through converting 
the problem into a mixed-integer linear programming via an affine strategy, they achieved system 
dispatch optimization. Based on the above studies, it can be concluded that existing works have 
effectively handled source-load uncertainties through various methods such as scenario-based 
algorithms, Monte Carlo simulation, and distributed robust optimization, providing technical 
support for the dispatch optimization of IHES [26,27]. However, most of these studies take fixed time-
of-use electricity prices or static electricity prices as constraints, and have not fully explored the core 
value of dynamic electricity price regulation in addressing source-load fluctuations and optimizing 
dispatch strategies [28]. 

Compared with traditional IHES based on EL/HST/FC, research considering HFCVs and 
hydrogen refueling stations remains relatively limited. References [13,18,25] have discussed and 
explored this topic, but they do not account for the lifespan impact of two critical components: 
PEMEL and PEMFC. Furthermore, in most studies, the randomness of NEVs and their characteristic 
of significant peak-valley differences are often overlooked, which may lead to misjudgments 
regarding the hydrogen production capacity of PEMEL and the hydrogen absorption capacity of new 
energy sources. In addition, electricity prices—an important means of regulating demand response—
are usually neglected. Therefore, this paper proposes a day-ahead dispatch optimization scheme for 
IHES that considers the impact of electricity prices on demand response. This scheme incorporates 
the lifespan-efficiency effects of PEMFC and PEMEL, and predicts the load side based on the 
probability density function of vehicle owners’ behaviors. To summarize, the contributions of this 
paper are as follows: 
 (1) A lifespan-efficiency model for PEMFC and PEMEL is established, which accounts for the 
impact of PEMFC and PEMEL lifespans on efficiency. Additionally, lifespan degradation models for 
PEMFC and PEMEL under different operating conditions are developed to enhance the accuracy and 
reliability of hydrogen prediction in IHES. 
 (2) A load forecasting model for NEVs is constructed. Based on the probability density function 
of vehicle owners’ behaviors, Monte Carlo simulation is used to predict daily driving mileage, 
charging start time, and required electricity demand of NEVs, and finally load curves on the load 
side under different scenarios are obtained. 
 (3) A dynamic pricing strategy considering demand response is proposed. First, dynamic 
balance equations for the power supply side and load side are established; the system is then divided 
into several different operating states based on the energy imbalance between the power supply side 
and load side. Subsystems are weighted and combined using fuzzy weights, and linear matrix 
inequality (LMI) equations are applied to enable the system to meet preset performance requirements. 

The remaining parts of this paper are organized as follows: Section 2 presents detailed 
mathematical models; Section 3 introduces the electricity pricing strategy and the algorithm for 
mathematical constraints; case studies are illustrated in Section 4; and finally, conclusions are given 
in Section 5. 

2. System Configuration and Mathematical Model 

As shown in Figure 1, this section introduces an integrated hydrogen-electric coupling system 
referenced from the Ningbo Hydrogen-Electric Coupled DC IHES Demonstration Project in China. 
In the proposed system, PV panels and wind turbine systems generate electricity to supply power to 
IHES loads and NEVs. The system stores surplus energy during periods of high renewable energy 
generation and compensates for energy shortages through energy storage devices when renewable 
energy generation is low. The IHES includes the EVs and HFCVs on the load side. On one hand, 
PEMEL produce hydrogen by electrolyzing water using surplus electricity, and the hydrogen is then 
stored in hydrogen storage tanks to supply HFCVs. On the other hand, the hydrogen in the storage 
tanks can be further used by PEMFC to generate additional electricity for the system. In addition, 
lithium-ion batteries are utilized as energy storage devices in this paper, ensuring greater flexibility 
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for power applications. The main function of the main grid is to fill the energy gap, thereby 
maintaining the energy balance between the supply side and the demand side. 

 

Figure 1. System Architecture Diagram. 

2.1. Mathematical Modeling 

To quantitatively characterize the operational mechanisms of each component, clarify the 
coupling relationships between different energy flows, and provide a reliable mathematical basis for 
subsequent day-ahead dispatch optimization, this section will introduce the mathematical models of 
each component. These models are constructed to address the core challenges of the integrated 
hydrogen-electric coupling system, including the nonlinearity of energy conversion, the coupling 
constraints between power and hydrogen networks, and the impact of device degradation on system 
efficiency 

2.1.1. Photovoltaic Panels (PV) 

The main power generation unit in this system relies on PV technology, where PV panels convert 
solar radiation into electrical energy. PV power generation devices form a power generation array by 
connecting multiple PV cells in series and parallel. The corresponding power generation mainly 
depends on solar irradiance, PV cell temperature, and power generation efficiency. It omits the 
analytical modeling of complex internal physical processes such as carrier transport and PN junction 
characteristics in traditional models, and accurately reflects the external characteristics of component 
power output through the calibration of efficiency and photovoltaic radiation. This approach can 
simplify the model to a certain extent while still capturing the essential characteristics of photovoltaic 
power generation. Its mathematical model is as follows[20]: 

( )
1000

η
= PV PVPV

t

N A G t
P  (1) 

PVA denotes the effective radiation area on the PV panel; N is the number of PV cells; and ( )G t

indicates the solar irradiance value.Among them,ηPV is related to the radiation intensity and ambient 
temperature, and its specific expression is shown as follows: 
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,
20= 1 ( )

800
η η α − − + −  

PV PV REF AMB REF
NOCTT G T  (2) 

Where ,ηPV REF denotes the efficiency of the solar photovoltaic panel under reference conditions, 
α represents the temperature coefficient, NOCT stands for the operating cell temperature under 
standard test conditions, and REFT is the reference temperature of the solar photovoltaic panel[30]. 

2.1.2. Wind Turbine Systems (WT) 

In the WT system, the WT drives a permanent magnet synchronous generator to generate 
electricity, and its output power is converted into direct current through a rectifier and a boost 
converter for energy supply. The rectifier and boost converter ensure that the power quality meets 
the requirements of the IHES DC bus. The losses in the rectifier and converter are neglected herein. 
Therefore, the DC output of the wind system is equal to the wind energy captured by the wind blades, 
and its specific modeling is as follows[31]: 

2 3
,

1
2
ρ=WT

t air WT WT p WTP r v C  (2) 

where ρair denotes the air density, WTv represents the wind speed, 2
WTr is the radius of the rotor blades, 

and the rotor efficiency ,p WTC is a function of the tip speed ratio and the pitch angle . 

1.1.3. Proton Exchange Membrane Electrolyzer(PEMEL) 

When the power generated by renewable energy exceeds the demand of electrical loads, the 
surplus electricity will be supplied to the PEMEL, which consumes electricity and converts water into 
hydrogen and oxygen. In this system, a PEMEL is used, and its mathematical model is as follows[32]: 

= + + +EL
t OC act con ohmV E V V V  (3) 

where OCE is the open-circuit voltage, actV is the activation potential, conV is the concentration 
overpotential, and ohmV is the ohmic overpotential, which are given by the following equations: 

( )2 2

0 0

0.5
0

, ,

max

ln
2

2 2arcsin ( ) arcsin ( )
2 2

- ln 1-

ρ ρ  = +  

 = +

  
 =  
  
 =

EL
OC H O

EL EL EL EL
act

i an i ca

EL EL
con

ohm EL ohm

RTE E
F

RT i RT iV h h
F i F i

RT iV
nF i

V I R

 (4) 

In the above equations, 31.229 0.85 10 ( )= − × −o EL refE T T , R is the gas constant, F is the Faraday 
constant, and = EL EL ELI i A is the stack temperature of the PEMEL. Here, ELi is the operating current, 
where

0i ,an2i and
0i ,cai represent the current density and the cross-sectional area of the electrode, 

respectively[33]. In addition, and ohmR denote the exchange current densities in the anode and cathode, 
respectively; ohmR is the ohmic resistance of the PEMEL; and maxi is the defined maximum current 
density. The amount of hydrogen produced by the PEMEL per unit time is as follows: 

2 , 2
=

EL EL
H EL

EL

i An
F

 (5) 

The efficiency of the PEMEL is the ratio between the energy of hydrogen produced per unit time 
and the input power[34]. Under the conditions where the basic parameters, operating temperature, 
and pressure of the PEMEL are determined, the mass of hydrogen produced by the PEMEL per unit 
time can be determined, and thus the efficiency of the PEMEL can be calculated as follows: 
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2









2

2 2 2

H ,EL
EL

EL

H ,EL H ,EL HHV,H m

EL
EL t EL EL

P
η =

P
P = n (H )Q V

P = V i A

 (6) 

In the equation, ELη represents the efficiency of the PEMEL,
2H ,ELP is the power of hydrogen 

produced by the PEMEL, ELP is the input power of the PEMEL, and 
2HHV,HQ and mV denote the higher 

heating value of hydrogen and the molar volume of hydrogen, respectively. 

2.1.4. Proton Exchange Membrane Fuel Cell(PEMFC) 

As described in the structure of the aforementioned IHES, when the power generated by the PV 
and WT is insufficient, the PEMFC will consume the hydrogen in the HST to provide electrical energy 
to the load. The system in this paper uses a PEMFC. The mathematical model of the PEMFC is as 
follows[35–37]: 

FC
t OC act con ohmV = E -V -V -V  (7) 

Similar to the PEMEL, where OCE is the open-circuit voltage, actV is the activation potential, conV is 
the concentration overpotential, and ohmV is the ohmic overpotential, which are given by the following 
equations: 

( ) ( )

( )

( )

ref

1 2 3 46

1 2

2

ln ln
5.08 10 exp( 498 )

exp

ξ ξ ξ ξ

∆ ∆  − +  


  + + +  × − 


 

2 2

2

0.5FC
OC FC H O

O
act FC FC FC FC

FC

con FC

ohm FC ohm

RTG SE = + T T ln ρ ρ
F 2F 2F

ρ
V = T T T I

T

V = b b I
V = I R

 (8) 

In the above equations, ∆G is the Gibbs free energy change, ∆S is the entropy change, FCT is the 
cell current, is the operating temperature of the cell, and 1b and 2b are empirical coefficients obtained 
from experimental fitting. Similar to the modeling of the PEMEL, the gas pressures of hydrogen used 
in the PEMFC, 2Oρ and 2Hρ , are calculated through balance equations, and i ( 1, 2,3, 4)ξ =i  is a fixed 
parameter of the PEMFC[38]. Similarly, the rate of hydrogen consumption per unit time by the 
PEMFC can be obtained from the following equation: 

2

FC
H ,FC

EL

I
n =

2F
 (9) 

Similar to the PEMEL, the efficiency of the PEMFC is the ratio of the output power to the energy 
of the consumed hydrogen[39]: 









2

2 2 2

FC
FC

H ,FC

FC FC FC

H ,FC H ,FC 2 HHV,H m

P
η =

P

P = V I

P = n (H )Q V

 (10) 

In the equation, FCη represents the efficiency of the PEMFC, 2H ,FCP is the power generated by the 
PEMFC from hydrogen, FCP is the input power of the PEMFC, and

2,HHV HQ and mV denote the higher 
heating value of hydrogen and the molar volume of hydrogen, respectively. 

Similarly, in References[39,40],the efficiency-power relationships of PEMFC and PEMEL are 
introduced, which are similar to those discussed in this paper.As shown in Figure 2 is the efficiency-
power curve of the PEMEL and the PEMFC. It can be seen from Figure 2 that as the input power 
increases, the efficiency of PEMEL improves rapidly, reaching a maximum efficiency of 
approximately 85% at 25% of the rated power, and then gradually decreases as the power of the 
PEMEL increases, with the efficiency being only about 67.8% at the rated power. However, the 
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hydrogen production amount is the largest at this point. The gradual decrease in the efficiency of 
PEMEL can be attributed to the ohmic resistance in PEMEL and the reduction in current efficiency. 

Moreover, as shown in Figure 2(b) is the efficiency-power curve of the PEMFC, whose general 
shape is similar to that of PEMEL. However, due to the accumulation of multiple losses in its 
“electricity-chemistry-electricity” reverse process, the efficiency of the fuel cell is lower than that of 
PEMEL. As can be seen from the figure, the efficiency reaches a maximum value of approximately 
50.37% at 20% of the rated power, and only about 35.07% at the rated power. Therefore, it can be seen 
that when the power generated by WT and PV systems is unstable, it will cause significant 
fluctuations in the efficiency of the PEMFC and PEMEL. It is necessary to consider the efficiency of 
the PEMFC and PEMEL during IHES dispatching, and compensate for the efficiency of PEMEL and 
the PEMFC through the ESS. 

  
(a) (b) 

Figure 2. Efficiency-Power Curves of PEMEL and PEMFC(a) Power-efficiency curve of the PEMEL(b) Power-
efficiency curve of the PEMFC. 

2.1.5. Degradation Models of PEMFC and PEMEL 

In references [41–43], the principles of degradation mechanisms for PEMFC and PEMEL are 
introduced. The degradation principles of the two are similar, mainly stemming from the chemical 
degradation of membrane materials, the dissolution and agglomeration of catalyst layers, and the 
mechanical failure of the electrode-membrane interface under humidity and thermal cycles. 
Therefore, in this paper, it is considered to establish the same degradation modeling method for both. 

The continuous operation of PEMFC and PEMEL will cause degradation of internal components, 
leading to lifespan attenuation of PEMEL and PEMFC. Moreover, the lifespan attenuation of PEMFC 
and PEMEL varies under different operating conditions. When PEMEL and PEMEL operate stably, 
there will be a certain amount of lifespan attenuation. When fluctuations occur in WT and PV power 
generation, the input power of PEMEL will fluctuate frequently and start/stop frequently, 
accelerating lifespan attenuation. In addition, when the output exceeds the rated power, the lifespan 
attenuation of PEMFC and PEMEL will also accelerate. Therefore, in this paper, four different 
operating conditions of PEMFC and PEMEL are set to measure the lifespan attenuation under 
different conditions, namely low-power operation, high-power operation, fluctuating operation, and 
start-stop operation. Each operating condition has a different attenuation coefficient. Under low-
power and high-power operating conditions, the attenuation coefficients are lower, so the lifespan 
attenuation is relatively slow; under fluctuating operating conditions, the attenuation coefficients are 
higher, and the greater the fluctuation, the faster the lifespan attenuation; frequent start-stops have 
the greatest impact on the lifespan of PEMFC and PEMEL. 

Taking the PEMEL as an example, the lifespan models established under different operating 
conditions are as follows: 
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( )

EL EL EL,low
1,t 1 t

EL EL EL,high
2,t 2 t

EL EL EL EL EL
3,t 3 t t -1 rate

EL EL EL EL
4,t 4 on,t off,t

D = λ U

D = λ U

D = λ P - P P

D = λ A + A









 (11) 

4

,
0 1= =

= ∑∑
T

EL EL
i t

t i
D D  (12) 

λ=EL EL EL
rateL D  (13) 

( )lim-η η λ=EL EL EL EL
rate rate rateL  (14) 

In the equation, EL
i,tD respectively represent the lifespan attenuation amounts of the PEMEL under 

the four different operating conditions, and i = 1,2,3,4 respectively denote the operating states of the 
PEMEL under the four different conditions: low-power operation, high-power operation, energy 
fluctuation, and frequent start-stops. EL

iλ represents the attenuation coefficient under different 
operating conditions, with values taken as 72.25 10−× , 72.75 10−× , 62.75 10−× and 65.25 10−× here. EL

rateP is 
the rated power of the PEMEL; EL

rateλ is the rated attenuation coefficient of the PEMEL; ELD and ELL are 
the total efficiency attenuation amount and equivalent lifespan attenuation amount of the PEMEL 
within a scheduling cycle, respectively; EL

rateL and limη EL are the rated efficiency and limit efficiency of the 
PEMEL , respectively; EL

rateL is the rated lifespan of the PEMEL. 

ELη and FCη in (6) and (10) vary according to the attenuation given by the following equation: 

( )/ / / /
/ -η λ= EL FC EL FC EL FC EL FC

EL FC rate t rate rateL L L  (15) 

2.1.6. Energy Storage Systems(ESS) 

In this paper, lithium battery modules and hydrogen storage tanks are considered as the energy 
storage system, where the hydrogen produced by the PEMEL is charged into the hydrogen storage 
tanks. The hydrogen storage tanks are not only responsible for refueling HFCVs but also can supply 
hydrogen to PEMFC for energy provision; lithium batteries can ensure the stability of the system, 
generate electricity when the power generated by distributed energy sources is insufficient, store 
energy when the generated power is sufficient, and can provide support for peak shaving and valley 
filling of electrical loads. The mathematical modeling of the energy storage system in this paper is 
shown in (15) and (16) as follows: 

( )
, , ,

,1
η

η−∆

∆ ∆
= + − −

ESS ch ESS ch ESS dis
ESS ESS ES ESSt t
t t t t tESS ESS dis ESS

P t P t
SOC SOC u u

Cap Cap
 (16) 

( ) ( ),01
σ

=
−∆

∆ ∆
= + − − − ∑

u FCHVEL FC
t i FCHV iHSS HSS HS HSt t i

t t t t tHSS HSS HSS

H hP t P t
SOH SOC u u

Cap Cap Cap
 (17) 

In the equation, ,ES ch
tP and ,ES dis

tP are the charging and discharging powers of the lithium battery 
at time t,respectively; ,η ES ch and ,η ES dis denote the charging and discharging efficiencies of the lithium 
battery,respectively; ESCap represents the battery capacity; ES

tu is a binary variable controlling the 
charging and discharging of the lithium battery, where 1=ES

tu indicates the discharging state and
0=ES

tu indicates the charging state. Similar to the state of charge of the lithium battery, the hydrogen 
storage state of the hydrogen storage tank is shown in (16), where EL

tP and FC
tP are the actual operating 

electrical powers of the PEMEL and the PEMFC, respectively; HSCap is the capacity of the hydrogen 
storage tank; ,

FCHV
t iH is the required hydrogen refueling amount of the i-th HFCVs at time t; and

( )σ FCHV ih represents a binary variable indicating whether the i-th vehicle needs refueling. 
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2.1.7. EVs and HFCVs 

With the popularization of EVs in recent years, the large-scale integration of EVs will bring 
issues such as power fluctuations and grid overload to the IHES, and the uncertainty of EVs owners’ 
behaviors will also significantly affect the charging characteristics of EVs.In addition, the impact of 
random refueling loads from HFCVs on hydrogen refueling stations is similar to that of charging 
loads from EVs on charging stations[44].Therefore, it is quite necessary to implement reasonable 
scheduling and optimization strategies for EVs. Considering that HFCVs and EVs have similar 
characteristics, in this paper, probability distributions are used to model the start charging time and 
daily driving distance of EVs and HFCVs, as shown in the following equations: 

( )

( )

( )

2

2

2

2

241 exp ,0 12
22

1 exp , 12 24
22

µ
µ

δπδ

µ
µ

δπδ

  + −
  − ≤ ≤ −

   = 
 −
 − − ≤ ≤    

SC
SC

SCSC

SC
SC

SCSC

SC
SC

PDF SC
SC

SC

 (18) 

( ) ( )2

2

1 exp
22

µ
δπδ

 −
 = −
 
 

SC

DDDD

SC
PDF DD

DD
 (19) 

Considering the daily driving distance of EVs, the SOC or SOH when arriving at the charging 
station/hydrogen refueling station can be expressed as follows: 

/

/

/
−

= EV HV KM

EV HV

C dP
SOC SOH

C
 (20) 

Wherein, /EV HVC represents the battery capacity of the EVs or HFCVs, and KMdP denotes the 
energy consumption for the driving distance to the next charging station/hydrogen refueling station. 

3. Optimization Strategies for Integrated Hydrogen-Electric System 

Based on the aforementioned mathematical model, to address the problems of supply-demand 
imbalance, system instability, and inefficient demand response caused by the uncertainty of 
renewable energy output, this paper proposes a dispatch strategy for IHES based on fuzzy-weighted 
dynamic pricing[45]. The strategy operates as follows: first, the fuzzy weight method is used to 
decompose the system’s nonlinear characteristics into multi-state subsystems, and dynamic weights 
are assigned according to the system’s energy state to match real-time scenarios; second, the baseline 
electricity price is determined based on the subsystem state, and a price adjustment term is calculated 
by combining the energy imbalance value, enabling the electricity price to be linked to supply and 
demand to guide both the supply and load sides; finally, LMI equation is solved to design control 
gains, which satisfy the performance criteria, realize the coordinated dispatch of multi-energy 
components, balance economy and stability, and resolve supply-demand imbalance. 

3.1. LSTM Projected Source-Load Side 

In the context of formulating dynamic pricing strategies for the power market, accurately 
predicting the source - load side conditions is crucial. Dynamic pricing needs to adapt to real - time 
fluctuations in power generation and consumption, and precise source - load prediction provides the 
foundation for rational price adjustments. As illustrated in Figure 3, it presents the flowchart of the 
LSTM - based prediction for the source-load side data.The following LSTM - based process helps 
achieve this prediction. In data preprocessing, historical generation and load data undergo 
imputation, outlier removal, and normalization to refine it for analysis. Time-series samples are then 
constructed, and the dataset partitioned for LSTM training.Next, in LSTM, processed data passes 
through the forget gate, input gate, and cell status update. The output gate generates predictions, 
with loss calculation evaluating accuracy. This source-load prediction underpins dynamic pricing 
strategy formulation. 
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. 

Figure 3. Flowchart of LSTM-Based Source-Load Side Prediction. 

3.2. Dynamic Pricing Strategy 

To achieve effective coordinated scheduling of multi-energy components in the hydrogen-
electric coupling , it is essential to establish a dynamic pricing mechanism that can accurately reflect 
the real-time supply-demand relationship and guide the operation of both supply and demand 
sides[45]. This dynamic pricing strategy serves as a core signal bridge.on one hand, it quantifies the 
impact of renewable energy output uncertainty on the system’s energy balance; on the other hand, it 
regulates the power generation behavior of supply-side adjustable devices and the energy 
consumption behavior of demand-side loads through price signals, thereby mitigating supply-
demand imbalances and improving system stability and economic efficiency. To lay a rigorous 
mathematical foundation for this dynamic pricing strategy, it is first necessary to construct dynamic 
equations that characterize the response laws of the supply and demand sides to price changes. These 
equations will explicitly describe how the supply-side power generation and demand-side energy 
consumption adjust with real-time electricity prices, while incorporating factors such as renewable 
energy uncertainty, device operating constraints, and user demand elasticity. Such modeling ensures 
that the subsequent pricing strategy is not only theoretically sound but also capable of simulating 
and guiding the actual operation of the IHES. Next, the dynamic equations for the supply side and 
demand side in the dynamic pricing strategy will be introduced to enable the scheduling of various 
components of the IHES through electricity prices. Dynamic equation of the supply side: 

( )ˆ( 1) ( ) [ ( ) ( ) ( ) ( )]λ
τ

+ = + − + ∆ + −s
g g g g g g

g

T
p k p k k b k c p k ke k  (21) 

Wherein, ( 1)+gp k represents the total power generation of the IHES system at time k+1; τ g

denotes the power generation response time constant; ( )λ k is the real-time electricity price at time k; 
ˆ

gb stands for fixed costs such as equipment depreciation and maintenance; ( )∆g k reflects the impact 
of uncertainties like the output volatility of renewable energy; gc is the power generation elasticity 
coefficient, which reflects the sensitivity of power generation to electricity prices—when 0>gc , a rise 
in electricity prices will prompt an increase in the power generation of adjustable power generation 
equipment; and ( )e k represents the energy imbalance.Dynamic equation of the demand side: 

( )ˆ( 1) ( ) [ ( ) ( ) ( ) ( )]λ
τ

+ = + − + ∆ + −s
g g g g g g

g

T
p k p k k b k c p k ke k  (22) 

In a similar manner to the dynamic equation of the supply side, ( 1)+dp k represents the electricity 
demand at time k+1;τ d denotes the demand response time constant; d̂b is the marginal benefit of the 
demand side, which reflects customers’ basic willingness for electricity demand; ( )∆d k reflects the 
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volatility impact caused by uncertainties; and dc is the demand elasticity coefficient, which indicates 
the sensitivity of the demand side to changes in electricity prices.Dynamic equation of energy 
imbalance: 

( )( 1) ( ) ( ) ( ) ( )+ = + + −s d de k e k T p k in k p k  (23) 
Wherein, ( )in k represents the power generated by renewable energy; ( )e k denotes the energy 

imbalance at time k, which is a core signal triggering changes in electricity prices; and sT is a discrete 
fixed time step.Therefore, based on the above equations, the overall dynamic state equation of the 
IHES can be expressed as the following state-space system: 

ˆ ˆ
[ ] [ ] [ ] [ ] , [ ] 0

τ τ

 
 = = −     
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T s g s d

g d d
g d

T b T b
x k p k p k e k b k

 
(24) 

[ ] [ ] [ ] ( ) , 0τ τ τ

 
 = ∆ ∆ = −  
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T
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g d
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w k k k in k B
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(26) 

Wherein, dA is the system matrix, dB is the disturbance input matrix, [ ]db k is the constant vector, 
and τB is the input matrix of price signals. Thus, the system can be characterized in the following form: 

[ 1] [ ] [ ] [ ] [ ]τ λ+ = + + +d d dx k A x k B k B w k b k  (27) 
Dynamic pricing strategy: firstly, in order to handle the nonlinear dynamic system, the system 

is decomposed into several subsystems through the following equations, where each subsystem 
corresponds to a different operating state (such as high power generation, low demand, or 
equilibrium state, etc.): 

1
[ ] [ ] ( [ ]) [ ]

=

+ = + ∆∑
M

d d m m x
m

A x k b k h x k A x k  (28) 

Wherein, ( ( ))mh x k is the fuzzy weight of the current state, which is dynamically assigned 
according to the current membership function ( )x k ,and ∆x is the approximation error, ( ( ))mh x k as 
shown in the following formula: 

1 2 3

1 2 31

( [ ]) ( [ ]) ( [ ])
( ( ))

( [ ]) ( [ ]) ( [ ])′ ′ ′′=

=
∑

m g m d m
m M

m g m d mm

F p k F p k F e k
h x k

F p k F p k F e k
 (29) 

Similarly, the electricity price regulation strategy can be obtained by the weighted combination 
of each subsystem and the supply-demand adjustment term, as follows: 

1

[ ][ ] ( [ ]) [ ] tanhλ α
=

 
= − ⋅   

 
∑
M

m m
m ref

e kk h x k K x k
e

 (30) 

Wherein,
1

( [ ]) [ ]
=
∑
M

m m
m

h x k K x k is the system benchmark price, which is generated based on the 

operating state of each subsystem; ( )tanh [ ]α− ⋅ refe k e is the electricity price adjustment term derived 

from the power imbalance value, α determining the fluctuation range of electricity prices. By 
integrating equations (28) and (30) into equation (29), the following formula can be obtained: 

1
[ 1] ( [ ]) [ ] [ ]

=

+ = +∑  



M

m m
m

x k h x k A x k Bw k  (31) 
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Wherein, m τ= +

m mA A B K , [ ]τ= dB B B , [ ][ ] [ ] [ ]λ= ∆

Tw k w k k . To address the uncertainty in 
renewable energy generation, the control gains mK are designed via linear matrix inequalities, while 
ensuring the satisfaction of the performance criteria ∞H : 

( )2 2

0
[ ] [ ] [ ] [ ] 0γ

∞

=

− <∑ T

k
z k z k w k w k  (32) 

Where [ ] [ [ ] [ ] [ ]]ελ η λ= ∆ Tz k e k k k , γ is the fluctuation attenuation level coefficient; ε andη are 
used to prevent significant fluctuations in pricing. To satisfy mK in equation (31), we can solve the 
LMI equation: 

2

0 0 0
0 0
0 0 γ
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 

−  <
 −
 

−  
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



T T
m

m

T

Q QA QC QB
A Q Q
CQ I
B Q I

 (33) 

3.2. Day-Ahead Scheduling Optimization and Constraints 

Day-ahead scheduling is based on historical data to predict various load demands and 
renewable energy generation for the next day. Combined with historical variable electricity prices 
and the constraints of various devices, it takes the total economic cost as the objective function to 
formulate a full-day advance scheduling plan. Therefore, in the day-ahead scheduling stage, 
predicting various load demands and renewable energy generation is a key step. This section will 
introduce the prediction methods, objective function, and various constraints used. 

3.2.1. Objective Function for Day-Ahead Scheduling 
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 (34) 

Equation (34) presents the objective function of day-ahead scheduling aimed at maximizing 
revenue, which includes the operating costs of the energy storage system BESS

tC and HESS
tC , the cost of 

purchasing electricity from the grid Grid
tC , the operating costs of renewable energy ( PV

tC and WT
tC ), and 

the operating costs of the PEMEL and PEMFC ( FC
tC and EL

tC ). Among them, and respectively 
represent the configuration replacement costs of the PEMEL and PEMFC. 

2.2.2. Electrical Power and Hydrogen Power Balance Constraints 

The electrical power balance of the system is shown in (35), where the distributed energy sources 
operating in the IHES must be able to meet the load demands within the IHES. When the energy 
supplied by distributed energy sources is insufficient, external power grids will be used for energy 
supply to ensure that the load demands are met. The hydrogen power balance is shown in (36), which 
takes into account the hydrogen refueling amount of hydrogen fuel cell vehicles at time t. 

, ,+ + + + = + + +Grid WT PV FC BEES dis Load EL BEES ch EV
t t t t t t t t tP P P P P P P P P  (35) 

( )
2, 2, 2, ,1 ( )δ− + = +∑EL HT FC

NHS HS FCEVs
t H H t H i t FCEVs ii

u n n u n H h  (36) 
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where Grid
tP is the electrical power exchanged with the external power grid at time t; WT

tP and PV
tP

are the power generation of wind and photovoltaic at time t;is the predicted charging power of EVs 
obtained by the Monte Carlo simulation method in Section 2; Load

tP is the electrical power of the basic 
load in the IHES; ,BEES dis

tP and ,BEES ch
tP are the discharging or charging power of the battery; FC

tP and EL
tP

are the operating electrical power of the PEMFC and PEMEL. In (36), where EL
tN and FC

tN represent 
the amount of hydrogen output or input by the PEMEL and PEMFC at time t. Herein, EL

tN is positive 
when the hydrogen storage tank releases hydrogen, and negative when the hydrogen storage tank 
stores hydrogen; ,

FCEVs
i tH is the hydrogen refueling amount of HFCVs at time t. 

3.2.3. ESS Constraints 
,max

,0 (1 )≤ ≤ −BESS BESS BESS
ch t tP u P  (37) 

,max
,0 ≤ ≤BESS BESS BESS

dis t tP u P  (38) 
,min ,max≤ ≤BESS BESS BESS

tSOC SOC SOC  (39) 
Equations (37) and (38) represent the charging and discharging power limits of the battery, 

respectively. The binary variable BESS
tu indicates the charging/discharging state of the battery at time 

t . Equation (39) represents the SOC limit of the energy storage . 

3.2.4. Hydrogen Energy Constraints 
,max0 (1 )≤ ≤ −EL HESS EL

t tP u P  (40) 
,max0 ≤ ≤FC HESS FC

t tP u P  (41) 
,min ,max≤ ≤HESS HESS HESS

tSOH SOH SOH  (42) 
Equations (40) and (41) respectively restrict the electrical power of the PEMEL and the PEMFC. 

The binary variable HESS
tu represents the hydrogen storage state of the HESS at time t . Equation (42) 

represents the hydrogen storage state constraint of the hydrogen storage tank. Since the hydrogen in 
the storage tank should be available for HFCVs, the SOH constraint of the hydrogen in the storage 
tank must be maintained above 20%. 

3.2.5. Distributed Energy Resources and Grid Power Constraints 
,max ,max− ≤ ≤Grid Grid Grid

t t tP P P  (43) 
,max0 ≤ ≤WT WT

tP P  (44) 
,max0 ≤ ≤PV PV

tP P  (45) 
Equations (44) and (45) respectively restrict the maximum power of wind power generation and 

photovoltaic power generation, while equation (43) limits the maximum electrical power exchanged 
between the IHES and the power grid. 

3.2.6. External power grid constraints 

t , ,= +Grid buy buy sell sell
t Grid t t Grid tP u P u P  (46) 

In the equation, ,
buy

Grid tP and ,
sell

Grid tP denote the electrical power purchased by the IHES from the 
external power grid and the electrical power sold to the external power grid, respectively. buy

tu and
sell
tu are logical variables that prevent the IHES from simultaneously purchasing and selling electricity 

from/to the external power grid 
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3.2.7. System Flow Chart 

Figure 4 systematically expounds the method of wind-solar load data prediction and dynamic 
electricity price strategy scheduling based on LSTM. Firstly, historical data of wind, PV ,and load are 
collected, and a system model is constructed, covering component models such as PV, WT,BAT, HST, 
PEMEL, PEMFC, as well as models of EVs and HFCVs. Meanwhile, constraints such as energy 
balance, system components, energy storage, and the main grid are considered, and mathematical 
modeling of PEMEL and PEMFC is carried out, including polarization curves and system efficiency 
curves. In the Methodological section, the wind-solar load data are first preprocessed, the data set is 
divided, and the LSTM model is constructed and trained to output the prediction results. Then, based 
on the predicted data, dynamic equations for the power supply side and the demand side are 
constructed to judge the energy imbalance situation. Furthermore, electricity prices are adjusted and 
dispatchable units (PEMFC, BAT) are scheduled, and finally, the system scheduling results are output. 
The entire process is closely connected, providing an effective technical path for the optimal operation 
of wind-solar-storage systems. 

 

Figure 4. Flowchart of the Algorithm. 

4. Discussion 

In this section, a case study is conducted on the virtual IHES described in Figure 1 to verify the 
feasibility of the proposed method. The simulation verification is performed in Matlab using the 
Gurobi solver on a Windows PC desktop, which is equipped with an Intel Core i7-9750H CPU and 
16GB RAM. The system parameters and simulation parameters are provided in the Appendix. 

4.1. Source-Load Side Electricity Prediction 

In this section, the historical short-term forecast data and historical data of photovoltaic and 
wind power output in a certain area of Ningbo are selected as the dataset, and the conventional deep 
learning model LSTM is used to predict their short-term power generation and electricity 
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consumption. The data spans from January 1, 2019 to December 31, 2019. Due to their variable nature, 
the sampling frequency for wind and photovoltaic power is set to 15 minutes, while the load varies 
to a smaller extent in a certain period, so the sampling frequency is set to 1 hour. Both the predicted 
and measured data sequences have a length of 35040. After the data is processed, the training set and 
test set are divided in a ratio of 0.8 to 0.2. Figure 5 shows the monthly predicted data of photovoltaic 
power, wind power, and load respectively. 

   
(a)Photovoltaic predicted data (b)Wind predicted data (b)Load predicted data 

Figure 5. Monthly predicted data of photovoltaic power generation, wind power generation, and load(a) 
Photovoltaic predicted data(b) Wind predicted data(c) Load predicted data. 

The Figure 6 illustrate the prediction errors of a certain method for PV, WT and Load power. For 
PV power prediction, the coefficient of determination 2R reaches 0.99, with a mean absolute error 
(MAE) of 1.6 and a root mean square error (RMSE) of 3.17, indicating that the predicted values are in 
good agreement with the actual values, and the prediction accuracy is relatively high. In terms of WT 
power prediction, the 2R  is 0.99, the MAE is 2.76, and the RMSE is 4.8, which also shows that the 
prediction results are highly consistent with the actual situation. For load power prediction, the 2R  
is 0.97, the MAE is 4.05, and the RMAE is 5.92, reflecting a relatively ideal prediction effect. Overall, 
this method has high accuracy and reliability in predicting wind, solar, and load power, and can 
provide strong support for the energy scheduling of IHES. 

   

(a) (b) (b) 

Figure 6. Monthly predicted data error comparison of photovoltaic power generation, wind power generation 
and load(a) Photovoltaic error comparison(b) Wind error comparison(c) Load error comparison. 

4.2. Monte Carlo Simulation of Load for EVs/HFCVs 

As shown in Figure 6, it is the probability density function of the random behavior of vehicle 
owners based on historical data. It is assumed that there are 20 new EVs and 10 HFCVs in this IHES. 
As shown in Figure 7(a), it is the arrival time of electric vehicles and hydrogen fuel cell vehicles at 
charging stations/hydrogen refueling stations. It can be seen that there are usually more vehicles 
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arriving at 18:00 p.m., and the charging peak usually occurs at this time. As shown in Figure 7(b), it 
is the probability density function of the average daily driving mileage of vehicles. As shown in 
Figure 8, it is the daily demand load curve of EVs and HFCVs obtained by the Monte Carlo method 
under high load and low load conditions. 

  
(a) (b) 

Figure 7. PDF of Vehicle Owners’ Probabilistic Behaviors(a) PDF of arrival time for EVs and HFCVs(b) PDF of 
daily mileage for EVs and HFCVs. 

  
(a) (b) 

Figure 8. Monte Carlo Simulation of Charging Load for Vehicles(a) EVs load demand curve(b) HFCVs load 
demand curve. 

After completing the prediction of wind and PV power output, base load, and the load curves 
of EVs/HFCVs based on the LSTM model, it is necessary to classify the operating scenarios according 
to the daily total power generation to further clarify the system scheduling direction under different 
supply-demand matching states. Specifically, the daily total wind-PV power generation is taken as 
the core basis for classification. With reference to the distribution characteristics of historical wind-
PV power generation data over 6-12 months, the 60th percentile is adopted to set the threshold for 
high wind-PV power generation. A day is classified as a “high-power generation day” when its daily 
power generation exceeds this 60th percentile threshold; similarly, a day is identified as a “high-load 
day” when its daily load surpasses the 60th percentile threshold of load. This scenario classification 
enables targeted analysis of the scheduling effects of the dynamic pricing strategy under different 
supply-demand backgrounds and provides clear scenario boundaries for the subsequent verification 
of optimized system operation. The specific scenario classification is presented in Table 1. 

Scenario Category 
Judgment of Daily Total 

Power Generation 
Judgment of Daily 

Total Load 
Examples 

High-Power Generation 
& High-Load Day 

≥ 60% (historical daily 
power generation data) 

≥ 60% (historical daily 
load data) 

Sunny 
days+working days 
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Low-Power Generation 
& High-Load Day 

< 60%  < 60%  
Cloudy 

days+summer 
working days 

Low-Power Generation 
& Low-Load Day 

< 60%  ≥ 60%  
Rainy 

days+holidays 

4.3. Prediction Results and Electricity Price Regulation Effects 

Figure 9(a) depicts the 24-hour daily variation characteristics of photovoltaic output, wind 
power output, and net load under high wind-solar generation and high load conditions. Wind power 
exhibits instability and strong time-variability with multiple daily peaks and troughs; photovoltaic 
output follows a typical daytime pattern—negligible from 0:00-4:00, rising slowly from 5:00, and 
peaking between 10:00-12:00. Load power remains generally high with minor fluctuations, being 
higher in the morning and evening (peak at 18:00, trough at 14:00). The load curve’s double-peak 
feature is closely linked to residential and industrial electricity consumption habits. 

Similar to Figure 9(a), Figure 9(b) shows daily variations under low wind-solar generation and 
low load conditions, where low wind power output fails to meet load demand. Overall, significant 
grid electricity purchases are required during early mornings or periods of insufficient photovoltaic 
output to meet demand. Here, dynamic pricing effectively incentivizes users to adjust consumption 
by reflecting real-time grid supply-demand tensions, reducing peak demand and easing purchase 
pressure. 

Compared to fixed pricing, dynamic pricing prompts users to reduce consumption during high-
price periods (avoiding costs from concentrated purchases), enhances system economic efficiency 
and operational safety, optimizes grid resource allocation, lowers reserve capacity needs, and 
improves overall energy utilization—ultimately reducing both purchase costs and operational risks. 

  
(a) (b) 

Figure 9. Comparison of New Energy Power Generation and Load Forecasting(a) Typical day with high WT and 
PV power generation and high load(b) Typical day with low WT and PV power generation and low load. 

Figure 10 presents the scheduling status of load levels and dispatchable units under the dynamic 
pricing strategy and the constant electricity price strategy. Through comparative analysis of Figures 
10(a) and (b), it can be seen that the dynamic pricing strategy shows significant differences in the 
scheduling of loads and dispatchable units. Taking 11:00 as an example, compared with the constant 
pricing strategy, the load at this time increases by 4.2%. This phenomenon indicates that in the case 
of excess wind and solar energy, the dynamic pricing strategy can effectively stimulate load growth 
by means of reducing electricity prices, thereby achieving more energy consumption. When the 
power generation of wind and solar energy decreases sharply, for example, at 1:00 at night, the 
photovoltaic power generation is scarce, and wind power generation is also difficult to meet the load 
demand. The dynamic pricing strategy successfully reduces the load by increasing the electricity 
price. At the same time, dispatching dispatchable energy sources such as proton exchange membrane 
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fuel cells and lithium batteries not only reduces the dependence of the IHES on the main grid, but 
also optimizes the economy of system operation. In the working conditions corresponding to (e) and 
(f), since the power generation of wind and solar energy is continuously in a scarce state, and the 
energy reserves of the energy storage system will also be gradually exhausted. At this time, the 
dynamic pricing strategy continuously suppresses the load demand by increasing the electricity price 
according to the characteristics of energy imbalance in the IHES. This is because even during periods 
with relatively sufficient wind and solar power generation such as during the day, there is still an 
energy imbalance between the power supply side and the demand side. Compared with the constant 
electricity price strategy, the dynamic pricing strategy reduces the 24-hour total load by 16.2%, which 
fully verifies the effectiveness of the dynamic pricing strategy under this working condition. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Electricity Price on Dispatched Units and Load Reduction(a) Case I dynamic pricing strategy 
scheduling situation(b) Case I constant price strategy scheduling situation(c) Case II dynamic pricing strategy 
scheduling situation(d) Case II constant price strategy scheduling situation(e) Case III dynamic pricing strategy 
scheduling situation(f) Case III constant price strategy scheduling situation. 
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4.4. Operation and Degradation of PEMEL and PEMFC 

Figure 11 shows the relevant scheduling of hydrogen component operation under different 
scenarios. From the perspective of the service life of PEMEL and PEMFC, dynamic pricing guides the 
power output of PEMEL and PEMFC to closely match the peak periods of new energy generation 
through real-time price signals, which improves the load utilization rate and operational stability of 
the equipment, and avoids frequent start-stop of PEMEL and PEMFC, thereby extending their service 
life. Secondly, this strategy effectively promotes the local consumption of volatile new energy such 
as WT power and PV power, reduces the curtailment of wind and PV power, and improves the 
utilization efficiency of renewable energy. Finally, from the economic perspective, PEMEL operate 
continuously during low electricity price periods to ensure sufficient hydrogen in the storage tanks, 
and PEMFC operate during high electricity price periods to provide necessary electrical energy 
supplement. By optimizing load distribution and energy conversion, dynamic pricing significantly 
improves the economic efficiency of the system, reduces operating costs and increases overall 
revenue. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Figure 11. Scheduling and Operation Results of Hydrogen Components(a) Case I dynamic pricing strategy 
hydrogen components scheduling situation(b) Case I constant price strategy hydrogen components scheduling 
situation(c)Case II hydrogen components scheduling situation(d) Case II hydrogen components scheduling 
situation(e) Case III hydrogen components scheduling situation(f)Case III hydrogen components scheduling 
situation scheduling situation. 

Figure 12 presents the lifespan degradation of PEMEL and PEMFC across cases. As shown in 
Figure (a), PEMEL exhibit a significantly lower average degradation rate than in Figure 12(b), 
attributed to their continuous operation during sufficient wind-solar generation. This avoids frequent 
start-stops, keeps equipment in optimal operating ranges, and reduces wear from high loads or 
cycling. 

In contrast, PEMFC show slightly higher degradation under dynamic pricing than fixed pricing. 
This arises because PEMFC must operate longer during early mornings and nights (when PV output 
is low) to sustain essential loads. Under fixed pricing, ineffective scheduling leads to brief, 
intermittent operation, causing greater degradation from frequent start-stops—whereas dynamic 
pricing yields higher overall IHES benefits despite this. 

For system flexibility, dynamic pricing allows mode adjustments: in Case 3 (low renewables, 
high load), increasing PEMFC output meets demand. Though this raises fuel cell degradation, it 
enhances system responsiveness and slightly boosts overall revenue. Compared to fixed pricing, 
dynamic pricing also aligns user behavior with price signals, reducing transferable loads, peak-valley 
gaps, and unnecessary fluctuations—validating its effectiveness. 

  
(a) (b) 

Figure 12. Degradation of PEMEL and PEMFC(a) Dynamic pricing strategy degradation(b) Constant electricity 
price degradation. 

4.5. Day-Ahead Scheduling Results 

Figure 13 compares day-ahead scheduling under dynamic and fixed pricing across three 
scenarios. In Scenario I, as photovoltaic generation is unavailable at night, substantial grid electricity 
must be purchased between 0:00-6:00 and 20:00-24:00 to maintain essential loads. Figures 8(a) and (b) 
show optimized scheduling for Case I under the two pricing strategies, with regular load variations 
across periods. For example, prices rise between 1:00-4:00 under dynamic pricing, reducing demand; 
between 10:00-12:00, higher renewable output lowers prices, boosting load response while energy 
storage charges for use during shortfalls. Fixed pricing, by contrast, fails to signal real-time supply-
demand, leaving user behavior unconstrained—causing large, irregular load fluctuations that hinder 
system stability and resource allocation. Overall, dynamic pricing aids peak shaving and valley filling, 
shifting demand to stabilize IHES operation. 

Figures 13(c) and (d) show Case II scheduling. Dynamic pricing curbs peak loads via higher 
prices—e.g., 17:00 load drops 13.2% vs. fixed pricing, as users reduce or shift demand. It also shifts 
load to low-price periods with high renewables, such as a 22.74% load increase at 6:00, easing peak 
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grid pressure. Combined with energy storage, this enables dual optimization of peak shaving and 
renewable utilization, unlike rigid user behavior under fixed pricing, which struggles with renewable 
output fluctuations. 

Similarly, Case III results (Figures 13(e) and (f)) show dynamic pricing slightly higher under 
extreme conditions, as insufficient renewables require price hikes to suppress demand. It sets high 
prices at 7:00 (peak) to cut purchases or boost storage discharge, and low prices at 1:00 (off-peak) to 
encourage buying/charging. This reduces total energy costs by 5.19% vs. fixed pricing. Dynamic 
pricing also smooths load curves by shifting demand to off-peak periods, cutting daily peak load by 
17.4% and easing grid pressure. Lower prices between 12:00-16:00 further incentivize charging and 
storage. 

 

Figure 13. Day-ahead scheduling results of three different scenarios(a) Case I dynamic pricing strategy system 
scheduling result(b) Case I constant price strategy system scheduling result(c)Case II dynamic pricing strategy 
system scheduling result(d) Case II constant price strategy system scheduling result(e) Case III dynamic pricing 
strategy system scheduling result(f)Case III constant price strategy system scheduling result. 
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4.6. IHES Operation Cost Results 

Figure 14 shows the costs of the IHES under the dynamic pricing strategy and fixed pricing 
strategy. It can be seen from the figure that under most conditions, the output of distributed energy 
is insufficient to meet the demand of essential loads, so it is necessary to purchase electricity from the 
main grid, making the electricity purchase cost account for a large proportion of the operation cost. 
In addition, the operation cost rises sharply under extreme conditions, Case III. This is because 
insufficient wind and solar power generation under such conditions necessitates purchasing 
electricity from the main grid. However, the cost of the dynamic pricing strategy is about 5.123% 
lower than that of the fixed pricing strategy. Moreover, under various conditions, the dynamic 
pricing strategy can adjust the operation of each component to ensure they run within appropriate 
ranges, thereby reducing the IHES operation cost. Particularly in Case II, with sufficient wind and 
solar power generation, there is a larger adjustable range. As indicated in Figure 13(c) and (d), the 
dynamic pricing strategy can store electricity when wind and solar generation is abundant for use in 
periods of insufficient generation (such as morning and evening), which helps reduce costs in such 
scenarios. Therefore, it is evident that the dynamic pricing strategy can reduce costs to a certain extent 
compared with the fixed pricing strategy across different scenarios. 

   

(a) (b) (c) 

Figure 14. Comparison of IHES operation costs(a) Case I comparison of operation costs(b) Case II comparison of 
operation costs(c) Case III comparison of operation costs. 

5. Conclusions 

This paper develops a robust electricity price-regulated day-ahead scheduling optimization 
framework for IHES, incorporating the life degradation characteristics of PEMEL and PEMFC to 
address multi-dimensional uncertainties arising from the interaction between economic optimization 
objectives and energy production-consumption in IHES scheduling. Firstly, considering the 
nonlinear life-efficiency characteristics of PEMEL and PEMFC affected by multi-factor coupling, a life 
degradation model accounting for operating conditions is constructed and embedded into the 
objective function of the optimization model. Secondly, a robust electricity price regulation model is 
established, which solves by constructing the overall dynamic equations of the IHES, combined with 
fuzzy weights for regulatory robustness adjustment and an electricity price adjustment mechanism, 
to obtain optimized electricity price schemes and operating states of each component. Additionally, 
to tackle the significant randomness from electric vehicle integration and dual uncertainties caused 
by users’ subjective behavior patterns, a probability density function of user behavior is built, and 
charging curves with load characteristics are generated via Monte Carlo scenario 
simulation.Simulation results demonstrate that: at the economic dispatch level, the proposed 
dynamic pricing strategy reduces economic indicators by an average of 15.3% compared with fixed 
pricing, effectively alleviating energy imbalance and optimizing component energy supply 
scheduling. In terms of equipment performance, PEMEL life degradation is reduced by 21.59% on 
average, and PEMFC utilization is increased by 54.8%. In conclusion, dynamic pricing can effectively 
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regulate energy imbalance, lower operating costs, improve fuel cell utilization, and slow PEMEL 
degradation, providing theoretical and methodological support for efficient and stable IHES 
operation. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

PV Photovoltaic 
WT Wind Turbines 
PGEV Plug-in Hybrid Electric Vehicles 
CHP Combined Heat and Power 
DERs Distributed Energy Resources 
HFCVs Hydrogen Fuel Cell Vehicles 
HESS Hydrogen Energy Storage Systems 
BESS Battery Energy Storage Systems 
ESS Energy Storage Systems 
HST Hydrogen Storage Tank 
SOC State Of Charge 
SOH State Of Hydrogen  
IHES Integrated Hydrogen-Electric System 
DLNN Deep Learning Neural Network 
SVR Support Vector Regression 
LMI Linear Matrix Inequality 
NEVs New Energy Vehicles 
V2G Vehicle-to-Grid 
V2V Vehicle-to-Vehicle 

Appendix A 

Appendix A.1 

Table A1. Values of parameters in PEMEL. 

Parameters Value 
,maxELP  

30 (kW) 
,minELP  

0 (kW) 
REFT  298 (K) 
AMBT  25 (℃) 

Table A2. Values of parameters in PEMFC. 

Parameters Value 
,maxFCP  

20 (kW) 
,minFCP  

0 (kW) 
∆G  236.483 (J/mol) 
∆S  -164.025 (J/mol) 
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REFT  298 (K) 
1ξ  -0.9514 
2ξ  0.00312 
3ξ  7.4×10-5 
4ξ  -1.87×10-4 
1b  3×10-5(V) 
2b  8×10-3(cm2/mA) 

Table A3. Values of parameters in BESS. 

Parameters Value 
,maxBESSP  40 (kW) 
,minBESSP  0 (kW) 

BatC  370 (kWh) 
,maxBESSSOC  90 (%) 
,minBESSSOC  10 (%) 

Table A4. Values of parameters in HST. 

Parameters Value 
HESSC  150 (m³) 

,maxHESSSOH  90 (%) 
,minHESSSOH  10 (%) 

Table A5. Values of parameters in PV、WT and Grid. 

Parameters Value 
,maxWTP  250 (kW) 
,maxPVP  160 (kW) 
,maxGridP  300 (kW) 
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