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Abstract 

This study develops an integrated risk modeling framework to assess capital adequacy and optimize 

portfolio performance for Thai life and non-life insurers. Combining ARMA–GJR–GARCH models 

with skewed Student-t innovations, extreme value theory, and dynamic R-vine copulas captures 

volatility, tail risks, and evolving asset interdependencies. Using daily data from 2014 to 2024, the 

models generate value-at-risk forecasts and rolling Sharpe ratios for portfolios with and without 

green bonds. The results show that green bond inclusion improves risk-adjusted returns and reduces 

capital requirements, particularly for life insurers, aligning with their long-term solvency mandates. 

Although a greenium effect is not clearly observed relative to Thai sovereign bonds, green bonds 

enhance diversification within a multivariate framework. These findings highlight the importance of 

evaluating capital requirements at the portfolio level and suggest that regulators incorporate ESG 

considerations into supervisory investment guidelines to strengthen financial resilience and align the 

insurance sector with Thailand’s sustainable finance goals. 

Keywords: green bonds; dynamic r-vine copulas; extreme value theory; insurance capital adequacy; 

value-at-risk 

 

1. Introduction 

Robust risk modeling is crucial for modern insurance portfolio management, especially for life 

and non-life insurers navigating volatile markets. Traditional approaches often fail to capture tail 

risks and nonlinear dynamics, particularly during stress periods. As regulatory demands tighten 

under solvency frameworks, insurers increasingly require advanced modeling techniques to 

accurately assess volatility and extreme losses (Bollerslev, 1986; Daly, 2008). 

Insurance companies are increasingly integrating Environmental, Social, and Governance (ESG) 

considerations into their investment strategies to strengthen portfolio resilience and support long-

term sustainability goals. Among ESG instruments, green bonds have emerged as a compelling asset 

class, channeling funds into projects such as renewable energy and low-carbon infrastructure 

(Climate Bonds Initiative, 2022). Their dual potential to generate financial returns and promote 

sustainability has attracted insurers seeking diversification and alignment with ESG mandates (Ferrer 

et al., 2021; Han et al., 2024; Karim et al., 2024; Park et al., 2020; Papavassiliou et al., 2025). Green 

bonds have also been associated with improved Sharpe ratios and reduced capital charges under 

solvency frameworks (Taghizadeh-Hesary et al., 2021; Zhang et al., 2021). In Thailand, where insurers 

manage sizable and duration-sensitive portfolios, green bond inclusion supports both financial 

stability and national sustainability objectives (Fitrah and Soemitra, 2022; Ramadhan, 2020). 

Regulatory support is central to enabling this transition. Tools such as green taxonomies, favorable 
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capital treatment, and targeted incentives can accelerate ESG adoption across the sector (Flammer, 

2020; Huang and Lin, 2023; Okeke et al., 2024). Recognizing the strong risk-adjusted performance of 

green bonds, the Office of Insurance Commission (OIC) could facilitate their broader adoption by 

incorporating sustainability-related investment guidance into supervisory frameworks. This would 

help insurers align investment strategies with solvency goals while advancing Thailand’s sustainable 

finance agenda. 

Advanced financial econometrics provides crucial tools for modeling the complex risks faced by 

insurers. The Autoregressive Moving Average Generalized Autoregressive Conditional 

Heteroskedasticity (ARMA–GARCH) model, especially with the Glosten–Jagannathan–Runkle (GJR) 

extension, is valuable for capturing volatility clustering and asymmetric shock responses (Adegboyo 

and Sarwar, 2025; Glosten et al., 1993; Hidayana et al., 2021; Ma et al., 2024; Wei et al., 2025). The GJR–

GARCH model accounts for the leverage effect, where negative shocks induce greater volatility than 

positive ones (Liu and Hung, 2010). Financial returns often exhibit skewness and fat tails, which, if 

unaccounted for, can lead to underestimation of risk. To address this, skewed Student-t innovations 

are widely adopted to improve Value-at-Risk (VaR) accuracy and better capture these distributional 

properties (Akanbi et al., 2025; Al-Khasawneh et al., 2024; Hansen, 1994; Harvey and Siddique, 1999; 

Lambert and Laurent, 2001; Patra and Gupta, 2025). However, even these enhanced models may 

underestimate extreme losses. Extreme Value Theory (EVT), particularly through the Generalized 

Pareto Distribution (GPD), enhances tail risk modeling by focusing on exceedances beyond a high 

threshold (Braione and Scholtes, 2016; Majumder, 2018). When applied to GARCH-filtered residuals, 

EVT improves VaR estimation under stress conditions, which is crucial for insurers operating under 

solvency requirements (Chen et al., 2024; Okou and Amar, 2023). 

Insurers require methods that capture interdependence among assets, moving beyond 

univariate modeling. Correlation matrices often fail to reflect nonlinear and time-varying 

relationships, particularly during periods of financial distress. Copula models address this limitation 

by constructing flexible joint distributions. R-vine copulas are well suited for modeling complex 

dependency structures using sequences of bivariate copulas (Brechmann and Czado, 2013). Their 

dynamic extensions allow dependencies to evolve over time, which is essential for capturing 

contagion effects and shifts in market conditions (Raza et al., 2025; Zhou and Ji, 2021). When 

integrated with GARCH-based marginal models, this approach offers significant advantages for 

multivariate risk modeling. It enhances portfolio-level risk assessment and supports the design of 

capital-efficient, ESG-aligned investment strategies. 

This study integrates ARMA–GJR–GARCH models with skewed Student-t innovations, EVT, 

and dynamic R-vine copulas into a unified framework tailored for insurer portfolios. Capturing 

volatility dynamics, tail risks, and evolving interdependencies, the framework improves VaR 

estimation and Sharpe ratio assessment under both normal and stressed conditions (Ahmadi et al., 

2023; Han and Li, 2022; Jeleskovic et al., 2024). Using daily data on Thai financial assets and green 

bonds from 2014 to 2024, the study evaluates VaR forecasts and rolling Sharpe ratios across optimized 

portfolios. Results reveal that green bond inclusion enhances insurer portfolio performance, 

strengthens capital adequacy, improves risk-adjusted returns through diversification, and supports 

alignment with Thailand’s sustainability goals. This research offers practical insights for risk 

practitioners and regulators in emerging markets. The proposed framework enables more accurate 

capital requirement calculations and supports ESG integration within supervisory investment 

guidelines, crucial as Thai regulatory guidance, market maturity, and sustainability commitments 

rapidly evolve. 

The remainder of this paper is structured as follows: Section 2 describes the dataset and 

methodology, including model specifications and validation procedures; Section 3 presents empirical 

findings and discussions on VaR forecasting, backtesting, and portfolio performance analysis; and 

Section 4 concludes with key findings, policy implications, and suggestions for future research 

directions. 
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2. Domain of Experiment and Methodology 

This study analyzes a comprehensive dataset of 2,869 daily observations spanning January 1, 

2014, to December 31, 2024, using logarithmic returns. Logarithmic returns were calculated using the 

formula 𝑟𝑡 = l n(𝑃𝑡/𝑃𝑡−1), where 𝑃𝑡  is the price at time t and 𝑃𝑡−1  is the price at time t−1. The 

dataset encompasses a variety of significant Thai financial assets: the SET index, the Dubai crude oil, 

the Thai bullion gold, the 3–7-year government bond index, the 7–10-year government bond index, 

the JPY/THB exchange rate, the property sector index, and the Bloomberg Barclays MSCI US green 

bond index. Data obtained from Datastream International and Bloomberg exhibit statistical 

properties typical of financial time series. With the exception of the exchange rate, the series display 

negative skewness, indicating a higher likelihood of large negative returns. High kurtosis values 

confirm leptokurtosis in most series, indicating a greater concentration around the mean and fatter 

tails than expected under normality, suggestive of increased extreme events. The Jarque–Bera (JB) 

test indicates that gold returns are normally distributed, unlike the other assets. The Augmented 

Dickey–Fuller (ADF) test results confirm that all series are stationary. Table 1 presents the summary 

statistics of daily returns for all eight assets examined in this study. 

Table 1. Summary statistics for eight assets. 

 
SET 

Index 

Dubai 

Crude 

Oil 

Thai 

Bullion 

Gold 

3–7 

TTM 

GOV      

7–10 

TTM 

GOV      

JPY/THB 

Exchange 

Rate 

Property 

Sector 

Index 

Bloomberg 

Barclays 

MSCI US 

Green 

Bond 

Index 

Mean 0.00015 -0.00012 0.00028 0.00011 0.00015 -0.00012 0.00007 0.00007 

Median 0.00000 0.00050 0.00003 0.00011 0.00013 -0.00017 0.00000 0.00005 

Maximum 0.07656 0.18789 0.04715 0.00859 0.01651 0.04207 0.08322 0.01957 

Minimum -0.11384 -0.31530 -0.05498 -0.00947 -0.01768 -0.03333 -0.14303 -0.02087 

SD 0.00878 0.02492 0.00846 0.00107 0.00230 0.00554 0.01126 0.00286 

Skewness -1.606 -0.748 -0.045 -0.509 -0.366 0.238 -1.351 -0.203 

Kurtosis 24.820 13.871 3.079 10.091 6.154 4.741 20.541 4.413 

JB 58,149.93 14,393.36 1.71 6,134.58 1,253.54 389.60 3,7656.12 258.45 

JB (p-

value) 
0.000 0.000 0.427 0.000 0.000 0.000 0.000 0.000 

ADF -13.10 -13.41 -13.54 -11.66 -12.02 -14.61 -13.42 -13.37 

ADF (p-

value) 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2.1. Autoregressive Moving Average Glosten–Jagannathan–Runkle Generalized Autoregressive Conditional 

Heteroskedasticity with Skewed Student-t Innovations 

This study addresses key complexities in financial time series, such as volatility clustering, fat 

tails, and asymmetric shock responses, across eight asset classes, including green bonds. To model 

individual asset dynamics, it adopts the Autoregressive Moving Average–Glosten–Jagannathan–

Runkle Generalized Autoregressive Conditional Heteroskedasticity (ARMA–GJR–GARCH) model 

with skewed Student-t innovations, jointly modeling the conditional mean and variance of returns. 

Portfolios of five and six assets (including green bonds) are then constructed by maximizing the 

Sharpe ratio using Dynamic R-vine copulas. This integrated approach offers a flexible and robust 
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structure for volatility modeling and risk forecasting. To capture excess kurtosis and skewness 

common in financial return distributions, the innovation term follows the skewed Student-t 

distribution introduced by Hansen (1994). This distribution accounts for both fat tails and 

asymmetry, enhancing the precision of Value-at-Risk (VaR) estimates under both normal and 

extreme market conditions. 

The GJR component is central to capturing asymmetric volatility in response to shocks, an effect 

often observed in financial markets. In the general ARMA(m,n)–GJR–GARCH(p,q) model, p 

represents the number of ARCH terms (lagged squared residuals) and asymmetry terms, while q 

denotes the number of GARCH terms (lagged conditional variances). Estimating mean and variance 

with skewed Student-t innovations, the model is given by the following: 

{
𝑟𝑡  =  𝜇 +∑ ∅𝑖

𝑚

𝑖=1
 𝑟𝑡−𝑖 +∑ 𝜃𝑗 

𝑛

𝑗=1
𝜀𝑡−𝑗 + 𝜀𝑡

𝜀𝑡  =  𝜎𝑡𝑧𝑡 , 𝑧𝑡~𝑆𝑘𝑒𝑤𝑒𝑑 − 𝑡(0,1, 𝜈, 𝜂)       

 (1) 

In this model, 𝑟𝑡 represents the return of the time series at time t, and 𝜇 is the constant mean. 

The autoregressive coefficients ∅𝑖 capture the influence of past returns (AR part of order m), while 

the moving average coefficients 𝜃𝑗 account for the impact of past shocks (MA part of order n). The 

innovation term 𝜀𝑡  represents unpredictable shocks, modeled as the product of the conditional 

standard deviation 𝜎𝑡  and a shock 𝑧𝑡 , which follows a skewed Student-t distribution with zero 

mean and unit variance. 

The skewed Student-t distribution is parameterized by degrees of freedom 𝜈 > 2 to ensure finite 

variance and a skewness parameter 𝜂 ∈ (−1, 1) , where 𝜂 = 0  corresponds to the symmetric 

Student-t distribution. Its density function 𝑓(𝑧𝑡; 𝜈, 𝜂) is defined as follows: 

𝑓(𝑧𝑡; 𝜈, 𝜂) =

{
 
 

 
 
𝑏𝑐 [1 +

1

𝜈 − 2
(
𝑏𝑧𝑡 + 𝑎

1 − 𝜂
)

2

]

−
𝜈+1

2

, 𝑧𝑡 < −
𝑎

𝑏

𝑏𝑐 [1 +
1

𝜈 − 2
(
𝑏𝑧𝑡 + 𝑎

1 + 𝜂
)

2

]

−
𝜈+1

2

, 𝑧𝑡 ≥ −
𝑎

𝑏

 (2) 

where constants 𝑎, 𝑏, and 𝑐 are given by the following: 

{
  
 

  
 𝑎 = 4𝜂𝑐

𝜈 − 2

𝜈 − 1
                       

𝑏 = √1+ 3𝜂2 − 𝑎2            

𝑐 =
Γ (
𝜈 + 1

2 )

√𝜋(𝜈 − 2) ⋅ Γ (
𝜈
2)
       

 (3) 

The conditional variance 𝜎𝑡
2 equation under the GJR–GARCH(p,q) specification is as follows: 

 𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖

𝑝

𝑖=1
𝜀𝑡−𝑖

2 +∑ 𝛾𝑖𝜀𝑡−𝑖
2

𝑝

𝑖=1
𝐼{𝜀𝑡−𝑖<0}

+ ∑ 𝛽𝑗
𝑞

𝑗=1
𝜎𝑡−𝑗

2  (4) 

The constant 𝜔 helps ensure the variance remains positive. The ARCH terms 𝛼𝑖 represent the 

effects of lagged squared shocks, while the GARCH terms 𝛽𝑗 capture the persistence of volatility 

through lagged conditional variances. The asymmetry terms 𝛾𝑖, together with the indicator function 

𝐼{𝜀𝑡−𝑖<0}, allow the model to distinguish between the effects of positive and negative shocks. This 

indicator equals 1 when the lagged shock is negative, and 0 otherwise. 

Under this specification, a positive shock contributes 𝛼𝑖𝜀𝑡−𝑖
2  to the conditional variance, 

whereas a negative shock contributes (𝛼𝑖 + 𝛾𝑖)𝜀𝑡−𝑖
2 . A positive and statistically significant 𝛾𝑖 

indicates a leverage effect, meaning that negative shocks have a greater impact on volatility than 

positive shocks of the same magnitude. The GJR–GARCH model is particularly relevant for 

analyzing assets like green bonds, which may react asymmetrically to environmental developments 

or policy shifts. While the ARMA component captures serial dependence in returns, GJR–GARCH 

effectively models both volatility persistence and its asymmetric responses. 
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Model selection involved a systematic search over ARMA–GJR–GARCH specifications by 

varying the parameters m, n, p, and q. Each model was estimated using pseudo-maximum likelihood 

and validated through residual diagnostics to ensure zero mean, homoscedasticity, and no 

autocorrelation. The model with the lowest Akaike Information Criterion (AIC) was selected, 

reflecting the best trade-off between fit and simplicity. 

2.2. Extreme Value Theory 

In financial risk management, accurately capturing extreme tail behavior is essential for stress 

testing and capital adequacy. This study first filters serial dependence and conditional 

heteroskedasticity using ARMA(m,n)-GJR-GARCH(p,q) models with skewed Student-t innovations. 

The resulting standardized residuals 𝑧𝑡 = 𝜀𝑡/𝜎𝑡 are then used for tail modeling. Therefore, this study 

adopts Extreme Value Theory (EVT), specifically the Peak Over Threshold (POT) method, to model 

the tail distribution of these standardized residuals. 

EVT offers a more refined framework for analyzing extreme outcomes and estimating tail-

related risk measures such as VaR, especially under stressed conditions (Degen and Embrechts, 2008; 

Reiss and Thomas, 2007). Accurately modeling such extreme movements is crucial for reliable risk 

assessment and capital determination. The effectiveness of EVT in financial applications is well-

documented, with notable contributions by Ayusuk and Sriboonchitta (2015), Melina et al. (2024), 

Muela et al. (2023), Roy (2022), Singh et al. (2013), and Uluceviz (2025). 

Building on this foundation, the present study incorporates the POT method alongside the 

ARMA–GJR–GARCH modeling framework to analyze the tail behavior of standardized residuals 

using the Generalized Pareto Distribution (GPD). This integrated approach enhances the 

understanding of extreme market events in light of underlying volatility dynamics and supports 

more accurate estimation of capital needs. 

2.2.1. Peak Over Threshold 

To estimate one-day VaR under stressed conditions, this study applies the POT method to eight 

financial assets, including green bonds. Following Nortey et al. (2015), asset returns are first filtered 

using ARMA–GJR–GARCH models to capture time-varying volatility. Standardized residuals are 

then used as input for tail risk modeling. This approach is consistent with established EVT 

applications in finance (Rosso, 2015) and enhances the robustness of stress testing and capital 

requirement assessments. 

Let 𝑋 denote a sequence of financial returns with cumulative distribution function 𝐹(𝑥), and 

let 𝑢 be a predefined high threshold. POT focuses on the distribution of exceedances above this 

threshold, specifically the conditional distribution of 𝑋  given that 𝑋 > 𝑢. An exceedance occurs 

when 𝑋 > 𝑢. Defining the excess as 𝑦 = 𝑋 − 𝑢, the conditional distribution function 𝐹𝑢(𝑦) is given 

by the following: 

𝐹𝑢(𝑦) = Pr((𝑋 − 𝑢) ≤ 𝑦|𝑋 > 𝑢) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢)
, 0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢 (5) 

where 𝑥𝐹  is the right endpoint of 𝐹. 

The POT method assumes a sequence of independent and identically distributed (i.i.d.) losses 

𝑋𝑖 . It models the conditional excess distribution 𝐹𝑢(𝑦)  for values exceeding the threshold 𝑢 

(Magnou, 2017). As noted by Gharib et al. (2017), such exceedances are often modeled using the 

Generalized Pareto Distribution (GPD), which is well-suited for capturing extreme tail risk and is 

critical in stress testing and VaR estimation (Basu, 2011). The GPD is widely used in finance to model 

low probability events (Sharpe and Juarez, 2019). 

Following the ARMA–GJR–GARCH modeling, the next step is to characterize the distribution 

of extreme values for each asset. The goal is to find a suitable parametric distribution to model 𝐹𝑢(𝑦), 

with threshold 𝑢  chosen to ensure that excesses are well-approximated by the GPD. Given the 

sensitivity of GPD quantiles to threshold choice (Muela et al., 2023), a sample mean excess function 
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can be used to determine the threshold (Nurhadi, 2016). Accurate tail modeling is particularly critical 

in this study, as it involves financial assets such as green bonds. Underestimating risk for these assets 

could lead to significant misjudgments. 

The foundational work of Balkema and De Haan (1974) and Pickands (1975) demonstrates that 

given a sufficiently high threshold 𝑢, the distribution of exceedances 𝑦 = 𝑋 − 𝑢, conditional on 𝑋 >

𝑢, converges to the GPD. This convergence is mathematically expressed as follows: 

𝐺𝜉,𝛽(𝑦) = {
1 − (1 +  𝜉 

𝑦

𝛽
)
−
1
𝜉
       𝑖𝑓 𝜉 ≠ 0 

1 − 𝑒
−
𝑦
𝛽                       𝑖𝑓 𝜉 = 0 

 (6) 

where 𝜉 and 𝛽 represent the shape and scale parameters, respectively. The flexibility of the GPD 

lies in its ability to model various tail behaviors: when 𝜉 > 0, it models heavy-tailed distributions 

(e.g., Pareto distributions); when 𝜉 → 0, it simplifies to the exponential distribution; and when 𝜉 <

0, it reflects a bounded, short-tailed distribution, sometimes referred to as the Pareto Type II. 

2.2.2. Estimation of Value-at-Risk 

Traditional risk measures often fail to adequately capture the dynamics of financial time series 

during extreme market conditions (Omari et al., 2020). EVT provides a robust framework for 

modeling the tails of distributions, making it especially valuable for estimating VaR (Zhang and 

Zhang, 2016). 

Given that the exceedances over a sufficiently high threshold 𝑢 converge in distribution to the 

GPD, the cumulative distribution function 𝐹(𝑥) for values above 𝑢 can be expressed as follows: 

𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐹𝑢(𝑦) + 𝐹(𝑢), 𝑋 > 𝑢 (7) 

where 𝐹𝑢(𝑦) is the distribution of exceedances 𝑦 = 𝑋 − 𝑢 given 𝑋 > 𝑢. 

Substituting the GPD approximation for 𝐹𝑢(𝑦), the tail of 𝐹(𝑥) becomes: 

𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐺𝜉,𝛽(𝑥 − 𝑢) + 𝐹(𝑢), 𝑋 > 𝑢  (8) 

The empirical estimator of the tail distribution is then: 

𝐹̂(𝑥) = 1 −
𝑁𝑢
𝑛
(1 + 𝜉

(𝑥 − 𝑢)

𝛽̂
)

−
1

𝜉̂
, 𝑋 > 𝑢 (9) 

where 𝑛 is the total number of observations, 𝑁𝑢 is the number of exceedances above the threshold 

𝑢 , and 𝜉  and 𝛽̂  are the maximum likelihood estimates of the shape and scale parameters, 

respectively. 

To compute the unconditional VaR at a confidence level 𝑞 > 𝐹(𝑢), Equation (9) can be inverted 

to obtain the following: 

VaR𝑞 = 𝑢 +
𝛽̂

𝜉
[(
𝑛

𝑁𝑢
(1 − 𝑞))

−𝜉̂

− 1] (10) 

This formula provides the estimated VaR at quantile 𝑞, incorporating the tail behavior beyond 

the threshold 𝑢. The POT approach under EVT is particularly suited for modeling such tail risks in 

financial stress testing. 

2.3. Dynamic R-Vine Copulas: Capturing Time-Varying Dependencies 

This section introduces the dynamic Regular vine (R-vine) copula model to capture evolving 

dependence structures among financial assets. Unlike static copulas, the dynamic R-vine framework 

reflects time-varying interdependencies, which are essential for modeling volatility clustering and 

asymmetric co-movements in financial markets (Zhou and Ji, 2021). R-vine copulas, introduced by 

Bedford and Cooke (2001, 2002), decompose high-dimensional dependence into structured pairs of 
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bivariate copulas, enabling flexibility and modularity. They outperform traditional copulas in 

representing conditional and asymmetric dependencies. 

The Student-t copula is used due to its ability to capture symmetric tail dependence, critical for 

modeling joint extreme events like market crashes. Unlike the Gaussian copula, it incorporates both 

correlation (𝜌) and degrees of freedom (𝜈) parameters, enhancing its relevance in capital adequacy 

and risk management. In the dynamic copula framework, copula parameters evolve over time using 

a rolling window maximum likelihood estimation (MLE) method. The model recalibrates copula 

parameters over a moving window of observations, instead of specifying a time-series process. This 

approach allows each bivariate pair to exhibit unique, time-varying dependence patterns (Yang et al., 

2021), enabling a granular and adaptive representation of joint dynamics. 

In this study, the modeling process begins by estimating marginal distributions using ARMA–

GJR–GARCH models with skewed Student-t innovations (see Section 2.1). Standardized residuals 

from each model are tested to ensure they are i.i.d., a prerequisite for copula modeling (Brechmann 

and Czado, 2013). These residuals are then transformed via the probability integral transform to 

produce uniform margins for the R-vine copulas. To capture time-varying dependence, copula 

parameters are subsequently estimated using a rolling window approach. 

2.3.1. Sklar’s Theorem and the Dynamic R-Vine Framework 

Sklar’s theorem (Sklar, 1959) underpins copula theory by decoupling marginal distributions 

from their joint dependence structure. For asset returns at time 𝑡 , the joint distribution 

𝐻𝑡(𝑟1,𝑡 , 𝑟2,𝑡 , … , 𝑟𝑑,𝑡  ) is expressed as follows: 

𝐻𝑡(𝑟1,𝑡 , 𝑟2,𝑡 , … , 𝑟𝑑,𝑡  )  = 𝐶𝑡(𝐹1,𝑡(𝑟1,𝑡), … , 𝐹𝑑,𝑡(𝑟𝑑,𝑡); 𝜃𝑡) (11) 

where 𝐹𝑖,𝑡(𝑟𝑖,𝑡) represents the time-varying marginal distribution function of asset 𝑖 at time 𝑡, and 

𝜃𝑡 denotes the copula parameter vector at time 𝑡, capturing the evolving dependence structure. 

The returns 𝑟𝑖,𝑡  are modeled using ARMA–GJR–GARCH processes with skewed Student-t 

innovations. The standardized residuals 𝑧𝑖,𝑡 are transformed into uniform variables 𝑢𝑖,𝑡 via 𝑢𝑖,𝑡 =

𝐹𝑖,𝑡(𝑧𝑖,𝑡). 

These transformed values are used as inputs to the R-vine copulas, which models their 

conditional dependence through a series of bivariate copulas structured in hierarchical trees. 

Parameters 𝜃𝑡 are re-estimated over time using a 600-day rolling window, allowing the model to 

adjust to market dynamics. 

2.3.2. R-Vine Copula Structure and Hierarchical Decomposition 

The R-vine copula decomposes the joint copula 𝐶𝑡  into a product of conditional bivariate 

copulas, enabling flexible modeling of high-dimensional dependencies. The joint copula density 

𝑐𝑡(𝑢1,𝑡 , . . . , 𝑢𝑑,𝑡) is decomposed into conditional bivariate copulas as follows: 

𝑐𝑡(𝑢1,𝑡 , . . . , 𝑢𝑑,𝑡) = ∏ ∏ 𝑐𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒)(𝑒∈𝐸𝑘
𝐹(𝑢𝑗(𝑒),𝑡|𝑢𝐷(𝑒),𝑡), 𝐹(𝑢𝑙(𝑒),𝑡|𝑢𝐷(𝑒),𝑡)

𝑑−1
𝑘=1 ; 𝜃𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑡)      (12) 

Each term 𝑐𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒)(⋅)  denotes a bivariate copula density for variables 𝑗(𝑒)  and 𝑙(𝑒) , 

conditional on the set 𝐷(e), where 𝜃𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑡 is the time-varying copula parameter at time 𝑡, and 

𝐸𝑘 denotes the set of edges in tree 𝑘 of the vine structure, with each level representing conditional 

dependencies. The conditional distributions 𝐹(𝑢𝑗(𝑒),𝑡|𝑢𝐷(𝑒),𝑡)  and 𝐹(𝑢𝑙(𝑒),𝑡|𝑢𝐷(𝑒),𝑡)  are computed 

recursively. 

The hierarchical structure is encoded in a sequence of trees 𝑉𝑡 = (𝑇1,𝑡 , 𝑇2,𝑡 , … , 𝑇𝑑−1,𝑡), where each 

tree 𝑇𝑘,𝑡 is constructed from edges in 𝑇𝑘−1,𝑡, and all trees obey the proximity condition to ensure 

model validity. The proximity condition requires that, for each tree 𝑇𝑘,𝑡, an edge can be formed only 

between nodes that share a common node in the previous tree 𝑇𝑘−1,𝑡, thereby ensuring consistent 

conditional dependence modeling. This hierarchical structure enables tailored modeling of both 

pairwise and conditional dependencies, enhancing the flexibility and accuracy of multivariate 

dependence representation (Bedford and Cooke, 2001, 2002). 
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2.3.3. Copula Family 

All bivariate copulas 𝑐𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒)(⋅)  used in the R-vine structure are specified as bivariate 

Student-t copulas due to their ability to capture symmetric tail dependence, which is crucial in 

modeling joint extreme market movements. The Student-t copula with correlation parameter 𝜌 and 

degrees of freedom 𝜈 is defined as follows: 

𝐶𝜌,𝜈
𝑡 (𝑢1, 𝑢2) = 𝑡𝜌,𝜈 (𝑡𝜈

−1(𝑢1), 𝑡𝜈
−1(𝑢2)) (13) 

where 𝑡𝜈
−1(⋅) is the inverse cumulative distribution function (quantile function) of the univariate 

Student-t distribution with 𝜈  degrees of freedom, and 𝑡𝜌,𝜈(⋅,⋅)  is the cumulative distribution 

function of the bivariate Student-t distribution with correlation 𝜌 and degrees of freedom 𝜈. 

The corresponding copula density function is as follows: 

𝑐𝜌,𝜈
𝑡 (𝑢1, 𝑢2) =  

𝑓𝜌,𝜈 (𝑡𝜈
−1(𝑢1), 𝑡𝜈

−1(𝑢2))

𝑓𝜈(𝑡𝜈
−1(𝑢1)) ⋅ 𝑓𝜈(𝑡𝜈

−1(𝑢2))
 (14) 

where 𝑓𝜌,𝜈(⋅,⋅) is the bivariate Student-t density, and 𝑓𝜈(⋅) is the univariate Student-t density. These 

properties enable the Student-t copula to jointly model extreme outcomes in both tails of the 

distribution, making it particularly suitable for financial risk modeling, including VaR forecasts and 

capital adequacy analyses, as discussed in the empirical section (Demarta and McNeil, 2005). 

2.3.4. Kendall’s Tau and Tail Dependence 

To initialize and evaluate dependencies within the R-vine framework, Kendall’s tau is used for 

its robustness and its direct relationship with copula parameters. For a bivariate copula 𝐶(𝑢1, 𝑢2), 

Kendall’s tau (𝜏) defined as follows: 

𝜏 = 4∫ ∫ 𝐶(𝑢1, 𝑢2) ∙ 𝑐(𝑢1, 𝑢2)d𝑢1𝑑𝑢2

1

0

1

0

− 1 (15) 

where 𝑐(𝑢1, 𝑢2) =  
𝜕2𝐶(𝑢1,𝑢2)

𝜕𝑢1𝜕𝑢2
 is the copula density, assuming it exists. 

Tail dependence coefficients further quantify the likelihood of simultaneous extreme outcomes. 

The upper and lower tail dependence coefficients, 𝜆𝑈 and 𝜆𝐿, are defined as follows: 

{
 

 𝜆𝑈 = 𝑙𝑖𝑚
𝑡→1−

1 − 2𝑡 + 𝐶(𝑡, 𝑡)

1 − 𝑡

𝜆𝐿 = 𝑙𝑖𝑚
𝑡→0+

𝐶(𝑡, 𝑡)

𝑡
                

 (16) 

The Student-t copula employed in this study exhibits symmetric, non-zero tail dependence, 

offering robustness in modeling extreme co-movements (Joe, 2014; Nelsen, 2006). 

2.3.5. Estimation of Time-Varying Copula Parameters 

To capture the evolving dependence structure among financial assets, time-varying copula 

parameters 𝜃𝑡  are estimated using a rolling window maximum likelihood estimation (MLE) 

procedure. At each time point 𝑡, the copula parameters are estimated over a moving window of size 

𝑊 (e.g., 2,269 trading days), which advances forward by one day throughout the sample period. The 

local log-likelihood function at time 𝑡 is defined as follows: 

𝐿(𝜃𝑡) = ∑ ∑ ∑ 𝑙𝑜𝑔[𝑐𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒)(𝐹(𝑢𝑗(𝑒),𝑠|𝑢𝐷(𝑒),𝑠), 𝐹(𝑢𝑙(𝑒),𝑠|𝑢𝐷(𝑒),𝑠); 𝜃𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑠)]

𝑡

𝑠=𝑡−𝑊+1𝑒∈𝐸𝑘

𝑑−1

𝑘=1

 (17) 

where 𝑐𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒)(⋅,∙; 𝜃) is the bivariate copula density for edge 𝑒 in tree 𝑘, parameterized by 𝜃; 

𝜃𝑗(𝑒),𝑘(𝑒)|𝐷(𝑒),𝑠  denotes the copula parameter vector at time 𝑠  for the conditional pair 

(𝑗(𝑒), 𝑙(𝑒)|𝐷(𝑒)); 𝐸𝑘  denotes the set of edges in tree 𝑘 of the vine structure; and 𝐹(𝑢𝑗(𝑒),𝑠|𝑢𝐷(𝑒),𝑠) 
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and 𝐹(𝑢𝑙(𝑒),𝑠|𝑢𝐷(𝑒),𝑠) are the recursively computed conditional marginal distributions of the pseudo-

observations (see Section 2.3.2). 

This framework accommodates a wide range of bivariate copula families, including Gaussian, 

Clayton, Gumbel, Frank, and Student-t copulas. The copula family and associated parameters for 

each pair are selected based on model fit criteria such as the Akaike Information Criterion (AIC) or 

Bayesian Information Criterion (BIC). 

If the Student-t copula is selected for a given bivariate pair, the log-likelihood function becomes 

the following: 

𝐿(𝜃𝑡) = ∑ ∑ ∑ 𝑙𝑜𝑔[𝑐𝑡(𝐹(𝑢𝑗(𝑒),𝑠|𝑢𝐷(𝑒),𝑠), 𝐹(𝑢𝑙(𝑒),𝑠|𝑢𝐷(𝑒),𝑠); 𝜌𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑠, 𝜈𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑠)]

𝑡

𝑠=𝑡−𝑊+1𝑒∈𝐸𝑘

𝑑−1

𝑘=1

 (18) 

where 𝜌𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑠  is the time-varying correlation parameter; 𝜈𝑗(𝑒),𝑙(𝑒)|𝐷(𝑒),𝑠  is the degrees of 

freedom; 𝑐𝑡(⋅,⋅, 𝜌, 𝜈) is the bivariate Student-t copula density function, defined in Section 2.3.3; and 

the conditional marginals 𝐹(𝑢𝑗(𝑒),𝑠|𝑢𝐷(𝑒),𝑠) and 𝐹(𝑢𝑙(𝑒),𝑠|𝑢𝐷(𝑒),𝑠) are computed recursively as before. 

This methodological framework and estimation strategy closely follow Aas et al. (2009) and 

Brechmann and Czado (2013). 

2.3.6. Model Selection and Vine Structure 

The vine structure is selected using the Dißmann et al. (2013) algorithm, which uses empirical 

Kendall’s tau and Akaike Information Criterion (AIC) to guide pair-copula selection and tree 

construction. While the flexible R-vine is the default, a D-vine may be chosen when a natural 

economic ordering exists. This data-driven approach ensures both statistical fit and economic 

interpretability. 

2.4. Forecasting Method 

This study adopts a rolling window approach with a fixed size of 2,269 daily observations to 

estimate ARMA–GJR–GARCH, ARMA–GJR–GARCH–EVT, and dynamic R-vine copula models. At 

each step, the window advances by one day to re-estimate parameters and produce one-step-ahead 

forecasts. The marginal models generate forecasts of conditional means and variances for all eight 

assets. Based on these forecasts, two types of portfolios comprising 𝑑 assets, where 𝑑 = 5 and 6 

(with the six-asset portfolio including a green bond), are constructed from the full set of eight. 

Concurrently, the dynamic R-vine copula is estimated using standardized residuals, and S pseudo-

random samples are drawn via inverse Rosenblatt sampling to simulate joint returns. These 

simulations yield time-varying forecasts of portfolio means and covariances, dynamically updating 

the risk and return structure over 600 out-of-sample observations. 

2.5. Value-at-Risk Measures 

This section introduces the Value-at-Risk (VaR) framework used to quantify potential portfolio 

losses under normal market conditions. VaR estimates are based on ARMA–GJR–GARCH and 

ARMA–GJR–GARCH–EVT forecasts, together with simulations from a dynamic R-vine copula, 

forming the basis for forward-looking risk and capital adequacy assessment. 

2.5.1. ARMA-GJR-GARCH VaR (with skewed Student-t) 

To quantify market risk, one-day-ahead VaR estimates are obtained from the conditional mean 

and variance forecasts produced by the ARMA-GJR-GARCH model. Let 𝜇𝑡+1 and 𝜎𝑡+1
2  denote the 

conditional mean and variance of asset returns at time 𝑡 + 1. Assuming the standardized residuals 

follow a skewed Student-t distribution (Hansen, 1994), the VaR at the (1 − 𝛼) confidence level is 

computed as follows: 

VaR𝑡+1
𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1𝑞𝛼,𝑠𝑘𝑒𝑤𝑒𝑑−𝑡 (19) 
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where VaR𝑡+1
𝛼  is the VaR for the next period 𝑡 + 1 at a confidence level of 𝛼, 𝜇𝑡+1 is the conditional 

mean return forecast from the ARMA model for the next period 𝑡 + 1 , 𝜎𝑡+1  is the conditional 

standard deviation forecast from the GJR-GARCH model for the next period 𝑡 + 1, and 𝑞𝛼,𝑠𝑘𝑒𝑤𝑒𝑑−𝑡 

is the 𝛼-quantile of the standardized skewed Student’s t-distribution with estimated skewness (𝜂) 

and degrees of freedom (𝜈) parameters. A 95% confidence level is applied for one-day VaR, in line 

with Thai regulations. For 10-day VaR, consistent with Basel’s 99% confidence level, a rolling window 

generates 10 one-step-ahead forecasts from the ARMA–GJR–GARCH model. 

2.5.2. ARMA-GJR-GARCH-EVT VaR 

To estimate one-day-ahead VaR under stressed conditions, this study combines ARMA–GJR–

GARCH filtering with EVT. Returns are first modeled using ARMA–GJR–GARCH with skewed 

Student-t innovations, and the resulting standardized residuals are fitted using the POT method with 

a GPD to capture tail extremes. To assess capital requirements during market stress, the one-day VaR 

at time 𝑡 + 1 is estimated at a 97.5% confidence level. This tail-focused approach enhances risk 

quantification by better modeling the distribution of extreme losses. The one-day VaR at time 𝑡 + 1 

derived from the conditional EVT model is given by the following: 

VaR𝑡+1
𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1 [𝑢 +

𝛽̂

𝜉
[(
𝑛

𝑁𝑢
(1 − 𝑞))

−𝜉̂

− 1]] (20) 

where 𝜇𝑡+1  and 𝜎𝑡+1 are the one-step-ahead forecasts of the conditional mean and standard 

deviation, respectively; 𝑛 is the total number of observations; 𝑁𝑢  is the number of observations 

exceeding the threshold 𝑢; and 𝜉 and 𝛽̂ are the estimated shape and scale parameters. This two-

stage filtering and tail-modeling framework follows the extreme value approach of McNeil and Frey 

(2000). 

2.5.3. Dynamic R-Vine Copula VaR 

To estimate VaR under evolving market conditions, this study applies a dynamic R-vine copula 

to model time-varying dependencies among portfolios of five and six assets, each modeled using 

ARMA–GJR–GARCH with skewed Student-t innovations. The one-day portfolio VaR at a confidence 

level 𝛼 is computed using a Monte Carlo simulation. At each time 𝑡, a set of 𝑆 pseudo-random 

return vectors, {𝑟𝑡+1
(𝑠) }

𝑠=1

𝑆

, is generated from the dynamic R-vine copula, conditioned on the current 

marginal forecasts. Each 𝑟𝑡+1
(𝑠)  represents the 𝑠𝑡ℎ  simulated return vector drawn from the copula 

model. The simulated portfolio returns are then computed as follows: 

𝑅𝑡+1
(𝑠) = 𝑤𝑇𝑟𝑡+1

(𝑠)  (21) 

where 𝑤  is the vector of portfolio weights. The empirical 𝛼-quantile of the simulated portfolio 

returns {𝑅𝑡+1
(𝑠) }

𝑠=1

𝑆

 provides the one-day portfolio VaR estimate at time 𝑡 + 1: 

VaR𝑡+1
𝛼 = −𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝛼 ({𝑅𝑡+1

(𝑠) }
𝑠=1

𝑆

) (22) 

where 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝛼  denotes the empirical quantile at level 𝛼, capturing left-tail portfolio risk. This 

simulation-based dynamic copula framework builds on the methodology developed by Aas et al. 

(2009) and Brechmann and Czado (2013). 

This study constructs four portfolios—two for life insurers and two for non-life insurers—each 

comprising five conventional assets or six assets including green bonds. All portfolios are designed 

with two key objectives: duration matching, to align asset durations with insurer liabilities, and 

Sharpe ratio maximization, to optimize risk-adjusted returns. The optimization respects Thai OIC 

investment limits and standard constraints ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝑤𝑖 ≥ 0, where 𝑤𝑖  is the weight of the 

ith asset. 
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Using the optimal weights, the one-day 95% VaR is estimated via a dynamic R-vine copula, 

which captures time-varying dependencies and non-Gaussian features. These estimates serve as 

proxies for capital requirements. Comparing five- and six-asset portfolios for both life and non-life 

insurers allows this study to assess whether green bond inclusion reduces capital needs and improves 

Sharpe ratios under evolving market conditions. This analysis is consistent with Markowitz portfolio 

theory (1952), adapted to the regulatory and liability constraints specific to the insurance sector. 

2.6. Backtesting 

Backtesting evaluates the accuracy of VaR models by comparing predicted losses with actual 

outcomes. This study applies two widely used methods: Kupiec’s unconditional coverage test and 

Christoffersen’s conditional coverage test, which assess model reliability from different perspectives 

(Ziggel et al., 2014). 

2.6.1. Kupiec’s Unconditional Coverage Test 

Kupiec’s test assesses whether the observed number of VaR exceedances aligns with the 

expected frequency implied by the model’s confidence level (Kupiec, 1995). Let 𝑁 be the number of 

exceedances over 𝑇 trading days, and let 𝛼 be the probability of an exceedance, dictated by the 

confidence level of the VaR model. Under the null hypothesis 𝐻0, 𝑁 follows a binomial distribution 

with parameters (𝑇, 𝛼). The likelihood ratio test statistic is calculated as follows: 

𝐿𝑅𝑈𝐶 = −2 ln  [
(1 − 𝛼)𝑇−𝑁(𝛼)𝑁

(1 −
𝑁
𝑇
)
𝑇−𝑁

 (
𝑁
𝑇
)
𝑁 ]   ∼   𝜒1 

2  (23) 

If the calculated 𝐿𝑅𝑈𝐶  exceeds the critical value from the chi-squared distribution with 1 degree 

of freedom, the null hypothesis is rejected. This indicates that the model’s predicted exceedance 

frequency is inaccurate and may either underestimate or overestimate risk. 

2.6.6. Christoffersen’s Conditional Coverage Test 

While Kupiec’s test evaluates whether the overall frequency of VaR exceedances conforms to the 

model’s confidence level, it does not consider the timing or sequence of those exceedances. 

Christoffersen’s conditional coverage test addresses this limitation by assessing whether exceedances 

are independently distributed over time (Christoffersen, 1998). The null hypothesis states that the 

likelihood of an exceedance on day 𝑡 + 1 is unaffected by whether one occurred on day 𝑡. To test 

this, the number of transitions between exceedance states across consecutive days is recorded. 

Specifically, 𝑛𝑖𝑗 represents the number of transitions from state 𝑖 on day 𝑡 to state 𝑗 on day 𝑡 + 1, 

where 𝑖  and 𝑗  can be either 0 (no exceedance) or 1 (exceedance). This structure enables the 

estimation of conditional probabilities to determine whether exceedances occur independently over 

time. Based on these transitions, the following conditional probabilities are defined: 

𝜋01 = 𝑃(𝐼𝑡+1 = 1|𝐼𝑡 = 0)  = Pr(𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 | 𝑁𝑜 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑑𝑎𝑦)  

𝜋11 = 𝑃(𝐼𝑡+1 = 1|𝐼𝑡 = 1) = Pr(𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 | 𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 𝑡𝑜𝑑𝑎𝑦)  

Under the assumption of independence, 𝜋01 and 𝜋11 should be equal and approximately equal 

to 𝛼, the VaR model’s stated exceedance probability. 

Christoffersen’s test uses a likelihood ratio statistic to compare the likelihood of the observed 

data under the independence assumption with the likelihood without this constraint: 

𝐿𝑅𝐶𝐶 = 2𝑙𝑛[(1 − 𝜋01)
𝑛00𝜋01

𝑛01(1 − 𝜋11)
𝑛10𝜋11

𝑛11] − 2𝑙𝑛[(1 − 𝛼)𝑇−𝑁𝛼𝑁]   ~   𝜒2
2 (24) 

where 𝑁  is the total number of exceedances in a sample of 𝑇  observations. If the 𝐿𝑅𝐶𝐶  statistic 

exceeds the critical value from the chi-squared distribution with two degrees of freedom, the null of 
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independence is rejected. This indicates clustered exceedances and potential shortcomings in the VaR 

model. 

3. Empirical Results and Discussions 

This section details the empirical findings of the study, beginning with the estimation results of 

the ARMA-GJR-GARCH models incorporating a skewed Student-t distribution for each of the eight 

assets: the SET index, the Dubai crude oil, the Thai bullion gold, the 3–7-year government bond index, 

the 7–10-year government bond index, the JPY/THB exchange rate, the property sector index, and the 

Bloomberg Barclays MSCI US green bond index. Subsequently, the analysis transitions to the ARMA-

GJR-GARCH-EVT model, which leverages extreme value theory to model tail risk. Finally, the 

dynamic R-vine copula model is employed to evaluate dynamic correlations among the assets and 

their subsequent impact on portfolio VaR. The results for each model are discussed in detail, 

highlighting key findings and their implications for risk management within the Thai insurance 

industry. 

3.1. ARMA-GJR-GARCH Estimation (with Skewed Student-t Distribution) 

Table 2 presents the in-sample parameter estimates derived from the selected ARMA-GJR-

GARCH models, employing a skewed Student-t distribution, for each asset. Model selection, guided 

by the AIC, resulted in distinct ARMA orders for different assets. The results show that ARMA(3,3)-

GJR-GARCH(1,1) for the SET, ARMA(3,2)-GJR-GARCH(1,1) for the crude oil, ARMA(1,0)-GJR-

GARCH(1,1) for the gold, ARMA(3,2)-GJR-GARCH(1,1) for the 3–7-year government bond, 

ARMA(1,0)-GJR-GARCH(1,1) for the 7–10-year government bond, ARMA(1,1)-GJR-GARCH(1,1) for 

the exchange rate, ARMA(5,3)-GJR-GARCH(1,1) for the property, and ARMA(1,0)-GJR-GARCH(1,1) 

for the green bond. The diverse ARMA orders suggest varying degrees of short-term dependencies 

in the return series of the assets. 

Table 2. Parameter estimation results of the ARMA-GJR-GARCH model (with skewed Student-t distribution). 

Model 
SET 

Index 

Dubai 

Crude Oil 

Thai 

Bullion 

Gold 

3–7 TTM 

GOV      

7–10 TTM 

GOV      

JPY/THB 

Exchange 

Rate 

Property 

Sector   

Index 

Bloomberg 

Barclays 

MSCI US 

Green 

Bond    

Index 

Mu 

(p-value) 

1.45E-04 

(0.3180) 

-3.75E-06 

(0.7511) 

1.25E-04 

(0.3861) 

1.13E-04 

(0.0000***) 

1.13E-04 

(0.0003***) 

-1.08E-04 

(0.2746) 

-6.00E-05 

(0.0000***) 

1.06E-04 

(0.0064***) 

ar(1) 

(p-value) 

-0.3985 

(0.0000***) 

-0.3621 

(0.0000***) 

-0.0863 

(0.0000***) 

0.6992 

(0.0000***) 

0.1954 

(0.0000***) 

-0.9976 

(0.0000***) 

0.0680 

(0.0000***) 

-0.0637 

(0.0027***) 

ar(2) 

(p-value) 

0.2656 

(0.0000***) 

-1.0109 

(0.0000***) 
 

-0.9695 

(0.0000***) 
  

0.0599 

(0.0000***) 
 

ar(3) 

(p-value) 

0.9411 

(0.0000***) 

-0.0531 

(0.0000***) 
 

0.2143 

(0.0000***) 
  

0.9025 

(0.0000***) 
 

ar(4) 

(p-value) 
      

0.0157 

(0.0000***) 
 

ar(5) 

(p-value) 
      

-0.0527 

(0.0000***) 
 

ma(1) 0.4124 0.3101  -0.4425  0.9944 -0.0852  
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(p-value) (0.0000***) (0.0000***) (0.0021***) (0.0021***) (0.0000***) 

ma(2) 

(p-value) 

-0.2468 

(0.0000***) 

1.0071 

(0.0000***) 
 

0.8271 

(0.0000***) 
  

-0.0263 

(0.0000***) 
 

ma(3) 

(p-value) 

-0.9351 

(0.0000***) 
     

-0.8970 

(0.0000***) 
 

omega 

(p-value) 

8.81E-07 

(0.0800*) 

5.99E-06 

(0.0242**) 

9.62E-07 

(0.0650*) 

8.42E-09 

(0.9801) 

6.84E-08 

(0.8500) 

9.40E-07 

(0.4100) 

3.00E-06 

(0.0672*) 

9.87E-08 

(0.7638) 

alpha1 

(p-value) 

0.0155 

(0.0039***) 

0.0709 

(0.0000***) 

0.0669    

(0.0000***) 

0.0673    

(0.0002***) 

0.1357    

(0.0000***) 

0.0987    

(0.0010***) 

0.0177    

(0.0010***) 

0.069050    

(0.0000***) 

beta1 

(p-value) 

0.9201 

(0.0000***) 

0.8922 

(0.0000***) 

0.9417    

(0.0000***) 

0.9186    

(0.0000***) 

0.8857    

(0.0000***) 

0.8980    

(0.0000***) 

0.9065    

(0.0000***) 

0.918404 

(0.0000***) 

gamma 1 
0.1087 

(0.0000***) 

0.0742 

(0.0012***) 

-0.0408   

(0.0024***) 

-0.0054   

(0.6760) 

-0.0451   

(0.0447**) 

-0.0594   

(0.0049***) 

0.0858   

(0.0049***) 

-0.0091   

(0.5132) 

skew 
0.9074 

(0.0000***) 

0.8939 

(0.0000***) 

1.0267 

(0.0000***) 

0.9698 

(0.0000***) 

0.9922 

(0.0000***) 

1.0269 

(0.0000***) 

0.9167 

(0.0000***) 

0.9103 

(0.0000***) 

shape 
4.5028 

(0.0000***) 

4.7935 

(0.0000***) 

4.9194    

(0.0000***) 

4.6552    

(0.0000***) 

4.0896    

(0.0000***) 

5.6768    

(0.0000***) 

4.6055    

(0.0000***) 

6.8252    

(0.0000***) 

AIC -7.0677 -4.9339 -6.8785 -11.391 -9.6517 -7.7985 -6.5029 -9.4954 

Ljung-Box 

Test 

(p-value) 

6.6342 

(0.2318) 

1.4770 

(0.9574) 

1.8907 

(0.9176) 

1.0713 

(0.9831) 

1.4362 

(0.9606) 

1.4830 

(0.9570) 

10.3583 

(0.0420**) 

2.5347 

(0.8326) 

ARCH LM 

Test 

(p-value) 

7.2680 

(0.07601) 

1.5889 

(0.8034) 

1.9305 

(0.7320) 

1.3349 

(0.8538) 

1.0280 

(0.9089) 

0.0899 

(0.9995) 

12.6000 

(0.0045***) 

1.6175 

(0.7975) 

Note: *** significant at 0.01, ** significant at 0.05, * significant at 0.1. 

A consistent observation across all assets is the presence of significant volatility clustering, 

evidenced by the near-unity sum of the ARCH and GARCH coefficients in the selected models. This 

reinforces the necessity of employing time-varying volatility models for effective risk management. 

Furthermore, the statistically significant and positive coefficients of lagged squared returns confirm 

strong ARCH effects, and the significant coefficients on the lagged conditional variance confirm 

strong GARCH effects, indicating that both past shock and past volatility information are critical for 

forecasting future volatility. These findings align with previous research that has documented 

persistent volatility in both developed and emerging markets (Floros, 2007; Lin et al., 2020). This 

study builds upon these findings by demonstrating the applicability of GARCH models, specifically 

the GJR-GARCH, for capturing volatility dynamics relevant to investment risk management for 

insurers within the Thai insurance industry. 

The GJR-GARCH specification captures asymmetries in volatility responses to shocks via the 

gamma coefficient. All assets displayed statistically significant gamma estimates, though the sign and 

magnitude varied. A positive gamma, as seen in the SET, the crude oil, and the property, implies an 

inverse leverage effect, where positive shocks increase volatility more than negative ones. 

Conversely, a negative gamma, observed in the gold, the 3–7-year government bond, the 7–10 

government bond, the exchange rate, and the green bond, aligns with the traditional leverage effect, 

where negative shocks have a stronger impact on volatility. Moreover, the statistically significant 

skewness and shape parameters support the use of the skewed Student-t distribution, which 

accommodates both asymmetry and excess kurtosis in the standardized residuals. This specification 

improves model fit and yields more realistic volatility and risk estimates (Nugroho et al., 2021). 
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Diagnostic tests, including the Ljung–Box test on standardized squared residuals and the 

ARCH–LM test, generally support the adequacy of the selected ARMA–GJR–GARCH models for 

capturing volatility dynamics, as most assets exhibit no significant autocorrelation or residual ARCH 

effects (p-values > 0.05). An exception is the property, where the Ljung–Box test indicates mild 

autocorrelation at higher lags, and the ARCH–LM test reveals significant residual ARCH effects. 

While such autocorrelation may be tolerable, the persistence of this heteroskedasticity suggests that 

additional modeling is needed to fully capture extreme volatility behavior. 

Although the ARMA–GJR–GARCH model effectively captures time-varying volatility and 

asymmetric responses to shocks, it may fall short in modeling extreme tail events in this sector. To 

address this limitation, the next section introduces an EVT framework, which complements the 

GARCH model by explicitly focusing on the distribution of extreme returns. This two-stage approach 

enhances the ability to assess tail-related risks and improves the reliability of Value-at-Risk (VaR) 

estimates for risk management in the Thai insurance sector. By incorporating EVT, the model is better 

equipped to capture recent and extreme fluctuations in returns, thereby producing more accurate 

VaR forecasts across a range of confidence levels. 

3.2. ARMA-GJR-GARCH-EVT Estimation for Tail Risk Assessment 

Accurate tail risk modeling is crucial for capital adequacy, especially during market downturns. 

To enhance tail risk estimation, this study integrates the ARMA–GJR–GARCH model with EVT, 

focusing on the left tail due to observed negative skewness and potential downside risk. The 

framework incorporates the skewed Student-t distribution to account for key stylized facts in 

financial time series such as asymmetry and leptokurtosis, inadequately captured by models 

assuming normality (Huang et al., 2014). By modeling asymmetric volatility via the GJR-GARCH 

structure and capturing skewness and excess kurtosis through skewed Student-t innovations, the 

approach offers a more nuanced and realistic representation of volatility and tail behavior. 

After estimating the conditional mean and variance using the ARMA–GJR–GARCH 

specification, the POT approach from EVT is applied to model extreme losses in the standardized 

residuals. Selecting an appropriate threshold is a critical step: if set too low, non-extreme observations 

may be included, distorting tail estimates; if too high, the number of exceedances may be too small, 

increasing estimation variance and reducing reliability (Coles, 2001). In line with the recent literature 

(Eita and Djemo, 2022; Huang et al., 2017; Li, 2017; McNeil and Frey, 2000), this study adopts the 

93rd-percentile as the threshold level. This higher threshold is particularly suitable for stress-testing 

in regulatory and solvency contexts that demand a focus on rare but impactful losses. 

Across all asset classes, the selected threshold yields an average of approximately 159 

exceedances, providing a stable sample size for tail modeling. Despite differences in absolute 

threshold values, the consistent exceedance count supports the robustness of the chosen threshold. 

As shown in Table 3, the estimated shape parameter (𝜉 ) is close to zero for most asset classes, 

suggesting that their tails are well-approximated by an exponential distribution. However, the 

property exhibits distinctly heavier tails, with a positive and statistically significant shape parameter; 

this implies a Pareto-type distribution and greater exposure to extreme downside risk. The 

Kolmogorov–Smirnov goodness-of-fit test supports these findings, with p-values above 0.05 for the 

exponential fit in most cases, while a heavier-tailed model provides a better fit for the property. These 

results confirm the effectiveness of the ARMA–GJR–GARCH–EVT framework in capturing 

heterogeneous tail risks across asset classes, which is vital for robust investment risk assessment. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: Posted: 31 July 2025 doi:10.20944/preprints202507.2507.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2507.v2
http://creativecommons.org/licenses/by/4.0/


 15 of 34 

 

Table 3. Parameter estimation results of the ARMA-GJR-GARCH-EVT model. 

 u 
N

u 

AI

C 

𝜷                        

(Lower, Upper) 

Stand

ard 

Error 

Of 𝜷 

𝝃 

(Lower, 

Upper) 

Stan

dard 

Error 

of 𝝃 

Distri

bution 

KS 

Test 

SET Index 

ARMA(3,3)-GJR-

GARCH(1,1) 

1.4

735 

1

5

9 

223.

150 

0.6838 

(0.5382, 0.8295) 
0.0743 

0.0755 

(-0.0716, 

0.2216) 

0.074

5 

expone

ntial 

0.45

53 

Dubai Crude Oil 

ARMA(3,2)-GJR-

GARCH(1,1) 

1.4

096 

1

5

9 

227.

495 

0.6464 

(0.4938, 0.7990) 

0.0777

9 

0.1454 

(-0.0337, 

0.3245) 

0.091

4 

expone

ntial 

0.99

46 

Thai Bullion Gold 

ARMA(1,0)-GJR-

GARCH(1,1) 

1.3

811 

1

5

9 

161.

983 

0.5389 

(0.4060, 0.6718) 
0.0678 

0.1213 

(-0.0712, 

0.3138) 

0.098

2 

expone

ntial 

0.67

23 

3–7 TTM GOV  

ARMA(3,2)-GJR-

GARCH(1,1) 

1.4

691 

1

5

9 

243.

778 

0.6979 

(0.5128, 0.8829) 
0.0944 

0.1200 

(-0.0957, 

0.3357) 

0.110

1 

expone

ntial 

0.35

79 

7–10 TTM GOV  

ARMA(1,0)-GJR-

GARCH(1,1) 

1.3

433 

1

5

9 

211.

324 

0.7825 

(0.6090, 0.9560) 
0.0885 

-0.0965 

(-0.2553, 

0.0624) 

0.081

0 

expone

ntial 

0.85

11 

JPY/THB Exchange Rate 

ARMA(1,1)-GJR-

GARCH(1,1) 

1.3

525 

1

5

9 

156.

536 

0.5445 

(0.4181, 0.6710) 
0.0645 

0.0938 

(-0.0794, 

0.2670) 

0.088

4 

expone

ntial 

0.90

75 

Property Sector Index 

ARMA(5,3)-GJR-

GARCH(1,1) 

1.3

803 

1

5

9 

234.

215 

0.6320 

(0.4805, 0.7835) 
0.0773 

0.1891 

(0.0042, 

0.3739) 

0.094

3 
pareto 

0.99

91 

Bloomberg Barclays MSCI 

US Green Bond Index 

ARMA(1,0)-GJR-

GARCH(1,1) 

1.4

300 

1

5

9 

181.

911 

0.6146 

(0.4806, 0.7485) 
0.0683 

0.0526 

(-0.1003, 

0.2056) 

0.078

0 

expone

ntial 

0.94

75 

This is particularly important in light of Section 3.1, where the property exhibited residual 

ARCH effects even after modeling with ARMA–GJR–GARCH and skewed Student-t distribution. 

The incorporation of EVT directly addresses these residual tail risks by explicitly modeling extreme 

losses that conventional GARCH structures may not fully capture. The ARMA–GJR–GARCH–EVT 

framework is thus employed specifically to estimate capital requirements under stress scenarios, 

focusing on the extreme downside risks faced by insurers. 

Notably, the findings underscore the inadequacy of assuming normally distributed returns, as 

such assumptions can substantially underestimate capital requirements for Thai insurers during 

market stress, especially given the fat tails and skewness typical of financial return distributions. The 

GJR-GARCH component captures the asymmetric volatility response to negative shocks, a well-

documented phenomenon in financial markets, while the ARMA component accounts for 

autocorrelation in return series. This two-stage modeling framework improves the accuracy of VaR 

estimates and facilitates more prudent and risk-sensitive capital allocation. 
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In the next section, the analysis is extended by incorporating dynamic dependence structures 

through R-vine copulas, enabling realistic modeling of time-varying and nonlinear relationships 

across asset classes in a diversified investment environment. 

3.3. ARMA-GJR-GARCH-EVT Estimation for Tail Risk Assessment 

This section presents empirical results from R-vine copula models for life and non-life insurer 

portfolios. Building on the ARMA–GJR–GARCH marginal models discussed in Section 3.1, the 

analysis captures nonlinear and asymmetric dependencies among financial assets and evaluates the 

impact of green bond inclusion on diversification, capital adequacy, and risk-adjusted returns. R-vine 

copulas with Student-t pairings effectively model tail dependencies, critical for portfolio risk 

management across diverse financial assets in extreme markets. 

3.3.1. Portfolio Analysis for Life Insurers 

This subsection presents R-vine copula results for life insurer portfolios, comparing a five-asset 

baseline with a six-asset version that includes green bonds. Both portfolios are optimized for the 

Sharpe ratio, meet capital requirements, and align with life insurers’ long-term liabilities. The analysis 

evaluates whether green bond inclusion enhances diversification, reduces tail risk, and improves 

overall portfolio performance. 

The results of the copula estimations are summarized in Table 4. Both configurations use D-vine 

Student-t copulas, crucial for managing extreme market risks by capturing nonlinear, asymmetric, 

and tail-dependent relationships. The upper panel of Table 4 presents the five-asset portfolio, 

comprising the SET index (1), the Thai bullion gold (2), the property sector index (3), the 7–10-year 

government bond index (4), and the JPY/THB exchange rate (5). The strongest unconditional 

dependence is observed between the SET and the property (𝜏  = 0.87), reflecting equity market 

concentration. A strong positive dependence between the gold and the exchange rate (𝜏 = 0.80, 𝜆1 = 

𝜆2 = 0.75) reflects safe-haven behavior, while a notable negative dependence between the SET and 

the exchange rate (𝜏 = –0.72) suggests diversification potential. As the R-vine structure progresses, 

tail dependence and conditional relationships weaken, indicating that extreme co-movements are 

concentrated among a few key asset pairs. The estimated degrees of freedom (𝜈) range from 3.38 to 

30, reflecting varying tail heaviness across the dependence structure. Overall, the five-asset model 

exhibits strong statistical performance, with the log-likelihood at 7,733.54, the AIC at –15,427.08, and 

the BIC at –15,312.54, forming a robust baseline for evaluating the added value of green bond 

inclusion in the six-asset configuration. 

Table 4. R-vine copula estimation for life insurers. 

D-vine copula estimation for the five-asset portfolio 

 
Copula 

𝑪(⋅) 

Edge 

𝑬𝒊 

Parameter 1 

𝝆 

Parameter 2 

𝝂 

Tau 

𝝉 

Lower Tail 

𝝀𝟏 

Upper Tail 

𝝀𝟐 

Tree 1 

t 1,3 0.98 19.96 0.87 0.64 0.64 

t 2,4 0.82 10.59 0.62 0.31 0.31 

t 5,1 -0.91 8.91 -0.72 0.00 0.00 

t 5,2 0.95 3.38 0.80 0.75 0.75 

Tree 2 

t 5,3|1 -0.65 7.55 -0.45 0.00 0.00 

t 5,4|2 0.46 5.83 0.31 0.16 0.16 

t 2,1|5 -0.03 30.00 - 0.02 0.00 0.00 

Tree 3 
t 2,3|5,1 -0.32 13.77 -0.20 0.00 0.00 

t 1,4|5,2 -0.79 7.20 -0.58 0.00 0.00 

Tree 4 t 4,3|2,5,1 0.14 18.69 0.09 0.00 0.00 
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Log-likelihood 7,733.54 

AIC -15,427.08 

BIC -15,312.54 

D-vine copula estimation for the six-asset portfolio 

 
Copula 

𝑪(⋅) 

Edge 

𝑬𝒊 

Parameter1 

𝝆 

Parameter2 

𝝂 

Tau 

𝝉 

Lower Tail 

𝝀𝟏 

Upper 

Tail 

𝝀𝟐 

Tree 1 

t 1,3 0.98 19.96 0.87 0.64 0.64 

t 2,4 0.82 10.59 0.62 0.31 0.31 

t 5,1 -0.91 8.91 -0.72 0.00 0.00 

t 6,2 0.93 6.04 0.75 0.62 0.62 

t 6,5 0.92 8.99 0.74 0.53 0.53 

Tree 2 

t 5,3|1 -0.65 7.55 -0.45 0.00 0.00 

t 6,4|2 -0.32 10.62 -0.21 0.00 0.00 

t 6,1|5 0.50 8.08 0.34 0.12 0.12 

t 5,2|6 0.67 5.15 0.47 0.31 0.31 

Tree 3 

t 6,3|5,1 -0.38 15.69 -0.25 0.00 0.00 

t 5,4|6,2 0.61 5.40 0.42 0.26 0.26 

t 2,1|6,5 -0.29 13.39 -0.18 0.00 0.00 

Tree 4 
t 2,3|6,5,1 -0.14 23.76 -0.09 0.00 0.00 

t 1,4|5,6,2 -0.69 8.01 -0.49 0.00 0.00 

Tree 5 t 4,3|2,6,5,1 0.09 19.54 0.06 0.00 0.00 

Log-likelihood 9,545.86 

AIC -19,031.73 

BIC -18,859.92 

The lower panel of Table 4 presents the six-asset portfolio, which includes the Bloomberg 

Barclays MSCI US green bBond index (6). The green bond significantly alters the dependence 

structure. In Tree 1, the green bond exhibits strong unconditional positive dependence with the gold 

(𝜏 = 0.75) and the exchange rate (𝜏 = 0.74), along with substantial symmetric tail dependence (𝜆1 = 

𝜆2  = 0.62 and 0.53, respectively), positioning them alongside traditional safe-haven assets and 

reinforcing their stabilizing role during market stress. In higher-order trees, the green bond displays 

moderate to weak conditional dependencies, such as a modest positive link with the SET (𝜏 = 0.34), 

a weak negative association with the 7–10-year government bond (𝜏 = –0.21), and a slightly stronger 

negative relationship with the property (𝜏 = –0.25). These relationships suggest that the green bond 

provides differentiated exposure to macroeconomic risks and may help mediate cross-asset risk 

transmission. By Tree 5, dependencies are negligible, highlighting their role in diffusing residual co-

movement. Statistically, the six-asset model outperforms the five-asset configuration, with the log-

likelihood of 9,545.86, the AIC of –19,031.73, and the BIC of –18,859.92. These improvements indicate 

that green bonds enrich the dependence structure, enhance diversification, and strengthen tail-risk 

modeling. This clearly supports capital-efficient and resilient portfolio design aligned with 

sustainability-oriented investment objectives. 

Table 5 presents the optimal portfolio weights for life insurers under Sharpe ratio maximization, 

comparing a traditional five-asset configuration with a six-asset portfolio that includes the green 

bond. In the five-asset portfolio, the 7–10-year government bond receives the highest allocation (50%) 

due to its low volatility and strong duration-matching benefits. The SET accounts for 30%, while the 
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gold and the property are each allocated 5%. The exchange rate receives a 10% weight, offering 

diversification and safe-haven characteristics. The introduction of the green bond in the six-asset 

portfolio reshapes the asset mix while preserving portfolio stability. The 7–10-year government bond 

remains at 50%, while the SET is reduced to 20%. The green bond and the property are each allocated 

10%, with the gold and the exchange rate maintaining their 5% weights. This reallocation underscores 

green bonds’ contribution to diversification and resilience, while supporting ESG-aligned objectives. 

Table 5. Optimal portfolio weights based on Sharpe ratio maximization for life insurers. 

Optimal portfolio weights based on Sharpe ratio maximization for the five-asset portfolio 

Asset 
SET          

Index 

Thai Bullion    

Gold 

Property         

Sector Index 

7–10 TTM       

GOV 

JPY/THB            

Exchange Rate 

Weight 0.30 0.05 0.05 0.50 0.10 

Optimal portfolio weights based on Sharpe ratio maximization for the six-asset portfolio 

Asset 
SET      

Index 

Thai 

Bullion 

Gold 

Property     

Sector 

Index 

7–10 TTM   

GOV 

JPY/THB    

Exchange 

Rate 

Bloomberg 

Barclays MSCI 

US Green 

Bond Index 

Weight 0.20 0.05 0.10 0.50 0.05 0.10 

These optimized in-sample weights provide a baseline for the subsequent dynamic analysis. The 

next step evaluates time-varying portfolio performance using 600-day rolling-window forecasts of 

VaR and the Sharpe ratio for life insurers. 

3.3.2. Portfolio Analysis for Non-Life Insurers 

This subsection presents R-vine copula results for non-life insurer portfolios, built using the 

same Sharpe ratio optimization and duration-matching approach as applied to life insurers. Due to 

their shorter-duration liabilities, non-life insurers require greater sensitivity to liquidity and 

volatility. While return optimization remains relevant, capital preservation and regulatory 

compliance take precedence. 

Two portfolios are analyzed: a five-asset baseline and a six-asset version including green bonds. 

The five-asset portfolio uses a D-vine structure, while the six-asset R-vine captures increased 

interdependencies with green bond inclusion. Both utilize Student-t copulas to model nonlinear, 

asymmetric, tail-dependent relationships, crucial under market stress. The upper panel of Table 6 

presents the five-asset portfolio, comprising the SET index (1), the Dubai crude oil (2), the property 

sector index (3), the 3–7-year government bond Index (4), and the JPY/THB exchange rate (5). The D-

vine structure reveals the strongest unconditional dependence between the SET and the property (𝜏 

= 0.87, 𝜆1  = 𝜆2  = 0.64), reflecting high co-movement within the equity market. Notable negative 

dependencies are observed between the exchange rate and both the SET (𝜏 = –0.72) and the crude oil 

(𝜏 = –0.83), highlighting the diversification potential of currency exposure. A moderate negative 

relationship between the crude oil and the 3–7-year government bond (𝜏 = –0.61) suggests opposing 

responses to macroeconomic shocks such as inflation or interest rate changes. As the vine progresses, 

dependencies weaken. For instance, Tree 3 reports a weak positive link between the crude oil and the 

property (𝜏  = 0.21) and a moderately negative relationship between the SET and the 3–7-year 

government bond (𝜏 = –0.60), indicating differentiated behavior under stress. Tail dependence is 

concentrated in the first tree. The model demonstrates strong statistical performance, with the log-

likelihood of 8,037.66, the AIC of –16,035.31, and the BIC of –15,920.77. 

The lower panel of Table 6 presents the six-asset portfolio, incorporating the Bloomberg Barclays 

MSCI US green bond index (6). With increased interdependencies, a general R-vine structure is 

adopted. In Tree 1, the green bond exhibits strong positive dependence with the exchange rate (𝜏 = 
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0.74, 𝜆1 = 𝜆2 = 0.54) and a strong negative dependence with the 3–7-year government bond (𝜏 = –

0.74), indicating their potential as a hedge against interest-rate-sensitive assets. In higher-order trees, 

the green bond shows moderate conditional dependence with the SET (𝜏 = 0.42) and weak negative 

relationships with the property (𝜏 = –0.17) and the crude oil (𝜏 = –0.18), suggesting differentiated 

macroeconomic exposure. The six-asset model improves the statistical fit, with the log-likelihood of 

9,797.16, the AIC of –19,534.31, and the BIC of –19,362.50. These results confirm that green bonds 

enhance the dependence structure, improve diversification, and contribute to tail-risk mitigation. 

This supports the construction of capital-efficient and resilient portfolios for non-life insurers while 

aligning with sustainable investment strategies (Abakah et al., 2022). 

Table 6. R-vine copula estimation for non-life insurers. 

D-vine copula estimation for the five-asset portfolio 

 
Copula 

𝑪(⋅) 

Edge 

𝑬𝒊 

Parameter 1 

𝝆 

Parameter 2 

𝝂 

Tau 

𝝉 

Lower Tail 

𝝀𝟏 

Upper Tail 

𝝀𝟐 

Tree 1 

t 1,3 0.98 20.16 0.87 0.64 0.64 

t 2,4 -0.82 12.52 -0.61 0.00 0.00 

t 5,1 -0.91 8.93 -0.72 0.00 0.00 

t 5,2 -0.97 3.95 -0.83 0.00 0.00 

Tree 2 

t 5,3|1 -0.65 7.55 -0.45 0.00 0.00 

t 5,4|2 0.16 12.37 0.11 0.01 0.01 

t 2,1|5 0.32 14.47 -0.21 0.01 0.01 

Tree 3 
t 2,3|5,1 0.33 13.44 0.21 0.02 0.02 

t 1,4|5,2 -0.81 6.31 -0.60 0.00 0.00 

Tree 4 t 4,3|2,5,1 0.22 10.50 0.14 0.00 0.00 

Log-likelihood 8,037.66 

AIC -16,035.31 

BIC -15,920.77 

D-vine copula estimation for the six-asset portfolio 

 Copula 

𝑪(⋅) 

Edge 

𝑬𝒊 

Parameter1 

𝝆 

Parameter2 

𝝂 

Tau 

𝝉 

Lower Tail 

𝝀𝟏 

Upper Tail 

𝝀𝟐 

Tree 1 

t 1,3 0.98 20.16 0.87 0.64 0.64 

t 5,1 -0.91 8.93 -0.72 0.00 0.00 

t 5,2 -0.97 3.95 -0.83 0.00 0.00 

t 6,4 -0.92 4.71 -0.74 0.00 0.00 

t 6,5 0.92 8.93 0.74 0.54 0.54 

Tree 2 

t 5,3|1 -0.65 7.55 -0.45 0.00 0.00 

t 2,1|5 0.32 14.47 0.21 0.01 0.01 

t 6,2|5 -0.28 10.77 -0.18 0.00 0.00 

t 5,4|6 0.24 15.45 0.15 0.01 0.01 

Tree 3 

t 2,3|5,1 0.33 13.44 0.21 0.02 0.02 

t 6,1|2,5 0.62 11.48 0.42 0.11 0.11 

t 4,2|6,5 0.07 30.00 0.05 0.00 0.00 

Tree 4 t 6,3|2,5,1 -0.26 26.47 -0.17 0.00 0.00 
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t 4,1|6,2,5 -0.44 17.91 -0.29 0.00 0.00 

Tree 5 t 4,3|6,2,5,1 0.32 17.94 0.20 0.01 0.01 

Log-likelihood 9,797.16 

AIC -19,534.31 

BIC -19,362.50 

Table 7 presents the optimal portfolio weights for non-life insurers under Sharpe ratio 

maximization, comparing a traditional five-asset configuration with a six-asset portfolio that includes 

green bonds. In the five-asset portfolio, the 3–7-year government bond receives the highest allocation 

(55%), reflecting their role as low-risk, liquid instruments aligned with non-life insurers’ short-

duration liabilities. The exchange rate accounts for 30%, offering diversification and safe-haven 

benefits under volatile conditions. The remaining 15% is equally distributed across the SET, the crude 

oil, and the property, reflecting measured exposure to higher-volatility assets. In the six-asset 

portfolio, green bond inclusion reshapes the allocation while preserving the conservative structure. 

The 3–7-year government bond is reduced to 40%, while the green bond is allocated 10%, highlighting 

their role in enhancing stability and supporting ESG mandates. The exchange rate remains at 30%, 

the SET increases to 10%, and the crude oil and the property retain 5% each. This reallocation reflects 

a strategic response to the risk-return dynamics introduced by green bonds and supports capital 

efficiency under regulation-sensitive investment policies. 

Table 7. Optimal portfolio weights based on Sharpe ratio maximization for non-life insurers. 

Optimal portfolio weights based on Sharpe ratio maximization for the five-asset portfolio 

Asset 
SET          

Index 

Dubai       

Crude Oil 

Property         

Sector Index 

7–10 TTM       

GOV 

JPY/THB            

Exchange Rate 

Weight 0.05 0.05 0.05 0.55 0.30 

Optimal portfolio weights based on Sharpe ratio maximization for the six-asset portfolio 

Asset 
SET      

Index 

Dubai 

Crude Oil 

Property     

Sector 

Index 

7–10 TTM   

GOV 

JPY/THB    

Exchange 

Rate 

Bloomberg 

Barclays MSCI 

US Green 

Bond Index 

Weight 0.10 0.05 0.05 0.40 0.30 0.10 

Consistent with the life insurer analysis, these in-sample weights are used as inputs for a 600-

day rolling-window estimation. This dynamic approach captures the evolving risk–return profile of 

non-life insurer portfolios through forecasts of VaR and the Sharpe ratio. 

3.4. Value-at-Risk Backtesting 

This section evaluates the predictive performance of the VaR forecasts using two established 

backtesting procedures: the Kupiec unconditional coverage test and the Christoffersen conditional 

coverage test. Backtesting serves as a critical validation step, assessing whether the VaR estimates 

adequately capture potential losses and comply with solvency capital requirements (Smolović et al., 

2017). The analysis employs a rolling-window estimation approach, as described in Section 2.4, to 

generate 600 daily out-of-sample VaR forecasts for each model under review. 

Three modeling frameworks are evaluated across different confidence levels and horizons: (1) 

ARMA–GJR–GARCH with skewed Student-t innovations: Captures volatility clustering, asymmetric 

responses, and fat-tailed return distributions. It provides one-day-ahead VaR forecasts at the 95% 

confidence level, consistent with the requirement of the Thai OIC, and ten-day-ahead forecasts at the 

99% level, aligned with Basel standards. These estimates reflect the capital buffers that life and non-
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life insurers are required to hold at specified confidence levels under financial solvency frameworks. 
(2) ARMA–GJR–GARCH–EVT hybrid model: Combines conditional volatility modeling with EVT to 

improve tail risk estimation, especially under extreme market conditions. It generates one-day-ahead 

VaR forecasts at the 97.5% confidence level, a threshold commonly used in insurance sector stress 

testing (Paraschiv et al., 2020), offering more conservative and robust estimates for capital adequacy. 

(3) Dynamic R-vine copula model: Captures time-varying, nonlinear dependencies among asset 

returns. Dynamically estimated copula parameters are used to forecast one-day-ahead VaR at the 

95% confidence level and to compute Sharpe ratios based on optimized weights for life and non-life 

insurer portfolios. 

3.4.1. ARMA–GJR–GARCH Model (with Skewed Student-t Innovations) and ARMA–GJR–

GARCH–EVT Performance 

This subsection presents backtesting results for two VaR forecasting models: the ARMA–GJR–

GARCH with skewed Student-t innovations and its tail-risk-enhanced extension incorporating EVT. 

Both models are estimated using a 600-day rolling window and evaluated using the Kupiec 

unconditional coverage and Christoffersen conditional coverage tests to ensure forecast reliability for 

regulatory compliance and capital adequacy. 

The ARMA–GJR–GARCH model generates one-day-ahead VaR forecasts at the 95% confidence 

level and ten-day-ahead forecasts at the 99% level. It effectively captures asymmetric volatility and 

fat tails, producing accurate forecasts for most assets. As shown in Table 8 and Figures 1 and 2, most 

assets pass both backtests. Minor exceptions include the 7–10-year government bond, with p-values 

below 0.1, suggesting mild underestimation of risk. For the ten-day-ahead horizon, Kupiec test 

violations are observed for the crude oil and the 3–7-year government bond, while the Christoffersen 

test flags the crude oil, the exchange rate, and the green bond, indicating areas for improvement. 

To enhance tail-risk estimation, the ARMA–GJR–GARCH–EVT model forecasts one-day-ahead 

VaR at the 97.5% confidence level. Table 9 and Figure 3 present results that demonstrate strong model 

performance, with exceedance rates generally aligning with expectations. Notable exceptions include 

the exchange rate (Kupiec p-value of 0.087) and the 3–7-year government bond (Christoffersen p-

value of 0.037), indicating some inconsistency in the timing of exceedances. 

Table 8. One-day-ahead VaR and ten-day-ahead VaR backtesting: ARMA–GJR–GARCH model (with skewed 

Student-t innovations) performance. 

Asset 

Model 

SET 

Index 

ARMA(

3,3)-

GJR-

ARCH 

(1,1) 

Dubai 

Crude 

Oil 

ARMA(

3,2)-

GJR-

GARC

H (1,1) 

Thai 

Bullion 

Gold 

ARMA(

1,0)-

GJR-

GARC

H (1,1) 

3–7 

TTM 

GOV  

ARMA(

3,2)-

GJR-

GARC

H (1,1) 

7–10 

TTM 

GOV  

ARMA(

1,0)-

GJR-

GARC

H (1,1) 

JPY/TH

B 

Exchan

ge Rate 

ARMA(

1,1)-

GJR-

GARC

H (1,1) 

Propert

y  

Sector 

Index 

ARMA(

5,3)-

GJR-

GARC

H (1,1) 

Bloomb

erg 

Barclay

s MSCI 

US 

Green 

Bond 

Index 

ARMA(

1,0)-

GJR-

GARC

H (1,1) 

Average         

One-day-

ahead 

-1.16% -3.38% -1.34% -0.14% -0.31% -0.94% -1.49% -0.65% 
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VaR at 

95% 

Observed 

Exceedanc

e Rate 

4.17% 5.17% 4.00% 5.17% 3.50% 4.50% 3.83% 5.50% 

Kupiec  

Test 
0.928 0.035 1.352 0.035 3.161 0.326 1.863 0.306 

Kupiec’s            

p-value 
0.335 0.852 0.245 0.852 0.075* 0.568 0.172 0.580 

Christoffe

rsen Test 
0.912 0.327 1.182 0.140 4.764 0.361 1.855 0.337 

Christoffe

rsen’s       

p-value 

0.634 0.849 0.554 0.932 0.092* 0.835 0.395 0.845 

Average              

ten-day-

ahead 

VaR at 

99% 

-5.19% -14.93% -5.92% -0.58% -1.34% -4.29% -6.70% -2.86% 

Observed 

Exceedanc

e Rate 

0.85% 0.17% 0.85% 2.03% 1.52% 0.51% 0.68% 0.68% 

Kupiec  

Test 
0.149 6.308 0.149 4.882 1.407 1.766 0.703 0.703 

Kupiec’s            

p-value 
0.699 0.012** 0.699 0.027** 0.236 0.184 0.402 0.402 

Christoffe

rsen Test 
4.035 4.958 3.594 3.546 0.960 4.958 4.035 5.452 

Christoffe

rsen’s     

p-value 

0.133 0.084* 0.139 0.170 0.618 0.084* 0.133 0.065* 

Note: ** significant at 0.05, * significant at 0.1. 
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(a) The SET index. 

 
(b) The 3–7-year government bond index. 

 
(c) The 7–10-year government bond index. 

 
(d) The Bloomberg Barclays MSCI US green bond index. 

Figure 1. One-day-ahead VaR forecasting of (a) the SET index, (b) the 3–7-year government bond index, (c) the 

7–10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index. 
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(a) The SET index. 

 
(b) The 3–7-year government bond index. 

 
(c) The 7–10-year government bond index. 
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(d) The Bloomberg Barclays MSCI US green bond index. 

Figure 2. Ten-day-ahead VaR forecasting of (a) the SET index, (b) the 3–7-year government bond index, (c) the 

7–10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index. 

Table 9. One-day-ahead VaR backtesting: ARMA–GJR–GARCH-EVT model performance. 

Asset 

Model 

SET 

Index 

ARMA(3,

3)-GJR-

ARCH 

(1,1) 

Dubai 

Crude Oil 

ARMA(3,

2)-GJR-

GARCH 

(1,1) 

Thai 

Bullion 

Gold 

ARMA(1,

0)-GJR-

GARCH 

(1,1) 

3–7 TTM 

GOV  

ARMA(3,

2)-GJR-

GARCH 

(1,1) 

7–10 TTM 

GOV  

ARMA(1,

0)-GJR-

GARCH 

(1,1) 

JPY/THB 

Exchange 

Rate 

ARMA(1,

1)-GJR-

GARCH 

(1,1) 

Property  

Sector 

Index 

ARMA(5,

3)-GJR-

GARCH 

(1,1) 

Bloomber

g Barclays 

MSCI US 

Green 

Bond 

Index 

ARMA(1,

0)-GJR-

GARCH 

(1,1) 

Average           

One-day-

ahead VaR 

at 97.5% 

-1.56% -4.46% -1.64% -0.21% -0.43% -1.09% -1.91% -0.84% 

Observed 

Exceedance 

Rate 

2.00% 2.00% 2.67% 2.00% 2.33% 3.67% 1.83% 2.83% 

Kupiec Test 0.660 0.660 0.067 0.660 0.070 2.936 1.204 0.262 

Kupiec’s            

p-value 
0.417 0.417 0.796 0.417 0.791 0.087* 0.273 0.609 

Christoffers

en Test 
2.809 1.989 0.612 6.608 1.359 2.389 3.838 2.605 

Christoffers

en   p-

value 

0.245 0.370 0.736 0.037** 0.507 0.303 0.147 0.272 

Note: ** significant at 0.05, * significant at 0.1. 
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(a) The SET index. 

 
(b) The 3–7-year government bond index. 

 
(c) The 7–10-year government bond index. 
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(d) The Bloomberg Barclays MSCI US green bond index. 

Figure 3. One-day-ahead EVT VaR forecasting of (a) the SET index, (b) the 3–7-year government bond index, (c) 

the 7–10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index. 

The green bond exhibits one-day-ahead VaR values of −0.65% under the ARMA–GJR–GARCH 

model and −0.84% under the EVT-enhanced specification. These values exceed those of the 3–7-year 

(−0.14%, −0.21%) and the 7–10-year (−0.31%, −0.43%) Thai sovereign bonds but remain lower than the 

SET (−1.16%, −1.56%). Compared to other asset classes, the green bond also demonstrates lower risk 

than the crude oil (−3.38%, −4.46%), the gold (−1.34%, −1.64%), the exchange rate (−0.94%, −1.09%), 

and the property (−1.49%, −1.91%). Over a ten-day-ahead horizon at the 99% confidence level, the 

green bond shows a VaR of −2.86%, again falling between the 3–7-year (−0.58%) and the 7–10-year 

(−1.34%) government bonds, and riskier assets such as the SET (−5.19%), the gold (−5.92%), and the 

crude oil (−14.93%). 

Despite some discrepancies, both models provide valuable insights. The ARMA–GJR–GARCH 

model is well-suited for routine risk monitoring, while its EVT-enhanced extension improves 

reliability under stressed market conditions. One-day-ahead VaR estimates from the GARCH model 

range from 0.13% to 3.37%, and ten-day-ahead estimates range from 0.57% to 14.93%. The SET’s 

average ten-day-ahead VaR is 5.19%, exceeding the typical range in developed markets (Degiannakis 

et al., 2014), supporting the case for localized capital adequacy standards. The EVT model yields 

higher one-day-ahead VaR estimates—from 0.21% to 4.46%—and shows the SET at 1.56%, below the 

2.60%–3.99% range observed in developed economies (Echaust and Just, 2020), indicating differences 

in volatility or capital regulation. 

The relatively higher VaR of the green bond in this study, compared to conventional Thai 

government bonds, indicates that it may not appear to be a lower-risk asset when considered in 

isolation. This contrasts with findings from developed markets, such as Liaw (2020), which describe 

a “greenium” effect, characterized by lower yields and reduced perceived risk driven by sustained 

ESG demand. However, such results are typically reported within the same market, credit tier, or 

issuer type. In contrast, this study compares an international green bond with Thai sovereign bonds, 

representing a cross-jurisdictional and cross-credit-category assessment. The elevated VaR observed 

for green bonds may therefore reflect differences in market structure, issuer composition, duration 

exposure, and currency denomination, rather than a true absence of the greenium effect. 

While the green bond may not appear lower risk than Thai government bonds on a standalone 

basis, it exhibits lower capital requirements than other asset classes discussed earlier. Its 

predominantly negative dependence with other assets, as revealed by the R vine copula analysis, 

suggests potential diversification benefits. The next subsection examines this potential by evaluating 

portfolio-level risk and return through rolling window Sharpe ratios and VaR forecasts. 
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3.4.2. Performance Evaluation of the Dynamic R-Vine Copula Model: Rolling-Window Sharpe 

Ratios and VaR Forecasts 

This section assesses the dynamic R-vine copula model’s performance in forecasting one-day-

ahead VaR at the 95% confidence level and calculating Sharpe ratios using a 600-day rolling window. 

The model combines ARMA–GJR–GARCH marginal models with skewed Student-t innovations and 

a dynamic copula to capture time-varying, asymmetric dependencies among assets. This approach is 

valuable for insurers managing portfolio risk in volatile markets while aligning investments with 

solvency and sustainability goals. Unlike univariate models, R-vine copulas capture evolving 

nonlinear interdependencies, making them suitable for life and non-life insurers with distinct asset-

liability management and risk-adjusted return objectives. 

Table 10 presents rolling performance results for life and non-life portfolios with and without 

green bonds. For life insurers, green bond inclusion significantly enhances portfolio efficiency. The 

average Sharpe ratio rises from –0.0432 to 0.0063, while the average one-day-ahead VaR decreases 

from –0.1576% to –0.1428%, indicating improved risk-adjusted returns and reduced capital 

requirements. The six-asset portfolio achieves a higher Sharpe ratio in 80.50% of rolling windows and 

delivers a lower VaR in 60.33%, demonstrating meaningful diversification benefits. These findings 

align with Casal et al. (2025) and Gupta et al. (2025), supporting the role of green bonds as dual 

contributors to portfolio performance and solvency for life insurers. For non-life insurers, the six-

asset portfolio delivers a moderate improvement in the average Sharpe ratio, increasing from −0.0928 

to −0.0441. Additionally, 60.67% of rolling windows exhibit higher Sharpe ratios, underscoring the 

presence of diversification benefits. This improvement is accompanied by a slight rise in downside 

risk, as the average one-day-ahead VaR increases from −0.1004% to −0.1264%. For insurers that 

prioritize short-term liquidity and volatility control, the trade-off may still be justifiable, particularly 

for those with a higher risk appetite who are seeking enhanced returns. These findings align with 

Jareño et al. (2024), reinforcing that ESG-focused assets can enhance portfolio dynamics even when 

risk reduction is not uniform. 

Table 10. Performance comparison of R-vine copula models: Sharpe ratio and VaR backtesting. 

 
Portfolio 

Type 

Average  

Sharpe 

Ratio 

% of Windows 

with Higher 

Sharpe Ratio 

Average       

One-Day-

Ahead VaR 

(95%) 

% of Windows 

with Lower      

One-Day-

Ahead VaR 

Life    

insurer 

portfolios 

Five-Asset 

Portfolio 
-0.0432 19.50% -0.1576% 39.67% 

Six-Asset 

Portfolio 
0.0063 80.50% -0.1428% 60.33% 

Non-life   

insurer 

portfolios 

Five-Asset 

Portfolio 
-0.0928 39.33% -0.1004% 66.17% 

Six-Asset 

Portfolio 
-0.0441 60.67% -0.1264% 33.83% 

In summary, the dynamic R-vine copula model demonstrates that green bonds fundamentally 

alter inter-asset relationships, boosting portfolio efficiency, especially for life insurers, despite their 

higher standalone VaR. This restructuring reduces tail risk, improves Sharpe ratios for both life and 

non-life insurers, and lowers portfolio-level VaR, notably for life insurers. These findings align with 

Mensi et al. (2022), who highlight the effectiveness of copula-based models in capturing dynamic co-

movements under market volatility. The results also support Tsoukala and Tsiotas’s (2021) emphasis 

on integrating ESG assets into complex financial systems. These benefits are more pronounced for 

life insurers, whose long-term investment horizons and solvency-driven mandates make them 
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especially responsive to diversification gains. While Bouri et al. (2023) and Pham and Nguyen (2022) 

report green bond vulnerabilities to oil price volatility, policy uncertainty, and limited hedging 

capacity, the current findings highlight the importance of evaluating ESG assets through a 

dependence-aware, multivariate framework. Although the extent of benefit varies by insurer type, 

green bond integration supports both portfolio stability and ESG-aligned performance when assessed 

using advanced models such as dynamic copulas, which are able to capture nonlinear dependencies. 

These results, which clarify the nuanced role of green bonds in insurance portfolio construction, are 

further synthesized in the concluding section. 

4. Conclusions 

This study presents a robust framework for assessing capital requirements and optimizing 

insurer portfolios, particularly those that include green bonds, through advanced risk modeling. By 

integrating ARMA–GJR–GARCH models with skewed Student-t innovations, extreme value theory, 

and dynamic R-vine copulas, the methodology captures essential risk features such as volatility 

clustering, tail risk, and time-varying dependencies. This approach is well-suited for regulatory stress 

testing and solvency assessment, offering a comprehensive perspective under both normal and 

adverse market conditions. These advanced models can support regulators in establishing 

appropriate capital requirements by providing more accurate risk evaluations. Backtesting results 

further validate the models’ effectiveness and support their application in proactive risk oversight 

and regulatory supervision. 

The analysis reveals that although green bonds may not exhibit a “greenium” effect in isolation 

compared to Thai sovereign bonds, the risk level associated with green bonds is lower than that of 

more volatile asset classes such as equities, oil, property, gold, and exchange rates. Incorporating 

green bonds into diversified insurer portfolios enhances risk-adjusted returns by increasing Sharpe 

ratios and reducing portfolio-level value-at-risk, in most rolling periods. This can potentially lead to 

reduced capital charges. These findings underscore the importance of evaluating capital 

requirements at the portfolio level, rather than focusing solely on individual assets. These benefits 

are especially evident among life insurers, whose long-term horizons and solvency mandates align 

with the characteristics of green bonds. While non-life insurers also experience diversification, short-

term risk requires careful consideration. As ESG-aligned instruments, green bonds offer insurers a 

pathway to strengthen financial resilience while supporting national sustainability priorities. 

Therefore, financial regulators in Thailand should proactively integrate green bonds into 

supervisory investment frameworks for insurer portfolios, actively encouraging their adoption to 

enhance both financial stability and sustainability. Given the observed improvements in risk-

adjusted returns and potential reductions in capital requirements associated with green bond 

allocations, regulators should explicitly recognize the benefits of ESG assets within solvency-oriented 

investment policies. This should include conducting capital assessments at the portfolio level, 

utilizing advanced models like dynamic copula-based approaches that account for nonlinear and 

time-varying dependencies to accurately reflect the risk-reducing properties of green bonds. By 

strengthening regulatory guidance in this way, regulators can not only enhance insurers’ financial 

resilience and potentially reduce capital charges under the Office of Insurance Commission of 

Thailand regulatory frameworks, but also actively steer the insurance sector towards supporting 

Thailand’s sustainable finance agenda and commitments under the United Nations Sustainable 

Development Goals (SDGs). 

Future research could further enhance forecasting accuracy by exploring alternative GARCH 

family models, such as EGARCH, TGARCH, or GJR GARCH M, and regime switching frameworks 

to better capture market asymmetries and structural shifts. Integrating EVT copulas models may 

improve tail dependence modeling under extreme conditions, while advanced distributions such as 

generalized hyperbolic or finite mixtures could more precisely represent skewness and fat tails. These 

extensions would reinforce insurer risk management and promote adaptive, sustainability-aligned 

investment strategies. 
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