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Abstract

This study develops an integrated risk modeling framework to assess capital adequacy and optimize
portfolio performance for Thai life and non-life insurers. Combining ARMA-GJR-GARCH models
with skewed Student-t innovations, extreme value theory, and dynamic R-vine copulas captures
volatility, tail risks, and evolving asset interdependencies. Using daily data from 2014 to 2024, the
models generate value-at-risk forecasts and rolling Sharpe ratios for portfolios with and without
green bonds. The results show that green bond inclusion improves risk-adjusted returns and reduces
capital requirements, particularly for life insurers, aligning with their long-term solvency mandates.
Although a greenium effect is not clearly observed relative to Thai sovereign bonds, green bonds
enhance diversification within a multivariate framework. These findings highlight the importance of
evaluating capital requirements at the portfolio level and suggest that regulators incorporate ESG
considerations into supervisory investment guidelines to strengthen financial resilience and align the
insurance sector with Thailand’s sustainable finance goals.

Keywords: green bonds; dynamic r-vine copulas; extreme value theory; insurance capital adequacy;
value-at-risk

1. Introduction

Robust risk modeling is crucial for modern insurance portfolio management, especially for life
and non-life insurers navigating volatile markets. Traditional approaches often fail to capture tail
risks and nonlinear dynamics, particularly during stress periods. As regulatory demands tighten
under solvency frameworks, insurers increasingly require advanced modeling techniques to
accurately assess volatility and extreme losses (Bollerslev, 1986; Daly, 2008).

Insurance companies are increasingly integrating Environmental, Social, and Governance (ESG)
considerations into their investment strategies to strengthen portfolio resilience and support long-
term sustainability goals. Among ESG instruments, green bonds have emerged as a compelling asset
class, channeling funds into projects such as renewable energy and low-carbon infrastructure
(Climate Bonds Initiative, 2022). Their dual potential to generate financial returns and promote
sustainability has attracted insurers seeking diversification and alignment with ESG mandates (Ferrer
et al.,, 2021; Han et al,, 2024; Karim et al., 2024; Park et al., 2020; Papavassiliou et al., 2025). Green
bonds have also been associated with improved Sharpe ratios and reduced capital charges under
solvency frameworks (Taghizadeh-Hesary et al., 2021; Zhang et al., 2021). In Thailand, where insurers
manage sizable and duration-sensitive portfolios, green bond inclusion supports both financial
stability and national sustainability objectives (Fitrah and Soemitra, 2022; Ramadhan, 2020).
Regulatory support is central to enabling this transition. Tools such as green taxonomies, favorable
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capital treatment, and targeted incentives can accelerate ESG adoption across the sector (Flammer,
2020; Huang and Lin, 2023; Okeke et al., 2024). Recognizing the strong risk-adjusted performance of
green bonds, the Office of Insurance Commission (OIC) could facilitate their broader adoption by
incorporating sustainability-related investment guidance into supervisory frameworks. This would
help insurers align investment strategies with solvency goals while advancing Thailand’s sustainable
finance agenda.

Advanced financial econometrics provides crucial tools for modeling the complex risks faced by
insurers. The Autoregressive Moving Average Generalized Autoregressive Conditional
Heteroskedasticity (ARMA-GARCH) model, especially with the Glosten—Jagannathan-Runkle (GJR)
extension, is valuable for capturing volatility clustering and asymmetric shock responses (Adegboyo
and Sarwar, 2025; Glosten et al., 1993; Hidayana et al., 2021; Ma et al., 2024; Wei et al., 2025). The GJR-
GARCH model accounts for the leverage effect, where negative shocks induce greater volatility than
positive ones (Liu and Hung, 2010). Financial returns often exhibit skewness and fat tails, which, if
unaccounted for, can lead to underestimation of risk. To address this, skewed Student-t innovations
are widely adopted to improve Value-at-Risk (VaR) accuracy and better capture these distributional
properties (Akanbi et al., 2025; Al-Khasawneh et al., 2024; Hansen, 1994; Harvey and Siddique, 1999;
Lambert and Laurent, 2001; Patra and Gupta, 2025). However, even these enhanced models may
underestimate extreme losses. Extreme Value Theory (EVT), particularly through the Generalized
Pareto Distribution (GPD), enhances tail risk modeling by focusing on exceedances beyond a high
threshold (Braione and Scholtes, 2016; Majumder, 2018). When applied to GARCH-filtered residuals,
EVT improves VaR estimation under stress conditions, which is crucial for insurers operating under
solvency requirements (Chen et al., 2024; Okou and Amar, 2023).

Insurers require methods that capture interdependence among assets, moving beyond
univariate modeling. Correlation matrices often fail to reflect nonlinear and time-varying
relationships, particularly during periods of financial distress. Copula models address this limitation
by constructing flexible joint distributions. R-vine copulas are well suited for modeling complex
dependency structures using sequences of bivariate copulas (Brechmann and Czado, 2013). Their
dynamic extensions allow dependencies to evolve over time, which is essential for capturing
contagion effects and shifts in market conditions (Raza et al., 2025; Zhou and Ji, 2021). When
integrated with GARCH-based marginal models, this approach offers significant advantages for
multivariate risk modeling. It enhances portfolio-level risk assessment and supports the design of
capital-efficient, ESG-aligned investment strategies.

This study integrates ARMA-GJR-GARCH models with skewed Student-t innovations, EVT,
and dynamic R-vine copulas into a unified framework tailored for insurer portfolios. Capturing
volatility dynamics, tail risks, and evolving interdependencies, the framework improves VaR
estimation and Sharpe ratio assessment under both normal and stressed conditions (Ahmadi et al.,
2023; Han and Li, 2022; Jeleskovic et al., 2024). Using daily data on Thai financial assets and green
bonds from 2014 to 2024, the study evaluates VaR forecasts and rolling Sharpe ratios across optimized
portfolios. Results reveal that green bond inclusion enhances insurer portfolio performance,
strengthens capital adequacy, improves risk-adjusted returns through diversification, and supports
alignment with Thailand’s sustainability goals. This research offers practical insights for risk
practitioners and regulators in emerging markets. The proposed framework enables more accurate
capital requirement calculations and supports ESG integration within supervisory investment
guidelines, crucial as Thai regulatory guidance, market maturity, and sustainability commitments
rapidly evolve.

The remainder of this paper is structured as follows: Section 2 describes the dataset and
methodology, including model specifications and validation procedures; Section 3 presents empirical
findings and discussions on VaR forecasting, backtesting, and portfolio performance analysis; and
Section 4 concludes with key findings, policy implications, and suggestions for future research
directions.
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2. Domain of Experiment and Methodology

This study analyzes a comprehensive dataset of 2,869 daily observations spanning January 1,
2014, to December 31, 2024, using logarithmic returns. Logarithmic returns were calculated using the
formula r, = In(P;/P;_,), where P, is the price at time t and P,_; is the price at time t—1. The
dataset encompasses a variety of significant Thai financial assets: the SET index, the Dubai crude oil,
the Thai bullion gold, the 3-7-year government bond index, the 7-10-year government bond index,
the JPY/THB exchange rate, the property sector index, and the Bloomberg Barclays MSCI US green
bond index. Data obtained from Datastream International and Bloomberg exhibit statistical
properties typical of financial time series. With the exception of the exchange rate, the series display
negative skewness, indicating a higher likelihood of large negative returns. High kurtosis values
confirm leptokurtosis in most series, indicating a greater concentration around the mean and fatter
tails than expected under normality, suggestive of increased extreme events. The Jarque-Bera (JB)
test indicates that gold returns are normally distributed, unlike the other assets. The Augmented
Dickey—Fuller (ADF) test results confirm that all series are stationary. Table 1 presents the summary
statistics of daily returns for all eight assets examined in this study.

Table 1. Summary statistics for eight assets.

Bloomberg
Barclays
Dubai Thai 3-7 7-10 JPY/THB Property
SET MSCI US
Crude Bullion TT™M TT™M Exchange  Sector
Index Green
0il Gold GOV GOV Rate Index
Bond
Index

Mean 0.00015  -0.00012  0.00028 0.00011 0.00015 -0.00012 0.00007 0.00007
Median 0.00000 0.00050 0.00003 0.00011 0.00013 -0.00017 0.00000 0.00005
Maximum  0.07656 0.18789 0.04715 0.00859 0.01651 0.04207 0.08322 0.01957
Minimum  -0.11384 -0.31530 -0.05498  -0.00947 -0.01768  -0.03333  -0.14303 -0.02087

SD 0.00878 0.02492 0.00846 0.00107 0.00230 0.00554 0.01126 0.00286
Skewness -1.606 -0.748 -0.045 -0.509 -0.366 0.238 -1.351 -0.203
Kurtosis 24.820 13.871 3.079 10.091 6.154 4.741 20.541 4.413
JB 58,149.93 14,393.36 1.71 6,134.58 1,253.54 389.60 3,7656.12 258.45
JB (p-
0.000 0.000 0.427 0.000 0.000 0.000 0.000 0.000
value)
ADF -13.10 -1341 -13.54 -11.66 -12.02 -14.61 -13.42 -13.37
ADF (p-
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
value)

2.1. Autoregressive Moving Average Glosten—Jagannathan—Runkle Generalized Autoregressive Conditional
Heteroskedasticity with Skewed Student-t Innovations

This study addresses key complexities in financial time series, such as volatility clustering, fat
tails, and asymmetric shock responses, across eight asset classes, including green bonds. To model
individual asset dynamics, it adopts the Autoregressive Moving Average-Glosten—Jagannathan—
Runkle Generalized Autoregressive Conditional Heteroskedasticity (ARMA-GJR-GARCH) model
with skewed Student-t innovations, jointly modeling the conditional mean and variance of returns.
Portfolios of five and six assets (including green bonds) are then constructed by maximizing the
Sharpe ratio using Dynamic R-vine copulas. This integrated approach offers a flexible and robust
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structure for volatility modeling and risk forecasting. To capture excess kurtosis and skewness
common in financial return distributions, the innovation term follows the skewed Student-t
distribution introduced by Hansen (1994). This distribution accounts for both fat tails and
asymmetry, enhancing the precision of Value-at-Risk (VaR) estimates under both normal and
extreme market conditions.

The GJR component is central to capturing asymmetric volatility in response to shocks, an effect
often observed in financial markets. In the general ARMA(m,n)-GJR-GARCH(p,q) model, p
represents the number of ARCH terms (lagged squared residuals) and asymmetry terms, while g
denotes the number of GARCH terms (lagged conditional variances). Estimating mean and variance
with skewed Student-t innovations, the model is given by the following:

= u+ Q)rtl+z 0; &_j+ &
j=1

& = 0.7, zt~Skewed —t(0,1,v,7)

)

In this model, r; represents the return of the time series at time ¢, and u is the constant mean.
The autoregressive coefficients @; capture the influence of past returns (AR part of order m), while
the moving average coefficients 6; account for the impact of past shocks (MA part of order n). The
innovation term &, represents unpredictable shocks, modeled as the product of the conditional
standard deviation o, and a shock z;, which follows a skewed Student-t distribution with zero
mean and unit variance.

The skewed Student-t distribution is parameterized by degrees of freedom v > 2 to ensure finite
variance and a skewness parameter n € (—1,1), where n =0 corresponds to the symmetric
Student-t distribution. Its density function f(z;;v,n) is defined as follows:

v+1

[b 14 1 (bzt + a)2 -z < a
¢ v=2\1-—n % b
fGsvm) = v+l 2)
b 1+ 1 (bzt+a>2 2 . ¢
¢ —2\1+79 =T
where constants a, b, and ¢ are given by the following:
—4 v—2
a=dnec—
=414+3n%2—-a?
v+1 )
rt)

T n(v=2)-T(3)

The conditional variance o equation under the GJR-GARCH(p,q) specification is as follows:

14 14 q
2 2 2
o= w+ § et § Vil ¥ E _Pioi (4)
= 1= Jj=

The constant w helps ensure the variance remains positive. The ARCH terms «a; represent the
effects of lagged squared shocks, while the GARCH terms f; capture the persistence of volatility
through lagged conditional variances. The asymmetry terms y;, together with the indicator function
Ite, ...} allow the model to distinguish between the effects of positive and negative shocks. This
indicator equals 1 when the lagged shock is negative, and 0 otherwise.

Under this specification, a positive shock contributes a;ef; to the conditional variance,
whereas a negative shock contributes (a; + y;)e;. A positive and statistically significant y;
indicates a leverage effect, meaning that negative shocks have a greater impact on volatility than
positive shocks of the same magnitude. The GJR-GARCH model is particularly relevant for
analyzing assets like green bonds, which may react asymmetrically to environmental developments
or policy shifts. While the ARMA component captures serial dependence in returns, GJR-GARCH
effectively models both volatility persistence and its asymmetric responses.
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Model selection involved a systematic search over ARMA-GJR-GARCH specifications by
varying the parameters m, 1, p, and 4. Each model was estimated using pseudo-maximum likelihood
and validated through residual diagnostics to ensure zero mean, homoscedasticity, and no
autocorrelation. The model with the lowest Akaike Information Criterion (AIC) was selected,
reflecting the best trade-off between fit and simplicity.

2.2. Extreme Value Theory

In financial risk management, accurately capturing extreme tail behavior is essential for stress
testing and capital adequacy. This study first filters serial dependence and conditional
heteroskedasticity using ARMA (m,n)-GJR-GARCH(p,q) models with skewed Student-t innovations.
The resulting standardized residuals z; = &;/0; are then used for tail modeling. Therefore, this study
adopts Extreme Value Theory (EVT), specifically the Peak Over Threshold (POT) method, to model
the tail distribution of these standardized residuals.

EVT offers a more refined framework for analyzing extreme outcomes and estimating tail-
related risk measures such as VaR, especially under stressed conditions (Degen and Embrechts, 2008;
Reiss and Thomas, 2007). Accurately modeling such extreme movements is crucial for reliable risk
assessment and capital determination. The effectiveness of EVT in financial applications is well-
documented, with notable contributions by Ayusuk and Sriboonchitta (2015), Melina et al. (2024),
Muela et al. (2023), Roy (2022), Singh et al. (2013), and Uluceviz (2025).

Building on this foundation, the present study incorporates the POT method alongside the
ARMA-GJR-GARCH modeling framework to analyze the tail behavior of standardized residuals
using the Generalized Pareto Distribution (GPD). This integrated approach enhances the
understanding of extreme market events in light of underlying volatility dynamics and supports
more accurate estimation of capital needs.

2.2.1. Peak Over Threshold

To estimate one-day VaR under stressed conditions, this study applies the POT method to eight
financial assets, including green bonds. Following Nortey et al. (2015), asset returns are first filtered
using ARMA-GJR-GARCH models to capture time-varying volatility. Standardized residuals are
then used as input for tail risk modeling. This approach is consistent with established EVT
applications in finance (Rosso, 2015) and enhances the robustness of stress testing and capital
requirement assessments.

Let X denote a sequence of financial returns with cumulative distribution function F(x), and
let u be a predefined high threshold. POT focuses on the distribution of exceedances above this
threshold, specifically the conditional distribution of X given that X > u. An exceedance occurs
when X > u. Defining the excess as y = X — u, the conditional distribution function F,(y) is given
by the following:

Flu+y)-Fw

F0) = Pr((X — ) S yIX > ) = ===,

0<y<xr—u ()
where x; is the right endpoint of F.

The POT method assumes a sequence of independent and identically distributed (i.i.d.) losses
X;. It models the conditional excess distribution F,(y) for values exceeding the threshold u
(Magnou, 2017). As noted by Gharib et al. (2017), such exceedances are often modeled using the
Generalized Pareto Distribution (GPD), which is well-suited for capturing extreme tail risk and is
critical in stress testing and VaR estimation (Basu, 2011). The GPD is widely used in finance to model
low probability events (Sharpe and Juarez, 2019).

Following the ARMA-GJR-GARCH modeling, the next step is to characterize the distribution
of extreme values for each asset. The goal is to find a suitable parametric distribution to model F,(y),
with threshold u chosen to ensure that excesses are well-approximated by the GPD. Given the
sensitivity of GPD quantiles to threshold choice (Muela et al., 2023), a sample mean excess function
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can be used to determine the threshold (Nurhadi, 2016). Accurate tail modeling is particularly critical
in this study, as it involves financial assets such as green bonds. Underestimating risk for these assets
could lead to significant misjudgments.

The foundational work of Balkema and De Haan (1974) and Pickands (1975) demonstrates that
given a sufficiently high threshold u, the distribution of exceedances y = X — u, conditional on X >
u, converges to the GPD. This convergence is mathematically expressed as follows:

Sl

1—(1+§%)_ if€ #0

Y
1—¢ P ifé€ =0

(6)

where ¢ and f represent the shape and scale parameters, respectively. The flexibility of the GPD
lies in its ability to model various tail behaviors: when ¢ > 0, it models heavy-tailed distributions
(e.g., Pareto distributions); when ¢ — 0, it simplifies to the exponential distribution; and when ¢ <
0, it reflects a bounded, short-tailed distribution, sometimes referred to as the Pareto Type IL

2.2.2. Estimation of Value-at-Risk

Traditional risk measures often fail to adequately capture the dynamics of financial time series
during extreme market conditions (Omari et al.,, 2020). EVT provides a robust framework for
modeling the tails of distributions, making it especially valuable for estimating VaR (Zhang and
Zhang, 2016).

Given that the exceedances over a sufficiently high threshold u converge in distribution to the
GPD, the cumulative distribution function F(x) for values above u can be expressed as follows:

F)=[1-FWIFLOM+FW), X>u 7)

where F,(y) is the distribution of exceedances y = X —u given X > u.
Substituting the GPD approximation for F,(y), the tail of F(x) becomes:

F(x)=[1- F(u)]Gg,B(x —w+F), X>u (8)

The empirical estimator of the tail distribution is then:

1
F(x):1—%<1+é(x;u)>€, X>u )

where n is the total number of observations, N, is the number of exceedances above the threshold
u, and é and B are the maximum likelihood estimates of the shape and scale parameters,
respectively.

To compute the unconditional VaR at a confidence level q > F(u), Equation (9) can be inverted
to obtain the following:

VaR, =us b " a )_f 1 (10)
aR;=u+3|[|—1- -
q f Nu q

This formula provides the estimated VaR at quantile g, incorporating the tail behavior beyond
the threshold u. The POT approach under EVT is particularly suited for modeling such tail risks in
financial stress testing.

2.3. Dynamic R-Vine Copulas: Capturing Time-Varying Dependencies

This section introduces the dynamic Regular vine (R-vine) copula model to capture evolving
dependence structures among financial assets. Unlike static copulas, the dynamic R-vine framework
reflects time-varying interdependencies, which are essential for modeling volatility clustering and
asymmetric co-movements in financial markets (Zhou and Ji, 2021). R-vine copulas, introduced by
Bedford and Cooke (2001, 2002), decompose high-dimensional dependence into structured pairs of
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bivariate copulas, enabling flexibility and modularity. They outperform traditional copulas in
representing conditional and asymmetric dependencies.

The Student-t copula is used due to its ability to capture symmetric tail dependence, critical for
modeling joint extreme events like market crashes. Unlike the Gaussian copula, it incorporates both
correlation (p) and degrees of freedom (v) parameters, enhancing its relevance in capital adequacy
and risk management. In the dynamic copula framework, copula parameters evolve over time using
a rolling window maximum likelihood estimation (MLE) method. The model recalibrates copula
parameters over a moving window of observations, instead of specifying a time-series process. This
approach allows each bivariate pair to exhibit unique, time-varying dependence patterns (Yang et al.,
2021), enabling a granular and adaptive representation of joint dynamics.

In this study, the modeling process begins by estimating marginal distributions using ARMA-
GJR-GARCH models with skewed Student-t innovations (see Section 2.1). Standardized residuals
from each model are tested to ensure they are i.i.d., a prerequisite for copula modeling (Brechmann
and Czado, 2013). These residuals are then transformed via the probability integral transform to
produce uniform margins for the R-vine copulas. To capture time-varying dependence, copula
parameters are subsequently estimated using a rolling window approach.

2.3.1. Sklar’s Theorem and the Dynamic R-Vine Framework

Sklar’s theorem (Sklar, 1959) underpins copula theory by decoupling marginal distributions
from their joint dependence structure. For asset returns at time t, the joint distribution
H, (7”1,t' Totr s Tat ) is expressed as follows:

H; (rl,tr otr o Tat ) = Ct(Fl,t(rl,t)' ) Fd,t(rd,t); et) (11)

where F;.(r;;) represents the time-varying marginal distribution function of asset i at time t, and
0, denotes the copula parameter vector at time t, capturing the evolving dependence structure.

The returns 7;; are modeled using ARMA-GJR-GARCH processes with skewed Student-t
innovations. The standardized residuals z;, are transformed into uniform variables u;, via u;, =
Fi (i)

These transformed values are used as inputs to the R-vine copulas, which models their
conditional dependence through a series of bivariate copulas structured in hierarchical trees.
Parameters 6, are re-estimated over time using a 600-day rolling window, allowing the model to
adjust to market dynamics.

2.3.2. R-Vine Copula Structure and Hierarchical Decomposition

The R-vine copula decomposes the joint copula C, into a product of conditional bivariate
copulas, enabling flexible modeling of high-dimensional dependencies. The joint copula density
Ct (ul,t, v ud‘t) is decomposed into conditional bivariate copulas as follows:

Ce (ul,t' sy ud,t) = Hﬁ;i HeEEk Cite)ie)nce)( F(uj(e),tluu(e),t)» F(ul(e),t|uD(e),t) 3 0ie)i@)Ipe)t) (12)

Each term cj(e) (e)pe)(") denotes a bivariate copula density for variables j(e) and I(e),
conditional on the set D(e), where 8;() () p(e),: is the time-varying copula parameter at time t, and
E;, denotes the set of edges in tree k of the vine structure, with each level representing conditional
dependencies. The conditional distributions F (uj(e)‘t|uD(e)‘t) and F (ul(e),t|uD(e),t) are computed
recursively.

The hierarchical structure is encoded in a sequence of trees V, = (T1,t: Tyt o) Td—l,t)/ where each
tree Ty, is constructed from edges in Ty_;,, and all trees obey the proximity condition to ensure
model validity. The proximity condition requires that, for each tree T}, an edge can be formed only
between nodes that share a common node in the previous tree Ty_;,, thereby ensuring consistent
conditional dependence modeling. This hierarchical structure enables tailored modeling of both
pairwise and conditional dependencies, enhancing the flexibility and accuracy of multivariate
dependence representation (Bedford and Cooke, 2001, 2002).
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2.3.3. Copula Family

All bivariate copulas cj(e)(e)pe)(*) used in the R-vine structure are specified as bivariate
Student-t copulas due to their ability to capture symmetric tail dependence, which is crucial in
modeling joint extreme market movements. The Student-t copula with correlation parameter p and
degrees of freedom v is defined as follows:

Cha (s, 1) = by (657 (u), 651 (w2)) (13)

where t;*(-) is the inverse cumulative distribution function (quantile function) of the univariate
Student-t distribution with v degrees of freedom, and t,,(--) is the cumulative distribution
function of the bivariate Student-t distribution with correlation p and degrees of freedom v.

The corresponding copula density function is as follows:

fp,v (t;l (u1); t171 (uz))
f( &7 w) - £, (657 (up))

where f,,(-,;-) is the bivariate Student-t density, and f,(-) is the univariate Student-t density. These
properties enable the Student-t copula to jointly model extreme outcomes in both tails of the

(14)

Cs,v (ug,up) =

distribution, making it particularly suitable for financial risk modeling, including VaR forecasts and
capital adequacy analyses, as discussed in the empirical section (Demarta and McNeil, 2005).

2.3.4. Kendall’s Tau and Tail Dependence

To initialize and evaluate dependencies within the R-vine framework, Kendall’s tau is used for
its robustness and its direct relationship with copula parameters. For a bivariate copula C(u,,u,),
Kendall’s tau (7) defined as follows:

1,1
T= 4[ j C(ug,uy) - c(ug, uy)dusdu, — 1 (15)
0 Jo

92C(ug,uz)
6u16u2
Tail dependence coefficients further quantify the likelihood of simultaneous extreme outcomes.

where c(uy,u,) = is the copula density, assuming it exists.

The upper and lower tail dependence coefficients, A; and 2;, are defined as follows:

1=2t+C(¢t)
Ay = lim ——
t-1 11—t (16)
. C o)
A, = lim
t-0™ t

The Student-t copula employed in this study exhibits symmetric, non-zero tail dependence,
offering robustness in modeling extreme co-movements (Joe, 2014; Nelsen, 2006).

2.3.5. Estimation of Time-Varying Copula Parameters

To capture the evolving dependence structure among financial assets, time-varying copula
parameters 6, are estimated using a rolling window maximum likelihood estimation (MLE)
procedure. At each time point ¢, the copula parameters are estimated over a moving window of size
W (e.g., 2,269 trading days), which advances forward by one day throughout the sample period. The
local log-likelihood function at time t is defined as follows:

d-1 t
L(#) = Z Z log|cjcerierine) (F (Wicers[uneers), F(terstpiers); Gjoraceriniers)] (17)
k=1 e€Ey s=t—-W+1
where Cj(e),l(e)ID(e)("'; ) is the bivariate copula density for edge e in tree k, parameterized by 6;
Oie)k(e)Ip(e)s denotes the copula parameter vector at time s for the conditional pair
(j(e), l(e)|D(e)),' E), denotes the set of edges in tree k of the vine structure; and F(uj(e),s|uD(e),s)
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and F(uy()s|up(e)s) are the recursively computed conditional marginal distributions of the pseudo-
observations (see Section 2.3.2).

This framework accommodates a wide range of bivariate copula families, including Gaussian,
Clayton, Gumbel, Frank, and Student-t copulas. The copula family and associated parameters for
each pair are selected based on model fit criteria such as the Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC).

If the Student-t copula is selected for a given bivariate pair, the log-likelihood function becomes
the following:

d-1 ¢

L) = Z z Z log[ce(F(wje)sunces ) F (Wiers|uners); Pierieiners Ve ne.s)|  (18)

k=1 e€Eg s=t-W+1

where pjce)ie)pee)s 1S the time-varying correlation parameter; vje)ie)pe)s is the degrees of
freedom; c.(-,, p,v) is the bivariate Student-t copula density function, defined in Section 2.3.3; and
the conditional marginals F (uj(e),s|uD(e),S) and F (ul(e),s|uD(e),S) are computed recursively as before.
This methodological framework and estimation strategy closely follow Aas et al. (2009) and
Brechmann and Czado (2013).

2.3.6. Model Selection and Vine Structure

The vine structure is selected using the Difimann et al. (2013) algorithm, which uses empirical
Kendall’s tau and Akaike Information Criterion (AIC) to guide pair-copula selection and tree
construction. While the flexible R-vine is the default, a D-vine may be chosen when a natural
economic ordering exists. This data-driven approach ensures both statistical fit and economic
interpretability.

2.4. Forecasting Method

This study adopts a rolling window approach with a fixed size of 2,269 daily observations to
estimate ARMA-GJR-GARCH, ARMA-GJR-GARCH-EVT, and dynamic R-vine copula models. At
each step, the window advances by one day to re-estimate parameters and produce one-step-ahead
forecasts. The marginal models generate forecasts of conditional means and variances for all eight
assets. Based on these forecasts, two types of portfolios comprising d assets, where d =5 and 6
(with the six-asset portfolio including a green bond), are constructed from the full set of eight.
Concurrently, the dynamic R-vine copula is estimated using standardized residuals, and S pseudo-
random samples are drawn via inverse Rosenblatt sampling to simulate joint returns. These
simulations yield time-varying forecasts of portfolio means and covariances, dynamically updating
the risk and return structure over 600 out-of-sample observations.

2.5. Value-at-Risk Measures

This section introduces the Value-at-Risk (VaR) framework used to quantify potential portfolio
losses under normal market conditions. VaR estimates are based on ARMA-GJR-GARCH and
ARMA-GJR-GARCH-EVT forecasts, together with simulations from a dynamic R-vine copula,
forming the basis for forward-looking risk and capital adequacy assessment.

2.5.1. ARMA-GJR-GARCH VaR (with skewed Student-t)

To quantify market risk, one-day-ahead VaR estimates are obtained from the conditional mean
and variance forecasts produced by the ARMA-GJR-GARCH model. Let u,;,; and o, denote the
conditional mean and variance of asset returns at time t + 1. Assuming the standardized residuals
follow a skewed Student-t distribution (Hansen, 1994), the VaR at the (1 — a) confidence level is
computed as follows:

VaR%i1 = feer + 0ri19a skewed—t (19)
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where VaR{,; isthe VaR for the next period t + 1 ata confidence level of a, 4, isthe conditional
mean return forecast from the ARMA model for the next period t+1, 0,4, is the conditional
standard deviation forecast from the GJR-GARCH model for the next period t + 1, and q4 skewed—t
is the a-quantile of the standardized skewed Student’s t-distribution with estimated skewness (1)
and degrees of freedom (v) parameters. A 95% confidence level is applied for one-day VaR, in line
with Thai regulations. For 10-day VaR, consistent with Basel’s 99% confidence level, a rolling window
generates 10 one-step-ahead forecasts from the ARMA-GJR-GARCH model.

2.5.2. ARMA-GJR-GARCH-EVT VaR

To estimate one-day-ahead VaR under stressed conditions, this study combines ARMA-GJR-
GARCH filtering with EVT. Returns are first modeled using ARMA-GJR-GARCH with skewed
Student-t innovations, and the resulting standardized residuals are fitted using the POT method with
a GPD to capture tail extremes. To assess capital requirements during market stress, the one-day VaR
at time t + 1 is estimated at a 97.5% confidence level. This tail-focused approach enhances risk
quantification by better modeling the distribution of extreme losses. The one-day VaR at time t + 1
derived from the conditional EVT model is given by the following:

N =3
aRi 1 = fep1 + Oy U+ 3 1-9 (20)
§ |\ Ny

where ;. and o0;,, are the one-step-ahead forecasts of the conditional mean and standard
deviation, respectively; n is the total number of observations; N, is the number of observations
exceeding the threshold u; and & and f are the estimated shape and scale parameters. This two-
stage filtering and tail-modeling framework follows the extreme value approach of McNeil and Frey
(2000).

2.5.3. Dynamic R-Vine Copula VaR

To estimate VaR under evolving market conditions, this study applies a dynamic R-vine copula
to model time-varying dependencies among portfolios of five and six assets, each modeled using
ARMA-GJR-GARCH with skewed Student-t innovations. The one-day portfolio VaR at a confidence
level a is computed using a Monte Carlo simulation. At each time ¢, a set of S pseudo-random

s
return vectors, {rt(f)l} , is generated from the dynamic R-vine copula, conditioned on the current
s=1

marginal forecasts. Each rt(j)l represents the s* simulated return vector drawn from the copula
model. The simulated portfolio returns are then computed as follows:

RS =wTrS) (21)

where w is the vector of portfolio weights. The empirical a-quantile of the simulated portfolio

s
returns {Rt(fr)1 }321 provides the one-day portfolio VaR estimate at time t + 1:

VaR%,, = — e, ((R® )V 22
aR,, = —Quantile, ({R$, (22)

s=1

where Quantile, denotes the empirical quantile at level a, capturing left-tail portfolio risk. This
simulation-based dynamic copula framework builds on the methodology developed by Aas et al.
(2009) and Brechmann and Czado (2013).

This study constructs four portfolios —two for life insurers and two for non-life insurers —each
comprising five conventional assets or six assets including green bonds. All portfolios are designed
with two key objectives: duration matching, to align asset durations with insurer liabilities, and
Sharpe ratio maximization, to optimize risk-adjusted returns. The optimization respects Thai OIC
investment limits and standard constraints Yj-; w; = 1 and w; = 0, where w; is the weight of the
ith asset.
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Using the optimal weights, the one-day 95% VaR is estimated via a dynamic R-vine copula,
which captures time-varying dependencies and non-Gaussian features. These estimates serve as
proxies for capital requirements. Comparing five- and six-asset portfolios for both life and non-life
insurers allows this study to assess whether green bond inclusion reduces capital needs and improves
Sharpe ratios under evolving market conditions. This analysis is consistent with Markowitz portfolio
theory (1952), adapted to the regulatory and liability constraints specific to the insurance sector.

2.6. Backtesting

Backtesting evaluates the accuracy of VaR models by comparing predicted losses with actual
outcomes. This study applies two widely used methods: Kupiec’s unconditional coverage test and
Christoffersen’s conditional coverage test, which assess model reliability from different perspectives
(Ziggel et al., 2014).

2.6.1. Kupiec’s Unconditional Coverage Test

Kupiec’s test assesses whether the observed number of VaR exceedances aligns with the
expected frequency implied by the model’s confidence level (Kupiec, 1995). Let N be the number of
exceedances over T trading days, and let a be the probability of an exceedance, dictated by the
confidence level of the VaR model. Under the null hypothesis Hy, N follows a binomial distribution
with parameters (T, a). The likelihood ratio test statistic is calculated as follows:

1—a T—-N o N

-9 @)

If the calculated LRy exceeds the critical value from the chi-squared distribution with 1 degree

of freedom, the null hypothesis is rejected. This indicates that the model’s predicted exceedance
frequency is inaccurate and may either underestimate or overestimate risk.

2.6.6. Christoffersen’s Conditional Coverage Test

While Kupiec's test evaluates whether the overall frequency of VaR exceedances conforms to the
model’s confidence level, it does not consider the timing or sequence of those exceedances.
Christoffersen’s conditional coverage test addresses this limitation by assessing whether exceedances
are independently distributed over time (Christoffersen, 1998). The null hypothesis states that the
likelihood of an exceedance on day t + 1 is unaffected by whether one occurred on day t. To test
this, the number of transitions between exceedance states across consecutive days is recorded.
Specifically, n;; represents the number of transitions from state i on day t tostate j onday t+1,
where i and j can be either 0 (no exceedance) or 1 (exceedance). This structure enables the
estimation of conditional probabilities to determine whether exceedances occur independently over
time. Based on these transitions, the following conditional probabilities are defined:

o1 = P(l41 = 1|l = 0) = Pr(Exceedance tomorrow | No exceedance today)

1 = P(I;41 = 1|I; = 1) = Pr(Exceedance tomorrow | Exceedance today)

Under the assumption of independence, my; and m;; should be equal and approximately equal
to a, the VaR model’s stated exceedance probability.

Christoffersen’s test uses a likelihood ratio statistic to compare the likelihood of the observed
data under the independence assumption with the likelihood without this constraint:

LRcc = 2ln[(1 — oy 00y (1 — nll)nlﬂnﬁ“] —2In[(A — )T Nal] ~ x2 (24)

where N is the total number of exceedances in a sample of T observations. If the LR.. statistic
exceeds the critical value from the chi-squared distribution with two degrees of freedom, the null of
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independence is rejected. This indicates clustered exceedances and potential shortcomings in the VaR
model.

3. Empirical Results and Discussions

This section details the empirical findings of the study, beginning with the estimation results of
the ARMA-GJR-GARCH models incorporating a skewed Student-t distribution for each of the eight
assets: the SET index, the Dubai crude oil, the Thai bullion gold, the 3-7-year government bond index,
the 7-10-year government bond index, the JPY/THB exchange rate, the property sector index, and the
Bloomberg Barclays MSCI US green bond index. Subsequently, the analysis transitions to the ARMA-
GJR-GARCH-EVT model, which leverages extreme value theory to model tail risk. Finally, the
dynamic R-vine copula model is employed to evaluate dynamic correlations among the assets and
their subsequent impact on portfolio VaR. The results for each model are discussed in detail,
highlighting key findings and their implications for risk management within the Thai insurance
industry.

3.1. ARMA-GJR-GARCH Estimation (with Skewed Student-t Distribution)

Table 2 presents the in-sample parameter estimates derived from the selected ARMA-GJR-
GARCH models, employing a skewed Student-t distribution, for each asset. Model selection, guided
by the AIC, resulted in distinct ARMA orders for different assets. The results show that ARMA(3,3)-
GJR-GARCH(1,1) for the SET, ARMA(3,2)-GJR-GARCH(1,1) for the crude oil, ARMA(1,0)-GJR-
GARCH(1,1) for the gold, ARMA(3,2)-GJR-GARCH(1,1) for the 3-7-year government bond,
ARMA(1,0)-GJR-GARCH(1,1) for the 7-10-year government bond, ARMA(1,1)-GJR-GARCH(1,1) for
the exchange rate, ARMA(5,3)-GJR-GARCH(1,1) for the property, and ARMA(1,0)-GJR-GARCH(1,1)
for the green bond. The diverse ARMA orders suggest varying degrees of short-term dependencies
in the return series of the assets.

Table 2. Parameter estimation results of the ARMA-GJR-GARCH model (with skewed Student-t distribution).

Bloomberg
Barclays
Thai JPY/THB  Property
SET Dubai 3-7TTM  7-10TTM MSCI US
Model Bullion Exchange Sector
Index Crude Oil GOV GOV Green
Gold Rate Index
Bond
Index
Mu 1.45E-04 -3.75E-06 1.25E-04 1.13E-04 1.13E-04 -1.08E-04  -6.00E-05 1.06E-04

(p-value) (0.3180) (0.7511) (0.3861)  (0.0000**)  (0.0003**)  (0.2746)  (0.0000%*)  (0.0064***)
ar(1) -0.3985 -0.3621 -0.0863 0.6992 0.1954 -0.9976 0.0680 -0.0637
(p-value)  (0.0000*%)  (0.0000***)  (0.0000**)  (0.0000%*)  (0.0000***)  (0.0000***)  (0.0000%*)  (0.0027***)

ar(2) 0.2656 -1.0109 -0.9695 0.0599
(p-value) (0.0000***)  (0.0000***) (0.0000%***) (0.0000%**)
ar(3) 0.9411 -0.0531 0.2143 0.9025
(p-value) (0.0000***)  (0.0000***) (0.0000%**) (0.0000%**)
ar(4) 0.0157
(p-value) (0.0000***)
ar(5) -0.0527
(p-value) (0.0000***)
ma(l) 0.4124 0.3101 -0.4425 0.9944 -0.0852
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(p-value)  (0.0000**)  (0.0000***) (0.0021%*%) (0.0021%%)  (0.0000***)
ma(2) -0.2468 1.0071 0.8271 -0.0263
(p-value)  (0.0000**)  (0.0000**) (0.0000**) (0.0000**)
ma(3) -0.9351 -0.8970
(p-value)  (0.0000%*%) (0.0000**)
omega 881E-07  599E-06  9.62E-07  842E-09  6.84E-08  940E-07  3.00E-06  9.87E-08

(p-value)  (0.0800%)  (0.0242*)  (0.0650*)  (0.9801) (0.8500) (0.4100)  (0.0672%) (0.7638)

alphal 0.0155 0.0709 0.0669 0.0673 0.1357 0.0987 0.0177 0.069050
(p-value)  (0.0039**%)  (0.0000**)  (0.0000**)  (0.0002*)  (0.0000***)  (0.0010***)  (0.0010%*)  (0.0000***)

betal 0.9201 0.8922 0.9417 0.9186 0.8857 0.8980 0.9065 0.918404
(p-value)  (0.0000**)  (0.0000**)  (0.0000**)  (0.0000*)  (0.0000***)  (0.0000***)  (0.0000%*)  (0.0000***)

0.1087 0.0742 -0.0408 -0.0054 -0.0451 -0.0594 0.0858 -0.0091
gamma 1
(0.0000***)  (0.0012***)  (0.0024***) (0.6760) (0.0447*)  (0.0049***)  (0.0049***) (0.5132)
0.9074 0.8939 1.0267 0.9698 0.9922 1.0269 0.9167 0.9103
skew
(0.0000***)  (0.0000***)  (0.0000***) ~ (0.0000***)  (0.0000***) ~ (0.0000***)  (0.0000***)  (0.0000***)
4.5028 4.7935 4.9194 4.6552 4.0896 5.6768 4.6055 6.8252
shape
(0.0000***)  (0.0000***)  (0.0000***) ~ (0.0000***)  (0.0000***) ~ (0.0000***)  (0.0000***)  (0.0000***)
AIC -7.0677 -4.9339 -6.8785 -11.391 -9.6517 -7.7985 -6.5029 -9.4954
Ljung-Box
6.6342 1.4770 1.8907 1.0713 1.4362 1.4830 10.3583 2.5347
Test
(0.2318) (0.9574) (0.9176) (0.9831) (0.9606) (0.9570) (0.0420%%) (0.8326)
(p-value)
ARCH LM
7.2680 1.5889 1.9305 1.3349 1.0280 0.0899 12.6000 1.6175
Test
(0.07601) (0.8034) (0.7320) (0.8538) (0.9089) (0.9995) (0.0045**) (0.7975)
(p-value)

Note: *** significant at 0.01, ** significant at 0.05, * significant at 0.1.

A consistent observation across all assets is the presence of significant volatility clustering,
evidenced by the near-unity sum of the ARCH and GARCH coefficients in the selected models. This
reinforces the necessity of employing time-varying volatility models for effective risk management.
Furthermore, the statistically significant and positive coefficients of lagged squared returns confirm
strong ARCH effects, and the significant coefficients on the lagged conditional variance confirm
strong GARCH effects, indicating that both past shock and past volatility information are critical for
forecasting future volatility. These findings align with previous research that has documented
persistent volatility in both developed and emerging markets (Floros, 2007; Lin et al., 2020). This
study builds upon these findings by demonstrating the applicability of GARCH models, specifically
the GJR-GARCH, for capturing volatility dynamics relevant to investment risk management for
insurers within the Thai insurance industry.

The GJR-GARCH specification captures asymmetries in volatility responses to shocks via the
gamma coefficient. All assets displayed statistically significant gamma estimates, though the sign and
magnitude varied. A positive gamma, as seen in the SET, the crude oil, and the property, implies an
inverse leverage effect, where positive shocks increase volatility more than negative ones.
Conversely, a negative gamma, observed in the gold, the 3-7-year government bond, the 7-10
government bond, the exchange rate, and the green bond, aligns with the traditional leverage effect,
where negative shocks have a stronger impact on volatility. Moreover, the statistically significant
skewness and shape parameters support the use of the skewed Student-t distribution, which
accommodates both asymmetry and excess kurtosis in the standardized residuals. This specification
improves model fit and yields more realistic volatility and risk estimates (Nugroho et al., 2021).
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Diagnostic tests, including the Ljung-Box test on standardized squared residuals and the
ARCH-LM test, generally support the adequacy of the selected ARMA-GJR-GARCH models for
capturing volatility dynamics, as most assets exhibit no significant autocorrelation or residual ARCH
effects (p-values > 0.05). An exception is the property, where the Ljung-Box test indicates mild
autocorrelation at higher lags, and the ARCH-LM test reveals significant residual ARCH effects.
While such autocorrelation may be tolerable, the persistence of this heteroskedasticity suggests that
additional modeling is needed to fully capture extreme volatility behavior.

Although the ARMA-GJR-GARCH model effectively captures time-varying volatility and
asymmetric responses to shocks, it may fall short in modeling extreme tail events in this sector. To
address this limitation, the next section introduces an EVT framework, which complements the
GARCH model by explicitly focusing on the distribution of extreme returns. This two-stage approach
enhances the ability to assess tail-related risks and improves the reliability of Value-at-Risk (VaR)
estimates for risk management in the Thai insurance sector. By incorporating EVT, the model is better
equipped to capture recent and extreme fluctuations in returns, thereby producing more accurate
VaR forecasts across a range of confidence levels.

3.2. ARMA-GJR-GARCH-EVT Estimation for Tail Risk Assessment

Accurate tail risk modeling is crucial for capital adequacy, especially during market downturns.
To enhance tail risk estimation, this study integrates the ARMA-GJR-GARCH model with EVT,
focusing on the left tail due to observed negative skewness and potential downside risk. The
framework incorporates the skewed Student-t distribution to account for key stylized facts in
financial time series such as asymmetry and leptokurtosis, inadequately captured by models
assuming normality (Huang et al., 2014). By modeling asymmetric volatility via the GJR-GARCH
structure and capturing skewness and excess kurtosis through skewed Student-t innovations, the
approach offers a more nuanced and realistic representation of volatility and tail behavior.

After estimating the conditional mean and variance using the ARMA-GJR-GARCH
specification, the POT approach from EVT is applied to model extreme losses in the standardized
residuals. Selecting an appropriate threshold is a critical step: if set too low, non-extreme observations
may be included, distorting tail estimates; if too high, the number of exceedances may be too small,
increasing estimation variance and reducing reliability (Coles, 2001). In line with the recent literature
(Eita and Djemo, 2022; Huang et al., 2017; Li, 2017; McNeil and Frey, 2000), this study adopts the
93rd-percentile as the threshold level. This higher threshold is particularly suitable for stress-testing
in regulatory and solvency contexts that demand a focus on rare but impactful losses.

Across all asset classes, the selected threshold yields an average of approximately 159
exceedances, providing a stable sample size for tail modeling. Despite differences in absolute
threshold values, the consistent exceedance count supports the robustness of the chosen threshold.
As shown in Table 3, the estimated shape parameter (§) is close to zero for most asset classes,
suggesting that their tails are well-approximated by an exponential distribution. However, the
property exhibits distinctly heavier tails, with a positive and statistically significant shape parameter;
this implies a Pareto-type distribution and greater exposure to extreme downside risk. The
Kolmogorov-Smirnov goodness-of-fit test supports these findings, with p-values above 0.05 for the
exponential fit in most cases, while a heavier-tailed model provides a better fit for the property. These
results confirm the effectiveness of the ARMA-GJR-GARCH-EVT framework in capturing
heterogeneous tail risks across asset classes, which is vital for robust investment risk assessment.
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Table 3. Parameter estimation results of the ARMA-GJR-GARCH-EVT model.
Stand Stan
$
N Al B ard dard Distri KS
u (Lower,
u C (Lower, Upper) Error Error bution Test
Upper)
of g of §
SET Index 1 0.0755
14 223. 0.6838 0.074  expone  0.45
ARMA(3,3)-GJR- 5 0.0743  (-0.0716,
735 150 (0.5382, 0.8295) 5 ntial 53
GARCH(1,1) 9 0.2216)
Dubai Crude Oil 1 0.1454
14 227. 0.6464 0.0777 0.091 expone 0.99
ARMA(3,2)-GJR- 5 (-0.0337,
096 495 (0.4938, 0.7990) 9 4 ntial 46
GARCH(1,1) 9 0.3245)
Thai Bullion Gold 1 0.1213
1.3 161. 0.5389 0.098 expone 0.67
ARMA(1,0)-GJR- 5 00678  (-0.0712,
811 983 (0.4060, 0.6718) 2 ntial 23
GARCH(1,1) 9 0.3138)
3-7 TTM GOV 1 0.1200
14 243. 0.6979 0.110  expone 0.35
ARMA(3,2)-GJR- 5 0.0944  (-0.0957,
691 778 (0.5128, 0.8829) 1 ntial 79
GARCH(1,1) 9 0.3357)
7-10 TTM GOV 1 -0.0965
13 211. 0.7825 0.081 expone 0.85
ARMAC(1,0)-GJR- 5 0.0885  (-0.2553,
433 324 (0.6090, 0.9560) 0 ntial 11
GARCH(1,1) 9 0.0624)
JPY/THB Exchange Rate 1 0.0938
13 156. 0.5445 0.088 expone 0.90
ARMA(1,1)-GJR- 5 0.0645  (-0.0794,
525 536 (0.4181, 0.6710) 4 ntial 75
GARCH(1,1) 9 0.2670)
Property Sector Index 1 0.1891
13 234. 0.6320 0.094 0.99
ARMA(5,3)-GJR- 5 0.0773  (0.0042, pareto
803 215 (0.4805, 0.7835) 3 91
GARCH(1,1) 9 0.3739)
Bloomberg Barclays MSCI
1 0.0526
US Green Bond Index 14 181. 0.6146 0.078 expone 0.94
5 0.0683  (-0.1003,
ARMA(1,0)-GJR- 300 911 (0.4806, 0.7485) 0 ntial 75
9 0.2056)

GARCH(1,1)

This is particularly important in light of Section 3.1, where the property exhibited residual
ARCH effects even after modeling with ARMA-GJR-GARCH and skewed Student-t distribution.
The incorporation of EVT directly addresses these residual tail risks by explicitly modeling extreme
losses that conventional GARCH structures may not fully capture. The ARMA-GJR-GARCH-EVT
framework is thus employed specifically to estimate capital requirements under stress scenarios,
focusing on the extreme downside risks faced by insurers.

Notably, the findings underscore the inadequacy of assuming normally distributed returns, as
such assumptions can substantially underestimate capital requirements for Thai insurers during
market stress, especially given the fat tails and skewness typical of financial return distributions. The
GJR-GARCH component captures the asymmetric volatility response to negative shocks, a well-
documented phenomenon in financial markets, while the ARMA component accounts for
autocorrelation in return series. This two-stage modeling framework improves the accuracy of VaR
estimates and facilitates more prudent and risk-sensitive capital allocation.
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In the next section, the analysis is extended by incorporating dynamic dependence structures
through R-vine copulas, enabling realistic modeling of time-varying and nonlinear relationships
across asset classes in a diversified investment environment.

3.3. ARMA-GJR-GARCH-EVT Estimation for Tail Risk Assessment

This section presents empirical results from R-vine copula models for life and non-life insurer
portfolios. Building on the ARMA-GJR-GARCH marginal models discussed in Section 3.1, the
analysis captures nonlinear and asymmetric dependencies among financial assets and evaluates the
impact of green bond inclusion on diversification, capital adequacy, and risk-adjusted returns. R-vine
copulas with Student-t pairings effectively model tail dependencies, critical for portfolio risk
management across diverse financial assets in extreme markets.

3.3.1. Portfolio Analysis for Life Insurers

This subsection presents R-vine copula results for life insurer portfolios, comparing a five-asset
baseline with a six-asset version that includes green bonds. Both portfolios are optimized for the
Sharpe ratio, meet capital requirements, and align with life insurers” long-term liabilities. The analysis
evaluates whether green bond inclusion enhances diversification, reduces tail risk, and improves
overall portfolio performance.

The results of the copula estimations are summarized in Table 4. Both configurations use D-vine
Student-t copulas, crucial for managing extreme market risks by capturing nonlinear, asymmetric,
and tail-dependent relationships. The upper panel of Table 4 presents the five-asset portfolio,
comprising the SET index (1), the Thai bullion gold (2), the property sector index (3), the 7-10-year
government bond index (4), and the JPY/THB exchange rate (5). The strongest unconditional
dependence is observed between the SET and the property (t = 0.87), reflecting equity market
concentration. A strong positive dependence between the gold and the exchange rate (v =0.80, 4, =
A, = 0.75) reflects safe-haven behavior, while a notable negative dependence between the SET and
the exchange rate (t = —0.72) suggests diversification potential. As the R-vine structure progresses,
tail dependence and conditional relationships weaken, indicating that extreme co-movements are
concentrated among a few key asset pairs. The estimated degrees of freedom (v) range from 3.38 to
30, reflecting varying tail heaviness across the dependence structure. Overall, the five-asset model
exhibits strong statistical performance, with the log-likelihood at 7,733.54, the AIC at —15,427.08, and
the BIC at -15,312.54, forming a robust baseline for evaluating the added value of green bond
inclusion in the six-asset configuration.

Table 4. R-vine copula estimation for life insurers.

D-vine copula estimation for the five-asset portfolio

Copula Edge Parameter 1 = Parameter2 Tau Lower Tail Upper Tail
C() Ei p v T ).1 AZ

t 1,3 0.98 19.96 0.87 0.64 0.64

t 2,4 0.82 10.59 0.62 0.31 0.31
Tree 1

t 51 -0.91 8.91 -0.72 0.00 0.00

t 5,2 0.95 3.38 0.80 0.75 0.75

t 5311 -0.65 7.55 -0.45 0.00 0.00
Tree 2 t 5,412 0.46 5.83 0.31 0.16 0.16

t 2,115 -0.03 30.00 -0.02 0.00 0.00

t 2,315,1 -0.32 13.77 -0.20 0.00 0.00
Tree 3

t 1,415,2 -0.79 7.20 -0.58 0.00 0.00
Tree 4 t 4,312,51 0.14 18.69 0.09 0.00 0.00
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Log-likelihood 7,733.54
AIC -15,427.08
BIC -15,312.54
D-vine copula estimation for the six-asset portfolio
Copula Edge Parameterl = Parameter2 Tau  Lower Tail Up?er
c() E; p v T A Tail
)
t 1,3 0.98 19.96 0.87 0.64 0.64
t 2,4 0.82 10.59 0.62 0.31 0.31
Tree 1 t 51 -0.91 8.91 -0.72 0.00 0.00
t 6,2 0.93 6.04 0.75 0.62 0.62
t 6,5 0.92 8.99 0.74 0.53 0.53
t 5311 -0.65 7.55 -0.45 0.00 0.00
Tree t 6,412 -0.32 10.62 -0.21 0.00 0.00
t 6,115 0.50 8.08 0.34 0.12 0.12
t 5216 0.67 5.15 0.47 0.31 0.31
t 6,315,1 -0.38 15.69 -0.25 0.00 0.00
Tree 3 t 5,416,2 0.61 5.40 0.42 0.26 0.26
t 2,116,5 -0.29 13.39 -0.18 0.00 0.00
Tree 4 t 2,316,5,1 -0.14 23.76 -0.09 0.00 0.00
t 1,415,6,2 -0.69 8.01 -0.49 0.00 0.00
Tree 5 t 4,312,6,51 0.09 19.54 0.06 0.00 0.00
Log-likelihood 9,545.86
AIC -19,031.73
BIC -18,859.92

The lower panel of Table 4 presents the six-asset portfolio, which includes the Bloomberg
Barclays MSCI US green bBond index (6). The green bond significantly alters the dependence
structure. In Tree 1, the green bond exhibits strong unconditional positive dependence with the gold
(r = 0.75) and the exchange rate (r = 0.74), along with substantial symmetric tail dependence (4, =
A, = 0.62 and 0.53, respectively), positioning them alongside traditional safe-haven assets and
reinforcing their stabilizing role during market stress. In higher-order trees, the green bond displays
moderate to weak conditional dependencies, such as a modest positive link with the SET (7 = 0.34),
a weak negative association with the 7-10-year government bond (r =-0.21), and a slightly stronger
negative relationship with the property (7 = -0.25). These relationships suggest that the green bond
provides differentiated exposure to macroeconomic risks and may help mediate cross-asset risk
transmission. By Tree 5, dependencies are negligible, highlighting their role in diffusing residual co-
movement. Statistically, the six-asset model outperforms the five-asset configuration, with the log-
likelihood of 9,545.86, the AIC of —19,031.73, and the BIC of -18,859.92. These improvements indicate
that green bonds enrich the dependence structure, enhance diversification, and strengthen tail-risk
modeling. This clearly supports capital-efficient and resilient portfolio design aligned with
sustainability-oriented investment objectives.

Table 5 presents the optimal portfolio weights for life insurers under Sharpe ratio maximization,
comparing a traditional five-asset configuration with a six-asset portfolio that includes the green
bond. In the five-asset portfolio, the 7-10-year government bond receives the highest allocation (50%)
due to its low volatility and strong duration-matching benefits. The SET accounts for 30%, while the
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gold and the property are each allocated 5%. The exchange rate receives a 10% weight, offering
diversification and safe-haven characteristics. The introduction of the green bond in the six-asset
portfolio reshapes the asset mix while preserving portfolio stability. The 7-10-year government bond
remains at 50%, while the SET is reduced to 20%. The green bond and the property are each allocated
10%, with the gold and the exchange rate maintaining their 5% weights. This reallocation underscores
green bonds’ contribution to diversification and resilience, while supporting ESG-aligned objectives.

Table 5. Optimal portfolio weights based on Sharpe ratio maximization for life insurers.

Optimal portfolio weights based on Sharpe ratio maximization for the five-asset portfolio

Asset SET Thai Bullion Property 7-10 TTM JPY/THB
sse
Index Gold Sector Index GOV Exchange Rate
Weight 0.30 0.05 0.05 0.50 0.10
Optimal portfolio weights based on Sharpe ratio maximization for the six-asset portfolio
. Bloomberg
Thai Property JPY/THB
SET 7-10 TTM Barclays MSCI
Asset Bullion Sector Exchange
Index GOV US Green
Gold Index Rate
Bond Index
Weight 0.20 0.05 0.10 0.50 0.05 0.10

These optimized in-sample weights provide a baseline for the subsequent dynamic analysis. The
next step evaluates time-varying portfolio performance using 600-day rolling-window forecasts of
VaR and the Sharpe ratio for life insurers.

3.3.2. Portfolio Analysis for Non-Life Insurers

This subsection presents R-vine copula results for non-life insurer portfolios, built using the
same Sharpe ratio optimization and duration-matching approach as applied to life insurers. Due to
their shorter-duration liabilities, non-life insurers require greater sensitivity to liquidity and
volatility. While return optimization remains relevant, capital preservation and regulatory
compliance take precedence.

Two portfolios are analyzed: a five-asset baseline and a six-asset version including green bonds.
The five-asset portfolio uses a D-vine structure, while the six-asset R-vine captures increased
interdependencies with green bond inclusion. Both utilize Student-t copulas to model nonlinear,
asymmetric, tail-dependent relationships, crucial under market stress. The upper panel of Table 6
presents the five-asset portfolio, comprising the SET index (1), the Dubai crude oil (2), the property
sector index (3), the 3-7-year government bond Index (4), and the JPY/THB exchange rate (5). The D-
vine structure reveals the strongest unconditional dependence between the SET and the property (t
= 0.87, 4; = A, = 0.64), reflecting high co-movement within the equity market. Notable negative
dependencies are observed between the exchange rate and both the SET (r =-0.72) and the crude oil
(tr = -0.83), highlighting the diversification potential of currency exposure. A moderate negative
relationship between the crude oil and the 3-7-year government bond (7 =-0.61) suggests opposing
responses to macroeconomic shocks such as inflation or interest rate changes. As the vine progresses,
dependencies weaken. For instance, Tree 3 reports a weak positive link between the crude oil and the
property (t = 0.21) and a moderately negative relationship between the SET and the 3-7-year
government bond (t = -0.60), indicating differentiated behavior under stress. Tail dependence is
concentrated in the first tree. The model demonstrates strong statistical performance, with the log-
likelihood of 8,037.66, the AIC of —16,035.31, and the BIC of -15,920.77.

The lower panel of Table 6 presents the six-asset portfolio, incorporating the Bloomberg Barclays
MSCI US green bond index (6). With increased interdependencies, a general R-vine structure is
adopted. In Tree 1, the green bond exhibits strong positive dependence with the exchange rate (7 =
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0.74, 2, = 1, =0.54) and a strong negative dependence with the 3-7-year government bond (7 = -
0.74), indicating their potential as a hedge against interest-rate-sensitive assets. In higher-order trees,
the green bond shows moderate conditional dependence with the SET (7 = 0.42) and weak negative
relationships with the property (r = -0.17) and the crude oil (v = -0.18), suggesting differentiated
macroeconomic exposure. The six-asset model improves the statistical fit, with the log-likelihood of
9,797.16, the AIC of —-19,534.31, and the BIC of -19,362.50. These results confirm that green bonds
enhance the dependence structure, improve diversification, and contribute to tail-risk mitigation.
This supports the construction of capital-efficient and resilient portfolios for non-life insurers while
aligning with sustainable investment strategies (Abakah et al., 2022).

Table 6. R-vine copula estimation for non-life insurers.

D-vine copula estimation for the five-asset portfolio

Copula Edge Parameter 1 Parameter2 Tau Lower Tail Upper Tail
() E; [ v T A Az

t 1,3 0.98 20.16 0.87 0.64 0.64
Tree 1 t 2,4 -0.82 12.52 -0.61 0.00 0.00

t 51 -0.91 8.93 -0.72 0.00 0.00

t 5,2 -0.97 3.95 -0.83 0.00 0.00

t 5311 -0.65 7.55 -0.45 0.00 0.00
Tree 2 t 5412 0.16 12.37 0.11 0.01 0.01

t 2,115 0.32 14.47 -0.21 0.01 0.01
Tree 3 t 2,315,1 0.33 13.44 0.21 0.02 0.02

t 1,415,2 -0.81 6.31 -0.60 0.00 0.00
Tree 4 t 4,312,5,1 0.22 10.50 0.14 0.00 0.00

Log-likelihood 8,037.66
AIC -16,035.31
BIC -15,920.77
D-vine copula estimation for the six-asset portfolio
Copula Edge Parameterl = Parameter2 Tau  Lower Tail Upper Tail
40) E; p v T A4 A

t 1,3 0.98 20.16 0.87 0.64 0.64

t 51 -0.91 8.93 -0.72 0.00 0.00
Tree 1 t 52 -0.97 3.95 -0.83 0.00 0.00

t 6,4 -0.92 4.71 -0.74 0.00 0.00

t 6,5 0.92 8.93 0.74 0.54 0.54

t 5311 -0.65 7.55 -0.45 0.00 0.00
Tree 2 t 2,115 0.32 14.47 0.21 0.01 0.01

t 6,215 -0.28 10.77 -0.18 0.00 0.00

t 5416 0.24 15.45 0.15 0.01 0.01

t 2,315,1 0.33 13.44 0.21 0.02 0.02
Tree 3 t 6,112,5 0.62 11.48 0.42 0.11 0.11

t 4,216,5 0.07 30.00 0.05 0.00 0.00
Tree 4 t 6,312,5,1 -0.26 26.47 -0.17 0.00 0.00
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t 4,116,2,5 -0.44 17.91 -0.29 0.00 0.00
Tree 5 t 4,316,2,5,1 0.32 17.94 0.20 0.01 0.01
Log-likelihood 9,797.16
AIC -19,534.31
BIC -19,362.50

Table 7 presents the optimal portfolio weights for non-life insurers under Sharpe ratio
maximization, comparing a traditional five-asset configuration with a six-asset portfolio that includes
green bonds. In the five-asset portfolio, the 3-7-year government bond receives the highest allocation
(55%), reflecting their role as low-risk, liquid instruments aligned with non-life insurers’ short-
duration liabilities. The exchange rate accounts for 30%, offering diversification and safe-haven
benefits under volatile conditions. The remaining 15% is equally distributed across the SET, the crude
oil, and the property, reflecting measured exposure to higher-volatility assets. In the six-asset
portfolio, green bond inclusion reshapes the allocation while preserving the conservative structure.
The 3-7-year government bond is reduced to 40%, while the green bond is allocated 10%, highlighting
their role in enhancing stability and supporting ESG mandates. The exchange rate remains at 30%,
the SET increases to 10%, and the crude oil and the property retain 5% each. This reallocation reflects
a strategic response to the risk-return dynamics introduced by green bonds and supports capital
efficiency under regulation-sensitive investment policies.

Table 7. Optimal portfolio weights based on Sharpe ratio maximization for non-life insurers.

Optimal portfolio weights based on Sharpe ratio maximization for the five-asset portfolio

Asset SET Dubai Property 7-10 TTM JPY/THB
sse
Index Crude Oil Sector Index GOV Exchange Rate
Weight 0.05 0.05 0.05 0.55 0.30
Optimal portfolio weights based on Sharpe ratio maximization for the six-asset portfolio
Bloomberg
) Property JPY/THB
SET Dubai 7-10 TTM Barclays MSCI
Asset . Sector Exchange
Index  Crude Oil GOV US Green
Index Rate
Bond Index
Weight 0.10 0.05 0.05 0.40 0.30 0.10

Consistent with the life insurer analysis, these in-sample weights are used as inputs for a 600-
day rolling-window estimation. This dynamic approach captures the evolving risk-return profile of
non-life insurer portfolios through forecasts of VaR and the Sharpe ratio.

3.4. Value-at-Risk Backtesting

This section evaluates the predictive performance of the VaR forecasts using two established
backtesting procedures: the Kupiec unconditional coverage test and the Christoffersen conditional
coverage test. Backtesting serves as a critical validation step, assessing whether the VaR estimates
adequately capture potential losses and comply with solvency capital requirements (Smolovic et al.,
2017). The analysis employs a rolling-window estimation approach, as described in Section 2.4, to
generate 600 daily out-of-sample VaR forecasts for each model under review.

Three modeling frameworks are evaluated across different confidence levels and horizons: (1)
ARMA-GJR-GARCH with skewed Student-t innovations: Captures volatility clustering, asymmetric
responses, and fat-tailed return distributions. It provides one-day-ahead VaR forecasts at the 95%
confidence level, consistent with the requirement of the Thai OIC, and ten-day-ahead forecasts at the
99% level, aligned with Basel standards. These estimates reflect the capital buffers that life and non-
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life insurers are required to hold at specified confidence levels under financial solvency frameworks.
(2) ARMA-GJR-GARCH-EVT hybrid model: Combines conditional volatility modeling with EVT to
improve tail risk estimation, especially under extreme market conditions. It generates one-day-ahead
VaR forecasts at the 97.5% confidence level, a threshold commonly used in insurance sector stress
testing (Paraschiv et al., 2020), offering more conservative and robust estimates for capital adequacy.
(3) Dynamic R-vine copula model: Captures time-varying, nonlinear dependencies among asset
returns. Dynamically estimated copula parameters are used to forecast one-day-ahead VaR at the
95% confidence level and to compute Sharpe ratios based on optimized weights for life and non-life
insurer portfolios.

3.4.1. ARMA-GJR-GARCH Model (with Skewed Student-t Innovations) and ARMA-GJR-
GARCH-EVT Performance

This subsection presents backtesting results for two VaR forecasting models: the ARMA-GJR-
GARCH with skewed Student-t innovations and its tail-risk-enhanced extension incorporating EVT.
Both models are estimated using a 600-day rolling window and evaluated using the Kupiec
unconditional coverage and Christoffersen conditional coverage tests to ensure forecast reliability for
regulatory compliance and capital adequacy.

The ARMA-GJR-GARCH model generates one-day-ahead VaR forecasts at the 95% confidence
level and ten-day-ahead forecasts at the 99% level. It effectively captures asymmetric volatility and
fat tails, producing accurate forecasts for most assets. As shown in Table 8 and Figures 1 and 2, most
assets pass both backtests. Minor exceptions include the 7-10-year government bond, with p-values
below 0.1, suggesting mild underestimation of risk. For the ten-day-ahead horizon, Kupiec test
violations are observed for the crude oil and the 3-7-year government bond, while the Christoffersen
test flags the crude oil, the exchange rate, and the green bond, indicating areas for improvement.

To enhance tail-risk estimation, the ARMA-GJR-GARCH-EVT model forecasts one-day-ahead
VaR at the 97.5% confidence level. Table 9 and Figure 3 present results that demonstrate strong model
performance, with exceedance rates generally aligning with expectations. Notable exceptions include
the exchange rate (Kupiec p-value of 0.087) and the 3-7-year government bond (Christoffersen p-
value of 0.037), indicating some inconsistency in the timing of exceedances.

Table 8. One-day-ahead VaR and ten-day-ahead VaR backtesting: ARMA-GJR-GARCH model (with skewed

Student-t innovations) performance.

Bloomb
erg
. . JPY/TH Propert Barclay
Dubai Thai 3-7 7-10
SET . B y s MSCI
Crude  Bullion TT™M TTM
Index . Exchan  Sector us
Oil Gold GOV GOV
ARMA( ge Rate  Index Green
Asset ARMA( ARMA( ARMA( ARMA(
3,3)- ARMA( ARMA( Bond
Model 3,2)- 1,0)- 3,2)- 1,0)-
GJR- 1,1)- 5,3)- Index
GJR- GJR- GJR- GJR-
ARCH GJR- GJR-  ARMA(
GARC GARC GARC GARC
(1,1) GARC GARC 1,0)-

H(1,1) H@1) H1D) H11
(1,1) (1,1) (1,1) Ny

GARC
H@1,1)
Average
One-day- -1.16%  -3.38%  -1.34%  -014%  -031% -094%  -149%  -0.65%
ahead
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VaR at
95%
Observed
Exceedanc  4.17% 5.17% 4.00% 5.17% 3.50% 4.50% 3.83% 5.50%
e Rate

Kupiec
Test

0.928 0.035 1.352 0.035 3.161 0.326 1.863 0.306

Kupiec's
0.335 0.852 0.245 0.852 0.075* 0.568 0.172 0.580
p-value
Christoffe
rsen Test
Christoffe
rsen’s 0.634 0.849 0.554 0.932 0.092* 0.835 0.395 0.845

p-value

0.912 0.327 1.182 0.140 4.764 0.361 1.855 0.337

Average
ten-day-
ahead -519%  -1493%  -5.92% -0.58% -1.34% -4.29% -6.70% -2.86%
VaR at
99%
Observed
Exceedanc  0.85% 0.17% 0.85% 2.03% 1.52% 0.51% 0.68% 0.68%
e Rate

Kupiec
Test

0.149 6.308 0.149 4.882 1.407 1.766 0.703 0.703

Kupiec’s
0.699 0.012** 0.699 0.027** 0.236 0.184 0.402 0.402
p-value
Christoffe
rsen Test
Christoffe
rsen’s 0.133 0.084* 0.139 0.170 0.618 0.084* 0.133 0.065*

p-value

4.035 4.958 3.594 3.546 0.960 4.958 4.035 5.452

Note: ** significant at 0.05, * significant at 0.1.

1 Day VaR_The SET Index

-l s

1 51 101 151 201 251 301 351 401 451 501 551
day

Return 1-day_The SET Index

1-day VaR _The SET Index
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(a) The SET index.

1 Day VaR_Government bond index (3-7 TTM)

bt L e WWMMWM
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day

Return 1-day_Government bond index (3-7 TTM) 1-day VaR _Government bond index (3-7 TTM)

(b) The 3-7-year government bond index.
1 Day VaR_Government bond index (7-10 TTM)
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day

Return 1-day_Government bond index (7-10 TTM) 1-day VaR _Government bond index (7-10 TTM)

(c) The 7-10-year government bond index.
1 Day VaR_The Bloomberg Barclays MSCI US Green Bond Index

T Lk AN

51 101 151 201 251 301 351 401 451 501 551
day

Return 1-day_The Bloomberg Barclays MSCI US Green Bond Index

1-day VaR _The Bloomberg Barclays MSCI US Green Bond Index

(d) The Bloomberg Barclays MSCI US green bond index.

Figure 1. One-day-ahead VaR forecasting of (a) the SET index, (b) the 3-7-year government bond index, (c) the

7-10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index.
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(c) The 7-10-year government bond index.
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10 Day VaR_The Bloomberg Barclays MSCI US Green Bond Index

1 51 101 151 201 251 301 351 401 451 501 551

Return 10-day_The Bloomberg Barclays MSCI US Green Bond Index

10-day VaR _The Bloomberg Barclays MSCI US Green Bond Index

(d) The Bloomberg Barclays MSCI US green bond index.

Figure 2. Ten-day-ahead VaR forecasting of (a) the SET index, (b) the 3—7-year government bond index, (c) the
7-10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index.

Table 9. One-day-ahead VaR backtesting: ARMA-GJR-GARCH-EVT model performance.

Bloomber
g Barclays
Thai JPY/THB Property
SET Dubai 3-7TTM  7-10 TTM MSCI US
Bullion Exchange Sector
Index Crude Oil GOV GOV Green
Gold Rate Index
Asset ARMAG, ARMAG, ARMAG, ARMAQ, Bond
ARMA(1, ARMA(1, ARMAG,
Model 3)-GJR- 2)-GJR- 2)-GJR- 0)-GJR- Index
0)-GJR- 1)-GJR- 3)-GJR-
ARCH GARCH GARCH GARCH ARMA(,
GARCH GARCH GARCH
(1,1) (1,1) 1,1) (1,1) 0)-GJR-
1,1 (1,1) 1)
GARCH
1,1
Average
One-day-
-1.56% -4.46% -1.64% -0.21% -0.43% -1.09% -1.91% -0.84%
ahead VaR
at 97.5%
Observed
Exceedance 2.00% 2.00% 2.67% 2.00% 2.33% 3.67% 1.83% 2.83%
Rate
Kupiec Test 0.660 0.660 0.067 0.660 0.070 2.936 1.204 0.262
Kupiec's
0417 0417 0.796 0.417 0.791 0.087* 0.273 0.609
p-value
Christoffers
2.809 1.989 0.612 6.608 1.359 2.389 3.838 2.605
en Test
Christoffers
en p- 0.245 0.370 0.736 0.037** 0.507 0.303 0.147 0.272
value

Note: ** significant at 0.05, * significant at 0.1.
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Figure 3. One-day-ahead EVT VaR forecasting of (a) the SET index, (b) the 3-7-year government bond index, (c)
the 7-10-year government bond index, and (d) the Bloomberg Barclays MSCI US green bond index.

The green bond exhibits one-day-ahead VaR values of -0.65% under the ARMA-GJR-GARCH
model and -0.84% under the EVT-enhanced specification. These values exceed those of the 3-7-year
(-0.14%, —0.21%) and the 7-10-year (-0.31%, —0.43%) Thai sovereign bonds but remain lower than the
SET (-1.16%, —1.56%). Compared to other asset classes, the green bond also demonstrates lower risk
than the crude oil (-3.38%, —4.46%), the gold (-1.34%, —1.64%), the exchange rate (-0.94%, —1.09%),
and the property (-1.49%, —1.91%). Over a ten-day-ahead horizon at the 99% confidence level, the
green bond shows a VaR of —2.86%, again falling between the 3—7-year (-0.58%) and the 7-10-year
(-1.34%) government bonds, and riskier assets such as the SET (-5.19%), the gold (-5.92%), and the
crude oil (-14.93%).

Despite some discrepancies, both models provide valuable insights. The ARMA-GJR-GARCH
model is well-suited for routine risk monitoring, while its EVT-enhanced extension improves
reliability under stressed market conditions. One-day-ahead VaR estimates from the GARCH model
range from 0.13% to 3.37%, and ten-day-ahead estimates range from 0.57% to 14.93%. The SET’s
average ten-day-ahead VaR is 5.19%, exceeding the typical range in developed markets (Degiannakis
et al., 2014), supporting the case for localized capital adequacy standards. The EVT model yields
higher one-day-ahead VaR estimates —from 0.21% to 4.46% —and shows the SET at 1.56%, below the
2.60%-3.99% range observed in developed economies (Echaust and Just, 2020), indicating differences
in volatility or capital regulation.

The relatively higher VaR of the green bond in this study, compared to conventional Thai
government bonds, indicates that it may not appear to be a lower-risk asset when considered in
isolation. This contrasts with findings from developed markets, such as Liaw (2020), which describe
a “greenium” effect, characterized by lower yields and reduced perceived risk driven by sustained
ESG demand. However, such results are typically reported within the same market, credit tier, or
issuer type. In contrast, this study compares an international green bond with Thai sovereign bonds,
representing a cross-jurisdictional and cross-credit-category assessment. The elevated VaR observed
for green bonds may therefore reflect differences in market structure, issuer composition, duration
exposure, and currency denomination, rather than a true absence of the greenium effect.

While the green bond may not appear lower risk than Thai government bonds on a standalone
basis, it exhibits lower capital requirements than other asset classes discussed earlier. Its
predominantly negative dependence with other assets, as revealed by the R vine copula analysis,
suggests potential diversification benefits. The next subsection examines this potential by evaluating
portfolio-level risk and return through rolling window Sharpe ratios and VaR forecasts.
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3.4.2. Performance Evaluation of the Dynamic R-Vine Copula Model: Rolling-Window Sharpe
Ratios and VaR Forecasts

This section assesses the dynamic R-vine copula model’s performance in forecasting one-day-
ahead VaR at the 95% confidence level and calculating Sharpe ratios using a 600-day rolling window.
The model combines ARMA-GJR-GARCH marginal models with skewed Student-t innovations and
a dynamic copula to capture time-varying, asymmetric dependencies among assets. This approach is
valuable for insurers managing portfolio risk in volatile markets while aligning investments with
solvency and sustainability goals. Unlike univariate models, R-vine copulas capture evolving
nonlinear interdependencies, making them suitable for life and non-life insurers with distinct asset-
liability management and risk-adjusted return objectives.

Table 10 presents rolling performance results for life and non-life portfolios with and without
green bonds. For life insurers, green bond inclusion significantly enhances portfolio efficiency. The
average Sharpe ratio rises from —0.0432 to 0.0063, while the average one-day-ahead VaR decreases
from -0.1576% to -0.1428%, indicating improved risk-adjusted returns and reduced capital
requirements. The six-asset portfolio achieves a higher Sharpe ratio in 80.50% of rolling windows and
delivers a lower VaR in 60.33%, demonstrating meaningful diversification benefits. These findings
align with Casal et al. (2025) and Gupta et al. (2025), supporting the role of green bonds as dual
contributors to portfolio performance and solvency for life insurers. For non-life insurers, the six-
asset portfolio delivers a moderate improvement in the average Sharpe ratio, increasing from -0.0928
to —0.0441. Additionally, 60.67% of rolling windows exhibit higher Sharpe ratios, underscoring the
presence of diversification benefits. This improvement is accompanied by a slight rise in downside
risk, as the average one-day-ahead VaR increases from —0.1004% to —0.1264%. For insurers that
prioritize short-term liquidity and volatility control, the trade-off may still be justifiable, particularly
for those with a higher risk appetite who are seeking enhanced returns. These findings align with
Jarefio et al. (2024), reinforcing that ESG-focused assets can enhance portfolio dynamics even when
risk reduction is not uniform.

Table 10. Performance comparison of R-vine copula models: Sharpe ratio and VaR backtesting.

. Average % of Windows
. Average % of Windows )
Portfolio . . One-Day- with Lower
Sharpe with Higher
Type . . Ahead VaR One-Day-
Ratio Sharpe Ratio
(95%) Ahead VaR
. Five-Asset
Life ) -0.0432 19.50% -0.1576% 39.67%
. Portfolio
insurer
. Six-Asset
portfolios ) 0.0063 80.50% -0.1428% 60.33%
Portfolio
Five-Asset
Non-life . -0.0928 39.33% -0.1004% 66.17%
. Portfolio
insurer
. Six-Asset
portfolios ) -0.0441 60.67% -0.1264% 33.83%
Portfolio

In summary, the dynamic R-vine copula model demonstrates that green bonds fundamentally
alter inter-asset relationships, boosting portfolio efficiency, especially for life insurers, despite their
higher standalone VaR. This restructuring reduces tail risk, improves Sharpe ratios for both life and
non-life insurers, and lowers portfolio-level VaR, notably for life insurers. These findings align with
Mensi et al. (2022), who highlight the effectiveness of copula-based models in capturing dynamic co-
movements under market volatility. The results also support Tsoukala and Tsiotas’s (2021) emphasis
on integrating ESG assets into complex financial systems. These benefits are more pronounced for
life insurers, whose long-term investment horizons and solvency-driven mandates make them
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especially responsive to diversification gains. While Bouri et al. (2023) and Pham and Nguyen (2022)
report green bond vulnerabilities to oil price volatility, policy uncertainty, and limited hedging
capacity, the current findings highlight the importance of evaluating ESG assets through a
dependence-aware, multivariate framework. Although the extent of benefit varies by insurer type,
green bond integration supports both portfolio stability and ESG-aligned performance when assessed
using advanced models such as dynamic copulas, which are able to capture nonlinear dependencies.
These results, which clarify the nuanced role of green bonds in insurance portfolio construction, are
further synthesized in the concluding section.

4. Conclusions

This study presents a robust framework for assessing capital requirements and optimizing
insurer portfolios, particularly those that include green bonds, through advanced risk modeling. By
integrating ARMA-GJR-GARCH models with skewed Student-t innovations, extreme value theory,
and dynamic R-vine copulas, the methodology captures essential risk features such as volatility
clustering, tail risk, and time-varying dependencies. This approach is well-suited for regulatory stress
testing and solvency assessment, offering a comprehensive perspective under both normal and
adverse market conditions. These advanced models can support regulators in establishing
appropriate capital requirements by providing more accurate risk evaluations. Backtesting results
further validate the models’ effectiveness and support their application in proactive risk oversight
and regulatory supervision.

The analysis reveals that although green bonds may not exhibit a “greenium” effect in isolation
compared to Thai sovereign bonds, the risk level associated with green bonds is lower than that of
more volatile asset classes such as equities, oil, property, gold, and exchange rates. Incorporating
green bonds into diversified insurer portfolios enhances risk-adjusted returns by increasing Sharpe
ratios and reducing portfolio-level value-at-risk, in most rolling periods. This can potentially lead to
reduced capital charges. These findings underscore the importance of evaluating capital
requirements at the portfolio level, rather than focusing solely on individual assets. These benefits
are especially evident among life insurers, whose long-term horizons and solvency mandates align
with the characteristics of green bonds. While non-life insurers also experience diversification, short-
term risk requires careful consideration. As ESG-aligned instruments, green bonds offer insurers a
pathway to strengthen financial resilience while supporting national sustainability priorities.

Therefore, financial regulators in Thailand should proactively integrate green bonds into
supervisory investment frameworks for insurer portfolios, actively encouraging their adoption to
enhance both financial stability and sustainability. Given the observed improvements in risk-
adjusted returns and potential reductions in capital requirements associated with green bond
allocations, regulators should explicitly recognize the benefits of ESG assets within solvency-oriented
investment policies. This should include conducting capital assessments at the portfolio level,
utilizing advanced models like dynamic copula-based approaches that account for nonlinear and
time-varying dependencies to accurately reflect the risk-reducing properties of green bonds. By
strengthening regulatory guidance in this way, regulators can not only enhance insurers’ financial
resilience and potentially reduce capital charges under the Office of Insurance Commission of
Thailand regulatory frameworks, but also actively steer the insurance sector towards supporting
Thailand’s sustainable finance agenda and commitments under the United Nations Sustainable
Development Goals (SDGs).

Future research could further enhance forecasting accuracy by exploring alternative GARCH
family models, such as EGARCH, TGARCH, or GJR GARCH M, and regime switching frameworks
to better capture market asymmetries and structural shifts. Integrating EVT copulas models may
improve tail dependence modeling under extreme conditions, while advanced distributions such as
generalized hyperbolic or finite mixtures could more precisely represent skewness and fat tails. These
extensions would reinforce insurer risk management and promote adaptive, sustainability-aligned
investment strategies.
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