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Abstract: Application of the Ramsey graph theory to the analysis of physical systems is reported.
Physical interactions may be very generally classified as attractive and repulsive. This classification
creates the premises for the application of the Ramsey theory to the analysis of physical systems
built of electrical charges, electric and magnetic dipoles. The notions of mathematical logic, such as
transitivity and intransitivity relations, become crucial for understanding of behavior of physical
systems. The Ramsey approach may be applied to the analysis of mechanical systems, when actual
and virtual paths between the states in configurational space are considered. Irreversible mechanical
and thermodynamic processes are seen within the reported approach as directed graphs. Chains of
irreversible processes appear as transitive tournaments. These tournaments are acyclic; the transi-
tive tournaments necessarily contain the Hamiltonian path. The set of states in the phase space of
the physical system, between which irreversible processes are possible, is considered. Hamiltonian
path of the tournament emerging from the graph uniting these states is a relativistic invariant. Ap-
plications of the Ramsey theory to the general relativity become possible when the discrete changes
in the metric tensor are assumed. Reconsideration of the concept of “simultaneity” within the Ram-
sey approach is reported.

Keywords: physical system; attraction; repulsion; Ramsey theory; transitivity; complete graph; rel-
ativity; Hamiltonian path.

1. Introduction

In discrete mathematics, graph theory is framework unifying the study of graphs,
which are mathematical structures used to model pairwise relations between objects [1,
2]. Pairwise interactions constitute the core of physics; thus, it is well expected, that the
graphs theory will play an important role in the modern physical picture of the world.
Graphs are one of the principal objects of study in discrete mathematics [1-2]. We adopt
the reasonable hypothesis that both physics and the corresponding mathematics have to
be described by means of discrete concepts on the Planck-scale; thus, theory of graphs is
well-expected to supply powerful instruments for understanding the discrete physical
Universe [3,4]. A graph in this context is made up of vertices representing physical bodies
which are connected by edges (also called links) representing physical interactions, which
may differ in their nature. A distinction should be made between undirected graphs,
where edges link two vertices symmetrically, and directed graphs, where edges link two
vertices asymmetrically.

In particular, we apply the Ramsey theory for the analysis of physical behavior of a
physical system built of interacting particles [5]. These interactions very generally may be
classified as attractions or repulsions; thus, providing the base for application of the Ram-
sey theory. Ramsey theory is a field of graph theory that investigates the emergence of
interconnected/interrelated sub-structures within a structure/graph of a known size [6-
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10]. Ramsey's theorem, in one of its graph-theoretic forms, states that one will find mono-
chromatic cliques in any edge labelling (with colors) of a sufficiently large complete graph
[6, 8, 9]. An accessible introduction to the Ramsey theory is found in refs. [6, 9]. More
rigorous approach is supplied in ref. [10]. We demonstrate that the Ramsey theory is use-
ful for the analysis of a broad variety of physical systems, including thermodynamics and
relativity problems. Thus, notions and concepts of mathematical logic become crucial for
understanding of behavior of physical systems.

2. Results
2.1. Ramsey theory for a set of interacting bodies

Consider a set of interacting bodies between which attractive and repulsive interac-
tions are possible. Let us pose following question: what is the minimal number of bodies,
giving rise to appearance of sub-systems, in which only attractive or repulsive interactions
are acting? These interactions may be homogeneous and heterogeneous in their physical
nature. In the case of heterogeneous interactions, for example, the attractive force may be
gravity and repulsion may be electrostatic in their origin. Until now, we do not specify
the kind of these interactions (we will demonstrate below that the physical nature of these
interactions is important for answering the posed question). The solution of the aforemen-
tioned problem is supplied by the Ramsey theory. Consider the system of n physical bod-
ies, interacting one with another via attraction or repulsion. What is the minimal number
of bodies giving rise to m attractions and / repulsions in the system? From the pure math-
ematical point of view, we have to answer the question: what is the Ramsey number
R(m,1)?

We start from the analysis of a set of n = 6 interacting physical bodies, illustrated
with Figure 1. We adopt that two kind of interactions are possible within the system:
namely: attraction and repulsion. Attraction is depicted in Figure 1 with the red solid
line/edge, whereas repulsion is shown with the green solid line/edge.

Figure 1. System built of six interacting bodies is represented. Red lines depict attractive interaction
between the bodies; green lines depict repulsive interactions between the bodies.

The physical interactions acting within the system form the complete graph, i.e. a
graph in which each pair of graph vertices (masses) is connected by an edge/link (interac-
tion, i.e. repulsion or attraction); the situation when zero interaction between the bodies
is possible gives rise to the three-color Ramsey problem and it will be considered below.
Let us pose the following question: what is the minimal number of bodies for which three
mutual attractions or three mutual repulsions will necessarily appear in the graph? The
Ramsey theory supplies an exact answer to this question, namely R(3,3) = 6. Indeed, we
recognize that within the subsystem labeled “345” only repulsions are present; whereas,
in the subsystems “123”, “124”,”125”, “126”, 136", “146” ,”156", “236”, “246” and “256”
only attractive interactions are present.
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Now let us specify the exact kind of these interactions. It seems natural to consider
the Coulomb forces acting between the point electrical charges as an attractive/repulsive
interactions. It also seems from the first glance, that the Coulomb interactions represent
the particular case of the aforementioned case, shown in Figure 1, and R(3,3) = 6 is kept.
However, this answer will be wrong, due to the fact, that the Coulomb forces represent
physical interactions, which may be transitive or intransitive in their physical nature. Con-
sider the system of five point electrical charges, depicted in Figure 2A. It is immediately
recognized from Figure 2A, that in the sub-system labeled “135” only repulsive Coulomb
interactions are present. Moreover, in any system of five point charges (whatever are their
signs) we will find ate least one sub-system built of three point charges interacting via
repulsive forces. No triangle built of attractions (red links) is recognized. Let us under-

stand this observation.
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Figure 2. A. System built of five point electrical charges is represented. Red lines depict attractive
Coulomb interaction between the bodies; green lines depict repulsive Coulomb interactions be-
tween the point charges. B. Coulomb interactions in the system of the three point charges of the
same sign are shown. C. Coulomb interactions in the system of the three point charges of the differ-
ent signs are shown

When charges “a”, “b” and “c” are of the same sign, interactions a < b,b <
cand a < c are necessarily repulsive, in other words: when a positive charge “a” re-
pulses a positive point charge “b”, and a positive charge “b” repulses a positive charge
“c”, necessarily, charge repulses charge “c” (see Figure 2B). Thus, when the signs of
the point charges are the same the Coulomb interactions are transitive.

Now, consider the situation, when the signs of the point charges are different, as il-

"y

lustrated with Figure 2C. In this case, when a positive charge “a” attracts a negative point
charge “b”, and negative charge “b” attracts positive charge “c”, necessarily charge “a”
repulses charge “c”. This kind of relations is called in mathematical logic “intransitivity”.
Let us illustrate this property with the following logical example, involving three groups
of experts, labeled “A”, “B” and “C” correspondingly. Consider the situation when group
of experts “A” recognizes group “B”, and group “B” recognizes group “C”, but group A
does not recognize group C. In this case, the recognition relation among the expert groups
is defined as “intransitive”. This is exactly the situation inherent for Coulomb interaction
of three point charges of different signs, shown in Figure 2C. It should be emphasized,
that no monochromatic triangle will appear when point charges of various signs are lo-
cated in its vertices; however, the clique built of two monochromic edges will be neces-
sarily present, as shown in Figure 2C. On the other hand, the monochromatic triangle will
necessarily appear when the three point charges of the same sign are placed in the vertices,
as depicted in Figure 2B. Using the notions of the Ramsey theory we conclude
Rirans,intrans(2,3) = 3 is true for the Coulomb interactions acting between point charges.
In other words, when interactions between charges “a” and “b” are “b” and “c” are
known, the kind of interaction between charges “a” and “c” is pre-scribed unequivocally,
irrespectively of the spatial location of the charges; however, these interactions may be
transitive, giving rise to monochromatic triangles, and intransitive, which do not enable
monochromatic triangles. It is easily seen, that in any system built of five point charges at
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least one monochromatic triangle will necessarily appear. This is true for any odd number
of point electrical charges.

The transitivity/intransitivity of the Coulomb force immediately follows from the ex-
pression for the potential energy of interaction U(r) between two point charges q; and
q, separated by the distance r:

919>

Ur)=k (1)
where k is the constant depending of the adopted system of units. It is seen from Eq. 1 that
the energy is increased with the decrease of the separation between the charges of the
same sign (which corresponds to repulsion); whereas, the energy is decreased with the
decrease of the separation between the charges of the different signs (which corresponds
to attraction). Thus, the Coulomb interaction within a triad of electrical charges is transi-
tive/intransitive, depending on the signs of charges, as shown in Figure 2B-C. This will be
true for general Coulomb-like interaction, described by Eq. 2:

(oMY
U ={—5— )

where { is the coefficient depending on the system of units, ®; and ®, are “effective
charges”, which may be of the different signs. Thus, the Ramsey theory may be also ap-
plied for the analysis of the physical situation, in which the “Coulomb-like” interactions
between the effective charges, described by Eq. 2, are involved.

Finally, when the notions of the Ramsey theory are used, we formulate the obtained
result as follows: the transitive/intransitive Ramsey number, describing Coulomb (or Cou-
lomb-like) interactions between points charges/effective charges equals three, i.e.
Rirans,intrans(2,3) = 3, whereas Rirans,intrans(3,3) does not exist.

It should be emphasized that electrostatic interactions may be non-transitive. For ex-
ample, interactions between electrical dipoles are non-transitive. Energy of interaction be-
tween two dipoles, illustrated with Figure 3, is described by Eq. 3 [12-13]:

P1D2

Uel (T') = _k r3

(2cosB; cosh, — sinb;sinf,cosy) (3)

where p; and p, are permanent dipole moments, r is the separation between dipoles and
the angles 64,0, and ¢ are shown in Figure 3.

Electric dipoles may attract or repel each other; when 6, = g ; 0, = g and ¢ = 0 cor-
responding to the p; 1T p, parallel configuration; the energy of the repulsive interaction
stems from Eq. 2 and it is given by Eq. 4:

D1D2

Uel(r) = k r3

(4)

In turn, when 6, = g; 6, = —g and ¢ = 0 corresponding to the p; Tl p, anti-parallel
configuration we derive for the energy of the attractive interaction (see Eq. 5):

pip
= (5)

Ug(r) = -k

Figure 3. Geometric relations in a schematic dipole-dipole interaction are shown; p; and p, are
permanent dipole moments, r is the separation between the dipoles, 8; and 6, are the angles of
each dipole in polar coordinates and ¢ is the rotation angle around the axis; all three angles de-
scribe orientation of the two dipoles to each other.
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And, it is noteworthy, that the dipole-dipole interactions may by not-transitive as
illustrated in Figure 4A.

F=> E =2 EF=>

A B

Figure 4. Sketch illustrating the non-transitive nature of interaction between electric dipoles is
shown. A. Dipole p; attracts dipole p,, dipole p, attracts dipole p; whereas dipole p; repels di-
pole ps. B. All of the dipoles attract one another.

Indeed, in the scheme depicted in Figure 4A dipole p, attracts dipole p, and dipole

p, attracts dipole p3;, whereas dipole p, repels dipole ps. Thus, the dipole-dipole inter-
action is non-transitive. However, in the scheme depicted in Figure 4B all of the dipoles
attract one another, consequently the interaction is transitive. Thus, the kind of dipole-
dipole interaction depends on their mutual spatial orientation, in contrast to the situation
with the interaction of point charges. Consider the system of electrical dipoles, depicted
in Figure 5, in which red lines depict attractive dipole-dipole interaction and green lines,
in turn, depict repulsive dipole-dipole interactions; now the nature of interaction depends
on the spatial orientation between the dipoles, as follows from Eq. 3. For dipoles mono-
chromatic triangles built of red links, corresponding to attraction become possible, and
this is again in contrast to graphs, emerging from the interaction of point charges. Thus,
we return to the situation described in Figure 1, when the transitivity of interaction is not
unambiguously prescribed within the triad of interacting bodies. It brings us back to the
complete non-transitive graphs, such as that depicted in Figure 1.

Recall that R(3,3) = 6 for complete non-transitive graphs. Indeed, triple sub-sys-
tems of dipoles labeled “125”, “135”, “124”, “235”, “265” and “146”, in which only attrac-
tive interactions act are recognized in Figure 5. No subsystem in which only repulsive in-
teractions appear is present in the complete graph of interactions, shown in Figure 5.

1

Figure 5. System of dipoles is shown. Red lines depict attractive interactions; green lines depict re-
pulsive interactions between the dipoles (see Eq. 3).

Interaction between two magnetic dipoles is also of the non-transitive nature. This
becomes clear when the energies of electrical U,;(r) and magnetic interaction Upqgn(T)
between dipoles are written in the symmetrized form [14]:
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where pi; and fi, are the magnetic moments and # is a unit vector parallel to the line
joining the centers of the two dipoles.

The energy of interaction of two magnetic dipoles depends on the mutual orientation,
and it may give rise to attractive and repulsive forces, which are non-transitive, as shown
in Figure 6. Again, sub-systems of magnetic dipoles labeled “125”, “135”, “124”, “235”,
“265” and “146”, in which only attractive interactions act are recognized in Figure 5. No
subsystem in which only repulsive interactions appear is not present in the complete
graph of interactions, shown on Figure 6. Thus, the Ramsey theory may supply additional
insights to the Ising problem[15].

We conclude that for the complete graphs depicting repulsive and attractive interac-
tions between electric and magnetic dipoles R(3,3) = 6 is true and monochromatic tri-
angles corresponding to attractive and repulsive interactions are possible. And this in con-
trast to Coulomb interaction between point electrical charges, where monochromatic tri-
angles representing attraction are forbidden, by the logical structure of interaction be-
tween point electrical charges.

=
=

=
=

Figure 6. System of magnetic dipoles ji resembling the system of electric dipoles shown in Figure
5 is shown (see Eq. 6 and Eq. 7). Red lines depict attractive interactions; green lines depict repulsive
interactions between the dipoles. The nature of the interaction depends on the mutual orientation
of magnetic dipoles (see Eq. 7).

2.2. Triple interacting systems: the Ramsey approach

The Ramsey Theory supplies the general framework for more complicated systems
in which arbitrary number of interactions are possible. For example, consider the system
in which three kinds of interactions are possible, namely: attraction, repulsion and zero
interaction, which are supposed to be non-transitive. Consider the system depicted in Fig-
ure 7. Red lines in Figure 7 correspond to the attractive interaction between, green lines
depict repulsive interactions and yellow lines connect the bodies, which do not interact.
It is easily seen from Figure 7 that no mono-chromatic triangle appear in Figure 7.
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Figure 7. System built of six bodies is represented. Red lines depict attractive interaction between
the bodies; green lines depict repulsive interactions between the bodies; yellow lines correspond to
the zero interaction between the bodies (bodies do not interact). .

Let us address the following question: what is the minimal number of bodies, giving
rise to appearance of sub-systems, in which monochromatic triangles will necessarily ap-
pear, in other words: sub-systems including only attracting or repulsing or non-interact-
ing bodies are present. From the point of view of the Ramsey theory, the question is for-
mulated as follows what the value of R(3,3,3) number? The problem was solved by
mathematicians: R(3,3,3) = 17 [16]. It is noteworthy that a restricted set of Ramsey
numbers is known until now [11, 16].

2.3. Ramsey theory and dynamics of mechanical system

Now consider the Ramsey re-interpretation of the classical mechanics. The dynamics
of mechanical systems is determined by the Hamiltonian principle, stating that the true
evolution q(t) of a system described by N generalized coordinates q = (quqz ...qn)
between two specified states q(t;) = (q1 (t1), q2(ty) ... qn(tl)) and q(ty) =
(ql(tz), q,(ty) ...qn(tz)) at two specified times t1 and 2 is a stationary point (a point
where the variation 8S is zero) of the action functional S, defined by Eq. 8:

t2
s= | ta@.a@de ®
t1

Consider that the motion of the system may be pictured as that of the single point
(labeled usually C-point) in the extended configurational space comprising the general-
ized coordinated and time as independent variables [17, 18]. In this space the successive
phases of the motion show up as successive points of a curve. This curve, the “world-line”
of the C—point, contains in geometrical form the entire physical history of the mechanical
system [17, 18]. The Hamilton principle states that the motion of the system between the
initial time t; and final time t, follows a path that minimizes the scalar action integral
defined as the time integral of the Lagrangian, provided the initial and final configura-
tions of the system are prescribed. Thus, from the point of view of a pure logic two kinds
of pathways are possible in the configurational space, namely: i) pathways which mini-
mize the action integral (at these pathways 65 = 0 takes place); we call these paths the
“actual paths” and ii) paths which do not minimize the action functional, given by Eq. 8.
We call below these paths the “virtual paths” and S # 0 hold along these paths. Thus,
premises for application of the Ramsey approach are created, as illustrated with Figure 8.
Consider the map of the states, available for the system in the configurational space.
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Figure 8. Map depicting five states in the configuration space is shown. Red links correspond to the
true evolution of the system, .i.e. providing 85 = 0 (actual paths); black links illustrate virtual
pathways in the configurational space, 8§ # 0 along black pathways (virtual paths).

The map emerges from five points in the configurational space of the mechanical
system. The points are interconnected by paths, corresponding to the actual paths, corre-
sponding to the actual motions of the mechanical system (65 = 0) and virtual paths (6S #
0) which were not chosen by nature for actual motions of the system. Actual paths are
shown with red links, whereas virtual motions are shown with black links. These paths
form the complete graph. It is recognized from the map supplied in Figure 8, that is pos-
sible create a graph in which no monochrome triangle is present. However, it will be al-
ready impossible for the map comprising six points, due to the fact that R(3,3) = 6. Thus,
in the graph built of the six vertices, representing C-points in the configurational space
and interconnected by actual and virtual paths, cycles will necessarily appear. These cy-
cles (“red cycles” or alternatively “black” ones) may correspond to actual or virtual (mo-
tions) of the C-point in the configurational space. Thus, any evolution of any mechanical
system may be represented with the coresspomding Ramsey graph.

2.4. Irreversible processes and graph theory

Until now, we did not address reversibility of the addressed mechanical processes.
Now consider the physical system in which only irreversible processes are possible (as a
matter of fact in any macro scale mechanical system friction is inevitable, and the pro-
cesses are irreversible to a greater or lesser extent). Again, we consider the map of the
states in the configurational space available to the system, shown in Figure 9.

1 2

Figure 9. Map depicting six states in the configurational space is depicted. Only irreversible transi-
tions between the states are possible. The transitive tournament is shown with black arrows. Red
arrows indicate the Hamiltonian path.

Black arrows indicate directions of the irreversible processes. We assume that irre-
versible transitions between all of the states, corresponding to the points in the configura-
tional space are possible, as shown in Figure 9. Thus, a tournament which is a directed
graph (digraph) obtained by assigning a direction for each edge emerges [1]. We assume
that the emerging tournament is transitive, namely (a — b) and (b — ¢) = (a - c) takes
place in such a tournament (for example: (6 - 1) and (1 - 2) = (6 — 2) is true for the
discussed tournament). If the tournament is transitive, the theory of graphs predicts three
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consequences: i) the tournament is acyclic, i.e. it is a directed graph with no directed cy-
cles; in particular, the tournament does not contain a cycle of length 3. Indeed, we recog-
nize from Figure 9, that no cyclic process is possible for the presented tournament; ii) the
tournament contains the Hamiltonian path. Hamiltonian path is the directed path on all
n vertices of the graph, which is shown with red arrows in Figure 9. And it should be
emphasized that the transitive directed graph has the only one Hamiltonian path. Thus,
an irreversible process which passes over all available states in the configurational space
of the system is possible.

Now consider the graph theory interpretation of thermodynamic processes. Consider
n bodies which are in a thermal contact, the temperatures of the bodies are labeled
T; (i =1,2..n). We accept that no pair of bodies is in the thermal equilibrium, in other
words T; # Ty, when i # k. According to the Clausius statement “heat can never pass
from a colder to a warmer body without some other change, connected therewith, occur-
ring at the same time” [19]. Thus, directions of the heat transfer give rise to the tourna-
ment; we assume that all of the bodies are in a thermal contact one with another. For a
sake of simplicity consider the system built of four bodies, T, > T, > T3 > T, is adopted
is shown in Figure 10.

Figure 10. Graph illustrating thermal contact of four bodies is depicted, Ty > T, > T3 > T, is as-
sumed. Black arrows depict the direction of the heat transfer. The graph represents the transitive
tournament. Red arrows depict the Hamiltonian path.

The graph shown in Figure 10 is a transitive tournament; no cycles of length 3 are
recognized in the graph and the single Hamiltonian path (shown with the red arrows) is
inherent for this graph. The generalization for n bodies in thermal contact is straightfor-
ward. Thus, re-shaping of the Second Law of Thermodynamics with the graph theory be-
comes possible, as follows: the heat transfer in the system of n bodies T; (i =
1,2..n),T; # Ty, when i # k generates a transitive tournament. No cycles with a length
of 3 are present in this graph. Thus, no cyclic processes are possible in the system. A single
Hamiltonian path is possible in the graph.

2.5. Ramsey theory and general relativity
The Ramsey theory enables a new interpretation of the general relativity. An interval
ds between two events in the general relativity is given by Eq. 9:

—ds? = gy dx;dx, )

where gy, is the metric tensor (we use the definition of interval adopted in the classical
textbook by Landau and Lifshitz [20]). Generally speaking, g;; is the continuous function
of the space coordinates and time [20]. We consider the situation of the discrete change in
the metric tensor, in other words, the situation, when the interval between two events is
given by Egs. 10-11:

—ds? = g\ dx;dx, (10)

—ds? = gPdx;dx, (11)
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where gi(,? and gi(,f), are the metric tensors, which are not-equal each to another. For a

sake of simplicity the components of the tensors may be taken as constant. This situation
is depicted in Figure 11, in which six events separated by different metric tensors gl(,: ) and
gi(;) are depicted.

The events form complete, non-transitive, non-directed graph, shown in Figure 11.
Let us pose the following fundamental question: what is the minimal number of physical
events providing appearance of triangles within the events’ map, interconnected by the
same metric tensor (gg,t) or gg,f)? )- The answer to this question is supplied by the Ramsey
theory: R(3,3) = 6.Indeed, in the events’ map presented in Figure 11 red triangles “135”
and “246” corresponding to the events connected by the metric tensor gglz‘) are recog-

nized.

Figure 11. The map depicting six events is depicted. The events are separated by the intervals sup-

plied by Egs. 10-11. Green links correspond to the events separated by the interval, defined by the
@,
ik’ )
by the metric tensor ggk). Red triangles “135” and “246” are recognized in the map.

metric tensor g red links, in turn, correspond to the events separated by the interval, defined

2.6. Graph theory and simultaneous events in classical physics and relativity: the Ramsey theory
and causality

Now we address the Ramsey interpretation of the notion of simultaneity. Consider
five events which occurred in the given frame of references. Two kinds of the time rela-
tionship between the events are possible: the first relationship occurs, when the events
occurred non-simultaneously, i.e. At # 0 takes place, where At is the time span between
the events (we consider now the classical meaning of simultaneity of events; the relativ-
istic extension of the Ramsey approach to simultaneity of events will be treated immedi-
ately below). These events are connected in Figure 12 with the red line. The second situa-
tion takes place when the events are simultaneous, i.e. At = 0. These events are con-
nected with the green line (as shown in Figure 12). Let us address the following question:
what is the minimal set of events in which three events took place simultaneously (At =
0) or three events occurred non-simultaneously (At # 0) . Simultaneity of events is the
transitive property in the classical physics (the relativistic extension of the problem is
more complicated and it will be treated below). The answer to this question again is sup-
plied by the Ramsey theory, and it is formulated as follows: what is the minimal transitive
Ramsey R,,(3,3)? The answer to this question was addressed in Section 2.1 and it is
R;(3,3) =5 (seeref. 11). Indeed, we recognize in the example illustrated with Figure 12,
that in the set built of five events, in which the relationships “to be simultaneous” and “to
be non-simultaneous” necessarily present we find a triad of simultaneous events, con-
nected with green links. The triad of simultaneous events appears as a green triangle in
Figure 12.

Indeed, we recognize in the example illustrated with Figure 12, that in the set built
of five events, in which the relationships “to be simultaneous” and “to be non-simultane-
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ous” are necessarily present we necessarily find the triad of simultaneous or non-simul-
taneous ones. This fact imposes the restrictions on the causality of the aforementioned
events. The events forming the green triangle in Figure 12 cannot influence one another.

1
2

\

Figure 12. Graph representing five events which took place in the same frame of references is pre-
sented. Red lines link events which are non-simultaneous At # 0; green lines link simultaneous
events (At =0).

Let us consider the relativistic extension of the aforementioned approach. The special
relativity-based generalization is trivial: the synchronization of clocks with the light beam
should be carried out [20]. This will reduce the situation to that presented in Figure 12.
Synchronization of clocks in the general relativity is a more complicated problem [20, 21].
In the general theory of relativity, proper time elapses differently even at different points
of space in the same reference system [20]. This means that the interval of proper time
between two events occurring at some point in space, and the interval of time between
two events simultaneous with these at another point in space, are in general different from
one another. The time difference between two events, occurring at infinitely near points
is given by:

cdaxt
ar= -2 = 123) (12)

Yoo
where g, is the metric tensor. Eq. 12 enables synchronization of clocks in any infinitesi-
mal region of space. Carrying out a similar synchronization from the given point, we can
synchronize clocks, i.e. we can define simultaneity of events, along any open curve. How-
ever, synchronization of clocks along a closed contour turns out to be impossible in gen-
eral; indeed, starting out along the contour and returning to the initial point, we would
obtain for At a value different from zero [20, 21]. Thus it is, impossible to synchronize
clocks over all space. The exceptional cases are those reference systems in which all the
components of the metric tensor g,; are equal to zero (i.e. so called the time-orthogonal
coordinate systems). However, in any gravitational field, it is possible to choose the refer-
ence system so that the three components of the metric tensor g,; are equal to zero [20];
thus, making possible a complete synchronization of clocks. Thus, simultaneity is transi-
tive if and only if a space-time is time-orthogonal. Thus, the graph analysis supplied in
Figure 12 will apply only to the time-orthogonal coordinate systems. In these systems the
aforementioned conclusions arising from the Ramsey-theory-based analysis remain true.

2.6. Irreversible processes in the relativity: the graph theory analysis

Now consider relativistic generalization of the thermodynamic processes already
considered in Section 2.4. Consider the chain of the irreversible thermodynamic processes,
depicted in Figure 13. We define now the processes as “irreversible”, when they create
new entropy, denoted S [22-23]. The hierarchy of entropies, supplied by Eq. 13 is assumed:

$3>8,>5:>8,>85, (13)
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Figure 13. Graph representing the chain built of five irreversible processes is shown. Hierarchy of
entropies is given by: S3 > §4 > S5 > §; > S,. Black arrows show the direction of the processes;
red arrows demonstrate the Hamiltonian path.

In this case, we obviously deal with the directed transitive tournament (see Section
2.4). Thus, no cycles are present in the graph. The Hamiltonian path inherent for this tour-
nament is shown with red arrows. Now we are interested in the relativistic analysis of this
graph. Entropy of the physical system is relativistic invariant [24]. Thus, the ordering of
the graph with entropy is also relativistic invariant, hence the Hamiltonian path is relativ-
istic invariant. Thus, an important theorem is proved for any set of states in the phase
space of a physical system, between which irreversible processes are possible, namely:
Hamiltonian path of the tournament emerging from the graph uniting these states is a
relativistic invariant.

4. Discussion

The concepts of modern mathematics turn out to be extremely useful for understand-
ing of the physical reality [25, 26]. Galileo Galilei stated that nature to be “written in the
language of mathematics” and Eugene Wigner stressed the “unreasonable effectiveness
of mathematics in physical sciences” [26]. Tegmark suggested that our physical reality is
a pure mathematical structure [25]. That is, the physical universe is not merely described
by mathematics, but is mathematics itself [25]. As an example the physical Universe may
be seen as a hologram [27]. The classical example of this kind of physical thinking is iden-
tifying of gravity with the geometry of time-space continuum in the general relativity. We
propose to view the physical reality as a graph and suggest application of the graph theory
to physical problems. Thus, notions of mathematical logic, such as transitivity and intran-
sitivity, start to play decisive role in the treatment of physical problems.

In a majority of physical problems various kinds of fundamental relationships be-
tween physical bodies are present; these relationship may be: attraction and repulsion be-
tween physical objects, simultaneous and non-simultaneous events in the special and gen-
eral relativity, etc. This fact makes possible applications of the Ramsey theory to the anal-
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ysis of physical systems. Ramsey theory, named after the British mathematician and phi-
losopher Frank P. Ramsey, is a is a branch of combinatorics that focuses on the appearance
of order in a substructure given a structure of a known size [8-10]. Thus, the problem may
be formulated as follows: consider physical system in which repulsions and attractions
between the bodies are present. How large must addressed system be to guarantee ap-
pearance of triads of bodies interconnected by attractive and repulsive force? The answer
supplied by the Ramsey theory is R(3,3) = 6. However, when the kind of interactions is
specified, the possible transitivity/intransitivity of these interactions should be consid-
ered. And this is the case when Coulomb interactions between point electrical charges are
addressed. When electrical charges of various signs are involved in these interactions,
they are intransitive, and no monochromatic triangle corresponding to attractions will ap-
pear in the complete graph representing Coulomb interactions between point charges.
We addressed several examples in which the Ramsey analysis of the physical system is
useful including the relativity and thermodynamics problems.

The notions of mathematical logic occupy the central place in the Ramsey theory,
thus these notions also are of the primary importance for the Ramsey-based analysis of
physical problems. In particular considering of the physical properties becomes extremely
important for analysis of physical problems. The deep treatment of the analogy between
transitivity of the heat transfer and simultaneity of events in the general relativity was
carried out in ref. 21. And it becomes extremely important for Ramsey-analysis of transi-
tive and non-transitive graphs, representing physical problems; the transitive and non-
transitive Ramsey numbers are different [11]. Applications of the Ramsey theory to the
analysis physical problems are rare [28, 29]; we demonstrate the possibility of these appli-
cations in the various sub-fields of fundamental physics.

5. Conclusions

The ideas of discrete mathematics become ubiquitous in the analysis of physical sys-
tems. We demonstrate that methods supplied by the graph theory are applicable for anal-
ysis of fundamental physical problems, in particular we focus on the application of the
Ramsey theory to discrete physical systems and processes. Interactions between physical
bodies may be very generally classified as repulsive and attractive. This makes possible
formulation of the typical Ramsey-shaped question: how larger should be physical system
in order to provide appearance of triads of bodies/particles interconnected by repulsion
or attraction? An answer to this question has a fine structure: the interactions may be tran-
sitive and non-transitive (and it is also possible that bodies/particles do not interact). Cou-
lomb interactions between point charges may be transitive or intransitive, depending on
the signs of electric charges, irrespectively on the spatial location of the charges. On the
other hand, static interactions between electrical and magnetic dipoles may be transitive
and non-transitive, depending on their mutual spatial orientation. The transitive/intran-
sitive Ramsey number, describing Coulomb (or Coulomb-like) interactions between
points charges/effective charges equals three, ie. Ryransintrans(2,3) = 3, whereas
Rirans,intrans(3,3) does not exist. Thus, no monochromatic triangle corresponding to at-
tractions will appear in the complete graph representing Coulomb interactions between
point electrical charges.

The non-transitive Ramsey number R(3,3) = 6 is applicable for the graph describing
static interactions between electric and magnetic dipoles. This result supplies an addi-
tional insight into the Ising problem, when interaction between magnetic dipoles is con-
sidered. Considering the triple interaction problem, i.e. allowing for the bodies/particles
attraction, repulsion and zero interaction, gives rise to the three-color Ramsey problem,
the Ramsey number for this problem is R(3,3,3) = 17.

The Ramsey approach may be applied to the analysis of mechanical systems, when
actual (i. e. emerging from the Hamilton principle) and virtual paths between the states in
configurational space are taken into account. The Ramsey number R(3,3) = 6. Thus, in
the graph built of the six vertices, representing C-points in the configurational space and
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interconnected by actual and virtual paths, cycles of actual or virtual paths will necessarily
appear. These cycles may correspond to actual or virtual motions of the C-point in the
configurational space. Thus, evolution of any mechanical system may be represented with
the Ramsey graph. Ramsey theory enables reconsideration of the concept of “simultane-
ity” in the classical mechanics and relativity. In the classical mechanics simultaneity is
transitive; thus, in the set built of five events, in which the relationships “to be simultane-
ous” and “to be non-simultaneous” are present we necessarily find the triad of simulta-
neous or non-simultaneous ones. This fact stems from the fact that the transitive Ramsey
number R,-(3,3) = 5. Triads of “simultaneous graph vertices” in this case represent
events which can not influence each other. In turn, simultaneity is transitive in the general
relativity only if a space-time is time-orthogonal (i.e. we mean the reference systems in
which all the components of the metric tensor go;(i = 1,2,3) are equal to zero). In these
systems, again in the set built of five events we necessarily find the triad of simultaneous
or non-simultaneous ones. Graph theory is extremely useful for the analysis of the chains
of irreversible processes (whatever, mechanical or thermodynamic). These chains form
transitive tournaments; thus, no cycles of length 3 are possible in these directed graphs.
The only one Hamiltonian path is possible in these graphs, and this path is a relativistic
invariant for the directed graphs ordered according to the entropies of discrete thermo-
dynamic states. Restrictions inherent to the Ramsey theory should be considered. Firstly,
the results supplied by the Ramsey theory are non-constructive: they may show that some
sub-structure exists, but they give no process for finding this structure (other than brute-
force search). Secondly, the Ramsey theory states that sufficiently large objects must nec-
essarily contain a given sub-structure, often the proof of these results requires these ob-
jects to be enormously large, giving rise to bounds that grow exponentially. Anyway, the
Ramsey approach enables the fresh glance on the physical systems and processes seen as
discrete entities and re-shaping of the fundamental physical problems with the notions of
mathematical logic.
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