
 

 

Article 

Universe as a Graph (Ramsey Approach to Analysis of Physical 
Systems) 
Nir Shvalb1, Mark Frenkel2, Shraga Shoval3, Edward Bormashenko2 

1 Department of Mechanical Engineering & Mechatronics, Faculty of Engineering, Ariel University, P.O.B. 3, 
Ariel 407000, Israel 

2Chemical Engineering Department, Engineering Faculty, Ariel University, P.O.B. 3, 407000 Ariel, Israel 
3Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O.B. 3, 
Ariel 407000, Israel 
* Correspondence: edward@ariel.ac.il 

Abstract: Application of the Ramsey graph theory to the analysis of physical systems is reported. 
Physical interactions may be very generally classified as attractive and repulsive. This classification 
creates the premises for the application of the Ramsey theory to the analysis of physical systems 
built of electrical charges, electric and magnetic dipoles. The notions of mathematical logic, such as 
transitivity and intransitivity relations, become crucial for understanding of behavior of physical 
systems. The Ramsey approach may be applied to the analysis of mechanical systems, when actual 
and virtual paths between the states in configurational space are considered. Irreversible mechanical 
and thermodynamic processes are seen within the reported approach as directed graphs. Chains of 
irreversible processes appear as transitive tournaments. These tournaments are acyclic; the transi-
tive tournaments necessarily contain the Hamiltonian path. The set of states in the phase space of 
the physical system, between which irreversible processes are possible, is considered. Hamiltonian 
path of the tournament emerging from the graph uniting these states is a relativistic invariant. Ap-
plications of the Ramsey theory to the general relativity become possible when the discrete changes 
in the metric tensor are assumed. Reconsideration of the concept of “simultaneity” within the Ram-
sey approach is reported.                        

Keywords: physical system; attraction; repulsion; Ramsey theory; transitivity; complete graph; rel-
ativity; Hamiltonian path.     
 

1. Introduction 
In discrete mathematics, graph theory is framework unifying the study of graphs, 

which are mathematical structures used to model pairwise relations between objects [1, 
2]. Pairwise interactions constitute the core of physics; thus, it is well expected, that the 
graphs theory will play an important role in the modern physical picture of the world. 
Graphs are one of the principal objects of study in discrete mathematics [1-2]. We adopt 
the reasonable hypothesis that both physics and the corresponding mathematics have to 
be described by means of discrete concepts on the Planck-scale; thus, theory of graphs is 
well-expected to supply powerful instruments for understanding the discrete physical 
Universe [3,4]. A graph in this context is made up of vertices representing physical bodies 
which are connected by edges (also called links) representing physical interactions, which 
may differ in their nature. A distinction should be made between undirected graphs, 
where edges link two vertices symmetrically, and directed graphs, where edges link two 
vertices asymmetrically.  

In particular, we apply the Ramsey theory for the analysis of physical behavior of a 
physical system built of interacting particles [5]. These interactions very generally may be 
classified as attractions or repulsions; thus, providing the base for application of the Ram-
sey theory. Ramsey theory is a field of graph theory that investigates the emergence of 
interconnected/interrelated sub-structures within a structure/graph of a known size [6-
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10]. Ramsey's theorem, in one of its graph-theoretic forms, states that one will find mono-
chromatic cliques in any edge labelling (with colors) of a sufficiently large complete graph 
[6, 8, 9]. An accessible introduction to the Ramsey theory is found in refs. [6, 9]. More 
rigorous approach is supplied in ref. [10 ]. We demonstrate that the Ramsey theory is use-
ful for the analysis of a broad variety of physical systems, including thermodynamics and 
relativity problems. Thus, notions and concepts of mathematical logic become crucial for 
understanding of behavior of physical systems.     

2. Results 
2.1. Ramsey theory for a set of interacting bodies 

Consider a set of interacting bodies between which attractive and repulsive interac-
tions are possible. Let us pose following question: what is the minimal number of bodies, 
giving rise to appearance of sub-systems, in which only attractive or repulsive interactions 
are acting? These interactions may be homogeneous and heterogeneous in their physical 
nature. In the case of heterogeneous interactions, for example, the attractive force may be 
gravity and repulsion may be electrostatic in their origin. Until now, we do not specify 
the kind of these interactions (we will demonstrate below that the physical nature of these 
interactions is important for answering the posed question). The solution of the aforemen-
tioned problem is supplied by the Ramsey theory. Consider the system of n physical bod-
ies, interacting one with another via attraction or repulsion. What is the minimal number 
of bodies giving rise to m attractions and l repulsions in the system? From the pure math-
ematical point of view, we have to answer the question: what is the Ramsey number 
𝑅𝑅(𝑚𝑚, 𝑙𝑙)?         

We start from the analysis of a set of 𝑛𝑛 = 6 interacting physical bodies, illustrated 
with Figure 1. We adopt that two kind of interactions are possible within the system: 
namely: attraction and repulsion. Attraction is depicted in Figure 1 with the red solid 
line/edge, whereas repulsion is shown with the green solid line/edge.  

 
Figure 1. System built of six interacting bodies is represented. Red lines depict attractive interaction 
between the bodies; green lines depict repulsive interactions between the bodies. 

The physical interactions acting within the system form the complete graph, i.e. a 
graph in which each pair of graph vertices (masses) is connected by an edge/link (interac-
tion, i.e. repulsion or attraction); the situation when zero interaction between the bodies 
is possible gives rise to the three-color Ramsey problem and it will be considered below. 
Let us pose the following question: what is the minimal number of bodies for which three 
mutual attractions or three mutual repulsions will necessarily appear in the graph? The 
Ramsey theory supplies an exact answer to this question, namely 𝑅𝑅(3,3) = 6. Indeed, we 
recognize that within the subsystem labeled “345” only repulsions are present; whereas, 
in the subsystems “123”, “124”,”125”, “126”, ”136”, “146” ,”156”, “236”, “246” and “256” 
only attractive interactions are present.  
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Now let us specify the exact kind of these interactions. It seems natural to consider 
the Coulomb forces acting between the point electrical charges as an attractive/repulsive 
interactions. It also seems from the first glance, that the Coulomb interactions represent 
the particular case of the aforementioned case, shown in Figure 1, and 𝑅𝑅(3,3) = 6 is kept. 
However, this answer will be wrong, due to the fact, that the Coulomb forces represent  
physical interactions, which may be transitive or intransitive in their physical nature. Con-
sider the system of five point electrical charges, depicted in Figure 2A. It is immediately 
recognized from Figure 2A, that in the sub-system labeled “135” only repulsive Coulomb 
interactions are present. Moreover, in any system of five point charges (whatever are their 
signs) we will find ate least one sub-system built of three point charges interacting via 
repulsive forces. No triangle built of attractions (red links) is recognized. Let us under-
stand this observation.  

 

  

A B C 

Figure 2. A. System built of five point electrical charges is represented. Red lines depict attractive 
Coulomb interaction between the bodies; green lines depict repulsive Coulomb interactions be-
tween the point charges. B. Coulomb interactions in the system of the three point charges of the 
same sign are shown. C. Coulomb interactions in the system of the three point charges of the differ-
ent signs are shown   . 

When charges “a”, “b” and “c” are of the same sign, interactions 𝑎𝑎 ⟷ 𝑏𝑏, 𝑏𝑏 ⟷
𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 ⟷ 𝑐𝑐 are necessarily repulsive, in other words: when a positive charge “a” re-
pulses a positive point charge “b”, and a positive charge “b” repulses a positive charge 
“c”, necessarily, charge “a” repulses charge “c” (see Figure 2B). Thus, when the signs of 
the point charges are the same the Coulomb interactions are transitive.         

Now, consider the situation, when the signs of the point charges are different, as il-
lustrated with Figure 2C. In this case, when a positive charge “a” attracts a negative point 
charge “b”, and negative charge “b” attracts positive charge “c”, necessarily charge “a” 
repulses charge “c”. This kind of relations is called in mathematical logic “intransitivity”. 
Let us illustrate this property with the following logical example, involving three groups 
of experts, labeled “A”, “B” and “C” correspondingly. Consider the situation when group 
of experts “A” recognizes group “B”, and group “B” recognizes group “C”, but group A 
does not recognize group C. In this case, the recognition relation among the expert groups 
is defined as “intransitive”. This is exactly the situation inherent for Coulomb interaction 
of three point charges of different signs, shown in Figure 2C. It should be emphasized, 
that no monochromatic triangle will appear when point charges of various signs are lo-
cated in its vertices; however, the clique built of two monochromic edges will be neces-
sarily present, as shown in Figure 2C. On the other hand, the monochromatic triangle will 
necessarily appear when the three point charges of the same sign are placed in the vertices, 
as depicted in Figure 2B. Using the notions of the Ramsey theory we conclude 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2,3) = 3 is true for the Coulomb interactions acting between point charges. 

In other words, when interactions between charges “a” and “b” are “b” and “c” are 
known, the kind of interaction between charges “a” and “c” is pre-scribed unequivocally, 
irrespectively of the spatial location of the charges; however, these interactions may be 
transitive, giving rise to monochromatic triangles, and intransitive, which do not enable 
monochromatic triangles. It is easily seen, that in any system built of five point charges at 

a 

b c 

a 

b c 
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least one monochromatic triangle will necessarily appear. This is true for any odd number 
of point electrical charges. 

The transitivity/intransitivity of the Coulomb force immediately follows from the ex-
pression for the potential energy of interaction 𝑈𝑈(𝑟𝑟) between two point charges 𝑞𝑞1 and 
𝑞𝑞2 separated by the distance r:   

𝑈𝑈(𝑟𝑟) = 𝑘𝑘
𝑞𝑞1𝑞𝑞2
𝑟𝑟

 (1) 

where k is the constant depending of the adopted system of units. It is seen from Eq. 1 that 
the energy is increased with the decrease of the separation between the charges of the 
same sign (which corresponds to repulsion); whereas, the energy is decreased with the 
decrease of the separation between the charges of the different signs (which corresponds 
to attraction). Thus, the Coulomb interaction within a triad of electrical charges is transi-
tive/intransitive, depending on the signs of charges, as shown in Figure 2B-C. This will be 
true for general Coulomb-like interaction, described by Eq. 2:  

𝑈𝑈(𝑟𝑟) = 𝜁𝜁
Φ1Φ2

𝑟𝑟𝑛𝑛
 (2) 

where 𝜁𝜁 is the coefficient depending on the system of units, Φ1 and Φ2 are “effective 
charges”, which may be of the different signs. Thus, the Ramsey theory may be also ap-
plied for the analysis of the physical situation, in which the “Coulomb-like” interactions 
between the effective charges, described by Eq. 2, are involved. 

Finally, when the notions of the Ramsey theory are used, we formulate the obtained 
result as follows: the transitive/intransitive Ramsey number, describing Coulomb (or Cou-
lomb-like) interactions between points charges/effective charges equals three, i.e. 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2,3) = 3, whereas 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(3,3) does not exist.    

It should be emphasized that electrostatic interactions may be non-transitive. For ex-
ample, interactions between electrical dipoles are non-transitive. Energy of interaction be-
tween two dipoles, illustrated with Figure 3, is described by Eq. 3 [12-13]: 

𝑈𝑈𝑒𝑒𝑒𝑒(𝑟𝑟) = −𝑘𝑘
𝑝𝑝1𝑝𝑝2
𝑟𝑟3

(2cos𝜃𝜃1cos𝜃𝜃2 − sin𝜃𝜃1sin𝜃𝜃2cos𝜑𝜑) (3) 

where 𝑝𝑝1 and 𝑝𝑝2 are permanent dipole moments, r is the separation between dipoles and 
the angles 𝜃𝜃1,𝜃𝜃2 and 𝜑𝜑 are shown in Figure 3.  

Electric dipoles may attract or repel each other; when 𝜃𝜃1 = 𝜋𝜋
2

; 𝜃𝜃2 = 𝜋𝜋
2

 and 𝜑𝜑 = 0 cor-
responding to the 𝑝𝑝1 ↑↑ 𝑝𝑝2 parallel configuration; the energy of the repulsive interaction 
stems from Eq. 2 and it is given by Eq. 4:   

𝑈𝑈𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝑘𝑘
𝑝𝑝1𝑝𝑝2
𝑟𝑟3

 (4) 

In turn, when 𝜃𝜃1 = 𝜋𝜋
2

; 𝜃𝜃2 = −𝜋𝜋
2

 and 𝜑𝜑 = 0 corresponding to the 𝑝𝑝1 ↑↓ 𝑝𝑝2 anti-parallel 
configuration we derive for the energy of the attractive interaction (see Eq. 5):   

𝑈𝑈𝑒𝑒𝑒𝑒(𝑟𝑟) = −𝑘𝑘
𝑝𝑝1𝑝𝑝2
𝑟𝑟3

 (5) 

 
Figure 3. Geometric relations in a schematic dipole-dipole interaction are shown; 𝑝𝑝1 and 𝑝𝑝2 are 
permanent dipole moments, r is the separation between the dipoles, 𝜃𝜃1 and 𝜃𝜃2 are the angles of 
each dipole in polar coordinates and 𝜑𝜑 is the rotation angle around the axis; all three angles de-
scribe orientation of the two dipoles to each other. 
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And, it is noteworthy, that the dipole-dipole interactions may by not-transitive as 
illustrated in Figure 4A. 

 
 
 
 
 
 
 

   A        B 

Figure 4. Sketch illustrating the non-transitive nature of interaction between electric dipoles is 
shown. A. Dipole 𝑝𝑝1 attracts dipole 𝑝𝑝2, dipole 𝑝𝑝2 attracts dipole 𝑝𝑝3 whereas dipole 𝑝𝑝1 repels di-
pole 𝑝𝑝3. B. All of the dipoles attract one another. 

Indeed, in the scheme depicted in Figure 4A dipole 𝑝𝑝1 attracts dipole 𝑝𝑝2 and dipole 
𝑝𝑝2 attracts dipole 𝑝𝑝3, whereas dipole 𝑝𝑝1 repels dipole 𝑝𝑝3. Thus, the dipole-dipole inter-
action is non-transitive. However, in the scheme depicted in Figure 4B all of the dipoles 
attract one another, consequently the interaction is transitive. Thus, the kind of dipole-
dipole interaction depends on their mutual spatial orientation, in contrast to the situation 
with the interaction of point charges. Consider the system of electrical dipoles, depicted 
in Figure 5, in which red lines depict attractive dipole-dipole interaction and green lines, 
in turn, depict repulsive dipole-dipole interactions; now the nature of interaction depends 
on the spatial orientation between the dipoles, as follows from Eq. 3. For dipoles mono-
chromatic triangles built of red links, corresponding to attraction become possible, and 
this is again in contrast to graphs, emerging from the interaction of point charges. Thus, 
we return to the situation described in Figure 1, when the transitivity of interaction is not 
unambiguously prescribed within the triad of interacting bodies. It brings us back to the 
complete non-transitive graphs, such as that depicted in Figure 1.     

Recall that 𝑅𝑅(3,3) = 6 for complete non-transitive graphs. Indeed, triple sub-sys-
tems of dipoles labeled “125”, “135”, “124”, “235”, “265” and “146”, in which only attrac-
tive interactions act are recognized in Figure 5. No subsystem in which only repulsive in-
teractions appear is present in the complete graph of interactions, shown in Figure 5.    

 
Figure 5. System of dipoles is shown. Red lines depict attractive interactions; green lines depict re-
pulsive interactions between the dipoles (see Eq. 3). 

Interaction between two magnetic dipoles is also of the non-transitive nature. This 
becomes clear when the energies of electrical 𝑼𝑼𝒆𝒆𝒆𝒆(𝒓𝒓) and magnetic interaction 𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒓𝒓) 
between dipoles are written in the symmetrized form [14]: 

𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 
𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 
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𝑼𝑼𝒆𝒆𝒆𝒆(𝒓𝒓) =
𝟏𝟏

𝟒𝟒𝟒𝟒𝜺𝜺𝟎𝟎
𝒑𝒑��⃗ 𝟏𝟏 ∙ 𝒑𝒑��⃗ 𝟐𝟐 − 𝟑𝟑(𝒑𝒑��⃗ 𝟏𝟏 ∙ 𝒓𝒓�)(𝒑𝒑��⃗ 𝟐𝟐 ∙ 𝒓𝒓�)

𝒓𝒓𝟑𝟑
, (6) 

𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒓𝒓) =
𝝁𝝁𝟎𝟎
𝟒𝟒𝟒𝟒

𝝁𝝁��⃗ 𝟏𝟏 ∙ 𝝁𝝁��⃗ 𝟐𝟐 − 𝟑𝟑(𝝁𝝁��⃗ 𝟏𝟏 ∙ 𝒓𝒓�)(𝝁𝝁��⃗ 𝟐𝟐 ∙ 𝒓𝒓�)
𝒓𝒓𝟑𝟑

 (7) 

where 𝝁𝝁��⃗ 𝟏𝟏 and 𝝁𝝁��⃗ 𝟐𝟐 are the magnetic moments and 𝒓𝒓�  is a unit vector parallel to the line 
joining the centers of the two dipoles. 

The energy of interaction of two magnetic dipoles depends on the mutual orientation, 
and it may give rise to attractive and repulsive forces, which are non-transitive, as shown 
in Figure 6. Again, sub-systems of magnetic dipoles labeled “125”, “135”, “124”, “235”, 
“265” and “146”, in which only attractive interactions act are recognized in Figure 5. No 
subsystem in which only repulsive interactions appear is not present in the complete 
graph of interactions, shown on Figure 6. Thus, the Ramsey theory may supply additional 
insights to the Ising problem[15].  

We conclude that for the complete graphs depicting repulsive and attractive interac-
tions between electric and magnetic dipoles 𝑹𝑹(𝟑𝟑,𝟑𝟑) = 𝟔𝟔 is true and monochromatic tri-
angles corresponding to attractive and repulsive interactions are possible. And this in con-
trast to Coulomb interaction between point electrical charges, where monochromatic tri-
angles representing attraction are forbidden, by the logical structure of interaction be-
tween point electrical charges.    

 

 

 

 

 

 

 

 

 

Figure 6. System of magnetic dipoles 𝜇𝜇 resembling the system of electric dipoles shown in Figure 
5 is shown (see Eq. 6 and Eq. 7). Red lines depict attractive interactions; green lines depict repulsive 
interactions between the dipoles. The nature of the interaction depends on the mutual orientation 
of magnetic dipoles (see Eq. 7). 

2.2. Triple interacting systems: the Ramsey approach  
The Ramsey Theory supplies the general framework for more complicated systems 

in which arbitrary number of interactions are possible. For example, consider the system 
in which three kinds of interactions are possible, namely: attraction, repulsion and zero 
interaction, which are supposed to be non-transitive. Consider the system depicted in Fig-
ure 7. Red lines in Figure 7 correspond to the attractive interaction between, green lines 
depict repulsive interactions and yellow lines connect the bodies, which do not interact. 
It is easily seen from Figure 7 that no mono-chromatic triangle appear in Figure 7.    

2 1 

3 

4 5 

6 

𝜇𝜇 𝜇𝜇 

𝜇𝜇 
𝜇𝜇 

𝜇𝜇 𝜇𝜇 
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Figure 7. System built of six bodies is represented. Red lines depict attractive interaction between 
the bodies; green lines depict repulsive interactions between the bodies; yellow lines correspond to 
the zero interaction between the bodies (bodies do not interact). . 

Let us address the following question: what is the minimal number of bodies, giving 
rise to appearance of sub-systems, in which monochromatic triangles will necessarily ap-
pear, in other words: sub-systems including only attracting or repulsing or non-interact-
ing bodies are present. From the point of view of the Ramsey theory, the question is for-
mulated as follows what the value of 𝑹𝑹(𝟑𝟑,𝟑𝟑,𝟑𝟑) number? The problem was solved by 
mathematicians: 𝑹𝑹(𝟑𝟑,𝟑𝟑,𝟑𝟑) = 𝟏𝟏𝟏𝟏 [𝟏𝟏𝟏𝟏].  It is noteworthy that a restricted set of Ramsey 
numbers is known until now [11, 16]. 

2.3. Ramsey theory and dynamics of mechanical system  
Now consider the Ramsey re-interpretation of the classical mechanics. The dynamics 

of mechanical systems is determined by the Hamiltonian principle, stating that the true 
evolution 𝒒𝒒(𝒕𝒕)  of a system described by N generalized coordinates 𝒒𝒒 = �𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐 …𝒒𝒒𝒏𝒏� 
between two specified states 𝒒𝒒(𝒕𝒕𝟏𝟏) = �𝒒𝒒𝟏𝟏(𝒕𝒕𝟏𝟏),𝒒𝒒𝟐𝟐(𝒕𝒕𝟏𝟏) …𝒒𝒒𝒏𝒏(𝒕𝒕𝟏𝟏)�  and 𝒒𝒒(𝒕𝒕𝟐𝟐) =
�𝒒𝒒𝟏𝟏(𝒕𝒕𝟐𝟐),𝒒𝒒𝟐𝟐(𝒕𝒕𝟐𝟐) …𝒒𝒒𝒏𝒏(𝒕𝒕𝟐𝟐)� at two specified times t1 and t2 is a stationary point (a point 
where the variation 𝜹𝜹𝜹𝜹 is zero) of the action functional S, defined by Eq. 8:  

𝑺𝑺 = � 𝑳𝑳(𝒒𝒒(𝒕𝒕), 𝒒̇𝒒(𝒕𝒕))𝒅𝒅𝒅𝒅
𝒕𝒕𝟐𝟐

𝒕𝒕𝟏𝟏
 (8) 

Consider that the motion of the system may be pictured as that of the single point 
(labeled usually C-point) in the extended configurational space comprising the general-
ized coordinated and time as independent variables [17, 18]. In this space the successive 
phases of the motion show up as successive points of a curve. This curve, the “world-line” 
of the C–point, contains in geometrical form the entire physical history of the mechanical 
system [17, 18]. The Hamilton principle states that the motion of the system between the 
initial time 𝑡𝑡1 and final time 𝑡𝑡2 follows a path that minimizes the scalar action integral 
defined as the time integral of the Lagrangian, provided the initial and final configura-
tions of the system are prescribed. Thus, from the point of view of a pure logic two kinds 
of pathways are possible in the configurational space, namely: i) pathways which mini-
mize the action integral (at these pathways 𝛿𝛿𝛿𝛿 = 0 takes place); we call these paths the 
“actual paths” and ii) paths which do not minimize the action functional, given by Eq. 8. 
We call below these paths the “virtual paths” and 𝛿𝛿𝛿𝛿 ≠ 0 hold along these paths. Thus, 
premises for application of the Ramsey approach are created, as illustrated with Figure 8.         

Consider the map of the states, available for the system in the configurational space.  
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Figure 8. Map depicting five states in the configuration space is shown. Red links correspond to the 
true evolution of the system, .i.e. providing 𝜹𝜹𝜹𝜹 = 𝟎𝟎 (𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩); black links illustrate virtual 
pathways in the configurational space, 𝜹𝜹𝜹𝜹 ≠ 𝟎𝟎 along black pathways (virtual paths). 

The map emerges from five points in the configurational space of the mechanical 
system. The points are interconnected by paths, corresponding to the actual paths, corre-
sponding to the actual motions of the mechanical system (𝜹𝜹𝜹𝜹 = 𝟎𝟎) and virtual paths (𝜹𝜹𝜹𝜹 ≠
𝟎𝟎) which were not chosen by nature for actual motions of the system. Actual paths are 
shown with red links, whereas virtual motions are shown with black links. These paths 
form the complete graph. It is recognized from the map supplied in Figure 8, that is pos-
sible create a graph in which no monochrome triangle is present. However, it will be al-
ready impossible for the map comprising six points, due to the fact that 𝑹𝑹(𝟑𝟑,𝟑𝟑) = 𝟔𝟔. Thus, 
in the graph built of the six vertices, representing C-points in the configurational space 
and interconnected by actual and virtual paths, cycles will necessarily appear. These cy-
cles (“red cycles” or alternatively “black” ones) may correspond to actual or virtual (mo-
tions) of the C-point in the configurational space. Thus, any evolution of any mechanical 
system may be represented with the coresspomding Ramsey graph.                      

2.4. Irreversible processes and graph theory 
Until now, we did not address reversibility of the addressed mechanical processes. 

Now consider the physical system in which only irreversible processes are possible (as a 
matter of fact in any macro scale mechanical system friction is inevitable, and the pro-
cesses are irreversible to a greater or lesser extent). Again, we consider the map of the 
states in the configurational space available to the system, shown in Figure 9.  

 
Figure 9. Map depicting six states in the configurational space is depicted. Only irreversible transi-
tions between the states are possible. The transitive tournament is shown with black arrows. Red 
arrows indicate the Hamiltonian path. 

Black arrows indicate directions of the irreversible processes. We assume that irre-
versible transitions between all of the states, corresponding to the points in the configura-
tional space are possible, as shown in Figure 9. Thus, a tournament which is a directed 
graph (digraph) obtained by assigning a direction for each edge emerges [1]. We assume 
that the emerging tournament is transitive, namely (𝒂𝒂 → 𝒃𝒃) 𝐚𝐚𝐚𝐚𝐚𝐚 (𝒃𝒃 → 𝒄𝒄) ⇒ (𝒂𝒂 → 𝒄𝒄) takes 
place in such a tournament (for example: (𝟔𝟔 → 𝟏𝟏) 𝐚𝐚𝐚𝐚𝐚𝐚 (𝟏𝟏 → 𝟐𝟐) ⇒ (𝟔𝟔 → 𝟐𝟐) is true for the 
discussed tournament). If the tournament is transitive, the theory of graphs predicts three 
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consequences: i) the tournament is acyclic, i.e. it is a directed graph with no directed cy-
cles; in particular, the tournament does not contain a cycle of length 3. Indeed, we recog-
nize from Figure 9, that no cyclic process is possible for the presented tournament; ii) the 
tournament contains the Hamiltonian path. Hamiltonian path is the directed path on all 
n vertices of the graph, which is shown with red arrows in Figure 9. And it should be 
emphasized that the transitive directed graph has the only one Hamiltonian path. Thus, 
an irreversible process which passes over all available states in the configurational space 
of the system is possible.  

Now consider the graph theory interpretation of thermodynamic processes. Consider 
n bodies which are in a thermal contact, the temperatures of the bodies are labeled 
𝑻𝑻𝒊𝒊 (𝒊𝒊 = 𝟏𝟏,𝟐𝟐…𝒏𝒏). We accept that no pair of bodies is in the thermal equilibrium, in other 
words 𝑻𝑻𝒊𝒊 ≠ 𝑻𝑻𝒌𝒌, when 𝒊𝒊 ≠ 𝒌𝒌. According to the Clausius statement “heat can never pass 
from a colder to a warmer body without some other change, connected therewith, occur-
ring at the same time” [19]. Thus, directions of the heat transfer give rise to the tourna-
ment; we assume that all of the bodies are in a thermal contact one with another. For a 
sake of simplicity consider the system built of four bodies, 𝑻𝑻𝟏𝟏 > 𝑻𝑻𝟐𝟐 > 𝑻𝑻𝟑𝟑 > 𝑻𝑻𝟒𝟒 is adopted 
is shown in Figure 10.  

 
Figure 10. Graph illustrating thermal contact of four bodies is depicted, 𝑻𝑻𝟏𝟏 > 𝑻𝑻𝟐𝟐 > 𝑻𝑻𝟑𝟑 > 𝑻𝑻𝟒𝟒 is as-
sumed. Black arrows depict the direction of the heat transfer. The graph represents the transitive 
tournament. Red arrows depict the Hamiltonian path. 

The graph shown in Figure 10 is a transitive tournament; no cycles of length 3 are 
recognized in the graph and the single Hamiltonian path (shown with the red arrows) is 
inherent for this graph. The generalization for n bodies in thermal contact is straightfor-
ward. Thus, re-shaping of the Second Law of Thermodynamics with the graph theory be-
comes possible, as follows: the heat transfer in the system of n bodies 𝑻𝑻𝒊𝒊 (𝒊𝒊 =
𝟏𝟏,𝟐𝟐…𝒏𝒏),𝑻𝑻𝒊𝒊 ≠ 𝑻𝑻𝒌𝒌, when 𝒊𝒊 ≠ 𝒌𝒌 generates a transitive tournament. No cycles with a length 
of 3 are present in this graph. Thus, no cyclic processes are possible in the system. A single 
Hamiltonian path is possible in the graph.           

2.5. Ramsey theory and general relativity  
The Ramsey theory enables a new interpretation of the general relativity. An interval 

ds between two events in the general relativity is given by Eq. 9: 

−𝑑𝑑𝑑𝑑2 = 𝑔𝑔𝑖𝑖𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘 (9) 

where 𝑔𝑔𝑖𝑖𝑖𝑖 is the metric tensor (we use the definition of interval adopted in the classical 
textbook by Landau and Lifshitz [20]). Generally speaking, 𝑔𝑔𝑖𝑖𝑖𝑖 is the continuous function 
of the space coordinates and time [20]. We consider the situation of the discrete change in 
the metric tensor, in other words, the situation, when the interval between two events is 
given by Eqs. 10-11:   

−𝑑𝑑𝑑𝑑2 = 𝑔𝑔𝑖𝑖𝑖𝑖
(1)𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘 (10) 

  −𝑑𝑑𝑑𝑑2 = 𝑔𝑔𝑖𝑖𝑖𝑖
(2)𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘 (11) 
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where 𝑔𝑔𝑖𝑖𝑖𝑖
(1) and 𝑔𝑔𝑖𝑖𝑖𝑖

(2), are the metric tensors, which are not-equal each to another. For a 
sake of simplicity the components of the tensors may be taken as constant. This situation 
is depicted in Figure 11, in which six events separated by different metric tensors 𝑔𝑔𝑖𝑖𝑖𝑖

(1) and 
𝑔𝑔𝑖𝑖𝑖𝑖

(2) are depicted.  
The events form complete, non-transitive, non-directed graph, shown in Figure 11.  

Let us pose the following fundamental question: what is the minimal number of physical 
events providing appearance of triangles within the events’ map, interconnected by the 
same metric tensor (𝒈𝒈𝒊𝒊𝒊𝒊

(𝟏𝟏) or 𝒈𝒈𝒊𝒊𝒊𝒊
(𝟐𝟐)? ). The answer to this question is supplied by the Ramsey 

theory: 𝑹𝑹(𝟑𝟑,𝟑𝟑) = 𝟔𝟔. Indeed, in the events’ map presented in Figure 11 red triangles “135” 
and “246” corresponding to the events connected by the metric tensor 𝒈𝒈𝒊𝒊𝒊𝒊

(𝟐𝟐) are recog-
nized.          

 

 

 

 

  

 

Figure 11. The map depicting six events is depicted. The events are separated by the intervals sup-
plied by Eqs. 10-11. Green links correspond to the events separated by the interval, defined by the 
metric tensor 𝒈𝒈𝒊𝒊𝒊𝒊

(𝟏𝟏); red links, in turn, correspond to the events separated by the interval, defined 
by the metric tensor 𝒈𝒈𝒊𝒊𝒊𝒊

(𝟐𝟐). Red triangles “135” and “246” are recognized in the map.   

2.6. Graph theory and simultaneous events in classical physics and relativity: the Ramsey theory 
and causality      

Now we address the Ramsey interpretation of the notion of simultaneity. Consider 
five events which occurred in the given frame of references. Two kinds of the time rela-
tionship between the events are possible: the first relationship occurs, when the events 
occurred non-simultaneously, i.e. Δ𝜏𝜏 ≠ 0 takes place, where Δ𝜏𝜏 is the time span between 
the events (we consider now the classical meaning of simultaneity of events; the relativ-
istic extension of the Ramsey approach to simultaneity of events will be treated immedi-
ately below). These events are connected in Figure 12 with the red line. The second situa-
tion takes place when the events are simultaneous, i.e. Δ𝜏𝜏 = 0.  These events are con-
nected with the green line (as shown in Figure 12). Let us address the following question: 
what is the minimal set of events in which three events took place simultaneously (Δ𝜏𝜏 =
0) or three events occurred non-simultaneously (Δ𝜏𝜏 ≠ 0) . Simultaneity of events is the 
transitive property in the classical physics (the relativistic extension of the problem is 
more complicated and it will be treated below). The answer to this question again is sup-
plied by the Ramsey theory, and it is formulated as follows: what is the minimal transitive 
Ramsey 𝑅𝑅𝑡𝑡𝑡𝑡(3,3)? The answer to this question was addressed in Section 2.1 and it is 
𝑅𝑅𝑡𝑡𝑡𝑡(3,3) = 5 (see ref. 11). Indeed, we recognize in the example illustrated with Figure 12, 
that in the set built of five events, in which the relationships “to be simultaneous” and “to 
be non-simultaneous” necessarily present we find a triad of simultaneous events, con-
nected with green links. The triad of simultaneous events appears as a green triangle in 
Figure 12.  

Indeed, we recognize in the example illustrated with Figure 12, that in the set built 
of five events, in which the relationships “to be simultaneous” and “to be non-simultane-

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 1 2 

3 

4 5 

6 

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 

𝑔𝑔𝑖𝑖𝑖𝑖
(1) 

𝑔𝑔𝑖𝑖𝑖𝑖
(2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2022                   doi:10.20944/preprints202211.0277.v1

https://doi.org/10.20944/preprints202211.0277.v1


 

 

ous” are necessarily present we necessarily find the triad of simultaneous or non-simul-
taneous ones. This fact imposes the restrictions on the causality of the aforementioned 
events. The events forming the green triangle in Figure 12 cannot influence one another.  

 

Figure 12. Graph representing five events which took place in the same frame of references is pre-
sented. Red lines link events which are non-simultaneous Δ𝜏𝜏 ≠ 0; green lines link simultaneous 
events (Δ𝜏𝜏 = 0) . 

Let us consider the relativistic extension of the aforementioned approach. The special 
relativity-based generalization is trivial: the synchronization of clocks with the light beam 
should be carried out [20]. This will reduce the situation to that presented in Figure 12. 
Synchronization of clocks in the general relativity is a more complicated problem [20, 21]. 
In the general theory of relativity, proper time elapses differently even at different points 
of space in the same reference system [20]. This means that the interval of proper time 
between two events occurring at some point in space, and the interval of time between 
two events simultaneous with these at another point in space, are in general different from 
one another. The time difference between two events, occurring at infinitely near points 
is given by: 

Δ𝜏𝜏 = −
𝑔𝑔0𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖

𝑔𝑔00
, (𝑖𝑖 = 1,2,3) (12) 

where 𝒈𝒈𝒊𝒊𝒊𝒊 is the metric tensor. Eq. 12 enables synchronization of clocks in any infinitesi-
mal region of space. Carrying out a similar synchronization from the given point, we can 
synchronize clocks, i.e. we can define simultaneity of events, along any open curve. How-
ever, synchronization of clocks along a closed contour turns out to be impossible in gen-
eral; indeed, starting out along the contour and returning to the initial point, we would 
obtain for 𝚫𝚫𝝉𝝉 a value different from zero [20, 21]. Thus it is, impossible to synchronize 
clocks over all space. The exceptional cases are those reference systems in which all the 
components of the metric tensor 𝒈𝒈𝒐𝒐𝒐𝒐 are equal to zero (i.e. so called the time-orthogonal 
coordinate systems). However, in any gravitational field, it is possible to choose the refer-
ence system so that the three components of the metric tensor 𝒈𝒈𝒐𝒐𝒐𝒐 are equal to zero [20]; 
thus, making possible a complete synchronization of clocks. Thus, simultaneity is transi-
tive if and only if a space-time is time-orthogonal. Thus, the graph analysis supplied in 
Figure 12 will apply only to the time-orthogonal coordinate systems. In these systems the 
aforementioned conclusions arising from the Ramsey-theory-based analysis remain true. 

2.6. Irreversible processes in the relativity: the graph theory analysis 
Now consider relativistic generalization of the thermodynamic processes already 

considered in Section 2.4. Consider the chain of the irreversible thermodynamic processes, 
depicted in Figure 13. We define now the processes as “irreversible”, when they create 
new entropy, denoted S [22-23]. The hierarchy of entropies, supplied by Eq. 13 is assumed: 

𝑺𝑺𝟑𝟑 > 𝑺𝑺𝟒𝟒 > 𝑺𝑺𝟓𝟓 > 𝑺𝑺𝟏𝟏 > 𝑺𝑺𝟐𝟐 (13) 
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Figure 13. Graph representing the chain built of five irreversible processes is shown. Hierarchy of 
entropies is given by: 𝑺𝑺𝟑𝟑 > 𝑺𝑺𝟒𝟒 > 𝑺𝑺𝟓𝟓 > 𝑺𝑺𝟏𝟏 > 𝑺𝑺𝟐𝟐. Black arrows show the direction of the processes; 
red arrows demonstrate the Hamiltonian path.     

In this case, we obviously deal with the directed transitive tournament (see Section 
2.4). Thus, no cycles are present in the graph. The Hamiltonian path inherent for this tour-
nament is shown with red arrows. Now we are interested in the relativistic analysis of this 
graph. Entropy of the physical system is relativistic invariant [24]. Thus, the ordering of 
the graph with entropy is also relativistic invariant, hence the Hamiltonian path is relativ-
istic invariant. Thus, an important theorem is proved for any set of states in the phase 
space of a physical system, between which irreversible processes are possible, namely: 
Hamiltonian path of the tournament emerging from the graph uniting these states is a 
relativistic invariant. 

4. Discussion 
The concepts of modern mathematics turn out to be extremely useful for understand-

ing of the physical reality [25, 26]. Galileo Galilei stated that nature to be “written in the 
language of mathematics” and Eugene Wigner stressed the “unreasonable effectiveness 
of mathematics in physical sciences” [26]. Tegmark suggested that our physical reality is 
a pure mathematical structure [25]. That is, the physical universe is not merely described 
by mathematics, but is mathematics itself [25]. As an example the physical Universe may 
be seen as a hologram [27]. The classical example of this kind of physical thinking is iden-
tifying of gravity with the geometry of time-space continuum in the general relativity. We 
propose to view the physical reality as a graph and suggest application of the graph theory 
to physical problems. Thus, notions of mathematical logic, such as transitivity and intran-
sitivity, start to play decisive role in the treatment of physical problems. 

 In a majority of physical problems various kinds of fundamental relationships be-
tween physical bodies are present; these relationship may be: attraction and repulsion be-
tween physical objects, simultaneous and non-simultaneous events in the special and gen-
eral relativity, etc. This fact makes possible applications of the Ramsey theory to the anal-
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ysis of physical systems. Ramsey theory, named after the British mathematician and phi-
losopher Frank P. Ramsey, is a is a branch of combinatorics that focuses on the appearance 
of order in a substructure given a structure of a known size [8-10]. Thus, the problem may 
be formulated as follows: consider physical system in which repulsions and attractions 
between the bodies are present. How large must addressed system be to guarantee ap-
pearance of triads of bodies interconnected by attractive and repulsive force? The answer 
supplied by the Ramsey theory is 𝑅𝑅(3,3) = 6. However, when the kind of interactions is 
specified, the possible transitivity/intransitivity of these interactions should be consid-
ered. And this is the case when Coulomb interactions between point electrical charges are 
addressed. When electrical charges of various signs are involved in these interactions, 
they are intransitive, and no monochromatic triangle corresponding to attractions will ap-
pear in the complete graph representing Coulomb interactions between point charges.     
We addressed several examples in which the Ramsey analysis of the physical system is 
useful including the relativity and thermodynamics problems.                

The notions of mathematical logic occupy the central place in the Ramsey theory, 
thus these notions also are of the primary importance for the Ramsey-based analysis of 
physical problems. In particular considering of the physical properties becomes extremely 
important for analysis of physical problems. The deep treatment of the analogy between 
transitivity of the heat transfer and simultaneity of events in the general relativity was 
carried out in ref. 21. And it becomes extremely important for Ramsey-analysis of transi-
tive and non-transitive graphs, representing physical problems; the transitive and non-
transitive Ramsey numbers are different [11]. Applications of the Ramsey theory to the 
analysis physical problems are rare [28, 29]; we demonstrate the possibility of these appli-
cations in the various sub-fields of fundamental physics.             

5. Conclusions 
The ideas of discrete mathematics become ubiquitous in the analysis of physical sys-

tems. We demonstrate that methods supplied by the graph theory are applicable for anal-
ysis of fundamental physical problems, in particular we focus on the application of the 
Ramsey theory to discrete physical systems and processes. Interactions between physical 
bodies may be very generally classified as repulsive and attractive. This makes possible 
formulation of the typical Ramsey-shaped question: how larger should be physical system 
in order to provide appearance of triads of bodies/particles interconnected by repulsion 
or attraction? An answer to this question has a fine structure: the interactions may be tran-
sitive and non-transitive (and it is also possible that bodies/particles do not interact). Cou-
lomb interactions between point charges may be transitive or intransitive, depending on 
the signs of electric charges, irrespectively on the spatial location of the charges. On the 
other hand, static interactions between electrical and magnetic dipoles may be transitive 
and non-transitive, depending on their mutual spatial orientation. The transitive/intran-
sitive Ramsey number, describing Coulomb (or Coulomb-like) interactions between 
points charges/effective charges equals three, i.e. 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2,3) = 3, whereas 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(3,3) does not exist. Thus, no monochromatic triangle corresponding to at-
tractions will appear in the complete graph representing Coulomb interactions between 
point electrical charges. 

The non-transitive Ramsey number 𝑅𝑅(3,3) = 6 is applicable for the graph describing 
static interactions between electric and magnetic dipoles. This result supplies an addi-
tional insight into the Ising problem, when interaction between magnetic dipoles is con-
sidered. Considering the triple interaction problem, i.e. allowing for the bodies/particles 
attraction, repulsion and zero interaction, gives rise to the three-color Ramsey problem, 
the Ramsey number for this problem is 𝑅𝑅(3,3,3) = 17.       

The Ramsey approach may be applied to the analysis of mechanical systems, when 
actual (i. e. emerging from the Hamilton principle) and virtual paths between the states in 
configurational space are taken into account. The Ramsey number 𝑅𝑅(3,3) = 6.  Thus, in 
the graph built of the six vertices, representing C-points in the configurational space and 
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interconnected by actual and virtual paths, cycles of actual or virtual paths will necessarily 
appear. These cycles may correspond to actual or virtual motions of the C-point in the 
configurational space. Thus, evolution of any mechanical system may be represented with 
the Ramsey graph. Ramsey theory enables reconsideration of the concept of “simultane-
ity” in the classical mechanics and relativity. In the classical mechanics simultaneity is 
transitive; thus, in the set built of five events, in which the relationships “to be simultane-
ous” and “to be non-simultaneous” are present we necessarily find the triad of simulta-
neous or non-simultaneous ones. This fact stems from the fact that the transitive Ramsey 
number 𝑅𝑅𝑡𝑡𝑡𝑡(3,3) = 5.  Triads of “simultaneous graph vertices” in this case represent 
events which can not influence each other. In turn, simultaneity is transitive in the general 
relativity only if a space-time is time-orthogonal (i.e. we mean the reference systems in 
which all the components of the metric tensor 𝑔𝑔0𝑖𝑖(𝑖𝑖 = 1,2,3) are equal to zero). In these 
systems, again in the set built of five events we necessarily find the triad of simultaneous 
or non-simultaneous ones. Graph theory is extremely useful for the analysis of the chains 
of irreversible processes (whatever, mechanical or thermodynamic). These chains form 
transitive tournaments; thus, no cycles of length 3 are possible in these directed graphs. 
The only one Hamiltonian path is possible in these graphs, and this path is a relativistic 
invariant for the directed graphs ordered according to the entropies of discrete thermo-
dynamic states. Restrictions inherent to the Ramsey theory should be considered. Firstly, 
the results supplied by the Ramsey theory are non-constructive: they may show that some 
sub-structure exists, but they give no process for finding this structure (other than brute-
force search). Secondly, the Ramsey theory states that sufficiently large objects must nec-
essarily contain a given sub-structure, often the proof of these results requires these ob-
jects to be enormously large, giving rise to bounds that grow exponentially. Anyway, the 
Ramsey approach enables the fresh glance on the physical systems and processes seen as 
discrete entities and re-shaping of the fundamental physical problems with the notions of 
mathematical logic.      
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