
Article Not peer-reviewed version

A Parallel Algorithm for Background

Subtraction: Modeling Lognormal Pixel

Intensity Distributions on GPUs

Sotirios Diamantas * , Ethan Reaves , Bryant Wyatt

Posted Date: 5 June 2025

doi: 10.20944/preprints202506.0416.v1

Keywords: background subtraction; parallel algorithms; GPU processing; log-normal distribution

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2572904
https://sciprofiles.com/profile/4496446
https://sciprofiles.com/profile/2909840

Article

A Parallel Algorithm for Background Subtraction:
Modeling Lognormal Pixel Intensity Distributions
on GPUs
Sotirios Diamantas 1,* , Ethan Reaves 1 and Bryant Wyatt 2

1 Mayfield College of Engineering, Department of Computer Science and Electrical Engineering, Tarleton State University,
The Texas A&M University System, Stephenville, TX 76402, USA

2 College of Science and Mathematics, Department of Mathematics, Tarleton State University, The Texas A&M University
System, Stephenville, TX 76402, USA

* Correspondence: diamantas@tarleton.edu

Abstract: In this research we address the problem of background subtraction using a parallel algorithm
implemented and tested on GPU processors and compare our findings with the state-of-the-art. Our
results demonstrate that our algorithm achieves a high number of processed frames per second
while maintaining output quality equivalent to leading-edge algorithms. Background subtraction
has applications in many areas, ranging from automotive and tool inspection to object detection,
recognition, and tracking. While current algorithms commonly rely on mixture of Gaussian models, our
algorithm is trained with a small set of sample frames, modeling pixels with lognormal distributions.
During the testing phase, we compare pixel intensities with the lognormally distributed values from
training with the view to infer a probabilistic score, which classifies each pixel as either foreground or
background.

Keywords: background subtraction; parallel algorithms; GPU processing; log-normal distribution

1. Introduction
Since its inception background subtraction has always been an interesting problem among

computer vision researchers. Background subtraction is the computer vision technique where the
background is removed from the foreground. Foreground is the cluster of pixels that denote a moving
object in the scene, captured by a camera, which is separated and distinguished from the background.
This segmentation of pixels between foreground and background has been important, with many
applications, in several areas ranging from medical imaging, astronomy, machine vision and tool
inspection to action recognition and, vehicle detection and tracking [1]. The advent of autonomous
vehicles has caused a resurgence of interest in the background subtraction techniques for detecting
moving vehicles, pedestrians, animals, and other objects of interest [2]. Even though background
subtraction is a well-studied problem, many challenges remain open and unsolved. In particular,
dynamic scenes that include several moving objects, changes in illumination conditions, shadows,
occluded objects or foreground objects that become part of the background, when, for instance, a
moving vehicle is stopped or parked, make background subtraction a difficult yet a challenging
problem.

A basic technique to tackle the problem of background subtraction is through pixel differencing,
that is, subtracting corresponding pixels between two consecutive image frames while a given threshold
differentiates between foreground and background pixels. The resulting, black and white, image
provides a representation of the pixels belonging to either one of the two categories. Complex
environments, however, require more sophisticated methods to deal with noise, shadows, changes
in illumination conditions, and a time interval to consider a pixel as a background or foreground. A
significant number of background subtraction algorithms rely on statistical techniques to tackle the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-4805-6591
https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

2 of 14

aforementioned issues, for example, mixture of Gaussians [3] or optical flow [4] where the motion
parameters of pixels are inferred with respect to time and space, thus allowing the segmentation of
pixels belonging to multiple foreground objects.

In this research, the problem of background subtraction is addressed using statistical techniques
that model pixel intensities with lognormal distributions. In our method, a static camera is employed
that captures a small number frames for inferring the parameters (log mean and log standard deviation)
of lognormal distributions used to describe a scene without any foreground (i.e., moving) objects,
which constitutes the training phase of the algorithm. Our method models every single pixel using
lognormal distributions. In the testing phase, every single pixel is checked as to whether it belongs to
foreground or background given the estimated lognormal parameters from the training phase. We
have tested our algorithm in a number of videos and have compared it with the state-of-the-art to
validate our methodology. Our proposed model has proven to be robust yet efficient that distinguishes
foreground pixels from the background in a parsimonious manner. In addition, our algorithm adapts
quickly to changes in illumination, or to objects entering into or moving out of a scene by re-sampling
and computing continuously pixel intensities and lognormal distribution parameters, respectively.
Our algorithm is fully parallel and has been implemented and tested on NVIDIA Graphical Processing
Units (GPUs) [5] using the CUDA [6] parallel platform. Our parallel algorithm is based on the serial
algorithm that was implemented on a CPU, presented in [7], with improvements being introduced in
the statistical model.

This paper consists of five sections. The next section, Section II, presents a review of the state-of-
the-art algorithms with respect to the background subtraction. Section III, provides a mathematical
explanation of the statistical model which is followed by an explanation of the parallel algorithm.
Section IV, presents the experiments carried out as well as the results from the proposed parallel
algorithm compared with the state-of-the-art algorithms. A qualitative analysis is provided. Finally,
Section V offers a synopsis of the results obtained as well as a discussion for future research directions
and improvements of the proposed algorithm.

2. Background Work
Mixture of Gaussian algorithms (MOG) [8] are the most well-known algorithms to date for

background subtraction [8]. Each pixel is modeled using Gaussian distributions and an online approx-
imation is used to update the model. Every pixel that does not fit the Gaussian distribution model
is considered a foreground with the remaining being considered background pixels. The concept of
mixture models appears also in [3] which is based on the framework proposed by [8]. Post processing
enhances further the overall outcome of background subtraction by utilizing two-pass connected
components with the view to connect foreground regions. Furthermore, shadows [9] are also possible
to be detected in foreground pixels.

In [10] an improved adaptive mixture model for background subtraction is presented while in
[11] the pixel-level background subtraction is continuously updated using recursive equations from
the Gaussian mixture models. Furthermore, a non-parametric adaptive density estimation method
is also presented. In [12], background pixels are described using a statistical representation while a
second statistical method is used for foreground moving objects. A general non-parametric utilization
of density estimation technique is presented for foreground and background pixels. In [13], the authors
present a non-parametric texture-based method using adaptive local binary pattern histograms in
regions around a pixel to distinguish foreground from the background. An adaptive non-parametric
background subtraction algorithm is presented in [14] using non-parametric kernel density estimations.
In [15], an adaptive model is presented where randomly selected values are substituted instead of
selecting the oldest ones. A background subtraction for real-time tracking in embedded camera
networks appears in [16] while in [17] an embedded vision MOG-based algorithm is presented.

In [18] the authors present a statistical background estimation with Bayesian segmentation and
a solution to multi-target tracking problem using Kalman filters and Gabe-Shapley matching. Their

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

3 of 14

methods tracks and segments people in variable lighting and illumination conditions. In [19], the
authors use local texture features to differentiate background from foreground. Although it can adapt
efficiently to varying illumination conditions it does not perform well on uniform regions where
homogeneous texture appears.

A GPU-based algorithm for high performance MOG background subtraction appears in [20].
The authors present several GPU optimization techniques such as control flow and register usage
optimization implemented on a CUDA platform. In [21], a parallel implementation is presented using
Gaussian Mixture Models (GMMs) and the Codebook and reporting the efficiency of GMMs over
Codebook. A Deep Neural Network-based algorithm for background subtraction is proposed in [22]
where a Convolutional Neural Network (CNN) is used on spatial features in grayscale images. In
another neural network implementation, the authors in [23] use multiple layers to combine spatio-
temporal correlations among pixels.

Early change-detection research focused on formalizing the signal model itself. The influential
survey in [24] mapped the field into hypothesis-testing, predictive, and background-modeling families,
and discussed how statistical rigor invariably traded off against real-time speed on the hardware of the
day. That taxonomy framed subsequent work on robust low-rank models, culminating in the convex
Principal Component Pursuit formulation proven in [25]. The authors showed that any video stack
can, under mild incoherence conditions, be split exactly into a low-rank background and a sparse
foreground, and they supplied an Augmented-Lagrange solver that immediately became the go-to
baseline for RPCA methods.

The review in [26] catalogs thirty-two DLAM (Decomposition into Low-rank and Additive
Matrices) algorithms—covering Stable-PCA, Robust-NMF and Incremental-SVD—and re-benchmarks
them on the BMC2012 corpus, highlighting which variants remain plausibly real-time and which
require GPU acceleration. Addressing that speed gap, [27] recasts RPCA as Robust Online Matrix
Factorization: background sub-spaces are updated with stochastic gradients, allowing 250 fps on 720 p
streams and graceful recovery from sudden illumination jumps. Yet, even on-line factorization requires
dense linear algebra; [28] sidesteps that by treating background pixels as smooth graph signals and
recovering them with graph total-variation priors, which improves F-measure on CDnet’s Dynamic
Background scenes while needing far fewer labels than CNN-based rivals.

Parallel to low-rank theory, the community refined non-parametric pixel models. The Pixel-Based
Adaptive Segmenter (PBAS) of [29] introduced per-pixel thresholds and learning rates that self-tune
from recent error statistics, eliminating global hyper-parameters and making PBAS a popular baseline
for embedded cameras. The authors [30] later standardized evaluation practice by re-implementing
twenty-nine classical algorithms in a unified C++ library and publishing exhaustive numbers on
synthetic and real footage [30]. Their work, together with the greatly expanded CDnet-2014 benchmark
in [31], gave the field the large, labeled data required to compare algorithms fairly.

With datasets in place, deep learning surged. The 2019 synthesis in [32] explains why fully-
convolutional networks began to dominate CDnet’s league tables and which open problems—domain
adaptation, class imbalance—remain unsolved. Scene-specific CNNs were first explored in [33], where
a modest five-layer network learned the subtraction function directly and already outperformed
handcrafted features at 25 fps on a GPU. Generalizing further, [34] trained a deeper ResNet on only
5% of CDnet frames and fused its logits with a spatial median filter, achieving top-three average rank
while keeping annotation needs low. Performance jumped again with explicit multi-scale design:
FgSegNet v2 [35] combines skip connections and feature-pooling modules to boost F-measure on
cluttered indoor and camera-jitter categories. Hybrid pipelines followed: RT-SBS in [36] runs ViBe
every frame but calls a light semantic segmenter only every k frames, preserving real-time speed yet
lifting recall in crowded scenes. Finally, BSUV-Net [37] introduces a two-background-frame input
and a cosine-annealed augmentation schedule; remarkably, it ranks first on the Unseen Videos track
without any scene-specific fine-tuning.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

4 of 14

Speed, however, is still a constraint for fielded systems on drones or roadside units. GPU-specific
kernel fusion and memory tiling in [38] accelerate classic GMM and ViBe by up to 30× on a GTX 780,
while the CUDA port of ViBe for Jetson TX modules in [39] sustains 30 fps at 720 p within a 10 W
power envelope. FPGA solutions survey in [40] shows a PBAS core reaching 150 fps VGA at under 3
W, and the edge-oriented study [41] measures how energy–latency trade-offs shift across ARM CPUs,
Mali GPUs, and Jetson NX boards—critical information when sizing airborne inspection rigs.

Most recently, YOLOv8 has become the detector of choice for highway-distress inspection net-
works. The algorithm-specific improvements in [42] embed SPD-Conv blocks and adopt WIoU loss,
lifting mAP by 6% on RDD2022 while shrinking model size by 22%. Complementarily, [43] replaces
C2f with a Faster-EMA block plus SimSPPF, netting another 5.8% mAP gain and 21% fewer FLOPs.
These latest advances illustrate how the field continues to swing between better modeling and faster
deployment, echoing the same accuracy–speed tension first articulated two decades ago [24] and still
central to our own work.

3. Methods
In this section the mathematics underlying our parallel algorithm is presented along with an

explanation of the parallel algorithm. In our experiments we used an NVIDIA GeForce GTX 970M
with 1280 cores on an Intel Core i7-6700HQ with a clock speed of 2.6GHz and a RAM of 16GB. We also
tested our algorithm on an NVIDIA Titan X GPU with 3072 cores for comparison and benchmarking.
Our benchmarking images have a resolution of 640× 480.

Our parallel algorithm has been tested in various illumination conditions and is compared with
two state-of-the-art algorithms. The results show that our algorithm can fully adapt to environmental
changes such as illumination by performing temporal sampling on individual pixels on a constant
basis. Furthermore, it can detect shadows as foreground pixels, and process a high number of frames
per second due to its parallel implementation.

At first, the training phase is taking place by capturing a small number of samples (i.e., frames), n,
that fills up the buffer when the environment consists of only static objects. During this phase, the
mean value of every single pixel, across all frames from the sample, is computed as shown in eqn. 1,

Mx̄,ȳ =
1
n
·

n

∑
i=1

xi, yi n = sample size (1)

where sample (buffer) size, in our experiments, is equal to 3 frames (n = 3). In addition, the median,
M̃x̄,ȳ, is computed for every pixel across all frames. Upon computing the mean of every pixel, Mx̄,ȳ,
we subtract it from every pixel value, Cx̄i ,ȳi , (eqn. 2), resulting in the histograms as shown in Fig. 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

5 of 14

Figure 1. Lognormal distributions obtained for every pixel during the training phase by sampling temporal pixel
values over a three-frame buffer. The buffer is constantly updated with newer frames by evicting the old ones.

histx,y = |Mx̄,ȳ − Cx̄i ,ȳi | (2)

A curve fitting in the resulting histograms produces lognormal probability density functions (pdfs)
for every single pixel with known mean and standard deviation (µ, σ) in the log scale. Moreover, the
mean and median values of every pixel are computed in parallel using the GPU cores as opposed to the
serial CPU implementation in [7]. During the testing phase, current pixel values, Px̄,ȳ, are subtracted
from the corresponding median value from the sample, (in contrast to the mean value that is used in
[7]), M̃x̄,ȳ, as shown in eqn. 3

δx̄,ȳ = |M̃x̄,ȳ − Px̄,ȳ| (3)

Equation 4 shows the function of the lognormal pdf and Fig. 1 provides a pictorial representation of
the aforementioned process,

fX = (δ; µ, σ) =
1

δσ
√

2π
e−

(ln δ−µ)2

2σ2 δ > 0 (4)

while eqn. 5 shows the lognormal cumulative density function (cdf); erfc is the complementary error
function and Φ is the standard normal cdf

FX(δ; µ, σ) =
1
2

er f c
[
− ln δ− µ

σ
√

2

]
= Φ

(
ln δ− µ

σ

)
. (5)

By knowing δx̄,ȳ, µ, σ we can infer a probabilistic score for every pixel using eqn. 5. A probabilistic
score above a given threshold, τ, denotes that the pixel belongs to the foreground whereas a probabilis-
tic score below the threshold indicates the pixel belongs to the background. During the testing phase,
the model is updated in every frame with the buffer evicting the oldest frame and incorporating the
newest one. All the aforementioned parameters, such as mean, median, µ, σ (log scale) are updated
in parallel, by exploiting the multiple cores GPU offers, to ensure the model adapts immediately to
changes as well as to switch a pixel from foreground to background should it remain unchanged for a
period of x frames (in our experiments x = 3).

3.1. Algorithm Description

Within the if statement in Algorithm 1 we primarily look into creating the variables by focusing on
eqns. 1-3 whose outputs are needed for eqns. 4-5 in Algorithm 2. In Algorithm 1 before the if statement
we initialize the CUDA/C++ variables used within the GPU processing. To optimize background

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

6 of 14

subtraction using log-normal cumulative density functions, Algorithm 1 must be processed first. In
this algorithm, the pixelsPerFrame parameter is crucial as it determines the number of threads required
to process the image. If this is not correctly set, the CUDA/C++ implementation will create too many
threads. Allocating a pixel variable ensures that the number of threads matches the frame size, fitting
within the thread matrix on the GPU. The if statement in the algorithm helps identify the correct
threads needed for processing. By avoiding the allocation of unnecessary threads, the algorithm
ensures that no overhead is added which improves processing speed and efficiency by preventing
stray threads from accessing memory outside of the images size parameters.

The method relies on a dynamic frame-handling system, where each new frame replaces the
previous one in a buffer array, following a first-in-first-out (FIFO) structure. This constant refresh
of the buffer ensures the ability for new static objects to be placed in frame. The iterative nature of
this process, involving both algorithms 1 and 2, ensures that variables and frames are continuously
updated, maintaining a high-quality flow of data for the background subtraction task. this buffer is
referenced throughout both algorithms as allFramesx̄,ȳ,z̄ where x̄, ȳ are the coordinates in the 2D image
array and z̄, is the depth, that is, the number of 2D image arrays in the buffer, that constitute the 3D
array.

pixelsPerFrame← f rameWidth× f rameHeight;
pixel ← threadIdx.x+ blockIdx.x× blockDim.x;
n← bu f f erSize /* buffer length */ ;
if pixel < pixelsPerFrame then

sumx̄,ȳ ←
n

∑
z=1

allFramesx̄,ȳ,z;

µx̄,ȳ ← sumx̄,ȳ/n;

ln Frx̄,ȳ,z ←
∣∣allFramesx̄,ȳ,z − µx̄,ȳ

∣∣;
ln Frx̄,ȳ,z ← ln

(
ln Frx̄,ȳ,z

)
;

lnsumx̄,ȳ ←
n

∑
z=1

ln Frx̄,ȳ,z;

µx̄,ȳ ← lnsumx̄,ȳ/n;

ln Frx̄,ȳ,z ← Sort
(
ln Frx̄,ȳ,z

)
;

M̃x̄,ȳ ← Median
(
ln Frx̄,ȳ,z

)
;

varSum← varSum +
(
ln Frx̄,ȳ,z − M̃x̄,ȳ

)2;
σ←

√
varSum;

end
Algorithm 1: Image Buffer Parameterization

Algorithm 2 is a core component of the background subtraction framework, responsible for
computing the cumulative density function (CDF) statistics to classify pixels based on a log-normal
model. This process enhances the accuracy of dynamic background subtraction by leveraging statistical
normalization techniques. Tables 1 and 2 provide a description of the variables for algorithms 1 and 2,
respectively.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

7 of 14

Table 1. Description of Variables in Algorithm 1

Variable Description
pixelsPerFrame Total number of pixels per frame,

calculated as frame width × frame height.
pixel Current pixel index.

Frames Total number of frames in the buffer.
sumx̄,ȳ Sum of all pixel intensities

across frames for given coordinates (x̄, ȳ).
µx̄,ȳ Mean pixel intensity at (x̄, ȳ) over all frames.

ln Frx̄,ȳ,z̄ Log-normal Buffer
lnsumx̄,ȳ Sum of all pixel intensities across ln Frx̄,ȳ,z̄.

M̃x̄,ȳ Median of ln Frx̄,ȳ,z̄
σ Standard deviation of ln Frx̄,ȳ,z̄.

Initially, the algorithm determines the total number of pixels per frame as pixelsPerFramepix-
elsPerFrame by multiplying the frame’s width and length. The if statement ensures that only the
necessary threads are allocated by checking if the current pixel index pixelpixel is within the total
number of pixels per frame.

Within the if statement, the algorithm performs several sequential transformations to standardize
pixel intensity variations:

Table 2. Description of Variables in Algorithm 2

Variable Description
pixelsPerFrame Total number of pixels per frame,

calculated as frame width × frame height.
f rameDeltax̄,ȳ latest frame to be processed.

bu f f erNormx̄,ȳ log-normalized buffer frame
(i.e. Fx equation 5)

τ input variability amount
outputFr background subtracted image

pixelsPerFrame← f rameWidth× f rameHeight;
if pixel < pixelsPerFrame then

f rameDeltax̄,ȳ ← ln
(
currentFramex̄,ȳ

)
;

f rameDeltax̄,ȳ ← f rameDeltax̄,ȳ −medianx̄,ȳ;

bu f f erNormx̄,ȳ ←
ln Frx̄,ȳ√

2 σFrx̄,ȳ

;

f rameDeltax̄,ȳ ← f rameDeltax̄,ȳ − bu f f erNormx̄,ȳ;
f rameDeltax̄,ȳ ← 0.5 + 0.5× erfc

(
f rameDeltax̄,ȳ

)
;

end
if f rameDeltax̄,ȳ ≥ τ then

outputFrx̄,ȳ ← 255
else

outputFrx̄,ȳ ← 0
end

Algorithm 2: CDF-based Statistics Calculation

4. Results
In Figures 2-5, we provide a series of images that our algorithm was tested on. In particular,

we have experimented with different videos taken under varying illumination conditions with high-
speed moving objects, such as a vehicle, as well as with humans in different scenarios. In the same
set of figures, we juxtapose the output of our parallel lognormal algorithm with the state-of-the-art

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

8 of 14

algorithms, namely MOG [3] and MOG2 [10] [11], and provide a qualitative analysis for comparison.
For the implementation of MOG and MOG2 algorithms the deepgaze1, computer vision library has
been utilized [44] using the Python programming language and OpenCV [45]. The video in Fig. 2 is
from [44] while videos in Figs. 3 and 4 are from [46]2. The implementation of our parallel algorithm
can be found on Github3 while the output videos can be found on our YouTube channel (Background
Subtraction playlist)4.

In all of the figures shown (Figs. 2 - 5), our training sample size has been kept at minimum,
that is, 3 frames. In Figure 2 a moving vehicle is detected successfully across all video sequences.
Furthermore, the qualitative analysis demonstrates that our parallel algorithm outperforms the state-
of-the-art algorithms. The moving object, in this case, a vehicle is robustly segmented by our parallel
algorithm. Although the MOG algorithm introduces some noise, the segmented vehicle appears with
missing portions, particularly in the center. MOG2 achieves better segmentation of the vehicle, but
significant noise is still present throughout the image. Figures 3 and 4, feature substantial variations
in lighting conditions. In spite of this, our algorithm outperforms MOG algorithm, while MOG2 is
able to differentiate between foreground pixels and shadows (Fig. 3). Finally, in Fig. 4, our algorithm
again outperforms both MOG and MOG2. In particular MOG algorithm performs poorly in low light
conditions whereas MOG2 exhibits substantial noise, especially in areas containing stationary vehicles.

Finally, in Fig. 5, a highway is shown with multiple vehicles moving at high speeds. The MOG
algorithm struggles to effectively segment vehicles that are farther from the camera, though the seg-
mentation improves when vehicles are closer, where more pixels represent the object. While the MOG2
algorithm performs well, it is still affected by noise. In contrast, our parallel algorithm successfully
segments all vehicles, regardless of their distance from the camera, and exhibits significantly lower
noise. In the upper part of the image, a flock of birds above the highway, visible in the original frame,
is correctly segmented by all three algorithms.

The frame processing time has been estimated to be between 10 ms (100 fps) and 15 ms (67 fps)
when using the NVIDIA GeForce GTX 970M while a processing time of 8 ms (125 fps) is achieved with
the NVIDIA Titan X. As mentioned, the resolution used was 640× 480 and the buffer size was equal to
3 frames (n = 3). Finally, no post-processing has been implemented such as connected components or
the flood-fill algorithm to improve the output of the background subtraction method.

In addition to the afore-mentioned resolution and buffer sizes, a number of experiments were
carried out with higher -raw video- resolutions as well as different buffer sizes. The results are
summarized in Table 3. It shows the average per–frame execution time and the corresponding
throughput (fps) for four video sequences at three circular-buffer sizes (3, 8, and 10 frames). For the
Full-HD sequences, that is, 1920 × 1080 (cars, cctv1, cctv5) processing time rises from roughly 20 ms to
24–28 ms as the buffer grows, translating to a drop from 50 fps to 36–42 fps. The 1280 × 720 highway
sequence is consistently faster, sustaining up to 93 fps with a 3-frame buffer and about 70 fps with a
10-frame buffer. These results illustrate the classic accuracy–latency trade-off: larger temporal context
improves model stability but reduces real-time throughput, especially for higher-resolution inputs.

In Fig.6, each row shows the same frame from a given dataset, whereas each column shows the
result obtained with a different buffer size; specifically, columns 2–4 correspond to buffer sizes of 3, 8,
and 10 frames, respectively. Increasing the buffer size reduces noise, but this comes at the cost of a
lower frame rate, as reported in Table3.

1 https://github.com/mpatacchiola/deepgaze
2 http://study.marearts.com/
3 https://github.com/TSUrobotics/Parallel-Background-Subtraction
4 https://www.youtube.com/@robotperception6035

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

9 of 14

Table 3. Average per–frame processing time (ms) and resulting frame-rate (fps) for three circular-buffer sizes.
A larger buffer allows richer temporal context but increases processing latency. All videos are at their native
resolution.

Dataset (resolution) 3-frame buffer 8-frame buffer 10-frame buffer

Time [ms] fps Time [ms] fps Time [ms] fps

cars (1920 × 1080) 19.61 51.0 23.64 42.3 23.96 41.7
cctv1 (1920 × 1080) 19.85 50.4 23.89 41.9 24.26 41.2
cctv5 (1920 × 1080) 20.26 49.4 25.82 38.7 27.69 36.1
highway (1280 × 720) 10.80 92.6 13.63 73.3 14.20 70.4
Buffer size = number of previous frames kept in memory for temporal reasoning.

Figure 2. Top to bottom (car dataset): Raw image; MOG algorithm; MOG2 algorithm; Parallel Lognormal
(proposed algorithm).

Figure 3. Top to bottom (cctv1 dataset): Raw image; MOG algorithm; MOG2 algorithm; Parallel Lognormal
(proposed algorithm).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

10 of 14

Figure 4. Top to bottom (cctv5 dataset): Raw image; MOG algorithm; MOG2 algorithm; Parallel Lognormal
(proposed algorithm).

Figure 5. Top to bottom (highway dataset): Raw image; MOG algorithm; MOG2 algorithm; Parallel Lognormal
(proposed algorithm).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

11 of 14

Figure 6. Rows top-bottom: car, cctv1, cctv5 datasets. Columns left-right: raw images; buffer size = 3; buffer size =
8; buffer size = 10.

5. Conclusions and Future Work
In this research we have addressed the problem of background subtraction using a parallel algo-

rithm implemented on GPU cores. Our proposed algorithm models pixel intensities using lognormal
distributions. We compared our algorithm’s output with two of the most well-established Mixture of
Gaussians (MOG) algorithms. The results obtained show that our method surpasses in most cases the
state-of-the-art algorithms. Specifically, our algorithm combines the strengths of both MOG and MOG2,
maintaining low noise levels similar to MOG while providing superior object segmentation akin to
MOG2, but with significantly less noise. Furthermore, the throughput of our algorithm achieves a
high number of processed frames, measured between 67 fps and 125 fps depending on the number
of cores available in a given GPU, the video resolution as well as the buffer size. The parallel nature
of the algorithm allows it to fully leverage additional cores, further increasing the frame rate. As
demonstrated in the figures, the proposed algorithm quickly adapts to changes in lighting conditions
and efficiently switches pixel states between background and foreground, thanks to the minimal
sample size required to train the lognormal model.

Currently we are working on an enhancement that leverages KL-divergence, where we will
compare distributions rather than individual pixels between the training and testing phases. For
future research, we plan to adopt a Bayesian approach and optical flow [47–49] with the view to more
accurately differentiate moving objects from static. Finally, we plan on testing our algorithm on a
grid of GPUs to fully exploit the potential of our parallel algorithm. Our algorithm has numerous
potential applications in transportation, surveillance, and other fields that involve detecting and
tracking moving objects.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.

Author Contributions: Conceptualization, S.D.; methodology, S.D.; software, E.R. and B.W; validation, E.R. and
B.W.; investigation, S.D., E.R., and B.W.; writing—original draft preparation, S.D. and E.R.; supervision, S.D. and
B.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: The source code for this research is available at: https://github.com/TSUrobotics/
Parallel-Background-Subtraction. Demonstration videos generated for this research are available on the Robot
Perception YouTube channel at: https://www.youtube.com/@robotperception6035.

Conflicts of Interest: The authors declare no conflicts of interest

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/TSUrobotics/Parallel-Background-Subtraction
https://github.com/TSUrobotics/Parallel-Background-Subtraction
https://www.youtube.com/@robotperception6035
https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

12 of 14

References
1. Bardas, G.; Astaras, S.; Diamantas, S.; Pnevmatikakis, A. 3D tracking and classification system using a

monocular camera. Wireless Personal Communications 2017, 92, 63–85.
2. Diamantas, S.; Alexis, K. Optical Flow Based Background Subtraction with a Moving Camera: Application

to Autonomous Driving. In Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science; et al,
G.B., Ed.; Springer Nature Switzerland, 2020.

3. KaewTraKulPong, P.; Bowden, R. An Improved Adaptive Background Mixture Model for Real-time Tracking
with Shadow Detection. In Video-Based Surveillance Systems; Springer US, 2002; chapter 11, pp. 135–144.

4. Chen, M.; Yang, Q.; Li, Q.; Wang, G.; Yang, M.H. Spatiotemporal Background Subtraction Using Minimum
Spanning Tree and Optical Flow. In Proceedings of the European Conference on Computer Vision (ECCV),
2014.

5. NVIDIA. https://www.nvidia.com/en-gb/graphics-cards/, 2021.
6. CUDA. https://developer.nvidia.com/cuda-toolkit, 2021.
7. Diamantas, S.; Alexis, K. Modeling Pixel Intensities with Log-Normal Distributions for Background Sub-

traction. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Beijing,
China, 2017; pp. 1–6.

8. Stauffer, C.; Grimson, W.E.L. Adaptive Background Mixture Models for Real-Time Tracking. In Proceedings
of the 1999 Conference on Computer Vision and Pattern Recognition (CVPR ’99), 23-25 June 1999, Ft. Collins,
CO, USA, 1999, pp. 2246–2252. https://doi.org/10.1109/CVPR.1999.784637.

9. Xu, M.; Ellis, T. Illumination-invariant motion detection using colour mixture models. In Proceedings of the
British Machine Vision Conference (BMVC 2001), 2001, pp. 163–172.

10. Zivkovic, Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction. In Proceedings of
the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, August 23-26, 2004.,
2004, pp. 28–31. https://doi.org/10.1109/ICPR.2004.1333992.

11. Zivkovic, Z.; van der Heijden, F. Efficient adaptive density estimation per image pixel for the task of
background subtraction. Pattern Recognition Letters 2006, 27, 773–780.

12. Elgammal, A.; Duraiswami, R.; Harwood, D.; Davis, L.S. Background and Foreground Modeling Using
Nonparametric Kernel Density Estimation for Visual Surveillance. In Proceedings of the Proceeding of the
IEEE, November 2002, Vol. 90, pp. 1151–1163.

13. Heikkilä, M.; Pietikäinen, M. A Texture-Based Method for Modeling the Background and Detecting
Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006, 28, 657–662. https:
//doi.org/10.1109/TPAMI.2006.68.

14. Lee, J.; Park, M. An Adaptive Background Subtraction Method Based on Kernel Density Estimation. Sensors
2012, 12, 12279–12300.

15. Barnich, O.; Droogenbroeck, M.V. ViBe: A Universal Background Subtraction Algorithm for Video Sequences.
IEEE Transactions on Image Processing 2011, 20, 1709–1724. https://doi.org/10.1109/TIP.2010.2101613.

16. Shen, Y.; Hu, W.; Liu, J.; Yang, M.; Wei, B.; Chou, C.T. Efficient background subtraction for real-time
tracking in embedded camera networks. In Proceedings of the Proceedings of the 10th ACM Conference on
Embedded Network Sensor Systems, 2012, pp. 295–308.

17. Tabkhi, H.; Bushey, R.; Schirner, G. Algorithm and architecture co-design of Mixture of Gaussian (MoG)
background subtraction for embedded vision. In Proceedings of the Proceedings of Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, USA, 2013.

18. Godbehere, A.B.; Matsukawa, A.; Goldberg, K.Y. Visual tracking of human visitors under variable-lighting
conditions for a responsive audio art installation. In Proceedings of the American Control Conference, ACC
2012, Montreal, QC, Canada, June 27-29, 2012, 2012, pp. 4305–4312.

19. Yao, J.; Odobez, J.M. Multi-Layer Background Subtraction Based on Color and Texture. In Proceedings of
the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007),
18-23 June 2007, Minneapolis, Minnesota, USA, 2007. https://doi.org/10.1109/CVPR.2007.383497.

20. Zhang, C.; Tabkhi, H.; Schirner, G. A GPU-Based Algorithm-Specific Optimization for High-Performance
Background Subtraction. In Proceedings of the 2014 43rd International Conference on Parallel Processing,
2014, pp. 182–191. https://doi.org/10.1109/ICPP.2014.27.

21. Szwoch, G.; Ellwart, D.; Czyżewski, A. Parallel implementation of background subtraction algorithms
for real-time video processing on a supercomputer platform. Journal of Real-Time Image Processing 2016,
11, 111–125.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/CVPR.1999.784637
https://doi.org/10.1109/ICPR.2004.1333992
https://doi.org/10.1109/TPAMI.2006.68
https://doi.org/10.1109/TPAMI.2006.68
https://doi.org/10.1109/TIP.2010.2101613
https://doi.org/10.1109/CVPR.2007.383497
https://doi.org/10.1109/ICPP.2014.27
https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

13 of 14

22. Braham, M.; Droogenbroeck, M.V. Deep Background Subtraction with Scene-Specific Convolutional Neural
Networks. In Proceedings of the The 23rd International Conference on Systems, Signals and Image
Processing, 2016.

23. Rai, N.K.; Chourasia, S.; Sethi, A. An Efficient Neural Network Based Background Subtraction Method. In
Advances in Intelligent Systems and Computing; Bansal, J.; Singh, P.; Deep, K.; Nagar, M.P.A., Eds.; Springer,
2013; pp. 453–460.

24. Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image Change Detection Algorithms: A Systematic Survey.
IEEE Transactions on Image Processing 2005, 14, 294–307. https://doi.org/10.1109/TIP.2004.838698.

25. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? Journal of the ACM 2011,
58, 11:1–11:37. https://doi.org/10.1145/1970392.1970395.

26. Bouwmans, T.; Sobral, A.; Javed, S.; Jung, S.K.; Zahzah, E. Decomposition into Low-Rank plus Additive
Matrices for Background/Foreground Separation: A Review for a comparative evaluation with a large-scale
dataset. Computer Science Review 2017, 23, 1–71. https://doi.org/10.1016/j.cosrev.2016.11.001.

27. Yong, H.; Meng, D.; Zuo, W.; Zhang, L. Robust Online Matrix Factorization for Dynamic Background
Subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018, 40, 1726–1740. https:
//doi.org/10.1109/TPAMI.2017.2732350.

28. Giraldo, J.H.; Bouwmans, T. GraphBGS: Background Subtraction via Recovery of Graph Signals. In
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 6881–6888.
https://doi.org/10.1109/ICPR48806.2021.9412999.

29. Hofmann, M.; Tiefenbacher, P.; Rigoll, G. Background Segmentation with Feedback: The Pixel-Based
Adaptive Segmenter. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2012, pp. 38–43. https://doi.org/10.1109/CVPRW.2012.6238925.

30. Sobral, A.; Vacavant, A. A Comprehensive Review of Background Subtraction Algorithms Evaluated with
Synthetic and Real Videos. Computer Vision and Image Understanding 2014, 122, 4–21. https://doi.org/10.101
6/j.cviu.2013.12.005.

31. Wang, Y.; Jodoin, P.M.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar, P. CDnet 2014: An Expanded Change
Detection Benchmark Dataset. In Proceedings of the Proc. IEEE CVPR Workshops, 2014, pp. 393–400.

32. Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S.K. Deep Neural Network Concepts for Background Subtraction:
A Systematic Review and Comparative Evaluation. Neural Networks 2019, 117, 8–66. https://doi.org/10.101
6/j.neunet.2019.04.024.

33. Braham, M.; Van Droogenbroeck, M. Deep Background Subtraction with Scene-Specific Convolutional
Neural Networks. In Proceedings of the Proc. Intl. Conf. on Systems, Signals and Image Processing (IWSSIP),
2016, pp. 1–4. https://doi.org/10.1109/IWSSIP.2016.7502717.

34. Babaee, M.; Dinh, D.T.; Rigoll, G. A Deep Convolutional Neural Network for Video Sequence Background
Subtraction. Pattern Recognition 2018, 76, 635–649. https://doi.org/10.1016/j.patcog.2017.09.040.

35. Lim, L.A.; Keleş, H.Y. Learning Multi-Scale Features for Foreground Segmentation. Pattern Analysis and
Applications 2020, 23, 1369–1380. https://doi.org/10.1007/s10044-019-00845-9.

36. Cioppa, A.; Van Droogenbroeck, M.; Braham, M. Real-Time Semantic Background Subtraction. In
Proceedings of the Proc. IEEE Intl. Conf. on Image Processing (ICIP), 2020, pp. 3214–3218. https:
//doi.org/10.1109/ICIP40778.2020.9190838.

37. Tezcan, M.O.; Ishwar, P.; Konrad, J. BSUV-Net: A Fully-Convolutional Neural Network for Background
Subtraction of Unseen Videos. In Proceedings of the 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2020, pp. 2763–2772. https://doi.org/10.1109/WACV45572.2020.9093464.

38. Zhang, C.; Tabkhi, H.; Schirner, G. A GPU-Based Algorithm-Specific Optimization for High-Performance
Background Subtraction. In Proceedings of the Proc. Intl. Conf. on Parallel Processing (ICPP), 2014, pp.
182–191. https://doi.org/10.1109/ICPP.2014.27.

39. Karagöz, M.F.; Aktas, M.; Akgün, T. CUDA implementation of ViBe background subtraction algorithm
on jetson TX1/TX2 modules. In Proceedings of the 2018 26th Signal Processing and Communications
Applications Conference (SIU), 2018, pp. 1–4. https://doi.org/10.1109/SIU.2018.8404494.

40. Kryjak, T.; Gorgon, M. Real-Time Implementation of Background Modelling Algorithms in FPGA Devices.
In New Trends in Image Analysis and Processing – ICIAP 2015 Workshops; Springer, 2015; Vol. 9281, Lecture Notes
in Computer Science, pp. 519–526. https://doi.org/10.1007/978-3-319-23222-5_63.

41. Sehairi, K.; Chouireb, F. Implementation of Motion Detection Methods on Embedded Systems: A Perfor-
mance Comparison. International Journal of Technology 2023, 14, 510–521. https://doi.org/10.14716/ijtech.v1
4i3.5950.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/TIP.2004.838698
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1016/j.cosrev.2016.11.001
https://doi.org/10.1109/TPAMI.2017.2732350
https://doi.org/10.1109/TPAMI.2017.2732350
https://doi.org/10.1109/ICPR48806.2021.9412999
https://doi.org/10.1109/CVPRW.2012.6238925
https://doi.org/10.1016/j.cviu.2013.12.005
https://doi.org/10.1016/j.cviu.2013.12.005
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.1109/IWSSIP.2016.7502717
https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1007/s10044-019-00845-9
https://doi.org/10.1109/ICIP40778.2020.9190838
https://doi.org/10.1109/ICIP40778.2020.9190838
https://doi.org/10.1109/WACV45572.2020.9093464
https://doi.org/10.1109/ICPP.2014.27
https://doi.org/10.1109/SIU.2018.8404494
https://doi.org/10.1007/978-3-319-23222-5_63
https://doi.org/10.14716/ijtech.v14i3.5950
https://doi.org/10.14716/ijtech.v14i3.5950
https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

14 of 14

42. Sun, Z.; Zhu, L.; Qin, S.; Yu, Y.; Ju, R.; Li, Q. Road Surface Defect Detection Algorithm Based on YOLOv8.
Electronics 2024, 13, 2413. https://doi.org/10.3390/electronics13122413.

43. Wang, J.; Meng, R.; Huang, Y.; Zhou, L.; Huo, L.; Qiao, Z.; Niu, C. Road Defect Detection Based on Improved
YOLOv8s Model. Scientific Reports 2024, 14, 16758. https://doi.org/10.1038/s41598-024-67953-3.

44. Deebgaze Computer Vision library. https://github.com/mpatacchiola/deepgaze, 2017.
45. OpenCV. http://opencv.willowgarage.com/wiki/, 2017.
46. MARE’s Computer Vision Study. http://study.marearts.com/, 2017.
47. Diamantas, S. Biological and Metric Maps Applied to Robot Homing. PhD thesis, School of Electronics and

Computer Science, University of Southampton, 2010.
48. Diamantas, S.C.; Oikonomidis, A.; Crowder, R.M. Towards Optical Flow-Based Robotic Homing. In

Proceedings of the Proceedings of the International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), Barcelona, Spain, 2010.

49. Diamantas, S.C.; Oikonomidis, A.; Crowder, R.M. Depth Computation Using Optical Flow and Least Squares.
In Proceedings of the IEEE/SICE International Symposium on System Integration, Sendai, Japan, 2010; pp.
7–12.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2025 doi:10.20944/preprints202506.0416.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.3390/electronics13122413
https://doi.org/10.1038/s41598-024-67953-3
https://doi.org/10.20944/preprints202506.0416.v1
http://creativecommons.org/licenses/by/4.0/

