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Costas Panagiotakis 1,2

1 Department of Management Science and Technology, Hellenic Mediterranean University, Agios Nikolaos, Greece;
cpanag@hmu.gr

2 Institute of Computer Science, FORTH, Heraklion, Greece

Abstract: In this paper, we study the 2D Shape Equipartition Problem (2D-SEP) with minimal
boundaries and we propose an efficient method that solves the problem with low computational
cost. The goal of 2D-SEP is to obtain a segmentation into N equal area segments (regions), where
the number of segments (N) is given by the user, under the constraint that the length of boundaries
between the segments is minimized. We define the 2D-SEP and we study problem solutions using
basic geometric shapes. We propose a 2D Shape Equipartition algorithm based on a fast balanced
clustering method (SEP-FBC) that efficiently solve the 2D-SEP problem under complex 2D shapes in
O(N · |S| · log(|S|)), where |S| denote the number of image pixels. The proposed SEP-FBC method
initializes clustering using centroids provided by the k-means algorithm, which is executed first.
During each iteration of the main SEP-FBC process, a region-growing procedure is applied, starting
from the smallest region and expanding until regions of equal area are achieved. Additionally, a
Particle Swarm Optimization (PSO) method that uses the SEP-FBC method under different initial
centroids, has been also proposed to explore better 2D-SEP solutions and to show how the selection of
the initial centroids affect the performance of the proposed method. Finally, we present experimental
results on more than 2,800 2D shapes to evaluate the performance of the proposed methods and
illustrate that their solutions outperform other methods from the literature.

Keywords: shape analysis; image segmentation; equipartition; geometric shapes

1. Introduction
Image segmentation is a fundamental problem in the fields of computer vision and pattern

recognition and plays a crucial role in a wide range of applications. These applications span various
domains, including object recognition [1], remote sensing [2,3], and medical image analysis [4,5]. At
its core, image segmentation involves the division of an image into meaningful regions or segments,
facilitating higher-level analysis and interpretation. The task can be formulated in two principal ways:
as a classification problem at the pixel level, known as semantic segmentation, or as an object-specific
partitioning problem, referred to as instance segmentation.

The curve equipartition problem has been formally defined, explored, and solved in [6]. This
problem has numerous applications across various domains, including polygonal approximation [7],
signal modeling [8], video summarization [9]. The objective of the curve equipartition problem is to
identify N − 1 consecutive points along a given curve such that the curve is divided into N segments
of equal chord lengths under a predefined distance function (see Figures 1 and 2). This partitioning
ensures that each segment maintains a consistent measure in terms of the chord length, which makes it
highly relevant in geometric and computational applications. In [6], a level set approach is adopted to
establish that for any continuous injective curve in a metric space and for any given number N, there
always exists at least one valid N-equipartition. Furthermore, an approximate algorithm inspired by
the level set approach is proposed to efficiently compute all possible solutions with high accuracy. The
number of solutions to this problem generally depends on both the shape of the curve and the chosen
value of N. In particular, for certain special classes of curves, the number of solutions for some values
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of N may be infinite. A geometric proof, provided in [6], demonstrates that the curve equipartition
problem always has at least one solution for every continuous injective curve, regardless of the number
of partitions.
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Figure 1. A curve equipartition example for N = 3, |AP1| = |P1P2| = |P2B|.
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Figure 2. Three solutions of curve equipartition problem with N = 4, are projected on the curve c(t) (blue curve)
with the green color points connected with red line segments.

Figure 2 illustrates the three distinct solutions for the curve equipartition problem with N = 4.
In this figure, the computed partition points (depicted in green) are projected onto the curve c(t)
(represented by the blue curve) and are connected by red line segments. An interesting extension of the
curve equipartition problem involves generalizing its formulation and solution techniques to different
mathematical and computational structures, including meshes [10], images [4], and shapes [11,12].
These extensions open up new avenues for research and practical applications in geometric processing,
computer vision, and pattern recognition.

In our previous work [12], a general version of the 2D shape equipartition problem (2D-SEP) with
minimum intrinsic boundary length has been presented. According to the 2D shape equipartition
problem, the goal is to compute a shape segmentation into N equal area segments, so that the length (L)
of the intrinsic boundary between the segments is minimized. We have shown that for any convex
shape S, the 2D-SEP problem has at least one solution for any value of N, even if the intrinsic
boundaries are line segments. However, when a non-convex 2D shape is given, there exist some
cases where the 2D-SEP has no solution even for N = 2. In [12], two methods have been proposed to
solve 2D-SEP:

• a region growing based method that solves the general version of 2D-SEP problem called
SEP-RG, and

• a sequential selection method that efficiently solves the problem under the constraint that the
intrinsic boundaries are line segments called SEP-ILS.

The experimental results demonstrated that SEP-RG outperformed SEP-ILS [12].
In this work, we study in more depth the 2D shape equipartition problem (2D-SEP) studying opti-

mal solutions for basic geometric shapes. Additionally, we propose two methods for solving 2D-SEP:

• a 2D Shape Equipartition algorithm based on a fast balanced clustering method (SEP-FBC), and
• a Particle Swarm Optimization (PSO) method that uses the SEP-FBC method, called SEP-PSO FBC.

SEP-FBC uses initial seeds as SEP-RG, but instead of successive executions of region growing
steps of SEP-RG, firstly it performs hard clustering and then performs a growing—shrinking process
that gradually improves satisfaction with the criterion of equal area regions. This results in a low
computation cost method that makes possible its integration with Particle Swarm Optimization (PSO)
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framework, resulting on the top performing method SEP-PSO FBC. To our knowledge, SEP-FBC is the
most computationally efficient method to solve 2D-SEP. According to our experimental in more than
2,800 2D shapes, the proposed methods clearly outperform in terms of intrinsic boundary length the
current methods from literature (SEP-RG and SEP-ILS).

Figure 3 presents examples of the proposed 2D-SEP for different numbers of segments
(N ∈ {2, 3, 4, 5}). In the first and second rows the results come from the SEP-ILS and SEP-RG
methods [12], respectively. In the third row, the corresponding results come from the proposed
SEP-FBC method. In any case, the segmentation consists of N equal-area segments. However, the
intrinsic boundary length (L) differs by method. Figure 3a shows a segmentation of an apple for
N = 2, where a solution of a line segment close to the diameter of the apple seems to be the optimal
solution of 2D-SEP. In this simple example, as expected, the SEP-ILS method, which exclusively uses
line segments, yields the lowest intrinsic boundary length L = 46.1. Figure 3i shows a corresponding
segmentation using the proposed SEP-FBC method that yields a slightly higher intrinsic boundary
length L = 46.4. In more complex examples (see Figure 3i–l), the proposed SEP-FBC method yields a
lower intrinsic boundary length than the other methods.

In summary, the main contributions of our work are the following:

• To the best of our knowledge, this is the first work that extensively studies the 2D-SEP problem
under minimum intrinsic boundary length.

• We propose a fast balanced clustering method (SEP-FBC) that can be combined with Particle
Swarm Optimization (PSO) framework due to its low computational cost to efficiently solve the
general version of the 2D-SEP problem.

• The quantitative results obtained on more than 2,800 2D shapes included in two standard datasets
quantify the outer performance of the proposed methods from baselines of the literature.

The rest of this paper is organized as follows: Section 2 reviews the related work for image
segmentation and balanced clustering methods. The 2D-SEP problem formulation is given in Section 3.
2D-SEP instances and properties are studied in Section 4. Section 5 presents the two proposed methods
for solving 2D-SEP, respectively. Section 6 describes the experimental setup along with the results
obtained. Finally, conclusions and future work are provided in Section 7.

(a) N = 2, L = 46.1 (b) N = 3, L = 117.7 (c) N = 4, L = 170.1

(d) N = 5, L = 415.8 (e) N = 2, L = 48.2 (f) N = 3, L = 105.3

(g) N = 4, L = 154.6 (h) N = 5,L = 226.4 (i) N = 2, L = 46.4

Figure 3. Cont.
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(j) N = 3, L = 103.1 (k) N = 4, L = 148.9 (l) N = 5, L = 198.1

Figure 3. Instances of the proposed 2D Shape Equipartition problem. In the first and second rows the results
come from the SEP-ILS and SEP-RG methods [12] from literature, respectively. In the third row, the corresponding
results come from the proposed SEP-FBC method. The number of regions (N) and the intrinsic boundary length
(L) are reported in the caption of each shape.

2. Related Work
The problem of image segmentation segmentation has been studied extensively during the

last decades. In the literature, a variety of image segmentation techniques have been proposed,
each utilizing different principles and methodologies. Traditional approaches include thresholding
methods [13], region-growing techniques [14], and region-merging strategies [15]. Other widely
used techniques involve clustering methods, such as k-means [16], and edge-based methods such as
watershed segmentation [17]. Furthermore, contour-based techniques, such as active contours [18],
and graph-based methods, including graph cuts [19], have demonstrated effectiveness in various
applications. Probabilistic approaches, such as conditional and Markov random fields [20], as well as
sparsity-based methods [21], have been explored for robust segmentation under challenging conditions.

In recent years, the advent of deep learning (DL) has revolutionized the field of image segmen-
tation, leading to significant improvements in accuracy and generalization. Deep learning models
leverage hierarchical feature extraction and end-to-end learning capabilities to surpass traditional
methods in performance. Convolutional neural networks (CNNs) and their advanced architectures,
including fully convolutional networks (FCNs), U-Net, DeepLab, and Mask R-CNN, have established
new benchmarks in image segmentation tasks in multiple domains [22]. These advances have enabled
the development of highly accurate automated segmentation systems, facilitating progress in medical
diagnostics, autonomous driving, and many other critical applications.

Different error criteria have been proposed for image segmentation problems. The Intersection
Over Union (IoU) and the F-measure are two of the most popular supervised methods to evaluate
image segmentation quality, but it requires the ground truth [23]. Under unsupervised image (color or
grayscale) segmentation methods, where the ground truth is completely unknown, clustering based
criteria such as the heterogeneity of pixels between regions and the homogeneity within the region
objectively can be used to evaluate the segmentation [24].

Under 2D-SEP problem, no ground truth is given. So, we have to select an unsupervised criterion.
Additionally, the given image is binary, so no color-grayscale imformation is given. Similarly with the
polygonal approximation [25] problem, the 2D-SEP problem can be formulated in two ways:

• The problem of minimum error, where the error (e.g., boundary length) is minimized given the
number of segments N.

• The problem of minimum number of segments, where the approximation error is bounded and the
goal is to find the minimum number of segments (N) that gives error lower than the given error.

In this work, according to the proposed problem formulation, we select the first problem formulation
of error minimization given the number of segments N, under the error criterion of minimum intrinsic
boundary length that may better divide the shape into N equal area segments. The intrinsic boundary
length criterion is selected since in the given shape S there does not exist color information, model
error, or weights for the boundaries to use a more complicated criterion. Additionally, the same idea
called minimum cut has also been used in image segmentation [26].
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Apart from image segmentation, the 2D-SEP problem is related to the balanced clustering problem
in the sense that the goal of 2D-SEP is to group the pixels into balanced in-area regions. Clustering is an
important problem in a broad spectrum of applications, such as data mining, computer vision, machine
learning and pattern recognition [27]. Thousands of clustering algorithms have been proposed in the
literature in many different scientific disciplines [28] that differ in the choice of the objective function,
probabilistic generative models, and heuristics. Clustering algorithms can be divided into two main
categories: hierarchical and partitional [28]:

• Hierarchical clustering algorithms recursively find nested clusters in either an agglomerative
(bottom-up) mode or in a divisive (top-down) mode.

• According to partitional clustering algorithms, the clusters are simultaneously computed as a
partition of the data. Usually, the partition is based on a local optimization of a given criterion.

K-means clustering algorithm [29], is one of the simplest partitional clustering algorithms that solves
the clustering problem for a given number of clusters. Even though K-means was first proposed over
50 years ago, it is still one of the most widely used algorithms for clustering. K-means is a centralized
clustering algorithm with linear computation cost. The goal of K-means is to minimize the sum of
squared error (SSE) over all clusters which is an NP-hard problem even for K = 2. K-means starts with
K centroids, e.g., randomly selected in d-dimensional space, one for each candidate cluster. K-means
converge to a local minimum of SSE. So, in the case where the given datasets consist of spherical
and/or well-separated clusters, these centroids will eventually be placed at the centers of the clusters.
In [30], a variant method (K-means++ algorithm) for centroid initialization has been proposed that
chooses centers at random from the data points but weighs the data points according to their squared
distance from the closest center already chosen. K-means++ usually outperforms K-means in terms of
both accuracy and speed. An extension/variation of K-means is the K-medoid or Partitioning Around
Medoids (PAM) [31], where the clusters are represented using the medoid of the data instead of the
mean. Medoid is the object of the cluster with minimum distance to all other objects in the cluster.

Traditional clustering aims to minimize the mean square error without considering the balance of
the cluster size. Balanced clustering is a 2-objective optimization problem, in which two objectives
contradict each other: to minimize error and to balance cluster sizes [32]. In hard balance-constrained
clustering, cluster size balance is a mandatory requirement that must be met, and minimizing Mean
Square Error is a secondary criterion. Balance-constrained clustering can be solved in O(S3), using a bal-
anced k-means clustering algorithm that solves the assignment problem by Hungarian algorithm [32],
where S denotes the number of points. In soft-balanced clustering, balance is an aim but not a manda-
tory requirement. In [33], a soft balanced clustering method based on k-means clustering algorithm
and network simplex methods has been proposed.

3. Problem Formulation
The 2D Shape Equipartition Problem (2D-SEP) under minimum intrinsic boundary length [12] is

formulated hereafter. Let S be a given shape and N be the given the number of equal area segments
(regions). Let R = {R1, R2, ..., RN} be a segmentation of S. Each region Ri, i ∈ {1, ..., N} should be
connected, which means that the pixels in the Ri segment belong to the same connected component.
Let BD(Ri, Rj) be the common boundary between the regions Ri and Rj, i, j ∈ {1, ..., N}. Then, the
optimal segmentation of 2D-SEP R∗ = {R∗

1 , R∗
2 , ..., R∗

N} should satisfy the following constraints:

|R∗
1 | = |R∗

2 | = ... = |R∗
N | =

|S|
N

(1)

where |.| denote the cardinality operation, e.g., |S| gives the area of shape S (number of pixels).

R∗ = argmin
R

L(R) (2)

where L(R) the total intrinsic boundaries’ length of segmentation R:
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L(R) =
N

∑
i=1

N

∑
j=i+1

|BD(Ri, Rj)| (3)

where |BD(Ri, Rj)| denotes the length of boundary BD(Ri, Rj). In image processing with pixel accuracy
the satisfaction of Equation (1) is impossible in the case that the area of shape S is not exactly divided
by N and at the same time the equality constraint is very hard. Therefore, in this work we have relaxed
Equation (1) as follows:

N

∑
i=1

||R∗
i | −

|S|
N

| ≤ λ (4)

where λ is set equal to 2 · N + 1, resulting in a mandatory but realistic (feasible) requirement that
should be satisfied.

Furthermore, in our experimental results we allow comparisons between different shape sizes
and scales by using the normalized total intrinsic boundary length (NL(R)) of the segmentation R,
defined as the ratio of L(R) to the outer boundary length of the object |BD(S)|.

NL(R) =
L(R)

|BD(S)| (5)

4. 2D-SEP Instances and Properties
In the following, we study basic instances and properties of 2D-SEP.

4.1. Plane Partition

Firstly, we will consider the case of partitioning of a plane into a high number of equal area
regions. Figure 4 shows three popular regular tessellation patterns (equal area regions) that can tile a
plane without overlaps or gaps: tessellations using (equal) hexagons, squares, or equilateral triangle.
According to 2D-SEP, we examine the efficiency of the above three patterns in Table 1 by comparing
the boundaries of an equal area (s) hexagon, square and equilateral triangles as a function of s. We find
that tessellations using hexagons have 7% and 18.4% lower intrinsic boundary lengths compared to
tessellations using square and equilateral triangles, respectively. Theoretically, SEP-FBC and SEP-RG is
possible to generate hexagonal and square tessellations, while SEP-ILS is possible to generate only
equilateral triangle tessellations. Consequently, SEP-FBC and SEP-RG hold a theoretical advantage
over SEP-ILS, a finding that is further supported by our experimental results.

(m) (n) (o)

Figure 4. Tessellations using (a) hexagons, (b) squares and (c) equilateral triangles.

Table 1. The perimeter of a hexagon, square and equilateral triangle as a function of its area (s).

Shape Perimeter

hexagon 12·
√

s
4√3

≈ 3.722 ·
√

s
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Table 1. Cont.

Shape Perimeter

square 4 ·
√

s

equilateral triangle 6·
√

s
3√4

≈ 4.559 ·
√

s

Hales [34] gives proof that any partition of the plane into regions of equal area has a perimeter at
least that of the regular hexagonal honeycomb tiling, meaning that the optimal solution of 2D-SEP
when the number of regions is large enough is the partition into equal hexagonals.

4.2. 2D-SEP of Square and Circle

Next, we consider the case of partitioning of a square and circle into two, three, four and five
equal area regions. To provide comparable numerical results, we assume a unit area square and circle.
Figure 5 depicts optimal solutions of the 2D-SEP for unit area ((a)-(d)) square and ((e)-(h)) circle under
N = 2, 3, 4 and 5. While, Figure 5 shows some suboptimal solutions of the 2D-SEP for unit area ((a),(b))
square and ((c),(d)) circle for N ∈ {3, 5}. Taking into account both figures, the optimality proof of most
cases in Figure 5 is trivial, so hereafter we only provide the close form of the intrinsic boundary length
(L), which is numerically reported in the caption of the figure.

• When N = 2 (see Figure 5a,e), the optimal solution of 2D-SEP under square and circle is given
the horizontal line that passes from the square centroid (L = 1) and the diameter of the circle
(L = 2R = 2√

π
= 1.128), respectively.

• When N = 3 (see Figure 5b,f), the optimal solution of 2D-SEP under square is given by two suitable
vertical lines that divide the square into three rectangles |R1| = 1 × 1

3 , |R2| = |R3| = 1
3 × 2

3 , with
L = 1 + 2

3 = 1.667. The optimal solution of 2D-SEP under circle is given boundary of the three
radius that passes from the center with L = 3R = 3√

π
= 1.693.

• When N = 4 (see Figure 5c,g), the optimal solution of 2D-SEP under square is given by two suitable
vertical lines that cross at the square centroid and divide the square into four equal squares, with
L = 2. The optimal solution of 2D-SEP under circle is given similarly by two vertical diameters
with L = 4R = 4√

π
= 2.257.

• When N = 5 (see Figure 5d,h), the optimal solution of 2D-SEP under square is given by a circle of
radius ( 1√

5π
) plus four suitable vertical lines of length ( 1

2 −
1√
5π

), with L = 2π√
5π

+ 4 · ( 1
2 −

1√
5π

) =

2.576. The optimal solution of 2D-SEP under circle is given by five radius with L = 5R = 5√
π
=

2.821 that is slightly lower than the corresponding solution of Figure 6d with L = 2.833.

An interesting remark of the above examples is that in any case the L of the optimal solution of
the square is lower than the corresponding L of the circle. The proof that this is true (or this is not true)
for any value of N is an open problem.

R1

R2

(a) L = 1

R1

R2 R3

(b) L = 1.667

R1 R2

R3 R4

(c) L = 2

R1 R2

R3
R4

R5

(d) L = 2.576

Figure 5. Cont.
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R1

R2

(e) L = 1.128

R1

R2

R3

(f) L = 1.693

R1 R2

R4
R3

(g) L = 2.257

R1
R2

R3

R4

R5

(h) L = 2.821

Figure 5. Optimal solutions of the 2D-SEP for unit area ((a)-(d)) square and ((e)-(h)) circle under N ∈ {2, 3, 4, 5}.
The intrinsic boundary length (L) is reported in the caption of each shape.

R1

R2

R3

(i) L = 2

R1
R2

R3

R4
R5

(j) L = 2.6

R1

R2

R3

(k) L = 2.176

R1 R2

R4R3

R5

(l) L = 2.833

Figure 6. Suboptimal solutions of the 2D-SEP for unit area ((a),(b)) square and ((c),(d)) circle under N ∈ {3, 5}.
The intrinsic boundary length (L) is reported in the caption of each shape.

In Figure 7, we provide the corresponding results of the proposed method SEP-FBC under unit
area square and circle and N ∈ 2, 3, 4, 5 to compare with the optimal 2D-SEP solutions of Figure 5. We
find that in any case of circle SEP-FBC results the optimal solution, while in two out of five cases of
square (N = 3, N = 5), the proposed segmentation of SEP-FBC is suboptimal with slightly higher L
than the optimal one:

• For N = 3, SEP-FBC yields L = 1.755, that is 5.02% higher than the corresponding optimal L of
Figure 5b.

• For N = 5, SEP-FBC yields L = 2.632, that is 2.19% higher than the corresponding optimal L of
Figure 5d.
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(a) L = 1
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(b) L = 1.755
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(c) L = 2
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(d) L = 2.632
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(f) L = 1.693
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(g) L = 2.257
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(h) L = 2.821

Figure 7. Optimal solutions of the 2D-SEP for unit area ((a)-(d)) square and ((e)-(h)) circle with N ∈ {2, 3, 4, 5}.
The intrinsic boundary length (L) is reported in the caption of each shape.
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4.3. Intrinsic Boundaries’ Length

Hereafter, we study an important 2D-SEP property, the sequence of the total intrinsic boundaries’
length of the optimal 2D-SEP solution R∗(S, N) of shape S into N regions, as N increases. According
to the problem definition, it holds that

lim
N→∞

L(R∗(S, N)) = ∞ (6)

since the area of its region, as N tends to ∞, it tends to zero, so the total intrinsic boundaries’ length
tends to ∞, covering the whole space of the shape S. When N = 2, the L(R∗(S, 2)) depends on shape
S. The following inequality provides the upper bound of the L(R∗(S, 2))

0 ≤ L(R∗(S, 2)) ≤ Per(S)
2

(7)

where Per(S) denotes the perimeter of shape S. The proof is trivial for convex shapes by getting the
suboptimal solution that the intrinsic boundaries are line segments L(R−/(S, 2)) ≤ L(R∗(S, 2)). This
solution always exists for convex shapes [12] and it satisfies the Inequality (7).

In basic shapes of Section 4.2, for low values of N it holds that

L(R∗(S, N)) < L(R∗(S, N + 1)). (8)

The fact that L(R∗(S, N)) may be a monotonically increasing sequence for some shapes is also
supported by the Inequalities (6) and (7), and it is true for several simple shapes and at least for low
values of N.

However, there exist some shapes in which even for low values of N (e.g., N = 2), the
Inequality (8) is not true. Figure 8 depicts a shape that consists of three successive circles of
radius, where

L(R∗(S, 2)) ≈ Per(S)
3 · π

− 4 · ε > L(R∗(S, 3)) = 2 · ε.

ε ε

Figure 8. A special case of shape where it holds that L(R∗(S, 2)) > L(R∗(S, 3)) = 2 · ε. The red and gree lines
show the intrinsic boundary for the optimal segmentation into two and three regions, respectively.

The red and gray lines show the intrinsic boundary for the optimal segmentation into two and
three regions, respectively. Since in this constructed example ε can be set almost zero, it holds that

L(R∗(S, 2)) >> L(R∗(S, 3)).

Similarly, with the case of three circles, in the corresponding shape with successive circles N + 1,
it holds that

L(R∗(S, N)) >> L(R∗(S, N + 1)) = N · ε.

In Section 6.5, we study the sequence L(R(S, N)) of the solutions derived by the proposed
methods. Since, the sequence may be monotonically increasing for low values of N and simple shapes,
it can measure the complexity of the dataset. Furthermore, if we compare the derived sequence
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L(R(S, N)) for different methods, conclusions can be drawn about the robustness of the methods, as
L(R(S, N)) is expected to increase.

5. Methodology
5.1. SEP-Fast Balanced Clustering

This Section presents the proposed Fast Balanced Clustering method (SEP-FBC) that sub-optimally
solves the 2D-SEP in O(N · |S| · log(|S|)), where |S| denote the number of image pixels. The pseudo-
code of the proposed SEP-FBC method is given in Algorithm 1. The input of SEP-FBC is the shape
S (e.g., a binary image) and the number of the desired regions N of equipartition. The output is the
segmentation R according to the constraints of the problem, as defined in Section 3. In the following,
we analyze all the steps of the SEP-FBC method. SEP-FBC consists of two stages:

In the first stage, hard clustering of shape pixels is performed (lines 1-16 of Algorithm 1).

• Initially, a graph G of the connected pixels from the 2D image space of shape S is computed using
eight pixel connectivity. This graph is used to approximate the shortest path distance between the
shape points of the complete graph (see Appendix A).

• Then, an initial estimation of the centroids of the N clusters (C = {C1, ..., CN}) is calculated by the
k-means++ method [30] (with computational cost O(N · |S|)) followed by the round operation [.]
to adjust C to the space of the image coordinates (see line 1 of Algorithm 1). In the case where
Ci does not belong in shape S (S(Ci) = 0), Ci is set to the nearest shape pixel (see lines 4-6 of
Algorithm 1). The centroid Ci corresponds to the region Ri.

• Furthermore, we initialize each region Ri = ∅, i ∈ {1, ..., N} and compute for each region Ri the
vector GD8(i, :) with the all the 8-connectivity graph based distances between the centroid Ci and
the shape points (see lines 7-8 Algorithm 1)1. The initial clustering of shape pixels is performed
using an approximation by the combination of the Euclidean distance and GD8(.) (see line 12 of
Algorithm 1) of the graph-based distance of a complete graph of shape S. The use of graph-based
distances for clustering provides better image component connectivity for clusters compared
with the use of the pure Euclidean distance. The sum of boundaries’ lengths of the resulting
segmentation is low due to the distance-based clustering procedure, but the clusters’ sizes may
not be equal.

In the second stage, the resulting clustering is balanced (lines 17-23 of Algorithm 1).

• Initially, we ensure that all the clusters (regions) consist of connected pixels by assigning non-
connected pixels to the smallest neighbor region (see line 17 of Algorithm 1). Additionally, we
smooth the region boundaries by reassigning the pixels of each region boundaries to the region
that has the most neighbors.

• Finally, we perform an iterative process that in each iteration grows the smallest region (areaGrow
procedure) until the Inequality (4) is satisfied (see lines 20-23 of Algorithm 1). The N × N
symmetric matrix RR that counts the number of pixel reassignments between two regions is
initialized to zero. The areaGrow procedure uniformly grows the smallest region c by applying
the dilation operation with an open disk of radius one. The procedure prevents infinite loops
by adding the extra pixels p in a descent way according to expression |R(p)| − RR(c, R(p)),
where |R(p)| denotes the area of the region to which p belonged, RR(c, R(p)) is the number
of reassignments between the regions c and the region that p belonged (R(p)). The procedure
can stop before growth has finished, only if the current area of the region |Rc| is at least |S|

N − 1.
The computational cost of this stage is O(|S|+ |S|+ N2) according to the procedures of lines
17-19 of Algorithm 1. The iterative step of lines 20-23 of Algorithm 1 has a computational cost of
O(N2 + N · |S|).

1 The computational cost of this process is O(N · E · log|S|) = O(N · |S| · log|S|) using Dijkstra algorithm with Adjacency List
and Heap, since it is executed N times and the number of edges of the graph G is E = O(|S|), due to the fact that each node
of the graph has a limited number of neighbors (up to 8 neighbors).
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Taking into account all the steps of the method, we get a total computation cost equal to O(N ·
|S| · log|S|+ N2) that is simplified to O(N · |S| · log|S|), since N << |S|.

Algorithm 1: The proposed SEP-FBC method.
input : S, N
output : R

1 G = shapeToGraph(S)
2 C = [ k-means(S,N)) ]
3 foreach i ∈ {1, ..., N} do
4 if S(C(i)) = 0 then
5 C(i) = get_closest_point(C(i),S)
6 end
7 Ri = ∅
8 GD8(i) = distances(G, Ci)

9 end
10 foreach p ∈ S do
11 foreach i ∈ {1, ..., N} do

12 ĜD(i, p) = max(
√

5√
2+1

GD8(i, p), |C(i)− p|2)
13 end
14 c = argmini∈{1,...,N}(ĜD(i, p))
15 Rc = Rc ∪ {p}
16 end
17 R = correctConnectedComponets(R)
18 R = smoothBoundaries(R)
19 RR = ON×N

20 while ∑N
i=1 ||Ri| − |S|

N | > 2 · N + 1 do
21 c = argmini∈{1,...,N}(|Ri| − |S|

N )

22 [R, RR] = areaGrow(R, RR, c)
23 end

Figure 9 shows some segmentation results of the two stages of the proposed SEP-FBC method for
N = 5. Figure 9a shows the result of the first stage of the method with a total intrinsic boundary length
equal to 106.6, which produces regions of varying areas in the range [583, 1132]. The execution of the
second stage (see Figure 9b) yields equal area segments with a total intrinsic boundary length equal
to 121.6. In another example of Figure 9c the result of the first stage has the total intrinsic boundary
length 116.9 with regions of varying areas in the range [918, 2082]. The execution of the second stage
(see Figure 9d) results in equal area segments with a total intrinsic boundary length 162.6.
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Figure 9. Segmentation results of the two stages of the proposed SEP-FBC method for N = 5.
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5.2. SEP-PSO Fast Balanced Clustering

This Section presents the proposed Particle Swarm Optimization (PSO) based Fast Balanced
Clustering method (SEP-PSO FBC), which combines the PSO framework with the proposed SEP-FBC
method to improve its results.

PSO is a derivative-free optimization method designed to handle complex, multi-modal, and
discontinuous objective functions with multiple local minima. The optimization process is driven by
the evolution of a population (swarm) of candidate solutions (particles). These particles explore the
parameter space of the objective function, adapting over a finite number of generations (iterations)
based on a strategy that emulates “social interaction.” The key parameters of PSO are the number of
particles and generations, whose product defines the computational budget—that is, the total number
of objective function evaluations. PSO is capable of achieving near-optimal solutions and has been
successfully applied to various challenging optimization problems in computer vision and pattern
recognition, including classification, clustering, prediction, simplification, image segmentation, video
co-segmentation, and object tracking [25,35–39].

According to the 2D-SEP problem definition, the proposed SEP-PSO FBC method optimizes
the L(R) metric (see Equation (3)) for initial centroids, which initialize SEP-FBC method (instead of
k-means initialization), that are directly represented by PSO particles. Similarly with SEP-FBC, the
input of SEP-PSO FBC is the shape S and the number of the desired regions N of equipartition, and
the output is the segmentation R according to the constraints of the problem, as defined in Section 3.

Iteratively, PSO searches for the best combination of N initial centroids that minimize the L(R)
metric. We represent each particle by a 2 · N vector with the 2D coordinates of the N-initial centroids
of the regions. In order to reduce the search space, we assume that the vertices are sorted in ascending
order concerning their distance from the top-left image corner; otherwise, in the evolution process,
we correct the order of vertices of each particle according to this hypothesis. The fitness (objective
function) of the particle is directly given by the L(R) metric of the particle (see Equation (3)). The
SEP-PSO FBC algorithm is analytically described hereafter.

Initially, we create a population of M particles (e.g., M = 10) that are located in random positions
in shape S, while the first particle is given by the k-means++ algorithm (see Section 5.1). In the
evolution process, PSO finds the current optimal solution in order to update the best global solution.
Furthermore, the best local solution for each particle is also updated, where the L(R) of the particle
reaches a better solution. The method ends when the number of iterations of the evolution process
exceeds the given number of generations. In this work, we use the upper limit of 50 generations.

6. Experimental Evaluation
6.1. Datasets

The proposed approaches were evaluated using two well-established datasets from the literature.
More specifically, we employ:

• A subset of LEMS [40], that is, 1,462 shapes that come from the following categories of the
original database: Buildings, Containers, Fish, Fruit and vegetables, Misc Animal, People, Robots,
Toddlers, and Turtles [4,25].

• MPEG-7 [41], which consists of 1,400 binary shapes organized in 70 categories with 20 shapes per
category. This dataset has been extensively used in shape tasks [4,11,25,42].

Figure 10 shows twelve sample images from the LEMS dataset and the MPEG-7 dataset.
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(a) LEMS dataset

(b) MPEG-7 dataset

Figure 10. Twelve sample images form (a) the LEMS dataset and (b) the MPEG-7 dataset.

6.2. Baseline Methods

We compared the performance of the proposed methods (SEP-PSO FBC, SEP-FBC) with the
baselines SEP-RG and SEP-ILS algorithms [12] that also solve 2D-SEP. Both baselines are briefly
presented in Section 1. The methods are evaluated for a sufficient number of consecutive values
of N, starting from N = 2, the minimum value at which 2D-SEP can be defined. Therefore, in our
experiments, we have evaluated the methods for nine different values of N ∈ {2, ..., 10}. Additionally,
the SEP-PSO FBC framework is compared with the SEP-FBC to show how the selection of the initial
centroids affects the performance of the method SEP-FBC.

All the analysis has been done using MATLAB 2023b on an Intel i7 core 3.20GHz with 32 GB
RAM without the use of code optimization or parallel processing tools. The code implementing the
proposed methods along with the data sets will be publicly available online after acceptance of the
paper: https://sites.google.com/site/costaspanagiotakis/research/shape-equipartition.

6.3. Evaluation Metrics

Based on the formulation of the 2D-SEP problem, we have compared the performance of
SEP-PSO FBC, SEP-FBC, SEP-RG and SEP-ILS on the normalized total intrinsic boundary length
NL(R) (see Section 3). For a given dataset, we also compute Pr(m/NL), where m is a method in
{SEP-PSO FBC, SEP-FBC, SEP-RG, SEP-ILS}. Pr(m/NL) is defined as the percentage of shapes of the
datasets where the method m outperforms the others under the NL, defined as follows:

Pr(m/NL) =
∑S∈D H(NLm(S)− maxn ̸=mNLn(S))

|D| (9)

where, H is the unit step function, |D| denotes the number of shapes of dataset D and NLm(P) is the
NL metric of method m given the shape S. This also means that the value 100% − ∑m Pr(m/IoU)

gives the percentage of images for which there is no clear winner method. In addition, we study the
computational efficiency of all methods by measuring the Average Execution Time (AET) per image
for different values of N.
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Furthermore, in this work, we use the circularity (Circ(S)) and solidity (Sol(S)) shape
descriptors [43] to show that the used datasets consist of quite different shapes and to measure
how the performance of the proposed methods is affected by the complexity of the shapes. Circularity
(Circ(S)) is defined by the ratio of the area of the shape |S| multiplied by the product 4π divided by
the square of the perimeter of the shape (Per(S)). The circularity of a circle is one (maximum value)
and the lower it goes, the less circular it is or having a more complex outer boundary.

Circ(S) =
4π|S|

Per2(S)
(10)

Solidity (Sol(S)) is defined by the proportion of pixels in the convex hull that are also in the region.
Solidity describes the extent to which a shape is convex or concave. The solidity of a completely convex
shape is one; the farther the solidity, the greater the extent of concavity in the structure. Figure 11a
shows the circularity and solidity relative frequency histogram for the LEMS and MPEG-7 datasets,
highlighting the diversity of shapes found in both datasets.

(a) (b)

Figure 11. The relative frequency histogram of (a) circularity and (b) solidity for the LEMS and the
MPEG-7 datasets.

6.4. Comparisons on LEMS and MPEG7 Datasets

In the following, we present comparisons of the proposed and baseline methods on the normalized
total intrinsic boundary length (NL) and in terms of computational efficiency. Figure 12 shows the
average NL for nine different values of N ∈ {2, ..., 10} of SEP-PSO FBC, SEP-FBC, SEP-RG and SEP-ILS
methods computed on MPEG7 and LEMS datasets. We find that SEP-PSO FBC clearly outperforms the
other methods in any dataset under NL and Pr(m/NL) metrics. It should be noted that UPF-FBC is
clearly the most computationally efficient method, since it is about six, thirty and sixty times faster than
SEP-RG, SEP-PSO FBC and SEP-ILS, respectively. SEP-FBC also outperforms SEP-RG and SEP-ILS
under intrinsic boundary length. SEP-RG outperforms SEP-ILS under intrinsic boundary length and
computational cost.

Average NL(R)
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(a) LEMS dataset
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(b) MPEG-7 dataset

Figure 12. The average NL metric for nine different values of N ∈ {2, ..., 10} of the methods SEP-PSO FBC,
SEP-FBC, SEP-RG and SEP-ILS methods computed on (a) LEMS and (b) MPEG7 datasets.
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Figure 12 shows NL metric of the SEP-PSO FBC, SEP-FBC, SEP-RG and SEP-ILS methods com-
puted on LEMS and MPEG7 datasets for different values of N. We find that for any data set and value
of N, SEP-PSO FBC clearly outperforms the other methods. More specifically, SEP-PSO FBC produces
a lower NL than SEP-PSO ranging from [2.7%, 9%] on the LEMS and MPEG7 datasets. SEP-PSO FBC
produces a lower NL than SEP-RG ranging from [3.5%, 12.5%] on the LEMS and MPEG7 datasets.
SEP-ILS outperforms SEP-RG and SEP-ILS under any dataset and value of N. Therefore, the results of
the figure agree with the corresponding results of Table 2, showing that the top-performing method is
the SEP-PSO FBC.

Table 2. The average NL, Pr(m/NL) and AET (in secs) of the methods SEP-PSO FBC, SEP-FBC, SEP-RG and
SEP-ILS methods computed on all shapes of LEMS and MPEG7 dataset.

LEMS Dataset MPEG7 Dataset

Methods NL Pr(m/NL) AET NL Pr(m/NL) AET

SEP-PSO FBC 0.384 76.89% 11.26 0.350 74.48% 6.049

SEP-FBC 0.405 12.33% 0.28 0.368 13.42% 0.184

SEP-RG 0.413 8.11% 1.46 0.378 8.46% 1.145

SEP-ILS 0.584 1.12% 21.49 0.572 0.96% 9.727

Figure 13 shows the average AET (in secs) of the SEP-PSO FBC, SEP-FBC, SEP-RG and SEP-ILS
methods computed on all images of LEMS and MPEG7 dataset for different values of N. For better
visualization of results, we set the scale of the y-axis to be logarithmic. The results of the figure agree
with the corresponding AET of Table 2, showing that under any value of N the most computationally
efficient method is the SEP-FBC.
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Figure 13. The average execution time (AET) in seconds of the methods SEP-PSO FBC, SEP-FBC, SEP-RG and
SEP-ILS methods computed on all images of LEMS and MPEG7 dataset.

6.5. Evaluation Of The Proposed Methods

In the following, we present comparisons between the proposed methods SEP-PSO FBC and
SEP-FBC on the normalized total intrinsic boundary length (NL). According to our methodology, it
holds that SEP-PSO FBC outperforms SEP-FBC, since it combines SEP-FBC and PSO framework to
find better initial centroids. Next, we examine how the difference in performance of the proposed
methods is affected by the complexity of the shapes. To do so, we create three equal-sized groups of
shapes for each dataset with low, medium, and high values of circularity. The set with low circularity
values consists of 33.3% of shapes with lower circularity values, and so on. Similarly, we create three
equal-sized groups of shapes for each dataset with low, medium, and high solidity values.

Figure 15 depicts the average NL metric for nine different values of N ∈ {2, ..., 10} of the methods
SEP-PSO FBC and SEP-FBC computed on (a)-(c) LEMS and (d)-(f) MPEG7 datasets for (a) , (d) low,
(b), (e) medium and (c), (f) high circularity shapes. Figure 16 depicts the average NL metric for nine
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different values of N ∈ {2, ..., 10} of the methods SEP-PSO FBC and SEP-FBC computed on (a)-(c)
LEMS and (d)-(f) MPEG7 datasets for (a) , (d) low, (b), (e) medium and (c), (f) high solidity shapes. In
both datasets, SEP-PSO FBC demonstrates a higher outperformance than SEP-FBC in shapes with low
circularity or solidity than in those with high circularity or solidity. Therefore, in general, the more
complex the shape, the higher the outperformance of SEP-PSO FBC, since under complex shapes there
may exist more candidate positions for the initial centroids that should be examined to find the best
equipartition.

In Figure 17, we present results of SEP-PSO FBC and SEP-FBC for the two shapes of the LEMS (first
two columns) and MPEG7 (last two columns) datasets with N ∈ {2, ..., 9}, where the outperformance
of SEP-PSO FBC is maximized to show the upper limit of this outperformance. Under any value of N,
it holds that SEP-PSO FBC provides better solutions in terms of NL metric than the corresponding
solutions of SEP-FBC. In most cases, the proposed solutions of SEP-PSO FBC significantly differs from
the corresponding solutions of SEP-FBC showing the importance of the selection of initial centroids,
especially when a complex shape is given.

Finally, we study the sequence L(R(S, N)) of the solutions derived by the proposed methods as
defined in Section 6.5. Figure 14 shows the percentage of shapes in which the sequence L(R(S, N))

derived by of SEP-PSO FBC and SEP-FBC does not increase monotonically, with N ≤ 9. SEP-PSO FBC
yields lower values under any dataset and N. More specifically, the mean values of this percentage of
SEP-PSO FBC are 1.76 and 2.91, while the corresponding mean values of SEP-PSO are 6.69 and 7.83,
under LEMS and MPEG7 datasets, respectively. This means that SEP-PSO FBC yields more robust
results compared to the SEP-PSO.
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Figure 14. The percentage of shapes where the sequence L(R(S, N)) is not monotonically increasing for (a) LEMS
and (b) MPEG-7 datasets, with N ≤ 9.
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Figure 15. Cont.
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Average NL(R) - Low Circularity Shapes
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(d) MPEG7 dataset
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Figure 15. The average NL metric for nine different values of N ∈ {2, ..., 10} of the methods SEP-PSO FBC and
SEP-FBC computed on (a)-(c) LEMS and (d)-(f) MPEG7 datasets for (a) , (d) low, (b), (e) medium and (c), (f) high
circularity shapes.
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(h) LEMS dataset
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(i) LEMS dataset
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(j) MPEG7 dataset
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Figure 16. The average NL metric for nine different values of N ∈ {2, ..., 10} of the methods SEP-PSO FBC and
SEP-PSO FBC computed on (a)-(c) LEMS and (d)-(f) MPEG7 datasets for (a), (d) low, (b), (e) medium and (c), (f)
high solidity shapes.

(1) NL = 0.082 (2) NL = 0.112 (3) NL = 0.036 (4) NL = 0.102

(5) NL = 0.139 (6) NL = 0.179 (7) NL = 0.068 (8) NL = 0.107
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(9) NL = 0.199 (10) NL = 0.200 (11) NL = 0.096 (12) NL = 0.115

(13) NL = 0.238 (14) NL = 0.265 (15) NL = 0.136 (16) NL = 0.184

(17) NL = 0.317 (18) NL = 0.335 (19) NL = 0.188 (20) NL = 0.289

(21) NL = 0.371 (22) NL = 0.423 (23) NL = 0.226 (24) NL = 0.328

(25) NL = 0.410 (26) NL = 0.614 (27) NL = 0.275 (28) NL = 0.312

(29) NL = 0.484 (30) NL = 0.582 (31) NL = 0.307 (32) NL = 0.387

Figure 17. Results of SEP-PSO FBC and SEP-FBC for the two shapes of LEMS (first two columns) and MPEG7
(last two columns) datasets, where the outperformance of SEP-PSO FBC is maximized.

6.6. Applications of the Proposed Methods

The proposed methods can be applied to segmentation tasks, such as the tree detection
problem [44], where the objective is to identify trees in aerial images. In cases of dense forests and
low-quality imagery, unsupervised and deep learning methods often struggle to achieve accurate seg-
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mentation. Figure 18 shows a promising result of the proposed methods SEP-PSO FBC and SEP-FBC
on the tree detection problem under a low quality dense forest image. In this example, even a human
expert is almost impossible to detect the trees. SEP-FBC has been applied on the largest region of
the bitmap image derived by RGBVI index as used in [44]. The number of trees was determined by
dividing the area of the largest region by the typical size of a tree. The tree boundaries are colored blue.
Under the assumption that the trees are equal sized, 188 trees were detected by the proposed methods.
As expected, the NL of SEP-PSO FBC (2.713) is lower than that of SEP-FBC (2.806), indicating that the
segmentation produced by SEP-PSO FBC is probably more preferable.
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(a) NL = 2.713
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(b) NL = 2.806

Figure 18. A promising result of the proposed (a) SEP-PSO FBC and (b) SEP-FBC method on the tree detection
problem under a low quality dense forest image.

7. Conclusions
In this work, we introduced a novel methodology for the fast equipartition of complex 2D shapes,

while minimizing intrinsic boundary length. The proposed method, which is based on a fast balanced
clustering algorithm, demonstrates superior performance in basic shapes and outperforms existing
techniques in a large number of complex shapes. Additionally, our approach is combined with the
PSO framework to improve partition quality and robustness, ensuring near-optimal subdivisions even
in complex shapes. Experimental results on various datasets of more than 2,800 shapes with more
than more than 25,000 segmentation instances in two standard datasets, confirm the robustness and
computational efficiency of our approach.

In ongoing and future work, we plan to study optimal solutions of the 2D-SEP problem with
higher values of N and under more complex basic shapes. Moreover, our aim is to apply 2D-SEP on
real computer vision and pattern recognition problems, where the goal is to provide segmentation of a
given 2D shape. Future work could also explore extensions to three-dimensional shapes and other
real-world applications.
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Appendix A
In this appendix, we study the relationship between the (8-pixel connectivity) graph-based

distance GD8(.), the Euclidean distance and the complete graph-based distance GD(.), as defined in
Section 5, and we propose an approximation of the graph-based distance of a complete graph that
combines the Euclidean distance and GD8(.). Figure A1a shows examples of graph-based distances
GD8(.) and GD(.) between the point p1 and some points (p2, p3 and p4) of the image space using
gray and blue lines, respectively. In this example, for any pair of points it holds that the complete
graph-based distance GD(.) is equal to the corresponding Euclidean distance. Concerning the GD8(.),
it is equal to the corresponding Euclidean distances (or GD(.)) for pixels p2 ∈ S with angle ∡p1 p2 ∈
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} (see the white pixels in Figure A1a).

GD8(p1, p2) = GD(p1, p2) ⇔ ∡p1 p2 = k · π

4
, {k ∈ N} (A1)

p1

p2

p5

p3

p6

p4p7

(a)

p1

p2

(b)

Figure A1. (a) Examples of graph based distances GD8(.) and GD(.) between the point p1 and points of
image space. The pixels where both distances agree are colored in white. (b) An example of graph based
and the Euclidean distance between the points p1 and p2 in a binary image. In this example it holds that
GD8(p1, p2) = GD(p1, p2) = 3 + 3 ·

√
2 > |p1 − p2|2 = 3.

In Figure A1a, it holds that

GD8(p1, p2) = |p1 − p5|2 + |p2 − p5|2 =

√
2 + 1√

5
|p1 − p2|2

GD8(p1, p3) = |p1 − p6|2 + |p3 − p6|2 =

√
2 + 1√

5
|p1 − p3|2

GD8(p1, p4) = |p1 − p7|2 + |p4 − p7|2 =

√
8 + 1√

13
|p1 − p4|2

Due to the 8-pixel connectivity of the graph G, it holds that GD8(p1, p2) ≥ GD(p1, p2) ≥ |p1 − p2|2.
More specifically, it holds that the ratio GD8(p1,p2)

GD(p1,p2)
≤

√
2+1√

5
. This ratio is maximized for the pixels p2 ∈ S

with angle ∡p1p2 = π
8 + k · π

4 , {k ∈ N} (see the orange-colored pixels of Figure A1a). This direction
corresponds to the bisector of the directions where the two distances are identical according to the
Equation (A1). Therefore, it holds

√
5√

2 + 1
· GD8(p1, p2) ≤ GD(p1, p2) ≤ GD8(p1, p2) (A2)

The graph based distance GD(p1, p2) of a complete graph of shape S between two points p1 ∈ S
and p2 ∈ S is equal to the Euclidean distance |p1 − p2|2, if and only if the points of the line segment
p1 p2 belong to the shape S. Otherwise, it holds that GD(p1, p2) > |p1 − p2|2. Moreover, it holds
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that GD(p1, p2) ≤ GD8(p1, p2). These distances are equal if and only if the shortest paths between
the points p1, p2 under two graphs are identical. Examples of such cases are shown in Figure A1b.
Therefore, taking also into account the Inequality (A2), it holds that the graph based distance GD(p1, p2)

can be approximated by the GD8(p1, p2) and the |p1 − p2|2 as follows:

ĜD(p1, p2) = max(
√

5√
2 + 1

GD8(p1, p2), |p1 − p2|2). (A3)
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