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Abstract 

Neurodevelopmental and neurodegenerative disorders arise from intricate disruptions in brain 

architecture and function, often rooted in early development. Traditional models have limited 

capacity to replicate human neural complexity, prompting the emergence of advanced in vitro 

systems. This review discusses the evolution of brain organoids, assembloids, and organ-on-chip 

technologies derived from human pluripotent stem cells, highlighting their transformative impact on 

modeling Alzheimer’s and Parkinson’s diseases. Recent innovations—such as region-specific 

organoids, vascularized constructs, microfluidic systems, and integration of neuronal diversity—

have enhanced the fidelity of these models in replicating human brain physiology and pathology. 

Organoid-based platforms have revealed novel insights into disease mechanisms, drug discovery, 

and therapeutic interventions, offering unprecedented windows into amyloid aggregation, 

neuroinflammation, dopaminergic neuron degeneration, and gut-brain axis interactions. Despite 

their promise, challenges persist, including limited vascularization, cellular stress, variability, and 

high production costs in organ-on-chip systems. Advances in standardization, vascularization, and 

immune system integration are critical for improving reproducibility and translational relevance. By 

bridging key gaps between basic neuroscience and clinical application, brain organoid technologies 

represent a new frontier in understanding and treating complex neurological diseases. 

Keywords: brain organoids; neurodegenerative diseases; Human Pluripotent Stem Cells (hPSCs); 

Organs-on-a-Chip; Vascularization 

Scientific Significance Statement: Advances in brain organoid, assembloid, and organ-on-chip 

technologies have revolutionized how we model human neurodevelopmental and 

neurodegenerative disorders. By mimicking key aspects of human brain architecture and function, 

these stem cell-derived platforms offer unprecedented insights into disease mechanisms in 

Alzheimer’s and Parkinson’s diseases. They enable more accurate studies of amyloid aggregation, 

neuronal degeneration, and neuroinflammation, while also enhancing drug discovery. Despite 

challenges like variability and limited vascularization, ongoing innovations are rapidly increasing 

their fidelity and translational potential, marking a new era in human neuroscience research 
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Introduction 

The human brain's intricate structure and sophisticated operations give rise to our most 

advanced mental capabilities, from abstract reasoning to consciousness [1]. When this delicate neural 

machinery becomes disrupted - whether through developmental issues, injury, or disease - it can 

manifest as devastating neurological and psychiatric conditions [2]. Research continues to reveal that 

many of these disorders originate during early brain development when crucial neural circuits and 

connections are first established [3]. Despite extensive research into these neurodevelopmental 

origins, scientists can only identify the specific causes in about 20% of cases. This substantial 

knowledge gap underscores how much remains to be discovered about the intricate processes of 

brain development and their role in neurological and psychiatric conditions. As a result, alternative 

experimental systems that are accessible, morally just, and closely resemble the human environment 

must be used. And that's when the emergence of human pluripotent stem cell (hiPSCs) technologies 

revolutionized our ability to study human biology in controlled laboratory settings [4]. By harnessing 

both embryonic stem cells and induced pluripotent stem cells, researchers can now generate 

authentic human neural tissue, opening unprecedented windows into brain development and 

disease [5]. The transformation of ordinary human cells into pluripotent stem cells (hiPSCs) enables 

the examination of how specific genetic profiles, both healthy and pathological, influence neural 

development [6]. This powerful system is further enhanced by precision genetic engineering tools 

like CRISPR-Cas9, allowing researchers to deliberately introduce or repair disease-causing 

mutations, creating customized cellular models illuminating the roots of neurological conditions [7]. 

Traditional monolayer cultures, while valuable, fail to capture the complex tissue architecture needed 

to fully model disease states [8]. This limitation spurred the development of advanced 3D culture 

techniques, including neural organoids, assembloids, and microfluidic chips, which better mimic the 

organization and environment of the human nervous system [9]. However, even these 3D models 

have limitations in replicating the intricate interactions between different brain regions, cell types, 

and the progression of diseases [10]. Despite the tremendous promise of brain organoids, it is 

important to understand the limitations of organoid models. Therefore, this review aims to provide 

a balanced view of the advantages and disadvantages of brain organoids, focusing on sophisticated 

approaches that merge multiple neural tissues and microfluidic chip technologies to better replicate 

the intricate neural circuitry of the human brain [11,12]. 

2. Advances in Brain Organoid Methodologies 

A growing body of research has established that the origins of many neurological disorders can 

be traced back to early neurodevelopment [13,14]. While animal models have long been integral to 

neuroscience research, their ability to replicate human neurodegenerative disease mechanisms 

remains limited due to interspecies differences and ethical constraints [15]. This has driven the 

scientific community toward developing human-based in vitro systems. One of the most 

transformative breakthroughs in this area was the introduction of brain organoids by Lancaster et al. 

(2013) [5], which enabled the recapitulation of early human brain development in a three-dimensional 

format using human pluripotent stem cells (hPSCs). 

Early brain organoid models were primarily unguided and relied on the inherent differentiation 

capacity of hPSCs to self-organize into neural structures [5,16]. These initial constructs were 

instrumental in understanding cortical layering and neural progenitor expansion, but they lacked 

structural complexity and reproducibility. Over time, the methodologies evolved into two principal 

approaches: guided and unguided organoid formation. Guided protocols incorporate specific 

extrinsic patterning factors to direct stem cells toward defined regional identities, while unguided 

protocols allow spontaneous morphogenesis based on intrinsic cues [5,17]. 
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Despite their promise, traditional brain organoids were limited by poor vascularization, 

restricted maturation, and a lack of functional long-range neuronal circuits [6]. These limitations 

inspired the development of assembloids, an innovative approach introduced by Pasca and 

colleagues [18,19]. Assembloids are created by fusing multiple region-specific brain organoids or 

integrating different cell types, such as cortical, subpallial, or spinal cord-like tissues, into a single 

construct. This facilitates inter-regional communication and the development of more complex, 

functional neural networks that better mimic human brain architecture and activity. Recent studies 

have demonstrated assembloids' ability to model migration patterns, synaptic connectivity, and 

circuit dysfunction relevant to disorders like epilepsy, autism, and schizophrenia [20,21]. 

The fabrication of assembloids employs various techniques. One common method is co-

culturing, where distinct organoids are placed nearby within the same matrix to allow spontaneous 

fusion and interaction [22]. Another strategy uses microfluidic technologies, such as micropillar and 

tunable microhole arrays, to guide spatial assembly and promote the integration of human induced 

pluripotent stem cells (hiPSCs) into brain region-specific constructs [12,23]. Additionally, guided 

differentiation within a single culture system enables the generation of diverse neuronal populations 

without the need for post hoc fusion, increasing scalability and reproducibility [24]. 

In parallel, organ-on-chip platforms have emerged to enhance physiological relevance by 

replicating mechanical forces, fluid shear stress, and biochemical gradients found in vivo [25]. These 

devices use microfabrication techniques—most commonly soft lithography with 

polydimethylsiloxane (PDMS)—to produce microchannels that simulate vascular flow and tissue 

interfaces [26]. Photolithography first patterns the channel design onto silicon wafers, and PDMS is 

cast and bonded onto glass to create enclosed structures. These platforms support the incorporation 

of primary cells, immortalized cell lines, and stem cell-derived neurons, enabling studies of 

neurovascular interactions, blood-brain barrier integrity, and drug permeability [27,28]. 

More recently, 3D bioprinting and genetic engineering technologies have been integrated into 

organoid and organ-on-chip systems to further refine spatial organization and cell-type specificity 

[29,30]. These advancements have allowed researchers to model previously inaccessible brain 

processes, such as corticospinal tract development and electrophysiological dynamics [31]. (Figure 1) 

Moreover, integration with biosensors and electrophysiological recording systems is enabling real-

time monitoring of neuronal activity and response to external stimuli [32,33]. 
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Figure 1. Main features of cell and animal models used to study neurodegenerative diseases. 

While these emerging technologies have significantly enhanced the fidelity of in vitro brain 

models, challenges such as high production costs, reproducibility, and long-term viability remain 

[5,17]. Nonetheless, the combination of brain organoids, assembloids, and organ-on-chip 

technologies is reshaping neuroscience research, offering unprecedented insights into 

neurodevelopmental processes and disease mechanisms that were previously out of reach [8,34]. 

3. Unravelling Alzheimer's and Parkinson's: Innovations Through Organoids 

and Organs-on-a-Chip 

The quest to decipher the complexities of neurodegenerative diseases such as Alzheimer's and 

Parkinson's have historically been constrained by the limits of traditional research models. The 

inadequacy has spurred the development of more sophisticated models—organoids, assembloids, 

and organs-on-a-chip—that embody the three-dimensional complexity and interactive milieu of 

neural tissues. These advanced systems have revolutionized our approach to understanding the 

pathophysiology of neurodegenerative diseases and exploring novel therapeutic avenues. Now, let's 

delve deeper into how these sophisticated tools are shedding light on diseases, providing 

unprecedented insights into their complex pathology, and offering new possibilities for therapeutic 

intervention. [35,36] 

3.1. Parkinson’s Disease: Insights from Organoids and beyond 

Parkinson’s Disease (PD) is characterized by the progressive loss of dopaminergic neurons in 

the substantia nigra, leading to motor symptoms such as bradykinesia, rigidity, and resting tremor. 

However, PD is also a multisystem disorder that includes non-motor symptoms like autonomic 

dysfunction, cognitive decline, and sleep disturbances [37]. Organoid-based models have been 

instrumental in elucidating the cellular and molecular mechanisms underlying PD, including 

dopaminergic neuron loss, alpha-synuclein aggregation, mitochondrial dysfunction, and lysosomal 

impairment [38]. Genetic studies using patient-derived iPSC models have identified mutations in 

genes such as LRRK2, PINK1, PARK7, and SNCA, which contribute to dopaminergic degeneration 

and disrupt cellular homeostasis. These models have also facilitated the investigation of protein 

misfolding and intracellular trafficking defects, particularly regarding Lewy body pathology [39]. 

Organoid platforms have supported drug screening efforts by enabling the testing of compounds 

targeting mitochondrial dysfunction, oxidative stress, and endolysosomal degradation—three 

contributors to neuronal loss in PD [38]. The application of CRISPR-based gene editing in PD 

organoids has allowed for mechanistic studies, revealing regulatory networks involved in 

neurodegeneration [40]. 

Advances in microfluidic technologies have led to the development of brain-on-a-chip 

platforms, facilitating studies of interactions among dopaminergic neurons, astrocytes, microglia, 

and endothelial cells [41]. The creation of vascularized PD organoids has further enabled the study 

of blood-brain barrier permeability and its role in disease progression. The gut-brain axis is 

increasingly recognized as a key factor in PD, where dysbiosis in the gut microbiome may trigger 

alpha-synuclein misfolding and aggregation in the enteric nervous system, which can propagate to 

the central nervous system. Organoid models incorporating enteric neurons and gut epithelium have 

provided insights into these interactions and identified potential therapeutic targets [42]. 

3.1.1. Parkinson's Disease Drug Discovery 

Midbrain organoids have become a cornerstone of neuroprotective drug discovery for PD, 

particularly in testing mitochondrial-stabilizing compounds that show promise in preserving 

dopaminergic neuron survival [37]. Additionally, CRISPR-based gene-editing techniques have 

enabled the correction of pathogenic mutations in LRRK2 and PINK1, opening avenues for gene 
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therapy. Studies also explore small molecules and biologics targeting alpha-synuclein aggregation, 

with several candidates advancing to preclinical evaluation [43]. 

3.2. Alzheimer’s Disease: A Closer Look Through Advanced Models 

Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder, is characterized by 

the accumulation of tau tangles, amyloid-beta plaques, neuroinflammation, and synaptic 

dysfunction. Organoid models have provided an environment for studying AD progression, yielding 

insights into these pathological features [5]. Patient-derived iPSC models have been instrumental in 

elucidating the genetic underpinnings of familial and sporadic AD, particularly mutations in APP, 

PSEN1, and PSEN2 [44]. Organoids have also proven valuable for drug screening, recapitulating 

aspects of AD pathophysiology, including amyloid-beta aggregation and tau hyperphosphorylation. 

Advances in co-culturing brain organoids with microglia have shed light on the role of 

neuroinflammation in disease progression [40]. The integration of vascular networks into AD 

organoid models has addressed previous limitations by enhancing nutrient delivery and supporting 

long-term viability. 3D organoid cultures also enable the study of cell-cell interactions that drive 

neurodegeneration, such as astrocyte-mediated regulation of amyloid-beta toxicity, revealing 

signaling networks that influence neuronal health [45]. Single-cell transcriptomic analyses of AD 

organoids have identified gene expression changes associated with disease pathogenesis, offering 

biomarkers for diagnosis and intervention. Efforts to better replicate the cellular heterogeneity of the 

human brain have led to the incorporation of additional cell types, such as oligodendrocytes and 

endothelial cells, expanding our understanding of white matter degeneration. AI-driven analysis of 

single-cell RNA sequencing data from AD organoids has uncovered molecular signatures linked to 

disease onset, paving the way for targeted therapeutic strategies. 

The gut-brain axis has also emerged as a key area of investigation in AD research. Dysbiosis of 

the gut microbiota has been implicated in exacerbating neuroinflammation and amyloid-beta 

aggregation via systemic inflammatory mediators. Researchers use organoid models to study these 

interactions to identify intervention points for slowing neurodegeneration. Multi-omics profiling, 

high-throughput drug screening, and the integration of AI-driven analysis represent future 

directions for AD modeling. These approaches will accelerate the development of precision medicine 

strategies tailored to individual genetic and molecular profiles, while enhancing our understanding 

of disease heterogeneity. 

3.2.1. Alzheimer's Disease Drug Discovery 

Organoid-based platforms have accelerated the discovery of therapeutics for AD. High-

throughput screening has identified small molecules that reduce tau pathology and amyloid-beta 

accumulation. Testing neuroinflammation-targeting compounds in microglia-organoid co-cultures 

has yielded candidates for modulating disease progression. Monoclonal antibodies such as 

Aducanumab and Lecanemab have been evaluated in organoid models, demonstrating efficacy in 

reducing amyloid plaque burden [46]. Organoid-based screens have also identified tau aggregation 

inhibitors as potential disease-modifying agents [47]. 

4. Technical Innovations in Organoid Systems 

The human brain's complexity and neuronal diversity, crucial for maintaining functional and 

structural integrity, are modeled in 3D brain organoids derived from iPSCs and ESCs, enabling 

advanced studies on neurodegenerative disease mechanisms and brain architecture; additionally, 

technical innovations focus on the 3D microenvironment and reprogramming patient somatic cells 

with disease genes to replicate essential brain functions such as differentiation, synaptic connectivity, 

neuronal migration, and cell-matrix interactions. [48–52] 

Recent advances in organoid technology extend from assemblies to microfluidic and organ-on-

a-chip systems, which precisely control fluid dynamics to nourish organoids crucial for modeling 
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neurodegenerative diseases. (Figure 2) Furthermore, organoid intelligence (OI) technologies like 

microelectrode arrays and brain-machine interfaces are being integrated with high-throughput 

platforms, enhancing the ability to monitor neural activity and efficiently test potential treatments 

for neurodegenerative disorders. [53–58] 

 

Figure 2. Schematic overview of advanced human brain model generation and applications. Somatic cells from 

patients or healthy donors are reprogrammed into induced pluripotent stem cells (iPSCs), which can then be 

differentiated using morphogen gradients into region-specific neural cell types. These iPSCs can be directed 

toward various in vitro platforms, including air-liquid interface (ALI) cultures for region-specific neuronal 

differentiation, self-organizing 3D brain organoids, and microfluidic organ-on-chip systems. These models 

enable the study of neuronal subtype specification, functional maturation, and disease mechanisms in a 

physiologically relevant context. Complex organoid models can be further matured or vascularized to better 

recapitulate in vivo brain environments, supporting investigations into neurodevelopment, 

neurodegeneration, and therapeutic screening. 

4.1. Incorporation of Neuronal Diversity and Complexity 

The human brain architecture comprises complex intricacies and region-specific neuronal 

subtypes arising from structural variations, gene expression changes, and electrical properties 

representing crucial neural microcircuits. In the case of neurodegenerative disorders, specific 

neuronal subtypes of the brain become selectively vulnerable, exposing abnormal protein 

interactions and faulty neural networks to disease progression [17,59,60]. Throughout the ongoing 

research on brain architecture, research studies have explored using in vitro models for recapitulating 

neural tissues. However, due to the inaccessibility of brain tissue and the inability to capture 

progressive brain patterning and neural cell migration observed using in vivo rodent models, 

emphasis has been placed on region-specific brain organoids. For instance, the human neocortex and 

cerebellum serve as effective brain disease models due to factors such as inside-out neurogenesis, 

neural maturation, migration, laminar organization, and cortical patterning [17]. Therefore, with the 

rise of region-specific brain organoids, research has advanced in mimicking the spatial organization 

of the human brain. 

Traditionally, brain organoids are developed using serum-free culture media with components 

like Advanced Dulbecco’s modified Eagle medium (AdDMEM), HEPES, N-acetyl-l-cysteine, and 

EGF. However, these early organoids lacked the neuronal diversity seen in vivo, with limited cellular 

maturation and underrepresented neuronal subtypes. Recent protocols have refined organoid 

generation by incorporating region-specific morphogens such as Wnt-3a, R-spondin, FGF, noggin, 
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N2, B27 supplements, and retinoic acid, enhancing cellular maturation and the development of 

diverse neuronal subtypes. Despite these advances, the longevity of organoids remains constrained 

by internal necrotic factors that hinder further maturation and migration. [61,62] 

To enhance the regional specificity of brain organoids, various methods have been employed, 

focusing on structures like the dorsal telencephalon, dorsal forebrain, and midbrain. Techniques 

include Dual SMAD inhibition, WNT inhibition and treatment (from early to late pulses), and EGF 

treatment in minimalistic media to guide the transition from neural plate to unpatterned and 

patterned neural tube stages, influencing the formation of diverse neural subtypes, including glial 

cells and progenitors. Additionally, cortical organoids are refined through the addition of Noggin 

and recombinant human Dkk-1 protein, promoting gene expression relevant to PAX6 and 

GABAergic neurons. For cerebellar organoids, methods incorporate TGF-β and BMP inhibitors, along 

with insulin, FGF2, FGF19, and stromal cell-derived factor 1 in the induction medium, facilitating the 

development of granule cells, rhombic lip progenitors, and Purkinje neurons. [36,63,64] 

Other methods of organoid development explore the growth of human pluripotent stem cells 

(hPSCs), their dissociation, and reaggregation into embryoid bodies (EBs) or spheroids in the 

presence of rho kinase inhibitors in the hPSC culture medium. These spheroids are essential for 

neural induction, and when combined with an extracellular matrix-rich gel known as Matrigel, they 

give birth to neuroectodermal connections. Neuroectodermal connections create a "neural rosette" 

arrangement that promotes neuronal maturation and the formation of outer radial glial cells. [65–67] 

Moreover, microarray-based gene expression studies performed by introducing specific 

transcription factors in mouse models can confirm the proto-map hypotheses of corticogenesis, which 

enables researchers to develop spatially-organized brain organoids that can recapitulate the in vivo 

patterning and development of neuronal subtypes. [9] Compared to monolayer cultures, the cell 

density in these 3D models is significantly higher and comparable to the in vivo cell density. The 

majority of the brain organoids exhibit sensitivity to electrical stimulation and spontaneous 

electrophysiological activity. Further, most of these organoids show significant myelination of axons. 

Cortical organoids, once developed, can be immunostained to study the diversity of excitatory 

and inhibitory GABAergic neurons through synaptic oscillatory waves, using electron microscopy 

and electrophysiological tests over specific periods. [68] 

In the case of cerebellar organoids, they can be patterned in insulin and growth factor-reduced 

media (gfCDM) and other morphogen gradients such as ATOH1, BARHL1, and SKOR 2+ to enhance 

their reproducibility and cellular diversity to mimic the developmental regions of the human 

cerebellum. Furthermore, single-cell RNA sequencing and single-cell epigenomic studies of region-

specific brain organoids using Drop-seq data analysis and transcription-factor motif enrichment 

analysis can reveal critical insights into chromatin state and neurogenesis related to disease 

progression in neurodegenerative disorders [69–72]. 

Other innovations that enhance neuronal diversity and promote their longevity utilize spatial-

temporal dynamics that expose organoids to a hypoxic state in spinning bioreactors and rotary cell 

culture systems (RCCS) that are operated at 50 RPM to 60 RPM (as organoids grow) and 10 RPM to 

15 RPM (as organoids grow) to exert the influence of microgravity on their functional activity [73]. 

Additionally, region-specific organoids can be grown in air-liquid interface (ALI) cultures using a 

serum-free slice culture medium (SFSCM). The growth of region-specific organoids can be followed 

by live image analysis using patch-clamp recordings and single-cell RNA sequencing studies upon 

diazepam induction to monitor the firing patterns of neurons in organoids. Air-liquid interface (ALI) 

cultures are reported to significantly improve the drawbacks of cell necrosis and limited cell 

maturation of brain organoids under cell stresses by promoting their longevity up to 2 months [74]. 

Cryopreservation using methylcellulose, ethylene glycol, DMSO, and Y27632 (termed MEDY) culture 

is another emerging technology to preserve the neural architecture and neural networks of region-

specific brain organoids [75]. 

Advancements in brain organoids include the development of fusion organoids, or assembloids, 

from induced pluripotent stem cells (iPSCs). These assembloids, representing forebrain and ventral-
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dorsal regions, are cultivated in Advanced Dulbecco’s Modified Eagle Medium (AdDMEM) 

supplemented with N2 and B27. Growth and patterning are directed by morphogenic gradients such 

as Sonic Hedgehog (SHH) for ventral patterning, Wnt signaling for dorsal aspects, dual SMAD 

inhibition via Bone Morphogenic Protein (BMP) and Transforming Growth Factor-beta (TGF-beta) 

inhibitors for neuroectodermal lineage, and Fibroblast Growth Factor (FGF) and retinoic acid to 

enhance caudal neuroectodermal lineages. [76,77]. Neural progenitor cells (NPCs) may need extrinsic 

signals or self-organization to facilitate the development of fusion organoids. These organoids can 

differentiate into various subtypes, such as medial ganglionic eminence (MGE), lateral ganglionic 

eminence (LGE), and cortical progenitors, by integrating Sonic Hedgehog (SHH)-expressing 

aggregates into forebrain organoids and regulating dorsal-ventral axis specification. These 

advancements in assembloid generation offer a platform to study interactions between specific brain 

regions and the impact of neuronal migration during cellular pathology in neurodegenerative 

disorders. 

Organoid-on-a-chip systems represent further advancements, utilizing a microfluidic platform 

made from polymers like Polydimethylsiloxane (PDMS, SYLGARD 184) to mimic complex brain 

vasculature. Designed with CAD software, these systems integrate brain organoids with culture, 

perfusion, and medium channels to manage controlled laminar fluid flow with lower shear stress. 

This setup enhances brain organoid development and differentiation, particularly into microglial cell 

diversity, by facilitating nutrient and gas diffusion, and allows real-time monitoring of neurogenesis 

and neurotoxicity [73]. Despite these advances, challenges in replicating the brain’s full structural 

and functional diversity persist. Future developments aim to address the lack of functional blood 

flow—a critical therapeutic determinant for organoid health—by incorporating vascularized 

organoids, marking the next stage of evolution. In this field [25,78,79]. 

4.2. Achievements in Vascularization 

The human brain vasculature comprises an intricate network of blood vessels totalling 400 miles, 

including up to 100 billion capillaries [80], and though the brain makes up only 2% of body mass, it 

receives 20% of cardiac output. Beyond mere blood supply, neuro-vasculature is crucial for 

neurogenesis and neuronal communication, facilitating rapid vasodilation and increased local 

cerebral blood flow (CBF) in response to neural activity, essential for maintaining neuronal function 

[81]. Furthermore, vascular dysgenesis and blood vessel dysfunction have been linked to the 

pathogenesis of neurodegenerative diseases, with early signs in cerebral blood flow shortfalls and 

blood-brain barrier (BBB) dysfunction observed in both human and animal models [82]. These 

complexities present significant challenges in replicating accurate vasculature in brain organoid 

modeling, underscoring a critical area for advancements in the field [6]. 

Vascularized brain organoids (fVBOrs) were created using a co-culture method, where vascular 

progenitors (VPs), derived from guided mesodermal induction of H9 human embryonic stem cells 

(hESCs), were co-embedded with neuroepithelial (NE) property embryoid bodies (EBs) after neural 

ectoderm induction [83,84]. These VPs gradually wrapped around the brain organoids, leading to an 

integrated and fused vasculature. The developed fVBOrs demonstrated blood-brain barrier (BBB)-

like features, which were confirmed by the expression of tight junction proteins and functionality 

assessed through their permeability and selectivity. This was evaluated by incubating the fVBOrs 

with rhodamine-labeled Angiopep-2, a peptide ligand of the low-density lipoprotein receptor-related 

protein-1 (LRP1) receptor. Although this innovative model includes branched vessels, it currently 

lacks active blood flow, a challenge that could potentially be addressed with microfluidic techniques 

and further verification by in vivo grafting [85]. 

Building upon previous research, another study developed vascularization in fused cortical-

blood vessel organoids (fCBOs) by merging blood vessel organoids (BVOs), composed of endothelial 

cells (ECs), pericytes, and a basement membrane, with cortical organoids (COs) during the cortical 

differentiation phase [86]. This fusion occurred in U-bottom wells, characterized by the expression of 

endothelial markers and perfusion capabilities. While the fusion significantly enhanced 
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vascularization, the study noted challenges in maintaining the stability and functionality of the 

vascular network over time [87]. The research underscores the potential of fCBOs to explore the 

impacts of neurodegenerative diseases, particularly focusing on how enhanced vascularization 

influences disease progression and overall brain health. [88]. 

Gage and his team developed an in vivo engraftment model of hPSC-derived brain organoids 

integrated into the NON-SCID mouse brain, which exhibited progressive neuronal differentiation 

and functional vasculature system through host vasculature infiltration [83]. They used a cranial glass 

window for optical tracing vessel growth and Immunostaining for the human and mouse endothelial 

cell markers Endoglin and CD31, confirming the growth of blood vessels. This study highlighted the 

importance of using an in vivo environment in promoting vascularization, survival, and function, 

and emphasized observing organoid behavior in situ as vascularization was a natural process in the 

host microenvironment. 

Similarly, another study engineered cortical organoids from human embryonic stem cells 

(hESCs) by inducing the ectopic expression of human ETS variant 2 (ETV2) within the cells. This 

expression led to the differentiation of ETV2-expressing cells into endothelial cells, forming a 

complex vascular-like network within the human cortical organoids (hCOs) [89,90] The optimal 

conditions for this process involved using hCOs composed of 20% ETV2-infected cells, with ETV2 

expression induced on day 18 of organoid development. The resulting vascularized hCOs 

demonstrated enhanced functional maturation, acquiring blood-brain barrier characteristics such as 

increased tight junctions, nutrient transporters, and trans-endothelial electrical resistance. 

Furthermore, these organoids developed perfused blood vessels when tested in vivo. The presence 

of these vascular-like structures significantly supported increased oxygen diffusion, reduced cell 

death, and promoted neuronal maturation within the organoids [91]. 

Vascularized brain assembloids were created by co-culturing hiPSC-derived forebrain 

organoids with hiPSC-derived common myeloid progenitors (CMPs) and VeraVecs™ (engineered 

HUVECs) in AggreWell plates. Organoids were generated via dual SMAD inhibition, VeraVecs™ 

introduced a durable endothelial component, and CMPs matured into microglia-like cells. These 

assembloids exhibited improved neuroepithelial proliferation, advanced astrocytic maturation, and 

increased synapse numbers compared to standard organoids, enhancing the model's complexity and 

utility for studying neurodegenerative diseases (Table 1.) [92,93]. 

Table 1. Strategies to Improve Maturation and Model Aging in Brain Organoid Cultures. 

Strategy Description Advantages Limitations Key References 

Assembloids 

Fusion of 

multiple 

region-

specific 

organoids to 

model inter-

regional 

interactions 

- Models circuit 

formation between 

distinct brain 

regions 

- Enables study of 

migration patterns 

- Allows 

investigation of 

region-specific 

pathologies 

- Complex to 

generate 

reproducibly 

- Limited by a 

lack of defined 

axon guidance 

cues 

- Challenging to 

analyze 

interactions 

quantitatively 

[24,106,107] 

Brain-on-a-

chip 

Integration of 

organoids 

with 

microfluidic 

platforms to 

provide 

dynamic flow 

and 

- Improves 

nutrient/oxygen 

delivery 

- Enables controlled 

exposure to factors 

- Allows 

mechanical 

stimulation 

- Technical 

complexity 

- Higher cost 

- Requires 

specialized 

expertise 

[12,105]  
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environmenta

l control 

Extended 

culture periods 

Maintaining 

organoids in 

culture for 

prolonged 

periods (>1 

year) 

- Allows 

development of 

mature features 

- Models later 

developmental 

processes 

- Enables aging-

related studies 

- Resource-

intensive 

- Core necrosis 

in larger 

organoids 

- Increased 

variability over 

time 

[11,108]  

Co-culture with 

vascular cells 

Addition of 

endothelial 

cells to 

promote 

vascularizatio

n 

- Reduces necrotic 

core formation 

- Improves nutrient 

delivery 

- Models the blood-

brain barrier 

- Difficult to 

achieve full 

vascularization 

- Usually affects 

only the 

periphery 

- Integration 

challenges 

[83,91,108]  

Addition of 

microglia 

Incorporation 

of iPSC-

derived 

microglia or 

primitive 

microglia 

- Models 

neuroinflammatory 

responses 

- Enables study of 

immune-neural 

interactions 

- Critical for 

modeling 

neurodegenerative 

diseases 

- Difficult to 

achieve 

physiological 

ratios 

- Requires 

complex 

protocols 

- Microglia 

maturation 

challenges 

[17,100,109]  

Air-liquid 

interface 

culture 

Growing 

organoids at 

an air-liquid 

interface to 

improve 

oxygen 

diffusion 

- Reduces necrosis 

- Promotes growth 

and maturation 

- Enhances neural 

network formation 

- Alters 3D 

structure 

- Technical 

challenges 

- Different from 

in vivo 

environment 

[74,86,96]  

Transcription 

factor 

overexpression 

Forced 

expression of 

maturation-

promoting 

factors 

- Accelerates 

maturation 

- Enhances specific 

cell type 

development 

- Allows modeling 

of age-related 

features 

- May produce 

artificial 

phenotypes 

- Potentially 

disrupts 

developmental 

timing 

- Technical 

complexity 

[88,110]  

Chemical aging 

induction 

Addition of 

compounds 

that induce 

aging-like 

phenotypes 

(e.g., 

progerin, 

oxidative 

stressors) 

- Rapidly induces 

aging phenotypes 

- Enables study of 

late-onset disorders 

- Reduces 

experimental 

timeline 

- May not 

recapitulate 

natural aging 

processes 

- Potential off-

target effects 

- Limited 

validation 

[108,111,112]  
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against true 

aging 

Growth factor 

supplementatio

n 

Strategic 

addition of 

growth 

factors and 

morphogens 

- Promotes cell-

type-specific 

development 

- Enhances 

maturation 

- Directs regional 

identity 

- May skew 

developmental 

programs 

- Batch-to-batch 

variability 

- Cost 

implications 

[9,64,113]  

Genetic 

integration of 

reporters 

Incorporation 

of fluorescent 

reporters for 

real-time 

monitoring 

- Allows live 

tracking of 

development 

- Enables targeted 

analysis 

- Facilitates cell 

isolation 

- Technical 

complexity 

- Potential 

disruption of 

normal function 

- Limited to 

specific markers 

[5,6]  

Also, researchers developed a blood-brain barrier model using spheroids derived from human 

induced pluripotent stem cells (hiPSCs) [94]. These spheroids were co-cultured with primary human 

brain microvascular endothelial cells, creating a 3D in vitro BBB model. The advanced methodology 

employed involved integrating a microfluidic system to assess the permeability of the BBB spheroids 

to various molecules, providing a platform for high-throughput screening of brain-penetrating 

agents [95]. 

5. Limitations 

Organoids mimic human neural cell types; however, their gene expression is flawed; some 

important marker genes are either completely absent or drastically decreased [96]. Although the 

magnitude of this effect is still unknown, these differences hold across many organoid models and 

could affect how accurately they can be used to research brain development and disease. Organoids 

exhibit chronic cellular stress, including metabolic and endoplasmic reticulum stress, unlike primary 

tissues, which regulate these processes dynamically [97]. 

This persistent stress may disrupt normal development, affecting cell fate, maturation, and 

connectivity. Neural organoids lack vascularization, limiting nutrient delivery and neurogenesis. 

Strategies like adding endothelial cells or inducing vascular genes help, but mainly affect the 

periphery [98]. Glial cells play essential roles in neural function and disease. In organoids, astrocytes 

form readily, but oligodendrocytes (OLGs) are rare; modified protocols now enable OLG maturation 

and axon myelination [99]. 

Microglia, the CNS's immune cells, rarely arise in directed organoids but can develop in 

undirected cerebral organoids, displaying primary microglia-like properties [100]. iPSC-derived 

microglia, when transplanted into organoids or mouse brains, show immune responses and neuron 

interactions, making organoids valuable for studying glial function, inflammation, and neurological 

diseases [101]. Because there are no established procedures, variability is a major obstacle in the 

ongoing evolution of human organoid culture. Inconsistencies arise because different techniques are 

used to create organoids from stem cells. Efficiency and diversity have increased as a result of recent 

changes in cultural conditions. Single-cell profiling technology and standardized protocols may assist 

in lowering variability and make comparisons with in vivo counterparts possible. Variability 

resulting from individual variations, such as age and genetics, may also provide information about 

individual differences in human biology [102]. 

Although they are still in the early stages of development, brain assemblies have great potential 

for researching intricate neuronal circuitry and the causes of disease. Multiple brain-region organoids 

can be made more sophisticated by combining them, but there are still issues, such as the lack of an 
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immune system, immature neuronal projections, and the requirement for vascularization to prevent 

necrosis [103]. 

Organ-on-a-chip (OOC) and multi-organ-chip (MOC) technologies face several challenges 

despite their potential. A key issue is developing a universal blood-mimetic medium that supports 

diverse cell types, which becomes more complex in advanced MOCs [104]. Additionally, the lack of 

standardized manufacturing protocols and materials limits reproducibility and scalability, making 

large-scale production difficult [105]. Achieving physiologically relevant conditions requires precise 

control over organ size, inter-organ transport, and liquid-to-cell ratios to replicate dynamic 

interactions and responses accurately. (Figure 3.) Due to such complexity in the system, it has a high 

production cost and certain reproducibility issues. Despite these hurdles, OOC technology is 

advancing rapidly. 

 

Figure 3. Functional, biological, and structural limitations of brain organoids technology. 

6. Conclusion 

The integration of brain organoids, assembloids, and organ-on-a-chip technologies has 

redefined the landscape of neurodevelopmental and neurodegenerative disease modeling by offering 

human-specific, three-dimensional systems that capture key aspects of brain architecture, cellular 

diversity, and circuit functionality. Advances such as region-specific differentiation, vascularization 

strategies, microfluidic perfusion, and real-time electrophysiological monitoring have significantly 

enhanced the physiological relevance of these models, enabling detailed investigations into complex 

processes underlying disorders like Alzheimer’s and Parkinson’s. The convergence of genetic 

engineering, biomaterials science, and high-throughput analysis platforms has further expanded the 

utility of these systems for mechanistic studies, drug discovery, and precision medicine applications. 

Nevertheless, substantial technical challenges persist, including limited maturation, chronic 

cellular stress, absence of fully functional vasculature, and batch-to-batch variability. Addressing 

these limitations will require the development of standardized protocols, improved bio fabrication 

techniques, and integration of vascularized and immune components to more accurately recapitulate 

the in vivo microenvironment. As organoid and organ-on-a-chip technologies continue to evolve, 

their strategic refinement and interdisciplinary optimization will be critical for unlocking deeper 

mechanistic insights into human brain physiology, pathology, and therapeutic response with 

translational significance. 
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