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Abstract: We propose an approach for estimating the error in depth data provided by generic
3D sensors, which are modern devices capable of generating an image (RGB data) and a depth
map (distance) or other similar 2.5D structure (e.g. stereo disparity) of the scene. Our approach
starts capturing images of a checkerboard pattern devised for the method. Then proceed with the
construction of a dense depth map using functions that generally comes with the device SDK (based
on disparity or depth). The 2D processing of RGB data is performed next to find the checkerboard
corners. Clouds of corner points are finally created (in 3D), over which an RMS error estimation is
computed. We come up with a multi-platform system and its verification and evaluation has been
done, using the development kit of the board nVIDIA Jetson TK1 with the MS Kinects v1/v2 and
the Stereolabs ZED camera. So the main contribution is the error determination procedure that does
not need any data set or benchmark, thus relying only on data acquired on-the-fly. With a simple
checkerboard, our approach is able to determine the error for any device. Envisioned application is
on 3D reconstruction for robotic vision, with a series of 3D vision sensors embarked in robots (UAV
of type quadcopter and terrestrial robots) for high-precision map construction, which can be used
for sensing and monitoring.

Keywords: accuracy; depth data; RMS error; 3D vision sensors; stereo disparity

1. Introduction

A common sort of 3D artificial vision algorithms are being developed to compute 3D visual
information through the use of visual sensory data coming from 2.5 or 3D devices, such as stereo
cameras and RGB-D sensors (i.e. MS Kinect). In general applications in Robotics field, these kind of
devices capture data from the environment, which are processed through computer vision techniques,
allowing drones or other type of artificial creatures (robots) to perceive the environment and to
respond autonomously to some given perceptions. To achieve this goal, the algorithms or methods
normally compute 3D models of the objects in a scene from 2D images of them and, hence, depth
is estimated in some way. There are several devices that can be used nowadays to determine the
depth, such as the stereo cameras (PointGrey Bumblebee [1], Stereolabs ZED [2], and Minoru 3D
System [3]) and RGB-D systems (MS Kinect [4], Asus Xtion [5], and PrimeSense [6]), among others.
Nevertheless, the listed devices have errors associated to the disparity and /or depth computation that
are consequently arrested in the posterior calculated 3D measurements. These errors can be inherent
to the design of the acquisition system or given by several sources, as illumination conditions, discrete
nature of the sensors, or even by the computations performed. Specifically in the case of stereo
cameras the errors can be associated to the use of lenses with high distortion, inadequate camera
layout, poor resolution for image capture, lighting problems, and high re-projection calibration error.
In the RGB-D devices the errors appear mainly because of the low range of the captured rate and
resolution, as they are designed for entertainment and not for the development of computer vision
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and robotic applications. Thus the 3D data (or 2.5 D in case of disparity only) given by the several
devices are good estimations of an ideal value, in general.

Despite the limitations inherent to each type of sensor, the devices cited above are serving as the
basis for many research projects in aerial robotics and computer vision, mainly because of the relative
low cost and acceptable accuracy. However, a problem that we identified in the straight use of the
above sensors is the lack of reliable data regarding the accuracy of the errors measurement, mainly
in the stage of depth computation from data provided by them, or in its later use. This is the case
of the ZED camera, for example, which we noticed in the literature that there is to date no statistic
information about its depth data error. A certainly relevant information found is that it can be used
up to 20 meters [2].

Thus notice that every sensing device has inherent errors that should be somehow determined
(or estimated) for being treated accordingly in the further computations. Actually, depth error
estimation is a relevant problem in robotics, vision, computer graphics, virtual reality, between
several other fields. Different methods are proposed in the literature aiming to solve such problem,
particularly, but none that can be extensive to most of the devices generally adopted in such
applications.

Thus, in this work our goal is to propose a method to establish the error in the computed depth
data for generic 3D sensors, anyone that is capable of generating a color image (RGB) and a depth (or
disparity) map. Basically, we use a pattern in form of a checkerboard providing spatially distributed
corner points that are located on, at most, three different plans. After the detection of corners using
the RGB data acquired from the pattern, re-projection equations are applied and a depth map is
generated using the device SDK, from which point clouds are created. This cloud goes to registration
and alignment with known correspondence using singular value decomposition (SVD). Finally, the
calculation of the root mean square (RMS) error in the 3D coordinates is done in a frame referenced
in the pattern used, which is empirically determined by the user.

Our main contribution is the generic method devised for computing the estimated error of such
3D sensing devices. It relies on using distances between vectors (points) registered in the 3D scene
instead of using raw data for this. With this, it is possible to use this approach in other devices
that gives depth information or stereo disparity measures, in order to calculate the most probable
errors values based on RMS. This method has shown to be general in order to be applied to several
kind of existing devices. With our proposed method and with the on-line acquisition based on
the checkerboard pattern as proposed here, one can estimate more precisely the errors of any such
device. Applications such as aerial robotics, with small-aircraft based depth sensors, can rely on such
approach in order to have a more reliable error information. Also this work constitutes an excellent
tool for the testing of disparity and depth generation algorithms at the construction of 3D vision
devices.

In the following sections we present the methodology necessary for implementing our proposal,
then an analysis of the related works followed by the mathematics solution and multi-platform
algorithm developed for the proposed method. At the end, results are analyzed, and considerations
about the developed method with ideas of future works are also presented.

2. Methodology

For introducing the error determination problem we start referring to Figure 1. Notice that
the point L in the image, whose coordinates (1, v) in pixel reference frame are known, can also be
found with its coordinates in the camera system by pouring Xc and Yc of Equation 1, thus yielding
Equation 2. In this last equation, Zc is the depth of a point L that is given by any device (MS Kinect,
Stereolabs ZED or so). The distance between the image plan and the projection center is the focal
distance f and the point (Cx, Cy) is the place in the scene where the main ray intercepts the image
plan. Once the (Xc, Yc, Zc) coordinates of the L point are obtained for all points of interest, we can
use a point cloud for their representation.


http://dx.doi.org/10.20944/preprints201705.0170.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2017

d0i:10.20944/preprints201705.0170.v1

30f12
‘World Coordinate
System
(R AzZw
Image Coordinate
System
e L (X, Yw, Zw)
X Ay
Image Plane| .-
v A T
Camel;ly(sit(;:dinate P k;»"’»ﬁ sy ‘ .
. (0.0)
Ze .- Vi
Projection _.27%-
Center v i
v
Ye Pixel Coordinate
System
Figure 1. Pinhole Camera Model: ideal projection of a 3D object on a 2D image.
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Distortions given by the camera lenses are given by Equations 3 and 4.
xip = xi(1+ K172 + Kor* + K31’6)
®)
yiy = yi(1+ Ki7? + Kpr* + K37’6>
xip = xi + [2p1xi % yi + pa(r? + 2xi?)]
4)

yiy = yi + [2poxi * yi + py(r* + 2yi2)]

Notice that both radial and tangential distortions are considered [7]. The image point (xi, yi) is
the original location of a scene point in the image coordinate system, and (xi,, yi,) is its new location
resulting from the correction applied. K1, K> and K3 are the radial distortion coefficients and p; and
p2 are the tangential distortion coefficients, with 2 = xi2 + yi2.

If the previous procedure is done for several known points, we can construct a point cloud
with the calculated depth measurements provided by the device. Moreover, notice that since the
real coordinates of the pattern’s corners are known, we can also construct an ideal point cloud with
them. Thus, in the remaining it is just a matter of finding the differences between this ideal and the
calculated coordinates of each point to get the errors. Notice that correspondence and other issues
have to be done previously to that, in order to know which ideal point refers to the calculated ones.
We can determine the quadratic error of the data captured by the device by using the algorithm
presented by Arun [8] that gives an estimate of the depth, with Equation 5:
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The RMS error of the distance between the points of two data sets is calculated through the
square root of the arithmetic mean of the quadratic error as given by Equation 6:

1
erMs = || 3y €Q (6)

where N is the number of points in the clouds, p; is a point cloud with (rigid) rotation R and
translation T and p; represents an initial point cloud.

3. Related Works

As listed above, there are several sensing devices for developing 3D vision applications available
in the market, which we could divide in this work into two large groups according to the technology
they use: infrared light and stereoscopic vision devices. As cited above, in the first group the most
popular are the MS Kinect, Asus Xtion and the PrimeSense, and in the second group we can find the
PointGrey Bumblebee, RICOH SV-M-S1, the Minoru 3D Camera and the Stereolabs ZED. There is a
number of previous works that have done researches on the performance and functionality of each
device, comparing them or their error, as presented next.

3.1. Comparison of sensors for 3D vision

The work of Diaz [9] compares two generations of RGB-D sensors by evaluating the Asus Xtion
Pro and MS Kinect v2 sensors. The reported results confirm that the latter has higher accuracy and
lesser noise under controlled lighting conditions. In the work of Samir [10], the MS Kinect v1 and v2
are evaluated for tracking the breathing (respiratory) movement in humans. The results show that
the accuracy of v2 is slightly better than v1. In terms of static accuracy, its error is stable around 5mm
up to a distance of 4.5m.

Kazmi [11] presents a comparison of the PointGrey Bumblebee XB3 and MS Kinect v2,
concluding that ToF cameras are sensitive to ambient light and stereo vision is relatively more robust
for outdoor lighting and also that it has better resolution. In the same way Sabattini [12] and
Beltran [13] test the PointGrey Bumblebee XB3 and MS Kinect vl. The results show that, due to
the resolution, the BumbleBee stereo camera has a better performance in localizing a mobile robot.

3.2. Accuracy estimation methodologies for 3D vision sensors

Since its inception the MS Kinect has been used for the development of applications in computer
vision. It is known that it has limitations, one of them is that the error in the depth measurements
increases quadratically with the increasing of the distance between the sensor and the target [14]. For
mapping applications it is recommended that data should be acquired from 1 to 3m of distance to
the sensor. Also, a mathematical model to calculate the error at a given distance is proposed in that
previous work [14].

The work by Haggag [15] compares MS Kinect and Asus Xtion, concluding that the first is more
sensitive to radiant illuminated objects. It is also reported that the infrared rays emitted by the depth
sensor affect the accuracy of the depth of the another sensor if they come to be used together to
capture the same scene, without sufficient separation.

In the article of Yang [16], an MS Kinect v2 structure is proposed to improve the accuracy of
the sensors and the depth of capture of objects that are placed more than four meters apart. It has
been concluded that an object covered with light-absorbing materials, may cause less reflected IR light
back to the MS Kinect and therefore erroneous depth data. Other factors, such as power consumption,
complex wiring and high requirement for laptop computer also limits the use of the sensor.
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The characteristics of MS Kinect stochastic errors are presented for each direction of the axis in
the work by Choo [17]. The depth error is measured using a 3D chessboard, similarly the one used in
our approach. The results show that, for all three axes, the error should be considered independently.
In the work of Song [18] it is proposed an approach to generate a per-pixel confidence measure for
each depth map captured by MS Kinect in indoor scenes through supervised learning and the use of
artificial intelligence.

A problem in all the above works is the use of specifically developed techniques that are not able
to be applied to each another device. Even in the comparisons found, different techniques are used for
different devices. So, based on the methodology described in Section 2, from here we start building
our system model for error estimate determination in a generic 3D device, aiming to generalize this
procedure for any device.

4. The proposed approach

Basically, our system starts with capture of data and construction of point clouds, and registering
them, ending up with RMS error determination.

4.1. Acquiring images and depth data

Using the sensing device, it is taken an initial image of the checkerboard and its depth map, as
shown in the Figure 2. Note that this pattern used has the some specific characteristics:

o Each plan contains a chess.

o The sizes of all black and white squares are the same.

o Each chess has a white space at its border to make the corners detection more robust in various
lighting conditions and environments.

e Each chess has a different number of inner corners (example 6x4, 7x6, 7x5, etc.).

(@) (b)

Figure 2. RGB Image (a) and depth map (b), taken with the 3D vision sensor.

We remark that in the case of a stereo vision sensing device, an RGB image is obtained from the
left camera by our system.

4.2. Corners detection and coordinates converting

To find the (4, v) coordinates of each corner within the pattern, we propose using the method
proposed by Geiger [19] instead of known methods for that existent in Matlab and OpenCV. We
adapted these functions to detect and order the corners according to the scheme shown in Figure 3.

Devices that provide depth data generally relate a color image to the map, so that for each pixel
(u,v) in the image, the map has a depth value Z,, as seen in Figure 4. With the values of (u,v) and Z,
we can get X and Y, using the Equation 2. Thus, each corner can be obtained from the pattern in 3D
camera coordinates.
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4.3. 3D Corners representation: Registration and alignment

With the (X, Y, Z.) coordinates of each corner it is possible create a point cloud with the real
locations as shown in Figure 5a. Likewise, an ideal cloud can be created since the coordinates of each
corner of the 3D pattern are known Figure 5b. Then, using the algorithm above mentioned [8], we
can finally provide the registration, that is, to obtain the matrix [R|t] of both point clouds, and align
them in a single world coordinate system, as shown in Figure 5c.

4.4. RMS error estimation

For the estimation of the error in depth data provided by the 3D vision sensor, the quadratic
error is calculated using the Equation 5. Here we perform a summation of the euclidean distances
leil, ez, | ... |, |en| measured for each point (pi1,p2,...,pi) to (p1,p2,...,pPr) as shown in the
Figure 6. The RMS error is obtained by using the Equation 6.
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Figure 3. Detection (a) and ordering (b) of corners in the three planes of the pattern.

RGB Image Depth Map
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Figure 4. Relation, depth map and RGB image.
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(a) (b)

Figure 5. Point clouds, (a) ideal (black), (b) real (red), (c) result of registering and alignment.
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Figure 6. RMS error computational process on the resulting point cloud.

4.5. Generalizing the Method

Once all the steps of the method are known, a procedure for making it more general is introduced
here, as described in the Algorithm 1:

o Take an image of the pattern with the 3D vision sensor (left camera in the stereo case) and get
its depth map.

o Detect the internal corners of the pattern and find its coordinates (u, v) in pixels. Using these
coordinates, search within the map for the corresponding depth value.

o Find the (Xc, Y¢, Zc) coordinates of each corner, using 2D equations for 3D projection. In other

words, convert the image coordinates of each corner into camera coordinates.

Create a point cloud with the ideal locations (in mm) of each corner in the pattern.

Using the coordinates (Xc, Yc, Zc) form a cloud of points with real coordinates (in mm).

Register and align the real and ideal clouds of points and find the transformation matrix [R|#].

Calculate the difference between the ideal and real coordinates of each corner and get the RMS

error value.

Notice that this algorithm is generic and can be used for data coming from any device. The only
restriction is the use of our pattern (or a similarly constructed) in the scene from which corners the
algorithm will calculate 3D points in order to form the point clouds. No other data is necessary here,
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Algorithm 1: Algorithm for depth data error estimation provided by 3D vision sensor.

input : 3DV Sensor: Device to be measured error;
I: Side dimension (mm) of each square in the
pattern
output: RMSerror: RMS error in depth data provided by 3D vision sensor
/* Image-Depth Map - Corner Detection */
flag = false;
while flag do
if 3DV Sensor then
src < 3DV Sensor.retrieve(RGB);
depth < 3DV Sensor.retrieve(DEPTH);
[cUV,xyS,yzS, xzS] < findCorners(src);
if cUV then
| flag = true;

/* 3D Corners Representation */
// Real Point Cloud (mm)
9 fori=0:1:i < cUV.size() do
10 | Zc=depth(cUV]il.y,cUV]i].x);
11 3Dpoint < (u Cch,v Cch,Zc);
fx fy

12 cCamera = 3Dpoint;

®W NN U R WN =

13 fori =0:1:i < cCamera.size() do

14 | pointXYZ « cCamerali]. XYZ;
15 realCloud = pointXYZ;

// Ideal Point Cloud (mm)
16 cWorld < create.wop14(xyS,yzS, x2S,1);
17 fori =0:1:i < cWorld.size() do
18 | pointXYZ < cWorld[i]. XYZ;
19 L idealCloud = pointXYZ;
20 [R|t] < registrationSV D(realCloud, ideal Cloud;
/* RMS error estimation */

21 fori=1:1:realCloud.size() do
2 L eq < || idealCloud — (R * realCloud + t) ||%;

1
23 e =\|—=————~ €0;
RMS \/realCloud.szze() Q
24 return egps;

being this procedure executed locally without necessity of benchmarks or other data for getting the
errors.

5. Experiments and results

To verify the usefulness of the proposed method and to test it we constructed an embedded
system [20], which is basically composed of an nVIDIA Jetson TK1 development board and any
sensing devices. In this case we use the MS kinects v1 and v2, and the Stereolabs ZED (see Figures 7).
Notice that other devices like Minoru 3D stereo camera and PointGrey Bumblebee could also be used
here, mainly for comparing their performance. However the subject of this work is the method itself,
thus the three chosen devices are enough to show its robustness. In such embedded systems the same
algorithm is implemented without modifications in order to test the devices.

In each experiment, the pattern is placed at various distances (up to 5m) from the 3D device (MS
Kinect v1, v2 and Stereolabs ZED), and various measurements of the 3D pattern depth are taken as


http://dx.doi.org/10.20944/preprints201705.0170.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2017 d0i:10.20944/preprints201705.0170.v1

9of12

(a)
(b)

Figure 7. 3D vision sensors used in the experiments, (a) MS Kinect v1, (b) MS Kinect v2 and (c)
Stereolabs ZED.

shown in Figure 2. After the corners are detected and the point clouds are constructed, the RMS error
for the depth data is obtained.

With the raw error and depth data of Figures 8a, 8b and 8c, the mathematical models for the
RMS error of the MS Kinect v1, v2 and the Stereolabs ZED camera are obtained at a similar capture
resolution (640x480px, 512x424 and 672x376px). Figures 8d, 8e and 8f represent the adjustment of the
data to a curve using least squares regression, in order for a better understanding of the error bound.

The use of an exponential fitting curve is justified here due to the relationship between data
sources. In the case of the MS Kinect v1, the RMS error and the depth data have a correlation measure
of 0.89. For the MS Kinect v2 this correlation is of 0.79 and it is of 0.98 for the Stereolabs ZED camera.
Table 1, lists the coefficients for the exponential curves with the Equation 7 and the SSE value, which
is the sum of squares due to error of the fitting strategy. A value close to zero indicates a good fitting,
which is more useful for the prediction.

ERMS = @ % exp(b*de”th) ?)

Table 1. Coefficients and SSE of exponentially adjusted curves for the RMS error.

. Coefficients
Device (with 95% confidence bounds) SSE
Kinect v1 a=2,009e-08; b=5,027 0,000168
Kinect v2 a=0,0004875; b=1,392 0,000333
ZED a =0,005823; b=0,4306 8,919¢-07

Table 2. RMS error (in millimeters) results for the various 3D vision sensors.

RMS Error RMS Error RMS Error

Depth (mm) (Kinect vl) (Kinect v2) (ZED)
1000 0,0030 1,9606 8,9569
2000 0,4666 7,8854 13,7781
3000 71,1255 31,7150 21,1941
4000 10839,8674 127,5574 32,6019
5000 1652046,2247 513,0355 50,1500

6. Conclusion

In this work a simple and independent methodology for estimation of the error in depth data
coming from generic devices is proposed. The method can be used with several types of devices in
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Figure 8. Upper plots show raw error data estimated for various depths: (a) MS Kinect v1, (b) MS
Kinect v2 and (c) Stereolabs ZED. These data are estimated with the checkerboard pattern placed
at various distances from the 3D vision sensors. Bottom graphics show the fitted curves for (d) MS
Kinect v1, () MS Kinect v2 and (f) Stereolabs ZED.

order to test and verify their errors. Basically, a series of points extracted from a 3D checkerboard are
used for computing a point cloud that is compared to a previous known coordinates of an ideal point
cloud, through using a registering procedure and a posterior RMS based error measure procedure.
Such kind of approach is extremely important for applications that rely on the given error of a device
in order to have better performance as is the case of 3D methods in probabilistic robotics (for mapping
and visual SLAM), in computer graphics and vision, and in virtual reality applications.

The proposed method can be implemented in any device including PC architectures or
development boards as the nVIDIA Jetson family, and can be used to estimate the depth data error
of any 3D vision sensor such as MS Kinect v1/v2, Asus Xtion Pro, PrimeSense Carmine, and the
PointGrey Bumblebee stereo camera among others.

An advantage of the proposed method is that a 1D/2D/3D pattern can be used. Considering
that in the experiments the most reliable RMS error values were obtained using 2D /3D checkerboards
because the error is analyzed in two and three axes respectively, separately.

Most works found in the literature provide an accuracy analysis for RBGD devices, however
there is little or no information on the error for stereo devices, so this work also provides a new tool
for the users of said devices that work in application development to 3D vision, as is the case of the
ZED stereo camera.

As a further, currently ongoing work, we will provide a comparison between data coming from
the most known 3D sensor devices used in robotics, computer graphics, virtual reality, and vision as:
ZED camera (all resolutions and distances), Bumblebee XB3 camera, and the Minoru 3D system.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB-D: Red, Green, and Blue (Colored Image) plus Depth

ZED: Name for the Stereolabs 3D stereo cameras device (without any meaning)
3D: Three-Dimensional (in space dimension)

GPU: Graphics Processing Unit

nVIDIA: A Company that produces GPU boards

UAV: Unmanned Aerial Vehicle

RMS: Root Mean Squared

SVD: Singular Value Decomposition
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