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Abstract: Understanding vehicle travel behavior patterns is essential for managing urban traffic 
congestion, as well as for addressing the associated congestion risks and excess emissions. This 
study, based on one week of License Plate Recognition (LPR) data from urban expressway networks, 
investigates different travel behavior patterns and their related congestion risks and emissions. 
First, we classify vehicles into distinct travel patterns based on spatiotemporal features extracted 
from LPR data and propose a scalable pattern recognition method suitable for large-scale 
applications. We then assess the congestion risks associated with each pattern and estimate the 
excess emissions resulting from congestion. The results reveal substantial variation in congestion 
risks across different travel patterns, with congestion risks following a bimodal distribution, 
influenced by temporal traffic flow rhythms. Furthermore, the excess emissions from congestion 
caused by commercially used vehicles (CUVs) are comparable to those of individually owned 
vehicles (IVs), despite CUVs constituting only one-third of the total vehicle count. This suggests that 
focusing solely on commuter travel modes underestimates both congestion risks and excess 
emissions. 

Keywords: congestion risk; excess emissions; travel behavior; pattern recognition; LPR 
 

1. Introduction 

Traffic congestion has long been a global issue, leading not only to time losses and economic 
setbacks [1,2], but also posing significant risks to individuals' physical and mental well-being [3,4]. 
In an effort to alleviate congestion, administrators promote changes in travel behavior [5]. The success 
of these management strategies largely depends on understanding travelers' behavior patterns and 
the congestion risks associated with each pattern [6]. For instance, when planning travel routes, it is 
crucial to account for commuters' preference for fixed paths. Ineffective route recommendations can 
result in confusion and inconvenience for travelers. Moreover, those facing higher congestion risks 
may be more open to adjusting their travel times or routes. Therefore, gaining insights into travelers' 
behavior patterns and the corresponding congestion risks is vital for formulating effective 
management policies. 

Research on travel behavior has traditionally relied on data-driven methods [7,8]. With 
advancements in information technology, an increasing variety of data sources has been incorporated 
into such studies [9], including License Plate Recognition (LPR) data, mobile signaling data, 
questionnaire/telephone survey data, and bus card data. In the early stages, travel behavior research 
predominantly utilized travel survey data collected through paper questionnaires, telephone 
interviews, and online surveys. Using these data, researchers explored various aspects, such as 
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commuters' travel time preferences [10], travel mode selection [11], and more complex patterns of 
travel behavior [12]. However, the high cost of collecting survey data limits both sample size and 
frequency [13], rendering traditional surveys inadequate for comprehensive studies of travel 
behavior patterns. Consequently, some researchers have turned to mobile signaling data, which have 
been used to investigate travel patterns and population distribution [14], infer individual attributes 
and activity types [15], analyze personal mobility trajectories [16], and mine travel purposes [17]. 
Despite these applications, mobile phone data pose challenges in accurately inferring individual 
travel behavior patterns, as they cannot differentiate between transportation modes such as subway, 
private car, taxi, or bicycle. Similarly, data from bus card transactions fail to provide a holistic 
representation of overall travel patterns [18]. 

LPR data offers more comprehensive coverage, enabling the collection of information from all 
vehicles on the road network and facilitating the extraction of detailed insights into vehicle travel 
time and spatial activities. As a result, multi-day vehicle trajectory data derived from LPR presents 
new opportunities for in-depth studies on travel behavior patterns. For example, [19] explored the 
impact of two different vehicle restriction policies on traffic conditions, finding that these restrictions 
led to more "illegal" travel and increased travel intensity. [20] examined the effects of vehicle traffic 
restrictions on the behavior of non-Shanghai licensed vehicles, analyzing their travel patterns. [21] 
proposed a method to assess travel behavior regularity based on the order of travel or activity 
organization, categorizing travel behavior patterns into conventional and unconventional types. Sun 
et al. [22] used LPR data to identify both regular and abnormal patterns in individual travel behavior. 
However, the distinction between conventional and unconventional patterns is insufficient to 
support sophisticated demand management strategies. [23] developed multiple indicators to 
represent commuting patterns by utilizing vehicle travel OD information, extracting commuting 
rules through clustering and decision tree algorithms. [24] also leveraged LPR data from Cambridge, 
UK, to study the non-commuting travel demand of commuters. [5] proposed a systematic method for 
identifying travel behaviors and purposes based on weekly trajectory data from 6600 trams in 
Shanghai. Using a Gaussian mixture model, they categorized vehicle travel behavior into four 
groups, including commuting. However, the algorithm's complexity limits its application to large-
scale road networks. LPR data addresses challenges such as small sample sizes, low data quality, and 
difficulty in obtaining survey-based data. Research on travel behavior patterns based on LPR data 
has become a key element in the theoretical framework of human mobility, though its data 
advantages have yet to be fully exploited. Most studies focus on OD points and tend to analyze a 
single travel mode, overlooking travel path preferences, time preferences, travel distances, and other 
critical factors. Furthermore, the design of travel behavior pattern indicators needs further 
optimization. Current research often relies on empirically derived parameters and indicators, rather 
than mining travel behavior patterns directly from the data. 

Existing research on traffic congestion risks has primarily focused on commuting patterns, with 
limited exploration of other travel behaviors [25,26]. For example, [27] examined how traffic 
congestion impacts individual commuting satisfaction [28]explored differences in perceived 
congestion satisfaction among individuals using various modes of transportation for commuting. 
Given the higher congestion risks associated with commuting, [29] proposed staggered working 
hours as an effective strategy to alleviate peak congestion. However, the feasibility and sustainability 
of such policies remain debated. In reality, road networks accommodate a variety of travel patterns 
[30], and focusing solely on commuting may lead to an underestimation of overall congestion risks. 
Therefore, congestion mitigation strategies should address a broader range of travel behaviors, rather 
than concentrating on a single mode of transportation. 

Based on the background described above, this paper first preprocesses and generates 
trajectories from one week of LPR data collected on the expressway network of a city in China. It then 
constructs multiple novel spatiotemporal features and applies three different clustering methods to 
classify vehicle categories. Subsequently, a pattern recognition model is developed using LightGBM. 
The congestion risks and excess emissions associated with each pattern are analyzed, followed by 
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recommendations for congestion management strategies. The contributions of this paper are as 
follows: 
• A novel method for dividing travel behavior patterns based on a unique set of spatiotemporal 

feature indicators is proposed. This method uses clustering to identify homogeneous clusters 
from data features, overcoming the subjectivity and limitations of traditional threshold-based 
approaches. 

• A pattern recognition method suitable for large-scale applications is presented, demonstrating 
strong recognition performance with only three feature values. 

• The congestion risks and excess emissions of various travel patterns are analyzed based on real-
world LPR data. The findings offer important insights for individual travel time planning and 
health management, and provide support for the development of personalized, proactive traffic 
demand management measures. 
The remaining sections of this paper are organized as follows: Section 2 introduces the data 

sources, pattern recognition methods, and the estimation methods for congestion risks and excess 
emissions. Section 3 presents the experimental results based on real-world LPR data. Section 4 
discusses the congestion risks of each pattern and proposes strategies for congestion mitigation. 
Finally, Section 5 concludes the study.2 Methodology 

The congestion risk estimation method for various travel behavior patterns proposed in this 
paper is illustrated in 0. The study is structured into three key components: (1) the construction of 
spatiotemporal characteristic indices for travel behavior, (2) the classification and recognition of 
travel behavior patterns, and (3) the estimation of congestion risk. Each of these components is 
described in detail in the following sections. 

 
Figure 1. Research Framework. 
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2.1. Study Area and Data 

The data used in this study consists of LPR data recorded from vehicles passing through an 
expressway in a Chinese city during a one-week period in 2022. The study area is shown in 0. The 
road network is equipped with tens of thousands of LPR detectors. The data collected by these 
detectors is divided into two components: the first part contains information about the LPR detectors 
themselves, while the second part provides details on the passing vehicles, as outlined in 0 and 2. 

 
Figure 2. Expressway network structure. 

Table 1. Information of the LPR detectors. 

Name Information Explanation 

CardID 442311111111111111 Serial number of the detector 

PlaceCode 50122 Serial number of detector’s location 

Latitude 39.921111 Information of latitude 

Longitude 116.461111 Information of longitude 

Table 2. Information of passing cars. 

Name Information Explanation 

MotorVehicleID 114211111111111111 Serial number of the record 

PlateNo Yue B.XXXXX License plate number 

PlateColor 02 Type of car 

PassTime 2022-08-05 02:29:30 Time of record 

Roadclid 7285 Serial number of the road segment 

CardID 442311111111111111 Serial number of the detector 

Through statistical analysis, this study collected 156,723,515 vehicle flow records, which 
contained quality issues such as missing license plates, duplicate detections, and erroneous values. 
Specifically, missing license plates accounted for 0.02%, duplicate detections for 0.33%, and erroneous 
data for 4.11%. The total amount of problematic data did not exceed 5%, and its overall impact was 
minimal, so this data was excluded from the analysis. 

The road network detection equipment is dense, evenly distributed, and individual road 
segments do not exceed 3 km in length. Vehicle trajectories were generated sequentially based on 
chronological order and the upstream-downstream relationships within the road network topology. 
Following [31], detections of vehicles with intervals of less than one hour were considered part of the 
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same trip, enabling the identification of individual travel trips. After processing, a total of 1,144,105 
vehicles and 10,389,842 travel trajectories were generated. 

2.2. Identification of Travel Behavior Patterns 

2.2.1. Construction of Spatiotemporal Feature Indicators 

Daily travel patterns are influenced by activity demands, with each trip linked to specific 
spatiotemporal activities at the destination, which in turn shape the characteristics of the trip and the 
associated travel behavior patterns. Understanding these patterns is essential for effective traffic 
demand management, urban planning, and resource allocation [18]. In this study, nine indicators 
were developed using LPR data to capture the spatiotemporal features of travel behavior 
comprehensively. By analyzing vehicle trajectory data across the road network, the study evaluated 
the stability of vehicle travel and the frequency of daily trips, offering valuable insights into travel 
activity levels. 

The weekday travel stability coefficient 𝐹𝐹𝑤𝑤 is defined as follows. 
𝐹𝐹𝑤𝑤 = 𝑛𝑛𝑤𝑤

𝑁𝑁
                               (1) 

where 𝑁𝑁 represents the total number of weekdays surveyed, and 𝑛𝑛𝑤𝑤 denotes the number of 
days a particular vehicle was detected. 

The daily travel frequency 𝐹𝐹𝑑𝑑 is defined as follows. 
𝐹𝐹𝑑𝑑 = 𝑛𝑛𝑑𝑑

𝑁𝑁
                              (2) 

where 𝑛𝑛𝑑𝑑 represents the total number of trips made by a specific vehicle within the statistical 
scope. 

Access frequency is a key component in the theory framework of human mobility, representing 
the number of times an individual visits a certain location within a unit of time [32]. Building upon 
this notion, this study extracts the initial and final travel trajectories of individual vehicles on a daily 
basis using LRP data, characterizing the spatial stability of travel behavior through the access 
frequency of these start and end points. Assuming that within the study timeframe, the starting 
points of vehicles' first and last daily trips are denoted as 𝑂𝑂1  and 𝑂𝑂2  respectively, and the 
corresponding end points as 𝐷𝐷1 and 𝐷𝐷2. 

The weekday initial trip origin stability coefficient 𝐹𝐹𝑂𝑂1 is defined as follows. 

𝐹𝐹𝑂𝑂1 =
max (𝑓𝑓𝑂𝑂1 ,𝑓𝑓𝑂𝑂2 ,…,𝑓𝑓𝑂𝑂𝑛𝑛)

𝑛𝑛𝑤𝑤
                       (3) 

Where max max (𝑓𝑓𝑂𝑂𝑂𝑂)  represents the number of times the highest frequency origin point 
appears for a vehicle's first trip during weekdays. 

The weekday last-trip origin point stability coefficient 𝐹𝐹𝑂𝑂2 is defined as follows. 

𝐹𝐹𝑂𝑂2 =
max (𝑙𝑙𝑂𝑂1 ,𝑙𝑙𝑂𝑂2 ,…,𝑙𝑙𝑂𝑂𝑛𝑛)

𝑛𝑛𝑤𝑤
                       (4) 

where max (𝑙𝑙𝑂𝑂𝑂𝑂) denotes the number of times the highest frequency origin point appears for a 
vehicle's last trip during weekdays. 

The weekday first-trip destination point stability coefficient 𝐹𝐹𝐷𝐷1 is defined as follows. 

𝐹𝐹𝐷𝐷1 = max (𝑓𝑓𝐷𝐷1 ,𝑓𝑓𝐷𝐷2 ,…,𝑓𝑓𝐷𝐷𝑛𝑛)
𝑛𝑛𝑤𝑤

                       (5) 

Where max (𝑓𝑓𝐷𝐷𝐷𝐷)  represents the number of times the highest frequency destination point 
appears for a vehicle's first trip during weekdays. 

The weekday last-trip destination point stability coefficient 𝐹𝐹𝐷𝐷1 is defined as follows. 

𝐹𝐹𝐷𝐷1 = max (𝑙𝑙𝐷𝐷1 ,𝑙𝑙𝐷𝐷2 ,…,𝑙𝑙𝐷𝐷𝑛𝑛)
𝑛𝑛𝑤𝑤

                      (6) 

where max (𝑙𝑙𝐷𝐷𝐷𝐷) denotes the number of times the highest frequency destination point appears 
for a vehicle's last trip during weekdays. 
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In addition to the frequency of visits to origin and destination points, path similarity can also 
characterize the spatial stability of travel behavior. The difference lies in that path similarity focuses 
on the overall frequency of traversed paths and can also reflect the vehicle's path preferences. This 
study calculates path similarity based on the Jaccard coefficient. 

The travel path similarity 𝐹𝐹𝑃𝑃 is defined as follows. 

𝐹𝐹𝑃𝑃 = �𝑃𝑃1∩𝑃𝑃2∩…∩𝑃𝑃𝑛𝑛𝑤𝑤�
|𝑃𝑃1|+|𝑃𝑃2|+⋯+�𝑃𝑃𝑛𝑛𝑤𝑤�−�𝑃𝑃1∩𝑃𝑃1∩…∩𝑃𝑃𝑛𝑛𝑤𝑤�

                 (7) 

Where 𝑃𝑃𝑛𝑛𝑤𝑤 represents the set of road segments for a particular travel path. 
Considering the extraction of comprehensive spatiotemporal features from massive LPR data, 

this study utilizes the average daily travel distance to characterize the spatial features of travel 
behavior. 

The average daily travel distance 𝐷𝐷 is defined as follows. 

𝐷𝐷 =
� 𝐷𝐷𝑖𝑖

𝑛𝑛𝑑𝑑
𝑖𝑖=1
100𝑁𝑁

                            (8) 

Where 𝐷𝐷𝑖𝑖 represents the distance traveled by a vehicle in a single trip, in kilometers. 
Regarding the temporal features of travel behavior, existing studies often use travel periods for 

characterization. For instance, [23] identify commuting patterns based on travel during morning and 
evening peak periods. However, regardless of commuting or other travel patterns, they may not 
necessarily be concentrated during these peak periods. Therefore, considering that travel times can 
be obtained from LPR data, this study utilizes the standard deviation of the time of the first trip on 
workdays to characterize the temporal features of travel behavior, while also reflecting the sensitivity 
of travelers to time constraints. 

The travel time stability coefficient T is defined as follows: 

𝑇𝑇 = �1,
0, 
𝜎𝜎 ≤ 30
𝜎𝜎 > 30 , 𝜎𝜎 = �� (𝑡𝑡𝑖𝑖−𝑡𝑡̅)2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
              (9) 

Where 𝑡𝑡𝑖𝑖  represents the time of the first trip on a workday for a vehicle, 𝑡𝑡̅  represents the 
average time of the first trip on a workday for a vehicle. After statistical analysis, when the standard 
deviation of the time of the first trip on workdays within the study road network is 30 minutes, this 
grouping has the largest proportion. Therefore, 𝜎𝜎 is set to 30. 

2.2.2. Classification of Travel Behavior Patterns 

Based on the aforementioned spatio-temporal feature indicators, we aim to reduce the 
dimensionality of each feature variable to eliminate correlations, summarize existing observed 
variables with fewer latent variables, and improve clustering algorithm efficiency. To address the 
uneven distribution of feature data, we apply various clustering algorithms for pattern classification 
and compare their performance to select the optimal algorithm. The process is as follows: 

(1) Dimensionality Reduction: Before reducing the dimensionality of each feature, we first 
conduct KMO and Bartlett tests to evaluate the suitability of the data structure for dimensionality 
reduction. Next, we determine the number of principal components based on the Kaiser criterion, 
scree plot, and variance explanation criterion[33], and then perform dimensionality reduction. 

(2) Determination of the Optimal Number of Clusters: After dimensionality reduction, we 
determine the optimal number of clusters to partition travel behavior patterns, typically using the 
elbow method. The core idea behind the elbow method is as follows: when the number of clusters, 
k, is smaller than the actual number of clusters, increasing k significantly enhances intra-cluster 
cohesion, which leads to a large decrease in the within-cluster sum of squares (Inertia). However, as k 
approaches the true number of clusters, further increases in k result in diminishing returns, and the 
rate of decrease in Inertia flattens out. This relationship between Inertia and k forms an elbow shape, 
where the "elbow point" indicates the optimal number of clusters. The formula for calculating the 
within-cluster sum of squares is shown below. 

Inertia = ∑ |𝑝𝑝 −𝑚𝑚𝑖𝑖|2𝑝𝑝∈𝐶𝐶𝑖𝑖                     (10) 
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Where 𝐶𝐶𝑖𝑖 represents the 𝑖𝑖 cluster, 𝑝𝑝 is a sample point in cluster 𝐶𝐶𝑖𝑖, and 𝑚𝑚𝑖𝑖 is the centroid of 
the cluster. 

(3) Clustering. After determining the optimal number of clusters, we apply three clustering 
algorithms—K-means, Agglomerative Clustering, and DBSCAN—to analyze the dataset. The K-
means algorithm partitions the data into K clusters, ensuring high similarity among data points 
within each cluster. Agglomerative Clustering, a distance-based hierarchical method, iteratively 
merges data points into clusters, minimizing internal distances and maximizing external distances. 
DBSCAN, a density-based algorithm, forms clusters by identifying regions of high data point density. 
These three methods are employed to uncover distinct travel behavior patterns across all vehicles. 
The clustering results are evaluated using the silhouette coefficient, as defined in Equation (11). 

𝑆𝑆 = 𝑏𝑏−𝑎𝑎
max (𝑎𝑎,𝑏𝑏)

                    (11) 

Here, 𝑎𝑎 represents the average distance between sample 𝑥𝑥𝑖𝑖 and other samples within the same 
cluster, referred to as cohesion, while 𝑏𝑏 denotes the average distance between 𝑥𝑥𝑖𝑖 and all samples in 
the nearest cluster, known as separation. The silhouette coefficient ranges from −1 to 1, with values 
closer to 1 indicating better clustering performance. A value less than zero indicates poor clustering 
performance, with many points misclassified. 

2.2.3. Travel Behavior Pattern Recognition 

After partitioning patterns based on historical LPR data, an efficient classifier must be 
constructed to recognize patterns among a large number of vehicles, including newly added ones. To 
achieve this, we employ the LightGBM (Light Gradient Boosting Machine) algorithm, which is 
capable of efficiently processing large datasets. LightGBM is an ensemble method based on gradient 
boosting, and one of its key innovations is the Gradient-based One-Side Sampling (GOSS) algorithm. 
GOSS selectively retains instances with larger gradients while randomly sampling instances with 
smaller gradients. Specifically, the GOSS algorithm first sorts instances by the absolute values of their 
gradients and selects the top "a" instances. Then, it randomly samples "b" instances from the 
remaining data. In the process of calculating information gain, the algorithm multiplies the gradients 
of the sampled instances with smaller gradients by (1-a)/b. This strategy enables the algorithm to 
focus more on underrepresented instances while maintaining the overall distribution of the original 
dataset. Let O represent the training dataset at a fixed node of the decision tree. The variance gain of 
splitting feature j at point 𝑑𝑑 for this node is defined as 

𝑉𝑉𝑗𝑗|𝑂𝑂(𝑑𝑑) = 1
𝑛𝑛𝑂𝑂

(
(∑ 𝑔𝑔𝑖𝑖�𝑥𝑥𝑖𝑖∈𝑂𝑂:𝑥𝑥𝑖𝑖𝑖𝑖≤𝑑𝑑�

)2

𝑛𝑛𝑙𝑙|𝑂𝑂
𝑗𝑗 (𝑑𝑑)

+
(∑ 𝑔𝑔𝑖𝑖�𝑥𝑥𝑖𝑖∈𝑂𝑂:𝑥𝑥𝑖𝑖𝑖𝑖>𝑑𝑑�

)2

𝑛𝑛𝑟𝑟|𝑂𝑂
𝑗𝑗 (𝑑𝑑)

)              （12） 

where 𝑛𝑛𝑂𝑂 = ∑ 𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂]，𝑛𝑛𝑙𝑙|𝑂𝑂
𝑗𝑗 (𝑑𝑑) = ∑ 𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂: 𝑥𝑥𝑖𝑖 ≤ 𝑑𝑑], 𝑛𝑛𝑟𝑟|𝑂𝑂

𝑗𝑗 (𝑑𝑑) = ∑𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂: 𝑥𝑥𝑖𝑖 > 𝑑𝑑]. 
The formula for calculating the estimated variance gain 𝑉𝑉�𝑗𝑗(𝑑𝑑) of the GOSS algorithm is as  

𝑉𝑉�𝑗𝑗(𝑑𝑑) = 1
𝑛𝑛

(
(∑ 𝑔𝑔𝑖𝑖+

1−𝑎𝑎
𝑏𝑏�𝑥𝑥𝑖𝑖∈𝐴𝐴:𝑥𝑥𝑖𝑖𝑖𝑖≤𝑑𝑑�

∑ 𝑔𝑔𝑖𝑖�𝑥𝑥𝑖𝑖∈𝐵𝐵:𝑥𝑥𝑖𝑖𝑖𝑖≤𝑑𝑑�
)2

𝑛𝑛𝑙𝑙
𝑗𝑗(𝑑𝑑)

+
(∑ 𝑔𝑔𝑖𝑖+

1−𝑎𝑎
𝑏𝑏�𝑥𝑥𝑖𝑖∈𝐴𝐴:𝑥𝑥𝑖𝑖𝑖𝑖>𝑑𝑑�

∑ 𝑔𝑔𝑖𝑖�𝑥𝑥𝑖𝑖∈𝐵𝐵:𝑥𝑥𝑖𝑖𝑖𝑖>𝑑𝑑�
)2

𝑛𝑛𝑟𝑟
𝑗𝑗(𝑑𝑑)

)  （13） 

𝐴𝐴 represents the subset with larger gradients and 𝐵𝐵  represents the subset with smaller 
gradients. And 1−𝑎𝑎

𝑏𝑏
 is used to normalize the sum of the gradients over B. 

Furthermore, the exclusive feature bundling algorithm can combine many exclusive features 
into fewer dense features, effectively avoiding unnecessary computation for zero feature values. 

In this study, the data samples are divided in a ratio of 0.8:0.2, with 80% of the dataset utilized 
for training the proposed model and 20% for testing the trained model. Additionally, the F1-score is 
selected as the measurement method for the classification model in this paper. The F1-score considers 
both precision and recall, providing a balanced assessment of the model's accuracy between precision 
and recall.  
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2.3. Estimation of Congestion Risk and Excessive Emissions 

Based on the aforementioned division of travel patterns, we measure congestion risk by 
calculating the actual travel time and the ideal travel time for each trip trajectory. The expression for 
the ideal travel time is given by: 

𝑡𝑡(1,𝑚𝑚)
𝑖𝑖 = �

𝐿𝐿𝑗𝑗
𝑣𝑣�𝑗𝑗

𝑛𝑛1

𝑗𝑗=1

                        （14） 

Where 𝑡𝑡(1,𝑚𝑚)
𝑖𝑖  represents the ideal travel time for vehicle 𝑖𝑖 in the 𝑚𝑚th trip, 𝐿𝐿𝑗𝑗 denotes the length 

of segment 𝑗𝑗,𝑣𝑣�𝑗𝑗 represents the speed of segment 𝑗𝑗 under free-flow conditions, and 𝑛𝑛1 denotes the 
total number of segments for vehicle 𝑖𝑖 in the 𝑗𝑗th trip. 

The expression for the actual travel time is given by: 
𝑡𝑡(2,𝑚𝑚)
𝑖𝑖 = 𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚)

𝑖𝑖 − 𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚)
𝑖𝑖                  （15） 

Where 𝑡𝑡(2,𝑚𝑚)
𝑖𝑖  represents the actual travel time for vehicle 𝑖𝑖  in the 𝑚𝑚 th trip, 𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚)

𝑖𝑖  and 
𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚)
𝑖𝑖  respectively represent the start and end times of the trip for vehicle 𝑖𝑖, obtained from LPR 

data. 
Therefore, the expression for the congestion exposure time corresponding to the 𝑘𝑘th travel 

pattern is: 

𝑇𝑇𝑘𝑘 =
� � (𝑡𝑡(2,𝑚𝑚)

𝑖𝑖 −𝑟𝑟𝑟𝑟(1,𝑚𝑚)
𝑖𝑖 )

𝑚𝑚

1

𝑛𝑛2

1
𝑚𝑚𝑛𝑛2

                  （16） 

Where𝑇𝑇represents the congestion exposure time for a single trip of vehicle data corresponding 
to the 𝑘𝑘th travel pattern, 𝑟𝑟 represents the preset congestion coefficient[34], taken as 1.5 in this paper, 
and 𝑛𝑛2 represents the total number of vehicles for the 𝑘𝑘th travel pattern.  

In this study, we further estimated the excess CO emissions generated by each vehicle category 
due to congestion using the Emissions Model for Beijing Vehicles (EMBEV) [35]. The excess emissions 
𝐸𝐸𝑒𝑒𝑒𝑒(𝑚𝑚)
𝑖𝑖  generated by vehicle 𝑖𝑖 in the 𝑚𝑚th trip due to congestion are as follows: 

𝐸𝐸𝑒𝑒𝑒𝑒(𝑚𝑚)
𝑖𝑖 = (� 𝐸𝐸𝐸𝐸(𝑣𝑣�𝑗𝑗)𝑛𝑛1

𝑗𝑗=1 𝐿𝐿𝑗𝑗 −� 𝐸𝐸𝐸𝐸(
𝐿𝐿𝑗𝑗

𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗)
𝑖𝑖 −𝑡𝑡(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗)

𝑖𝑖 )
𝑛𝑛1

𝑗𝑗=1

𝐿𝐿𝑗𝑗)/� 𝐸𝐸𝐸𝐸(𝑣𝑣�𝑗𝑗)𝑛𝑛1
𝑗𝑗=1 𝐿𝐿𝑗𝑗 （17） 

Therefore, the expression for excessive emissions corresponding to the 𝑘𝑘th travel pattern is: 

𝐸𝐸𝑘𝑘 = � � 𝐸𝐸𝑒𝑒𝑒𝑒(𝑚𝑚)
𝑖𝑖

𝑚𝑚

1

𝑛𝑛2

1

                   （18） 

Where the CO emission calculation is derived from 𝐸𝐸 = 𝐸𝐸𝐸𝐸(𝑣𝑣)𝐿𝐿, 𝐸𝐸𝐸𝐸(𝑣𝑣) represents the speed-
related calculation factor, and 𝐿𝐿 represents the trip length. 

3. Result 

3.1. Identification Results of Travel Behavior Patterns  

3.1.1. Results of Clustering: Dimensionality Reduction and Clustering Outcomes 

As shown in 0a, there are strong correlations among the features, particularly among the stability 
coefficients 𝐹𝐹𝑂𝑂1、𝐹𝐹𝑂𝑂1、𝐹𝐹𝐷𝐷1 and 𝐹𝐹𝐷𝐷2. Consequently, dimensionality reduction was necessary for the 
feature variables. Prior to dimensionality reduction, the experimental results yielded a KMO value 
of 0.78 (greater than 0.5) and a Bartlett's test of sphericity p-value of 0.000 (less than 0.05), indicating 
that the dataset was suitable for dimensionality reduction. As illustrated in 0b, three variables had 
eigenvalues greater than 1, and the cumulative variance explained by these three principal 
components reached 77%, effectively capturing the variability in all features. Therefore, three latent 
variables were extracted from the nine original feature variables after dimensionality reduction. The 
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three-dimensional latent variables obtained through dimensionality reduction are presented in 0c. 
Finally, the optimal number of travel behavior patterns was determined to be 4 based on the elbow 
method, as shown in 0d. 

 
Figure 3. Dimensionality reduction and cluster number determination. 

Based on the method described in Section 2.2.2, we obtained clustering results using three 
different clustering methods, as shown in 0. The silhouette coefficients for the three clustering 
methods are 0.44, 0.39, and -0.28, respectively. The K-means clustering algorithm performed the best, 
followed by the Agglomerative clustering algorithm. The Dbscan algorithm is not suitable for pattern 
partitioning in this method, possibly due to the uneven distribution of feature indicator data. 

 
K-means  

Silhouette Coefficient：0.44 

Agglomerative clustering  

Silhouette Coefficient：0.39 

Dbscan 

Silhouette Coefficient: -0.28 

Figure 4. Clustering results. 

After categorizing the travel behavior of 1,144,105 vehicles into four patterns, the distribution 
and probability density of spatial-temporal feature data for each pattern are presented using violin 
plots in 0. Additionally, the average features are summarized in 0. 0 illustrates that stability indicators 
𝐹𝐹𝑂𝑂1, 𝐹𝐹𝑂𝑂1, 𝐹𝐹𝐷𝐷1, and 𝐹𝐹𝐷𝐷2 exhibit similar distributions, with multiple peaks observed for patterns 1, 2, 
and 3, while pattern 4 follows a logarithmic normal distribution. 0 reveals minor differences in the 
averages of 𝐹𝐹𝑂𝑂1, 𝐹𝐹𝑂𝑂1, 𝐹𝐹𝐷𝐷1, and 𝐹𝐹𝐷𝐷2, with patterns 1 and 4 exhibiting high stability at the beginning 
and end points, pattern 2 at a medium level, and pattern 3 at the lowest level. Notably, pattern 3 
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displays a logarithmic normal distribution, with the highest average trip distance 𝐷𝐷, followed by 
pattern 4, pattern 2, and pattern 1. The similarity distribution of travel paths 𝐹𝐹𝑝𝑝  differs across 
patterns, with pattern 1 exhibiting a peak distribution pattern and patterns 2, 3, and 4 displaying 
unimodal distributions. Pattern 1 has the highest path similarity, with consistent daily travel paths, 
while pattern 2 shows lower path similarity, and patterns 3 and 4 have nearly non-repeating travel 
paths. Regarding weekday travel stability coefficients 𝐹𝐹𝑤𝑤 , patterns 1 to 3 show concentrated 
distributions around 1, indicating almost daily travel, while pattern 2 travels approximately 2-5 days 
a week, and pattern 4 primarily travels only one day. Furthermore, pattern 3 has the highest average 
daily travel frequency 𝐹𝐹𝑑𝑑, followed by patterns 1 and 2, which remain stable at around 2 times, while 
pattern 4 exhibits a daily average travel frequency of approximately 1 to 2 times, representing the 
lowest travel frequency. In terms of travel time stability, pattern 1 is significantly more stable than 
the other categories, while pattern 3 displays lower time stability, and patterns 2 and 4 are relatively 
unconstrained by time. 

Table 3. Mean Characteristics. 

Travel 

partterns 
Fo1 Fd1 Fo2 Fd2 D Fp Fw Fd T 

1 0.88 0.86 0.79 0.81 0.28 0.4 0.86 2.09 0.68 

2 0.51 0.47 0.46 0.51 0.30 0.1 0.74 2.18 0.04 

3 0.42 0.37 0.36 0.41 1.16 0.04 0.89 6.66 0.1 

4 0.98 0.97 0.98 0.98 0.49 0.02 0.22 1.59 0 

 
Figure 5. Violin plot of spatiotemporal feature indices. 
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In summary, Pattern 1 shows relatively stable starting and ending points for trips, with 
consistent weekday travel and a high frequency of daily trips. These trips typically follow fixed 
routes, with strong time constraints on the first trip of the day, and tend to be short-distance travels. 
These characteristics align with commuting patterns. 

Pattern 2 exhibits moderate stability in starting and ending points, with weekday travel 
consistency and daily trip frequency similar to Pattern 1. However, the trips are shorter, with less 
route repetition and no clear time constraints on departure. These trips lack a defined purpose, fitting 
the irregular travel pattern category. 

Pattern 3 shows low stability in starting and ending points but high weekday travel consistency, 
along with the highest average daily trip frequency and distance. There are few constraints on routes 
or timing, which is consistent with commercial vehicle usage patterns. 

Pattern 4 displays low travel stability, with only one trip recorded during the statistical period. 
This results in a high level of stability in starting and ending points, suggesting a transit-related 
pattern. 

Therefore, vehicles in Patterns 1 through 4 can be classified as Commuting Vehicles (CVs), 
Irregular Vehicles (IVs), Commercially Used Vehicles (CUVs), and Transit-Once Vehicles (TVs), 
respectively. 

3.1.2. Recognition Results of Classification Model  

Based on the pattern division results, we constructed a classification model suitable for large-
scale scenarios following the method outlined in Section 2.2.3. Utilizing nine feature variables, the 
trained LightGBM classification model achieves an F1-score of 0.99, demonstrating high precision 
and efficiency in recognition. However, calculating the nine feature variables for a massive number 
of individuals in large-scale scenarios poses a challenge, exacerbated by the intercorrelations among 
these variables. Therefore, to address this issue, we ranked the feature importance, as depicted in 0, 
and tested the impact of different feature quantities on the classification recognition performance, as 
shown in 0. 

 

Figure 6. Ranking of feature importance. 
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Figure 7. Performance of LightGBM algorithm trained with different numbers of features. 

From the experimental results, it is evident that relying solely on three feature variables, 𝐷𝐷，
𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑑𝑑, achieves an F1-score of 0.87, indicating satisfactory performance of the classification model. 
Moreover, the importance of the four feature variables, 𝐹𝐹𝑂𝑂1, 𝐹𝐹𝑂𝑂1, 𝐹𝐹𝐷𝐷1 and 𝐹𝐹𝐷𝐷2, is similar, and utilizing 
only one of them yields the same result. Therefore, in large-scale scenarios, efficient recognition of 
vehicle travel behavior patterns can be achieved by calculating only the three feature variables, 𝐷𝐷，
𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑑𝑑, and subsequently employing the trained classification model for classification. 

3.2. Congestion Risk Associated with Different Travel Behavior Patterns 

3.2.1. Time Distribution of Congestion for Each Pattern 

0 illustrates the time distribution of travel for each pattern. Additionally, we employ an 
improved Traffic Congestion Index (TCI) to represent the overall traffic condition, as shown in 
Equation (19), where TCI ranges from [0,1], with higher values indicating greater congestion. 

𝑇𝑇𝑇𝑇𝑇𝑇 = 1 −
∑ 𝐿𝐿𝑖𝑖

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑖𝑖
𝑊𝑊𝑖𝑖

𝑁𝑁
𝑖𝑖=1

∑ 𝐿𝐿𝑖𝑖
𝑉𝑉𝑖𝑖
𝑊𝑊𝑖𝑖

𝑁𝑁
𝑖𝑖=1

                   (19) 

where 𝐿𝐿𝑖𝑖 is the length of the road segment, 𝑊𝑊𝑖𝑖 is the segment weight, 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑖𝑖 is the free-flow 
speed of the segment, and 𝑉𝑉𝑖𝑖 is the real-time speed of the segment. 

From 0, it can be observed that the CVs pattern peaks during morning and evening rush hours 
(6:00–10:00 AM and 4:00–8:00 PM), with a higher concentration in the morning compared to the 
evening. In contrast, the travel patterns of CUVs and TVs on expressways show the opposite trend 
to CVs, being lower during peak hours and higher during off-peak hours, with CUVs exhibiting 
increased activity during the evening (7:00–11:00 PM). IVs activity is primarily concentrated between 
9:00 AM and 4:00 PM. The trend in the road congestion index aligns with the changes in CVs travel 
volume, suggesting that the surge in CVs traffic directly contributes to road congestion. When CVs 
travel volume peaks, road congestion also reaches its highest point. Does this imply that the 
congestion risk for CVs is the highest? 
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Figure 8. Time distribution of travel patterns. 

Additionally, 0 and 0 respectively present the distribution of congestion duration, daily average 
congestion duration, and the influence of factors such as travel frequency, travel distance, and time 
preferences on different travel behavior patterns, leading to varying congestion risks. The highest 
congestion risk is not concentrated in CVs patterns during peak hours, but rather in CUVs patterns 
that seek to avoid peak-hour travel. Despite accounting for only 15.17% of the total, CUVs patterns 
can experience congestion for up to three hours a day, with nearly half of this time spent in congested 
conditions during peak hours. Hence, CUVs drivers intentionally avoid peak hours, preferring to 
engage in activities such as shift changes and meals during these times, rather than being stuck in 
traffic. This also explains why the volume of CUVs travel during peak hours in 0 is lower than during 
off-peak hours. Similarly, TVs patterns also avoid peak-hour travel, while IVs patterns, although not 
extensively avoiding peak-hour travel, exhibit a slower growth in travel volume during the morning 
peak period. The second-highest congestion risk is observed in the most prevalent IVs patterns, 
followed by CVs patterns, with TVs patterns having the lowest congestion risk. Although congestion 
often occurs during peak hours, the congestion risk for CVs patterns, which are concentrated during 
peak hours, is comparatively low. Different patterns experience varying levels of congestion risk. 

 

Figure 9. Time Distribution of Congestion Risk for Each Pattern. 
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Figure 10. Proportion of Each Pattern and Daily Average Congestion Duration. 

3.2.2. Spatial Distribution of Congestion for Each Pattern 

0 and 0 show the kernel density estimates of travel routes for different travel patterns. These 
figures clearly indicate that congestion occurs at varying locations for each pattern, with congestion 
points shifting across different time periods. CVs patterns experience congestion primarily on the 
outer ring and in the city center, suggesting that commuters may live on the outer ring and work in 
the city center. During the morning peak, CVs patterns show a higher concentration on expressways 
compared to the evening peak. This can be attributed to two factors: commuters tend to have 
relatively consistent working hours but varying off-duty hours, and they prefer expressways in the 
morning to minimize travel time, while they enjoy more flexibility in route choice after work. For TVs 
patterns, the concentration during the morning peak is also higher than in the evening, with their 
activities mainly concentrated on the outer ring and passing through the area. In contrast, IVs and 
CUVs patterns exhibit higher activity levels during the evening peak, as people tend to engage more 
in dining, entertainment, and leisure activities, which increases the activity of these patterns. 
Moreover, leisure and entertainment facilities are predominantly located in the city center, leading 
to higher concentrations of IVs and CUVs patterns in this area. 

Furthermore, the congestion points of IVs and CVs patterns overlap significantly, suggesting 
similarities or a high degree of commonality in their travel routes. CUVs patterns only overlap with 
CVs patterns in the city center, while TVs patterns overlap with CVs patterns on the outer ring. 

 
Figure 11. Spatial Distribution of Traffic Congestion during Morning Peak Hours. 

 

Figure 12. Spatial Distribution of Traffic Congestion during Evening Peak Hours. 
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3.3. Excessive Emissions from Various Patterns 

To investigate the additional emissions generated by various patterns during congestion, we 
explored the excessive emissions of CO. CO emissions associated with traffic are mainly released 
during vehicle acceleration and deceleration over short periods, which are more relevant in the 
context of traffic congestion because vehicles involved in congested traffic must accelerate and 
decelerate frequently[36].  

 
Figure 13. Excessive Emissions from Various Patterns. 

0 illustrates the distribution of excessive emissions for each pattern. Excessive CO emissions 
exhibit a trend consistent with the overall traffic flow, showing a bimodal distribution. During the 
morning peak hours, CO emissions from congestion account for 41% of the total emissions, while 
during the evening peak, they account for 43%. An interesting phenomenon is that CUVs, accounting 
for only 15.17% of the total, and IVs, accounting for 43.15%, produce nearly the same amount of 
excessive CO emissions during peak hours. Although CVs patterns rank third in terms of congestion 
duration, they have the largest excessive CO emissions. This indicates that commuters do not 
perceive congestion as significantly as other travelers, but their gas pollution is the largest. 

4. Discussion 

4.1. Discussion on the Spatiotemporal Characteristics and Congestion Risks of Various Patterns 

In this study, we investigate travel behavior patterns and their associated congestion risks using 
large-scale License Plate Recognition (LPR) data. We classify vehicles into four categories based on 
travel characteristics such as departure time, route, distance, and frequency: Commercially Used 
Vehicles (CUVs) (15.17%), Commuting Vehicles (CVs) (30.25%), Irregular Vehicles (IVs) (43.15%), and 
Transit-once Vehicles (TVs) (11.43%). 

CVs exhibit strong spatiotemporal stability, with an average of two trips per day on workdays, 
stable first departure times (fluctuating by less than 30 minutes on average, predominantly during 
morning peak hours), consistent commuting routes, and typically short to medium travel distances. 
CUVs, in contrast, have a higher daily frequency of travel and longer distances. IVs have travel 
frequencies and distances similar to CVs, but lack spatiotemporal stability, resembling non-
commuting family vehicles. TVs, which pass through only once, lack any spatiotemporal stability 
features. 

Although congestion risks for all patterns follow a bimodal distribution, the duration of 
congestion varies across patterns. The temporal distribution of travel frequencies and routes differs 
for each pattern, leading to varying congestion durations. CUVs, with high travel frequencies and 
concentration in downtown areas, experience the longest congestion durations, while CVs, which are 
concentrated during peak congestion periods, encounter shorter durations. 

Furthermore, despite comprising only 15.17% of the total vehicle count, CUVs contribute excess 
CO emissions from congestion equivalent to those of IVs, which make up 43.15% of the total. This 
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suggests that accurate estimation of congestion risks and emissions requires consideration of all 
travel patterns. Focusing exclusively on CVs or CUVs may significantly underestimate congestion 
risks. 

4.2. Discussion on Strategies to Reduce Congestion Risks 

By identifying travel patterns and estimating congestion risks, relevant authorities can develop 
targeted strategies to manage demand and effectively reduce congestion. This paper evaluates the 
contribution of each travel pattern to congestion, with the following proportions: CUVs (15.17%), 
CVs (30.25%), IVs (43.15%), and TVs (11.43%). The data indicate that approximately 12.6% of road 
congestion during peak hours results from overload, meaning that 87.4% of travel demand can be 
accommodated, while the remaining 12.6% contributes to congestion. Although different vehicles 
may follow distinct travel patterns, they all have equal rights to access the road. Thus, completely 
restricting certain vehicle types, such as CUVs or TVs, from entering expressways during peak hours 
may raise concerns. 

Furthermore, different travel patterns have varying route scopes. For instance, banning CUVs 
from expressways may not alleviate congestion on outer loops. Each pattern also presents different 
congestion risks and emission levels. While current research often focuses on CVs, commuting 
vehicles typically do not face high congestion risks. In contrast, CUVs, which receive less attention, 
encounter significant congestion risks and generate higher emissions. Therefore, congestion 
management strategies should account for the diverse travel characteristics of each pattern and 
integrate them accordingly. Focusing solely on a specific vehicle type is insufficient. 

The surge of CVs during peak hours is one of the direct causes of congestion. If at least 12.6% of 
vehicles can be dispersed during peak hours, reducing the concentration of vehicles in the same 
spatiotemporal space, congestion relief can be achieved. Moreover, with economic development, the 
number of motor vehicles will continue to rise, accompanied by an increase in "conservative" 
vehicles—those that rely on private cars for all trips[37], with low willingness to use shared or public 
transportation[38–41]. A transition from private car travel to public transportation will require a long 
period. Therefore, inducing different travel patterns in spatiotemporal dimensions is an efficient and 
equitable strategy[42,43]. By considering the spatiotemporal characteristics of each pattern, guiding 
travel routes at different times can align with travelers' route preferences and help alleviate road 
congestion[44]. For example, guiding the route preferences of CVs can directly assist traffic 
management authorities in designing more feasible and effective route planning schemes, which can 
then inform the planning of travel routes for other vehicles. Targeted control of the most congested 
travelers can maximize congestion and emission reduction[45,48]. 

This study does have some limitations. Firstly, to analyze congestion risks and emissions 
associated with various travel patterns, only weekday data were considered, and weekend travel 
patterns were not examined. Secondly, while we proposed a comprehensive framework for pattern 
classification and recognition, this study focused only on expressway networks and did not include 
the entire urban road network. As a result, some vehicle trajectories may not fully represent travel 
records. In the future, we plan to collect data from a broader spatiotemporal scope to further enhance 
the study of travel patterns. We also intend to explore route induction under different travel pattern 
classifications. 

5. Conclusions 

This study investigates congestion risks and excess emissions associated with various travel 
behavior patterns using comprehensive LPR data from urban expressways. First, we propose a 
pattern recognition method based on the spatiotemporal information embedded in LPR data, 
designed for large-scale applications. We then analyze the spatiotemporal characteristics of different 
travel patterns, examining their corresponding traffic congestion risks and excess emissions. 

The findings reveal a bimodal distribution of congestion risks across various patterns. The 
magnitude of congestion risk is closely linked to the travel characteristics of each pattern, with 
congestion hotspots concentrated in downtown areas and outer loops. Interestingly, the highest 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2024 doi:10.20944/preprints202412.0427.v1

https://doi.org/10.20944/preprints202412.0427.v1


 17 

 

congestion risk does not occur with commuting vehicles, despite their concentration during peak 
hours. Focusing solely on commuting vehicles may severely underestimate both congestion risks and 
emissions, potentially rendering congestion mitigation strategies ineffective. 

This research enhances our understanding of the relationship between individual travel 
behavior and traffic congestion, providing valuable insights for personal travel time planning and 
health management. Furthermore, the methodology and conclusions presented in this paper can 
inform the development of personalized, proactive traffic demand management strategies. 
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