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Abstract: Understanding vehicle travel behavior patterns is essential for managing urban traffic
congestion, as well as for addressing the associated congestion risks and excess emissions. This
study, based on one week of License Plate Recognition (LPR) data from urban expressway networks,
investigates different travel behavior patterns and their related congestion risks and emissions.
First, we classify vehicles into distinct travel patterns based on spatiotemporal features extracted
from LPR data and propose a scalable pattern recognition method suitable for large-scale
applications. We then assess the congestion risks associated with each pattern and estimate the
excess emissions resulting from congestion. The results reveal substantial variation in congestion
risks across different travel patterns, with congestion risks following a bimodal distribution,
influenced by temporal traffic flow rhythms. Furthermore, the excess emissions from congestion
caused by commercially used vehicles (CUVs) are comparable to those of individually owned
vehicles (IVs), despite CUVs constituting only one-third of the total vehicle count. This suggests that
focusing solely on commuter travel modes underestimates both congestion risks and excess
emissions.

Keywords: congestion risk; excess emissions; travel behavior; pattern recognition; LPR

1. Introduction

Traffic congestion has long been a global issue, leading not only to time losses and economic
setbacks [1,2], but also posing significant risks to individuals' physical and mental well-being [3,4].
In an effort to alleviate congestion, administrators promote changes in travel behavior [5]. The success
of these management strategies largely depends on understanding travelers' behavior patterns and
the congestion risks associated with each pattern [6]. For instance, when planning travel routes, it is
crucial to account for commuters' preference for fixed paths. Ineffective route recommendations can
result in confusion and inconvenience for travelers. Moreover, those facing higher congestion risks
may be more open to adjusting their travel times or routes. Therefore, gaining insights into travelers'
behavior patterns and the corresponding congestion risks is vital for formulating effective
management policies.

Research on travel behavior has traditionally relied on data-driven methods [7,8]. With
advancements in information technology, an increasing variety of data sources has been incorporated
into such studies [9], including License Plate Recognition (LPR) data, mobile signaling data,
questionnaire/telephone survey data, and bus card data. In the early stages, travel behavior research
predominantly utilized travel survey data collected through paper questionnaires, telephone
interviews, and online surveys. Using these data, researchers explored various aspects, such as
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commuters' travel time preferences [10], travel mode selection [11], and more complex patterns of
travel behavior [12]. However, the high cost of collecting survey data limits both sample size and
frequency [13], rendering traditional surveys inadequate for comprehensive studies of travel
behavior patterns. Consequently, some researchers have turned to mobile signaling data, which have
been used to investigate travel patterns and population distribution [14], infer individual attributes
and activity types [15], analyze personal mobility trajectories [16], and mine travel purposes [17].
Despite these applications, mobile phone data pose challenges in accurately inferring individual
travel behavior patterns, as they cannot differentiate between transportation modes such as subway,
private car, taxi, or bicycle. Similarly, data from bus card transactions fail to provide a holistic
representation of overall travel patterns [18].

LPR data offers more comprehensive coverage, enabling the collection of information from all
vehicles on the road network and facilitating the extraction of detailed insights into vehicle travel
time and spatial activities. As a result, multi-day vehicle trajectory data derived from LPR presents
new opportunities for in-depth studies on travel behavior patterns. For example, [19] explored the
impact of two different vehicle restriction policies on traffic conditions, finding that these restrictions
led to more "illegal" travel and increased travel intensity. [20] examined the effects of vehicle traffic
restrictions on the behavior of non-Shanghai licensed vehicles, analyzing their travel patterns. [21]
proposed a method to assess travel behavior regularity based on the order of travel or activity
organization, categorizing travel behavior patterns into conventional and unconventional types. Sun
et al. [22] used LPR data to identify both regular and abnormal patterns in individual travel behavior.
However, the distinction between conventional and unconventional patterns is insufficient to
support sophisticated demand management strategies. [23] developed multiple indicators to
represent commuting patterns by utilizing vehicle travel OD information, extracting commuting
rules through clustering and decision tree algorithms. [24] also leveraged LPR data from Cambridge,
UK, to study the non-commuting travel demand of commuters. [5] proposed a systematic method for
identifying travel behaviors and purposes based on weekly trajectory data from 6600 trams in
Shanghai. Using a Gaussian mixture model, they categorized vehicle travel behavior into four
groups, including commuting. However, the algorithm's complexity limits its application to large-
scale road networks. LPR data addresses challenges such as small sample sizes, low data quality, and
difficulty in obtaining survey-based data. Research on travel behavior patterns based on LPR data
has become a key element in the theoretical framework of human mobility, though its data
advantages have yet to be fully exploited. Most studies focus on OD points and tend to analyze a
single travel mode, overlooking travel path preferences, time preferences, travel distances, and other
critical factors. Furthermore, the design of travel behavior pattern indicators needs further
optimization. Current research often relies on empirically derived parameters and indicators, rather
than mining travel behavior patterns directly from the data.

Existing research on traffic congestion risks has primarily focused on commuting patterns, with
limited exploration of other travel behaviors [25,26]. For example, [27] examined how traffic
congestion impacts individual commuting satisfaction [28]explored differences in perceived
congestion satisfaction among individuals using various modes of transportation for commuting.
Given the higher congestion risks associated with commuting, [29] proposed staggered working
hours as an effective strategy to alleviate peak congestion. However, the feasibility and sustainability
of such policies remain debated. In reality, road networks accommodate a variety of travel patterns
[30], and focusing solely on commuting may lead to an underestimation of overall congestion risks.
Therefore, congestion mitigation strategies should address a broader range of travel behaviors, rather
than concentrating on a single mode of transportation.

Based on the background described above, this paper first preprocesses and generates
trajectories from one week of LPR data collected on the expressway network of a city in China. It then
constructs multiple novel spatiotemporal features and applies three different clustering methods to
classify vehicle categories. Subsequently, a pattern recognition model is developed using LightGBM.
The congestion risks and excess emissions associated with each pattern are analyzed, followed by
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recommendations for congestion management strategies. The contributions of this paper are as

follows:

e A novel method for dividing travel behavior patterns based on a unique set of spatiotemporal
feature indicators is proposed. This method uses clustering to identify homogeneous clusters
from data features, overcoming the subjectivity and limitations of traditional threshold-based
approaches.

e A pattern recognition method suitable for large-scale applications is presented, demonstrating
strong recognition performance with only three feature values.

e  The congestion risks and excess emissions of various travel patterns are analyzed based on real-
world LPR data. The findings offer important insights for individual travel time planning and
health management, and provide support for the development of personalized, proactive traffic
demand management measures.

The remaining sections of this paper are organized as follows: Section 2 introduces the data
sources, pattern recognition methods, and the estimation methods for congestion risks and excess
emissions. Section 3 presents the experimental results based on real-world LPR data. Section 4
discusses the congestion risks of each pattern and proposes strategies for congestion mitigation.
Finally, Section 5 concludes the study.2 Methodology

The congestion risk estimation method for various travel behavior patterns proposed in this
paper is illustrated in 0. The study is structured into three key components: (1) the construction of
spatiotemporal characteristic indices for travel behavior, (2) the classification and recognition of
travel behavior patterns, and (3) the estimation of congestion risk. Each of these components is
described in detail in the following sections.
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Figure 1. Research Framework.
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2.1. Study Area and Data

The data used in this study consists of LPR data recorded from vehicles passing through an
expressway in a Chinese city during a one-week period in 2022. The study area is shown in 0. The
road network is equipped with tens of thousands of LPR detectors. The data collected by these
detectors is divided into two components: the first part contains information about the LPR detectors
themselves, while the second part provides details on the passing vehicles, as outlined in 0 and 2.

Figure 2. Expressway network structure.

Table 1. Information of the LPR detectors.

Name Information Explanation

CardID 442311111111111111 Serial number of the detector
PlaceCode 50122 Serial number of detector’s location
Latitude 39.921111 Information of latitude

Longitude 116.461111 Information of longitude

Table 2. Information of passing cars.

Name Information Explanation

MotorVehicleID 114211111111111111 Serial number of the record
PlateNo Yue B.XXXXX License plate number

PlateColor 02 Type of car

PassTime 2022-08-05 02:29:30 Time of record

Roadclid 7285 Serial number of the road segment
CardID 442311111111111111 Serial number of the detector

Through statistical analysis, this study collected 156,723,515 vehicle flow records, which
contained quality issues such as missing license plates, duplicate detections, and erroneous values.
Specifically, missing license plates accounted for 0.02%, duplicate detections for 0.33%, and erroneous
data for 4.11%. The total amount of problematic data did not exceed 5%, and its overall impact was
minimal, so this data was excluded from the analysis.

The road network detection equipment is dense, evenly distributed, and individual road
segments do not exceed 3 km in length. Vehicle trajectories were generated sequentially based on
chronological order and the upstream-downstream relationships within the road network topology.
Following [31], detections of vehicles with intervals of less than one hour were considered part of the
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same trip, enabling the identification of individual travel trips. After processing, a total of 1,144,105
vehicles and 10,389,842 travel trajectories were generated.

2.2. Identification of Travel Behavior Patterns

2.2.1. Construction of Spatiotemporal Feature Indicators

Daily travel patterns are influenced by activity demands, with each trip linked to specific
spatiotemporal activities at the destination, which in turn shape the characteristics of the trip and the
associated travel behavior patterns. Understanding these patterns is essential for effective traffic
demand management, urban planning, and resource allocation [18]. In this study, nine indicators
were developed using LPR data to capture the spatiotemporal features of travel behavior
comprehensively. By analyzing vehicle trajectory data across the road network, the study evaluated
the stability of vehicle travel and the frequency of daily trips, offering valuable insights into travel
activity levels.

The weekday travel stability coefficient F,, is defined as follows.

F, =2 €]

where N represents the total number of weekdays surveyed, and n,, denotes the number of
days a particular vehicle was detected.

The daily travel frequency Fj; is defined as follows.

Fq = %d 2)

where n, represents the total number of trips made by a specific vehicle within the statistical
scope.

Access frequency is a key component in the theory framework of human mobility, representing
the number of times an individual visits a certain location within a unit of time [32]. Building upon
this notion, this study extracts the initial and final travel trajectories of individual vehicles on a daily
basis using LRP data, characterizing the spatial stability of travel behavior through the access
frequency of these start and end points. Assuming that within the study timeframe, the starting
points of vehicles' first and last daily trips are denoted as 0, and 0, respectively, and the
corresponding end points as D; and D,.

The weekday initial trip origin stability coefficient Fj; is defined as follows.

®)

max (f0,,f 04+ 0p)

F,, =
01 N

Where max max (fp,) represents the number of times the highest frequency origin point
appears for a vehicle's first trip during weekdays.
The weekday last-trip origin point stability coefficient Fy, is defined as follows.

104,10l
Fpy = max (lo,,l0,,-+l0,) @)

nw

where max (lp,,) denotes the number of times the highest frequency origin point appears for a
vehicle's last trip during weekdays.
The weekday first-trip destination point stability coefficient Fj; is defined as follows.

max (fp,.fpy,fDy)
Fp, = 27 U Dy Dprl D) (5)

nw

Where max (fp,) represents the number of times the highest frequency destination point
appears for a vehicle's first trip during weekdays.
The weekday last-trip destination point stability coefficient Fp,; is defined as follows.

max (Ip,,lp,,-lp,)
Fp, = 87\ Dy Dy Dn) (6)

nw

where max (Ip,) denotes the number of times the highest frequency destination point appears
for a vehicle's last trip during weekdays.
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In addition to the frequency of visits to origin and destination points, path similarity can also
characterize the spatial stability of travel behavior. The difference lies in that path similarity focuses
on the overall frequency of traversed paths and can also reflect the vehicle's path preferences. This
study calculates path similarity based on the Jaccard coefficient.

The travel path similarity Fp is defined as follows.

_ |[P1nPN..0Py, |
TPy #IPy [+ #] Py, |- [PLOPLN NP, |

?)

Fr

Where B, represents the set of road segments for a particular travel path.
Considering the extraction of comprehensive spatiotemporal features from massive LPR data,
this study utilizes the average daily travel distance to characterize the spatial features of travel

behavior.
The average daily travel distance D is defined as follows.
— z:1il=d1 Di
D= oon (8)

Where D; represents the distance traveled by a vehicle in a single trip, in kilometers.

Regarding the temporal features of travel behavior, existing studies often use travel periods for
characterization. For instance, [23] identify commuting patterns based on travel during morning and
evening peak periods. However, regardless of commuting or other travel patterns, they may not
necessarily be concentrated during these peak periods. Therefore, considering that travel times can
be obtained from LPR data, this study utilizes the standard deviation of the time of the first trip on
workdays to characterize the temporal features of travel behavior, while also reflecting the sensitivity
of travelers to time constraints.

The travel time stability coefficient T is defined as follows:

1, 0 <30 (D)2
T={053307= — ®)

Where t; represents the time of the first trip on a workday for a vehicle, t represents the
average time of the first trip on a workday for a vehicle. After statistical analysis, when the standard
deviation of the time of the first trip on workdays within the study road network is 30 minutes, this
grouping has the largest proportion. Therefore, o is set to 30.

2.2.2. Classification of Travel Behavior Patterns

Based on the aforementioned spatio-temporal feature indicators, we aim to reduce the
dimensionality of each feature variable to eliminate correlations, summarize existing observed
variables with fewer latent variables, and improve clustering algorithm efficiency. To address the
uneven distribution of feature data, we apply various clustering algorithms for pattern classification
and compare their performance to select the optimal algorithm. The process is as follows:

(1) Dimensionality Reduction: Before reducing the dimensionality of each feature, we first
conduct KMO and Bartlett tests to evaluate the suitability of the data structure for dimensionality
reduction. Next, we determine the number of principal components based on the Kaiser criterion,
scree plot, and variance explanation criterion[33], and then perform dimensionality reduction.

(2) Determination of the Optimal Number of Clusters: After dimensionality reduction, we
determine the optimal number of clusters to partition travel behavior patterns, typically using the
elbow method. The core idea behind the elbow method is as follows: when the number of clusters,
k, is smaller than the actual number of clusters, increasing k significantly enhances intra-cluster
cohesion, which leads to a large decrease in the within-cluster sum of squares (Inertia). However, as k
approaches the true number of clusters, further increases in k result in diminishing returns, and the
rate of decrease in Inertia flattens out. This relationship between Inertia and k forms an elbow shape,
where the "elbow point" indicates the optimal number of clusters. The formula for calculating the
within-cluster sum of squares is shown below.

Inertia = ¥ ,cc,lp — m;|? (10)
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Where C; represents the i cluster, p is a sample point in cluster C;, and m; is the centroid of
the cluster.

(3) Clustering. After determining the optimal number of clusters, we apply three clustering
algorithms—K-means, Agglomerative Clustering, and DBSCAN—to analyze the dataset. The K-
means algorithm partitions the data into K clusters, ensuring high similarity among data points
within each cluster. Agglomerative Clustering, a distance-based hierarchical method, iteratively
merges data points into clusters, minimizing internal distances and maximizing external distances.
DBSCAN, a density-based algorithm, forms clusters by identifying regions of high data point density.
These three methods are employed to uncover distinct travel behavior patterns across all vehicles.
The clustering results are evaluated using the silhouette coefficient, as defined in Equation (11).

b—a
max (a,b)

(11)

Here, a represents the average distance between sample x; and other samples within the same
cluster, referred to as cohesion, while b denotes the average distance between x; and all samples in
the nearest cluster, known as separation. The silhouette coefficient ranges from -1 to 1, with values
closer to 1 indicating better clustering performance. A value less than zero indicates poor clustering
performance, with many points misclassified.

2.2.3. Travel Behavior Pattern Recognition

After partitioning patterns based on historical LPR data, an efficient classifier must be
constructed to recognize patterns among a large number of vehicles, including newly added ones. To
achieve this, we employ the LightGBM (Light Gradient Boosting Machine) algorithm, which is
capable of efficiently processing large datasets. LightGBM is an ensemble method based on gradient
boosting, and one of its key innovations is the Gradient-based One-Side Sampling (GOSS) algorithm.
GOSS selectively retains instances with larger gradients while randomly sampling instances with
smaller gradients. Specifically, the GOSS algorithm first sorts instances by the absolute values of their
gradients and selects the top "a" instances. Then, it randomly samples "b" instances from the
remaining data. In the process of calculating information gain, the algorithm multiplies the gradients
of the sampled instances with smaller gradients by (1-a)/b. This strategy enables the algorithm to
focus more on underrepresented instances while maintaining the overall distribution of the original
dataset. Let O represent the training dataset at a fixed node of the decision tree. The variance gain of
splitting feature j at point d for this node is defined as

{xLEOx <d}

9)? (Z{
Vijo(d) = ( -
1o (@) (@

where n, = X I[x; € 0], nllo(d) =YIlx; € 0:x; < d], nl,(d) = TI[x; € 0:x; > d].
The formula for calculating the estimated variance gain (d) of the GOSS algorithm is as

2
xieo:xij>d} 90

(12)

1— -
~ 1 (E{xieA:xijsd}gi+Taz{x €B:x; <d}g‘) (Z{x €Aix; >d}'gl az{xiEB:xij>d}‘gi)2
7 = ,»

n ny(d) r(d)

A represents the subset with larger gradients and B represents the subset with smaller

) (13)

gradients. And 1%1 is used to normalize the sum of the gradients over B.

Furthermore, the exclusive feature bundling algorithm can combine many exclusive features
into fewer dense features, effectively avoiding unnecessary computation for zero feature values.

In this study, the data samples are divided in a ratio of 0.8:0.2, with 80% of the dataset utilized
for training the proposed model and 20% for testing the trained model. Additionally, the F1-score is
selected as the measurement method for the classification model in this paper. The F1-score considers
both precision and recall, providing a balanced assessment of the model's accuracy between precision
and recall.
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2.3. Estimation of Congestion Risk and Excessive Emissions

Based on the aforementioned division of travel patterns, we measure congestion risk by
calculating the actual travel time and the ideal travel time for each trip trajectory. The expression for
the ideal travel time is given by:

ny
. L
Zj=1 ’

Where tél,m) represents the ideal travel time for vehicle i inthe mthtrip, L; denotes the length
of segment j,D; represents the speed of segment j under free-flow conditions, and n; denotes the
total number of segments for vehicle i in the jth trip.

The expression for the actual travel time is given by:

t(lz,m) = t(lend,m) - téstart,m) (15)

Where t(iz_m) represents the actual travel time for vehicle i in the mth trip, t(istart'm) and
t("end,m) respectively represent the start and end times of the trip for vehicle i, obtained from LPR
data.

Therefore, the expression for the congestion exposure time corresponding to the kth travel
pattern is:

2 _m . .
z > Comyrthmy)
Tk = 1

mny,

(16)

WhereTrepresents the congestion exposure time for a single trip of vehicle data corresponding
to the kth travel pattern, r represents the preset congestion coefficient[34], taken as 1.5 in this paper,
and n, represents the total number of vehicles for the kth travel pattern.

In this study, we further estimated the excess CO emissions generated by each vehicle category
due to congestion using the Emissions Model for Beijing Vehicles (EMBEV) [35]. The excess emissions
E éx(m) generated by vehicle i in the mth trip due to congestion are as follows:

ny
Ebeemy = (XL EF(B) Ly — EFG————) L)/ X EF(0) L, (17)
_ t(end}) t(start])

j=1

Therefore, the expression for excessive emissions corresponding to the kth travel pattern is:

np m
E, = E Zl Eéx(m) (18)
1

Where the CO emission calculation is derived from E = EF(v)L, EF (v) represents the speed-
related calculation factor, and L represents the trip length.

3. Result

3.1. Identification Results of Travel Behavior Patterns

3.1.1. Results of Clustering: Dimensionality Reduction and Clustering Outcomes

As shown in Oa, there are strong correlations among the features, particularly among the stability
coefficients Fyy+ Fp1~ Fp; and Fp,. Consequently, dimensionality reduction was necessary for the
feature variables. Prior to dimensionality reduction, the experimental results yielded a KMO value
of 0.78 (greater than 0.5) and a Bartlett's test of sphericity p-value of 0.000 (less than 0.05), indicating
that the dataset was suitable for dimensionality reduction. As illustrated in Ob, three variables had
eigenvalues greater than 1, and the cumulative variance explained by these three principal
components reached 77%, effectively capturing the variability in all features. Therefore, three latent
variables were extracted from the nine original feature variables after dimensionality reduction. The
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three-dimensional latent variables obtained through dimensionality reduction are presented in Oc.
Finally, the optimal number of travel behavior patterns was determined to be 4 based on the elbow
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35
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method, as shown in 0d.
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Figure 3. Dimensionality reduction and cluster number determination.

Based on the method described in Section 2.2.2, we obtained clustering results using three
different clustering methods, as shown in 0. The silhouette coefficients for the three clustering
methods are 0.44, 0.39, and -0.28, respectively. The K-means clustering algorithm performed the best,
followed by the Agglomerative clustering algorithm. The Dbscan algorithm is not suitable for pattern
partitioning in this method, possibly due to the uneven distribution of feature indicator data.
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Silhouette Coefficient : 0.39 Silhouette Coefficient: -0.28
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Figure 4. Clustering results.

After categorizing the travel behavior of 1,144,105 vehicles into four patterns, the distribution
and probability density of spatial-temporal feature data for each pattern are presented using violin
plots in 0. Additionally, the average features are summarized in 0. 0 illustrates that stability indicators
Fp1, Fo1, Fp1, and Fp, exhibit similar distributions, with multiple peaks observed for patterns 1, 2,
and 3, while pattern 4 follows a logarithmic normal distribution. 0 reveals minor differences in the
averages of Fyy, Fpq, Fpi, and Fp,, with patterns 1 and 4 exhibiting high stability at the beginning
and end points, pattern 2 at a medium level, and pattern 3 at the lowest level. Notably, pattern 3
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displays a logarithmic normal distribution, with the highest average trip distance D, followed by
pattern 4, pattern 2, and pattern 1. The similarity distribution of travel paths F, differs across
patterns, with pattern 1 exhibiting a peak distribution pattern and patterns 2, 3, and 4 displaying
unimodal distributions. Pattern 1 has the highest path similarity, with consistent daily travel paths,
while pattern 2 shows lower path similarity, and patterns 3 and 4 have nearly non-repeating travel
paths. Regarding weekday travel stability coefficients F,, patterns 1 to 3 show concentrated
distributions around 1, indicating almost daily travel, while pattern 2 travels approximately 2-5 days
a week, and pattern 4 primarily travels only one day. Furthermore, pattern 3 has the highest average
daily travel frequency Fy, followed by patterns 1 and 2, which remain stable at around 2 times, while
pattern 4 exhibits a daily average travel frequency of approximately 1 to 2 times, representing the
lowest travel frequency. In terms of travel time stability, pattern 1 is significantly more stable than
the other categories, while pattern 3 displays lower time stability, and patterns 2 and 4 are relatively
unconstrained by time.

Table 3. Mean Characteristics.

reprints202412.0427.v1

Travel
Fol Fd1 Fo2 Fd2 D Fp Fw Fd T
partterns
1 0.88 0.86 0.79 0.81 0.28 0.4 0.86 2.09 0.68
2 0.51 047 0.46 0.51 0.30 0.1 0.74 2.18 0.04
3 0.42 0.37 0.36 0.41 1.16 0.04 0.89 6.66 0.1
4 0.98 0.97 0.98 0.98 0.49 0.02 0.22 1.59 0
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Figure 5. Violin plot of spatiotemporal feature indices.
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In summary, Pattern 1 shows relatively stable starting and ending points for trips, with
consistent weekday travel and a high frequency of daily trips. These trips typically follow fixed
routes, with strong time constraints on the first trip of the day, and tend to be short-distance travels.
These characteristics align with commuting patterns.

Pattern 2 exhibits moderate stability in starting and ending points, with weekday travel
consistency and daily trip frequency similar to Pattern 1. However, the trips are shorter, with less
route repetition and no clear time constraints on departure. These trips lack a defined purpose, fitting
the irregular travel pattern category.

Pattern 3 shows low stability in starting and ending points but high weekday travel consistency,
along with the highest average daily trip frequency and distance. There are few constraints on routes
or timing, which is consistent with commercial vehicle usage patterns.

Pattern 4 displays low travel stability, with only one trip recorded during the statistical period.
This results in a high level of stability in starting and ending points, suggesting a transit-related
pattern.

Therefore, vehicles in Patterns 1 through 4 can be classified as Commuting Vehicles (CVs),
Irregular Vehicles (IVs), Commercially Used Vehicles (CUVs), and Transit-Once Vehicles (TVs),
respectively.

3.1.2. Recognition Results of Classification Model

Based on the pattern division results, we constructed a classification model suitable for large-
scale scenarios following the method outlined in Section 2.2.3. Utilizing nine feature variables, the
trained LightGBM classification model achieves an F1-score of 0.99, demonstrating high precision
and efficiency in recognition. However, calculating the nine feature variables for a massive number
of individuals in large-scale scenarios poses a challenge, exacerbated by the intercorrelations among
these variables. Therefore, to address this issue, we ranked the feature importance, as depicted in 0,
and tested the impact of different feature quantities on the classification recognition performance, as
shown in 0.

Feature importance

Feature

T T T T T T
o] 500 1000 1500 2000 2500 3000 3500
Importance

Figure 6. Ranking of feature importance.
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Figure 7. Performance of LightGBM algorithm trained with different numbers of features.

From the experimental results, it is evident that relying solely on three feature variables, D,
E, and Fg, achieves an F1-score of 0.87, indicating satisfactory performance of the classification model.
Moreover, the importance of the four feature variables, Fy1, Fp;, Fpi and Fp,, is similar, and utilizing
only one of them yields the same result. Therefore, in large-scale scenarios, efficient recognition of
vehicle travel behavior patterns can be achieved by calculating only the three feature variables, D,
E, and Fy, and subsequently employing the trained classification model for classification.

3.2. Congestion Risk Associated with Different Travel Behavior Patterns

3.2.1. Time Distribution of Congestion for Each Pattern

0 illustrates the time distribution of travel for each pattern. Additionally, we employ an
improved Traffic Congestion Index (TCI) to represent the overall traffic condition, as shown in
Equation (19), where TCI ranges from [0,1], with higher values indicating greater congestion.

E?I:lvf:;.e i
i=1y; i

where L; is the length of the road segment, W; is the segment weight, Vi, ; is the free-flow
speed of the segment, and V; is the real-time speed of the segment.

From 0, it can be observed that the CVs pattern peaks during morning and evening rush hours
(6:00-10:00 AM and 4:00-8:00 PM), with a higher concentration in the morning compared to the
evening. In contrast, the travel patterns of CUVs and TVs on expressways show the opposite trend
to CVs, being lower during peak hours and higher during off-peak hours, with CUVs exhibiting
increased activity during the evening (7:00-11:00 PM). IVs activity is primarily concentrated between
9:00 AM and 4:00 PM. The trend in the road congestion index aligns with the changes in CVs travel
volume, suggesting that the surge in CVs traffic directly contributes to road congestion. When CVs
travel volume peaks, road congestion also reaches its highest point. Does this imply that the
congestion risk for CVs is the highest?
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Figure 8. Time distribution of travel patterns.

Additionally, 0 and 0 respectively present the distribution of congestion duration, daily average
congestion duration, and the influence of factors such as travel frequency, travel distance, and time
preferences on different travel behavior patterns, leading to varying congestion risks. The highest
congestion risk is not concentrated in CVs patterns during peak hours, but rather in CUVs patterns
that seek to avoid peak-hour travel. Despite accounting for only 15.17% of the total, CUVs patterns
can experience congestion for up to three hours a day, with nearly half of this time spent in congested
conditions during peak hours. Hence, CUVs drivers intentionally avoid peak hours, preferring to
engage in activities such as shift changes and meals during these times, rather than being stuck in
traffic. This also explains why the volume of CUVs travel during peak hours in 0 is lower than during
off-peak hours. Similarly, TVs patterns also avoid peak-hour travel, while IVs patterns, although not
extensively avoiding peak-hour travel, exhibit a slower growth in travel volume during the morning
peak period. The second-highest congestion risk is observed in the most prevalent IVs patterns,
followed by CVs patterns, with TVs patterns having the lowest congestion risk. Although congestion
often occurs during peak hours, the congestion risk for CVs patterns, which are concentrated during
peak hours, is comparatively low. Different patterns experience varying levels of congestion risk.
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Figure 9. Time Distribution of Congestion Risk for Each Pattern.
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3.2.2. Spatial Distribution of Congestion for Each Pattern

0 and 0 show the kernel density estimates of travel routes for different travel patterns. These
figures clearly indicate that congestion occurs at varying locations for each pattern, with congestion
points shifting across different time periods. CVs patterns experience congestion primarily on the
outer ring and in the city center, suggesting that commuters may live on the outer ring and work in
the city center. During the morning peak, CVs patterns show a higher concentration on expressways
compared to the evening peak. This can be attributed to two factors: commuters tend to have
relatively consistent working hours but varying off-duty hours, and they prefer expressways in the
morning to minimize travel time, while they enjoy more flexibility in route choice after work. For TVs
patterns, the concentration during the morning peak is also higher than in the evening, with their
activities mainly concentrated on the outer ring and passing through the area. In contrast, IVs and
CUVs patterns exhibit higher activity levels during the evening peak, as people tend to engage more
in dining, entertainment, and leisure activities, which increases the activity of these patterns.
Moreover, leisure and entertainment facilities are predominantly located in the city center, leading
to higher concentrations of IVs and CUVs patterns in this area.

Furthermore, the congestion points of IVs and CVs patterns overlap significantly, suggesting
similarities or a high degree of commonality in their travel routes. CUVs patterns only overlap with
CVs patterns in the city center, while TVs patterns overlap with CVs patterns on the outer ring.
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Figure 11. Spatial Distribution of Traffic Congestion during Morning Peak Hours.
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Figure 12. Spatial Distribution of Traffic Congestion during Evening Peak Hours.
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3.3. Excessive Emissions from Various Patterns

To investigate the additional emissions generated by various patterns during congestion, we
explored the excessive emissions of CO. CO emissions associated with traffic are mainly released
during vehicle acceleration and deceleration over short periods, which are more relevant in the
context of traffic congestion because vehicles involved in congested traffic must accelerate and
decelerate frequently[36].
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Figure 13. Excessive Emissions from Various Patterns.

0 illustrates the distribution of excessive emissions for each pattern. Excessive CO emissions
exhibit a trend consistent with the overall traffic flow, showing a bimodal distribution. During the
morning peak hours, CO emissions from congestion account for 41% of the total emissions, while
during the evening peak, they account for 43%. An interesting phenomenon is that CUVs, accounting
for only 15.17% of the total, and IVs, accounting for 43.15%, produce nearly the same amount of
excessive CO emissions during peak hours. Although CVs patterns rank third in terms of congestion
duration, they have the largest excessive CO emissions. This indicates that commuters do not
perceive congestion as significantly as other travelers, but their gas pollution is the largest.

4. Discussion
4.1. Discussion on the Spatiotemporal Characteristics and Congestion Risks of Various Patterns

In this study, we investigate travel behavior patterns and their associated congestion risks using
large-scale License Plate Recognition (LPR) data. We classify vehicles into four categories based on
travel characteristics such as departure time, route, distance, and frequency: Commercially Used
Vehicles (CUVs) (15.17%), Commuting Vehicles (CVs) (30.25%), Irregular Vehicles (IVs) (43.15%), and
Transit-once Vehicles (TVs) (11.43%).

CVs exhibit strong spatiotemporal stability, with an average of two trips per day on workdays,
stable first departure times (fluctuating by less than 30 minutes on average, predominantly during
morning peak hours), consistent commuting routes, and typically short to medium travel distances.
CUVs, in contrast, have a higher daily frequency of travel and longer distances. IVs have travel
frequencies and distances similar to CVs, but lack spatiotemporal stability, resembling non-
commuting family vehicles. TVs, which pass through only once, lack any spatiotemporal stability
features.

Although congestion risks for all patterns follow a bimodal distribution, the duration of
congestion varies across patterns. The temporal distribution of travel frequencies and routes differs
for each pattern, leading to varying congestion durations. CUVs, with high travel frequencies and
concentration in downtown areas, experience the longest congestion durations, while CVs, which are
concentrated during peak congestion periods, encounter shorter durations.

Furthermore, despite comprising only 15.17% of the total vehicle count, CUVs contribute excess
CO emissions from congestion equivalent to those of IVs, which make up 43.15% of the total. This
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suggests that accurate estimation of congestion risks and emissions requires consideration of all
travel patterns. Focusing exclusively on CVs or CUVs may significantly underestimate congestion
risks.

4.2. Discussion on Strategies to Reduce Congestion Risks

By identifying travel patterns and estimating congestion risks, relevant authorities can develop
targeted strategies to manage demand and effectively reduce congestion. This paper evaluates the
contribution of each travel pattern to congestion, with the following proportions: CUVs (15.17%),
CVs (30.25%), IVs (43.15%), and TVs (11.43%). The data indicate that approximately 12.6% of road
congestion during peak hours results from overload, meaning that 87.4% of travel demand can be
accommodated, while the remaining 12.6% contributes to congestion. Although different vehicles
may follow distinct travel patterns, they all have equal rights to access the road. Thus, completely
restricting certain vehicle types, such as CUVs or TVs, from entering expressways during peak hours
may raise concerns.

Furthermore, different travel patterns have varying route scopes. For instance, banning CUVs
from expressways may not alleviate congestion on outer loops. Each pattern also presents different
congestion risks and emission levels. While current research often focuses on CVs, commuting
vehicles typically do not face high congestion risks. In contrast, CUVs, which receive less attention,
encounter significant congestion risks and generate higher emissions. Therefore, congestion
management strategies should account for the diverse travel characteristics of each pattern and
integrate them accordingly. Focusing solely on a specific vehicle type is insufficient.

The surge of CVs during peak hours is one of the direct causes of congestion. If at least 12.6% of
vehicles can be dispersed during peak hours, reducing the concentration of vehicles in the same
spatiotemporal space, congestion relief can be achieved. Moreover, with economic development, the
number of motor vehicles will continue to rise, accompanied by an increase in "conservative"
vehicles—those that rely on private cars for all trips[37], with low willingness to use shared or public
transportation[38—41]. A transition from private car travel to public transportation will require a long
period. Therefore, inducing different travel patterns in spatiotemporal dimensions is an efficient and
equitable strategy[42,43]. By considering the spatiotemporal characteristics of each pattern, guiding
travel routes at different times can align with travelers' route preferences and help alleviate road
congestion[44]. For example, guiding the route preferences of CVs can directly assist traffic
management authorities in designing more feasible and effective route planning schemes, which can
then inform the planning of travel routes for other vehicles. Targeted control of the most congested
travelers can maximize congestion and emission reduction[45,48].

This study does have some limitations. Firstly, to analyze congestion risks and emissions
associated with various travel patterns, only weekday data were considered, and weekend travel
patterns were not examined. Secondly, while we proposed a comprehensive framework for pattern
classification and recognition, this study focused only on expressway networks and did not include
the entire urban road network. As a result, some vehicle trajectories may not fully represent travel
records. In the future, we plan to collect data from a broader spatiotemporal scope to further enhance
the study of travel patterns. We also intend to explore route induction under different travel pattern
classifications.

5. Conclusions

This study investigates congestion risks and excess emissions associated with various travel
behavior patterns using comprehensive LPR data from urban expressways. First, we propose a
pattern recognition method based on the spatiotemporal information embedded in LPR data,
designed for large-scale applications. We then analyze the spatiotemporal characteristics of different
travel patterns, examining their corresponding traffic congestion risks and excess emissions.

The findings reveal a bimodal distribution of congestion risks across various patterns. The
magnitude of congestion risk is closely linked to the travel characteristics of each pattern, with
congestion hotspots concentrated in downtown areas and outer loops. Interestingly, the highest
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congestion risk does not occur with commuting vehicles, despite their concentration during peak
hours. Focusing solely on commuting vehicles may severely underestimate both congestion risks and
emissions, potentially rendering congestion mitigation strategies ineffective.

This research enhances our understanding of the relationship between individual travel
behavior and traffic congestion, providing valuable insights for personal travel time planning and
health management. Furthermore, the methodology and conclusions presented in this paper can
inform the development of personalized, proactive traffic demand management strategies.
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