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Abstract: The deployment of artificial intelligence technology in various emerging network applica-
tions has spawned a large number of computing tasks, such as on-the-fly image rendering, which
requires dynamic collaboration of multi-dimensional resources from the perspective of communication
and computing to meet service requirements. In this paper, we introduce a communication and
computation integrated network architecture, referred to as (Com)ZINet, which has multi-dimensional,
multi-layer and heterogeneous characteristics. The architecture integrates software defined network
(SDN) and network function virtualization (NFV) technologies to ensure quality of service (QoS) and
quality of experience (QoE). Customized advanced computing services can be implemented as service
chains (SCs), which consist of ordered virtual network functions and can be scheduled across domains
of end-edge-cloud, space-air-ground, and multiple data centers to facilitate ubiquitous network con-
nectivity and collaborative computation. Moreover, we outline key technologies such as measurement
and modeling of multi-dimensional heterogeneous resources, multi-path transmission, heterogeneous
resource scheduling, and fault tolerance. Furthermore, an intelligent scheduling scheme with dynamic
coordination of multi-dimensional resources is proposed for massive remote sensing images, in which
an SC-based stepwise adaptive clustering method is utilize to make the optimal joint decision for levee
piping hazard identification. Finally, we explore open issues that are underlie efficient collaborative
computation in (Com)2INet.

Keywords: integration networking architecture; collaborative computation; service chains; remote
sensing application; hazard identification

1. Introduction

With the advent of the era of intelligent everything, various new application ascenarios are
constantly emerging, such as augmented reality, ultra-high-speed railway, holographic communication,
and smart industrial Internet of Things [1]. A large number of heterogeneous terminal devices are
connected to the Internet, generating tremendous data at the edge of the network, which needs to be
efficiently transmitted and processed [2]. According to the Internet Data Center, by 2025, the annual
data generated worldwide will grow to 175 Zettabytes [3]. By leveraging the massive amount of
increased data, various advanced services with customized requirements can be provided to enhance
the comprehensive analysis capacities of complex application scenarios. For instance, in the scenario
of ultra-high-speed railway, the obtained audio and video data are used to effectively ensure the
operation safety of ultra-high-speed railway vehicles through artificial intelligence (Al) algorithms. In
the scenario of emergency response, the remote sensing data are used to improve rescue efficiency
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through Al algorithms. These services have the common characteristics of being compute-intensive
and time-sensitive. Therefore, how to promote efficient computing is particularly critical to support
plenty of advanced services in the intelligent everything scenarios.

New computing paradigms have been proposed to achieve the above target. Driven by powerful
computing capabilities, cloud computing with large storage capacity and high data throughput
has become the main platform for the application of Al algorithms [4]. However, this “in-network
computing” paradigm has problems such as extended decision transmission delay and increased
network burden when interacting with terminal devices. By sinking computing and storage resources
from the cloud to edge of the network, edge computing paradigm and fog computing paradigm have
arised, reducing task transmission delay and greatly promotes the development of Al technology [5,6].
With limited computing resources, the compute-intensive tasks are offloaded to multiple edge nodes
to collaboratively utilize decentralized computing resources, leading to data privacy issues. To this
end, the distributed computing [7], such as federated learning, has attracted widespread attention
from industry and academia. As advanced services tend to be customized, diversified, and intelligent,
a single computing paradigm is difficult to meet the increasingly complex quality of service (QoS) and
quality of experience (QoE) demands. Therefore, it is crucial to build a unified computing platform
that integrates multiple computing paradigms, in which massive concurrent computing tasks can be
globally orchestrated more efficiency to guarantee advanced service requirements.

Orchestrating massive concurrent computing services on a unified computing platform faces
the following challenges. First, orchestrating computing tasks requires dynamic scheduling of multi-
dimensional heterogeneous resources from the perspectives of communication and computing. More-
over, considering the upper-layer diversity advanced services and underlying differentiated networks,
the computing power and network in the existing networks are relatively independent. In addition, the
unified computing platform needs to manage massive concurrent computing tasks generated by vari-
ous advanced services such as live image analytics of remote sensing and large-scale Al model training,
which makes it more complicated to flexibly schedule multi-dimensional heterogeneous resources to
handle massive concurrent computing services. Therefore, it is necessary to design a unified computing
platform to support customized services by coordinating the scheduling of multi-dimensional hetero-
geneous resources from the perspective of both communication and computation. Then, diversified
computing services are giving rise to masses of QoS and QoE requirements, such as deterministic delay,
model accuracy, clarity level, privacy protection, and so forth [8]. Therefore, it is necessary to design
an intelligent resource scheduling algorithm to adaptively schedule multi-dimensional heterogeneous
resources on the unified computing platform.

On one hand, a novel communication and computation integrated network architecture, referred
to as (Com)?INet, is proposed for intelligent scheduling of multi-dimensional resources in heteroge-
neous environments. Service-oriented principles and intelligence facilitate the integration of software
defined network (SDN) [9], programming protocol independent packet processor (P4) technology
[10], and network function virtualization (NFV) [11] into the designed architecture, enabling flexible
network management and reduced operating costs. To be specific, SDN decouples data plane and
control plane, supporting centralized control and device configuration. The combination of SDN and
P4 technology allows network administrators to customize reconfigure network functions of data plane
devices for supporting new functions and protocols, thereby offloading some network functions to
data plane, such as in-band telemetry [12], load balancing [13], and re-routing [14], to achieve flexible
network management. Moreover, With the support of SDN and NFV technology, computing services
can implement traditional network functions in the form of virtual network functions (VNFs), and
can migrate from dedicated hardware devices to general-purpose devices to reduce dependence on
hardware devices. In conclusion, huge computing flows can be scheduled across domains of end-
edge-cloud, space-air-ground, and multiple data centers, enabling the deep integration of “computing
and network”. On the other hand, we present a case study of an intelligent scheduling scheme with
dynamic coordination of multi-dimensional resources for massive remote sensing images, where a
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stepwise adaptive clustering approach is used to make the optimal joint decision for levee piping
hazard identification.
Our main contributions are summarized below.

e The (Com)?INet integrates SDN, P4 and NFV technologies. It is a service-oriented computing
paradigm that can schedule multi-dimensional heterogeneous resources across domains of end-
edge-cloud, space-air-ground, and multiple data centers to ensure QoS and QoE requirements
of advanced services. (Com)?INet architecture consists of three layers: computing service layer,
mapping adaption layer and converged network layer, aiming to achieve the coordination of
applications and network resources, and the secure isolation of networks and applications.

e  We design a service-centric computing service layer with different types of service identifications.
The device-centric converged network layer with storage, forwarding and computing capabilities
to process the service locally or forward it to other appropriate devices. The function-centric
mapping adaption layer generates orchestration strategies to guide operations of converged
network layer, vertically decouples computing service layer from converged network layer, and
realizes the coordinated scheduling and intelligent integration of the service level and network
level.

*  With (Com)?INet as support and QoS requirements as constraints, we design a stepwise adaptive
clustering method for levee piping hazard identification based on temperature field of UAV
thermal infrared remote sensing imagery. The method utilizes a progressive approach to itera-
tively eliminate background regions and refine the target area, enabling the precise localization
of piping hazards. Experimental results demonstrate that the proposed method outperforms
benchmarks overall performance in terms of accuracy of target extraction, and computational
time of algorithm.

The rest of the article is organized as follows. First, we present the (Com)?INet architecture
in the “(Com)?INet: Communication and Computation Integrated Network Architecture” section.
Following that we present an application use case, in which the experimental results are given and
discussed in the “Use Case : (Com)’INet for Levee Piping Hazard Inspection via Remote Sensing”
section. Furthermore, we elaborate on the directions and issues for future research in the “Open Issues”
section. Finally, we conclude our work in the “Conclusions” section.

2. (Com)’INet: Communication and Computation Integrated Network Architecture
2.1. System Architecture

As mentioned above, how to meet customized QoS and QoE requirements of advanced computing
services remains a challenging problem [15]. To this end, a novel system architecture integrating multi-
dimensional resources and heterogeneous networks, abbreviated as (Com)?INet, is proposed as shown
in Figure 1. The architecture aims to integrate ubiquitous connectivity and collaborative computation,
jointly scheduling heterogeneous resources from both communication and computation perspectives
to solve the dilemma that emerging applications require more computing power while available
computing power is ubiquitous but not easy to use.
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Figure 1. Tllustration of the designed (Com)’INet.

(Com)?INet network has the following new features compared with the traditional forwarding
dedicated networks. (1) Heterogeneous network components such as router devices, end devices,
edge servers, cloud servers, unmanned aerial vehicle (UAV) and satellites, etc. are equipped with
computing units to handle massive concurrent computing tasks [16]. In addition, the designed
architecture includes multiple computing centers such as data centers and supercomputer centers
[17]. Therefore, massive concurrent flows can be scheduled across domains of end-edge-cloud, space-
air-ground, and multiple data centers, support the deep integration of “computing and network” to
efficiently satisfy complex QoS and QoE requirements of customized advanced computing services.
(2) A hierarchical control mechanism is adopted to jointly perform global and local management. To
be specific, the controllers are deployed in each domain to achieve dynamically adjust the network
behaviors and manage multi-dimensional network resources. The master controller as a cross-domain
orchestrator to centrally control the entire (Com)?INet. It can communicate with other controllers in
each domain through the eastbound /westbound interface to exchange aggregated control information
[18].

The hierarchical control mechanism divides the functional architecture into three layers, in terms
of computing service layer, mapping adaption layer and converged network layer, as shown in Figure 2.
We next describe each layer in the (Com)?INet functional architecture in detail as below.
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Figure 2. Functional architecture of the designed (Com)?INet.

Computing Service Layer takes service as the basic unit. The attribute characteristics of customized
computing services can be identified according to their QoS and QoE requirements to obtain useful
information, such as whether the task needs to be split and offloaded to multiple computing devices
for processing, how many computing devices need to be scheduled, and which optimal devices to
schedule to complete the task. The above critical information can provide service-level support for the
integrated scheduling of “computing and network” [19]. In addition, the computating tasks can be
divided into different types, such as emergency communication tasks and emergency rescue tasks,
and further divided into general computing tasks and intelligent computing tasks to facilitate global
task management. Generally, computational process of general computing tasks with models that
require global consistency or data integrity, such as linear regression [20] and K-means [21], should
be executed on an edge server with required mathematical tool installed and cannot be split and
need to be performed on separate computing devices. Besides, the computation process of intelligent
computing tasks with AI models that require privacy protection or distributed computing, such as
federated learning [22] and deep neural network [23], can be split and coordinated among multiple
computing devices.

Converged Network Layer takes network component as the basic unit and is mainly responsible for
data storage, forwarding and computing, including network devices, computing devices and integrated
devices. To be specific, network devices such as switches, routers and gateways constitute the core
network and are mainly responsible for data storage and forwarding. The computing devices are
composed of one or more processing units such as central processing unit (CPU), network processing
unit (NPU), field programmable gate array (FPGA) and graphics processing unit (GPU), which are
responsible for processing real-time tasks [24]. Computing devices are distributed at the edge of
the network, including multiple computing centers, compared with network devices. Integrated
devices integrate computing, storage, and forwarding functions. For instance, router devices can have
both storage, forwarding and computing functions by introducing computing function. When the
computing-enhanced router device receives a service, it can process the service locally or forward
it to other appropriate devices. Note that network components support heterogeneous network
protocol communications including IPv4, IPv6, etc, enabling cross-protocol collaborative transmission
mechanism.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Mapping Adaption Layer takes the function as the basic unit and is mainly responsible for scheduling
multi-dimensional resources. There are three computing paradigms that support the implementation
of computing services, in terms of in-network computing [25], out-of-network computing [26] and
end-edge-cloud collaborative computing [27]. In-network computing can directly execute lightweight
computing tasks in network devices, such as switches and routers, along the task transmission path,
instead of transmitting data to traditional computing nodes, such as servers and cloud platforms.
Out-of-network computing, with powerful computing capabilities, can orchestrate heavy-weight
computing tasks to data centers and supercomputer centers for execution. Moreover, a computing task
can be decomposed into multiple micro-services, or a monolithic function can be divided into multiple
portions to orchestrate different parts between ends, edges and clouds. For instance, the deep neural
network (DNN) model can be partitioned, where the shallow layers are deployed and performed on
the ends, the middle layers are deployed and performed on edges, and the other layers are deployed
and performed on the cloud.

In summary, the core of the above computing paradigm is to establish relationships between ser-
vice, group and component. To this end, the service-group mapping and group-component mapping
are constructed. According to the customized task requirements and multi-dimensional resource at-
tributes perceived at a fine-grained level, functional modules in terms of inter-domain scheduling, intra-
domain scheduling, QoS and QoE guarantee are constructed to achieve dynamic service-component
mapping. To be specific, the service-group mapping mechanism is responsible for perceiving and trans-
lating the requirements of massive concurrent computing tasks, and establishing a service group at the
logical level to promote the coordinated processing of each computing task. The group-component
mapping mechanism is responsible for introducing established service group into the physical network,
aggregating network components to coordinate and schedule heterogeneous resources to accomplish
computing tasks.

(Com)?INet architecture decouples computing service layer from converged network layer ver-
tically through the mapping adaptation layer, realizing the coordinated scheduling and intelligent
integration of the service level and network level. On one hand, (Com)?INet architecture is conducive
to network providing users with customizable computing services, and on the other hand, it is also
conducive to providing users with virtual private networks to satisfy the requirements of related
computing services in terms of reliability, security, and scalability. Furthermore, (Com)?INet architec-
ture horizontally decouples the control plane and the operation plane. The upper application plane
communicates with the control plane through the northbound interface, and the underlying data plane
communicates with the control plane through the southbound interface (e.g., P4ARuntime). The control
plane uniformly schedules heterogeneous network resources, translates decisions into configuration
files and sends them to data plane to complete computing services.

2.2. Key Features of (Com)?INet Computational Paradigm

Service-centric paradigm. In (Com)?INet computational paradigm, services become the core com-
ponents and driving force of the network. The traditional network architecture is centered on data
transmission. In (Com)?INet architecture, communication and computation are deeply integrated, and
services need determine the allocation and scheduling of multi-dimensional resources. With the help
of NFV technology, computing services are translated into corresponding service chains (SCs), and
end-to-end services are realized by sequentially connecting the required network functions to satisfy
the diverse requirements of communication and computation [28].

Serverless-based model. Network functions can be chained in an event-driven manner, typically
initialized within milliseconds [29]. This on-demand chaining model enables the system to orchestrate
different locations and differentiated resources in real time to achieve the optimal combination of
user experience, resource utilization and network efficiency. In addition, the model can easily update
and replace specific network functions to adapt to new services or improve algorithm performance,
enabling an efficient, intelligent, and elastic management paradigm.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Regionless-based model. In (Com)?INet architecture, heterogeneous network components are
identified by names of network functions instead of IP addresses. (Com)?INet jointly considers
heterogeneous resources from both the communication and computation perspectives, and schedules
customized services to target network components for computing and analysis along optimal paths
in a decentralized manner, achieving collaborative scheduling within the WAN. Regionless-based
model solves the “IP bottleneck” problem and enables the application of new network architecture
and service-centric paradigm [30].

In this paper, we propose a new computing paradigm, named (Com)?INet, which jointly schedules
heterogeneous resources from both communication and computation perspectives to solve the dilemma
that emerging applications require more computing power while available computing power is
ubiquitous but not easy to use.

2.3. Key Technologies

(1) Measurement and modeling of multi-dimensional heterogeneous resources. The computing capability
of network component 7, referred to as CC,,, is measured by indicators such as FLOPS, IOPS, BOPS and
LOPS, etc., so as to satisfy the differentiated calculation rate requirements of complex and diversified
services. The mathematical expressed as CC, = {FLOPS,,, IOPS,, BOPS,, LOPS,, - - - }. The storing
capability of network component 7, referred to as SC;, is measured by indicators such as disk capacity
DC, disk bandwidth DB, Input/Output Per Second IOPS, memory capacity MC, memory bandwidth
MB, etc. The mathematical expressed as SC,, = {DC,, DBy, IOPS,,, MCy,, MBy, - - - }. The networking
capability of network link [/ is measured by indicators such as bandwidth BW, end-to-end delay
D, delay jitter D], packet loss rate PL, throughput TP, etc. The mathematical expressed as NC; =
{BW,,D;,D]J;,PL;, TPy, - - - }.

(2) Multi-path transmission. In the (Com)?INet computational paradigm, multi-path transmis-
sion mechanism has the characteristics of dynamic awareness, resource coordination and efficient
utilization, and supports data parallelism and task splitting, as described in Figure 3. By perceiv-
ing task requirements, network environment and distribution of multi-dimensional resources, and
comprehensively considering factors such as network load, traffic type, and delay constraints, it
intelligently selects multiple optimal paths to achieve cross-regional, multi-link adaptive transmission.
This mechanism can avoid congestion on a single path, improve data transmission efficiency, and
improve multi-dimensional resource utilization.

Multipath Scheduler | =====- Auvailable Link
—> SubFlow1-1
—> SubFlow1-2

—>» SubFlow1-3

? Flat scheduling

Adaptive Scheduling

Multi-networl
Cooperative

Transmission
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Congestion Control
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Logical Logical Logical
Resource 1 ~ Resource2 *** Resource n

Virtualization ... Virtualization ... Virtualization

Air Ground
—. — Physical —  Physical —
Resources Resources

SAGIN

Ground-based Network

0 Snnanannan

Pad Termination

Figure 3. llustration of multi-path transmission.

(8) Heterogeneous resource scheduling. In the (Com)?INet architecture, heterogeneous resource
scheduling supports scheduling of massive concurrent computing tasks across multiple computing
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domains such as end-edge-cloud, space-air-ground, and multiple data centers, as shown in Figure 4. It
is worth noting that two or more domains can be selected simultaneously to effectively coordinate
computing, storage, and network resources with different geographical distributions to provide
computing services for tasks with extremely strict QoS and QoE requirements. Heterogeneous resource
scheduling requires comprehensive consideration of task characteristics (i.e., parallel mode of large
model training), traffic patterns (i.e., mixed long and short flows, burst flows), network topology and
other factors, and achieves global optimal resource adaptation and computing task execution efficiency
by building an efficient, flexible and intelligent adaptive optimization form.
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Figure 4. llustration of heterogeneous resource scheduling.

(4) Fault tolerance. In the (Com)?INet architecture, fault-tolerance mechanism is designed to
ensure that in a complex network environment, when faced with the network component/link failure,
overload or other sudden abnormal situations, the abnormal point can be quickly located through
the intelligent fault detection and diagnosis system. The mechanism comprehensively considers
multi-dimensional factors such as network topology, resource utilization, QoS and QoE requirements,
and based on preset fault tolerance strategies and real-time network status, dynamically performs
operations such as intelligent re-routing, dynamic load balancing, or flexible migration of network
functions to ensure the continuity of data transmission, uninterrupted critical services, and undegraded
service quality.

As illustrated in Figure 5, the computing services are translated into SCs, routing from ingress
node s to egress node d, and through the ordered network functions {vy, vy, ..., v;} required for the
computing services. For example, when UAV u; fails for some reason, the fault tolerance system makes
the migration decision and migrates the network function v; hosted on 11 to UAV u, that satisfies the
network constraints. The link is rerouted from {my — u; — ny — np} to {my — up — ny — ny}.
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Figure 5. llustration of fault tolerance.

2.4. Working Principle

The working principle for implementing computing services in (Com)*INet architecture is de-
picted in Figure 6. The environment awareness module perceives computing service requirements,
network functions, and multi-dimensional heterogeneous resources from both the communication
and computation perspectives. To be specific, computing services measurement translates comput-
ing service requirements into actually required heterogeneous resources and customized network
functions through intent translation to improve the efficiency of interaction with users. The network
function measurement is to measure the heterogeneous resources required for different functions, so as
to effectively understand the heterogeneous resources required for computing services call functions.
The perceived translated services and heterogeneous resources are notified to scheduling problem
modeling serverless platform for modeling multi-objective joint optimization with multi-network
constraints. Customized network functions are chained, executed, and billed according to current
services. In specific, serverless platform builds SCs for arrival services, and SCs schedule resources in
the heterogeneous infrastructure pooling.
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During orchestrating phase, we establish scheduling mechanism from three perspectives: users,
networks and providers. First, the scheduling mechanism should adaptively satisfy various QoS
requirements from user’s perspective, in terms of delay requirement, heterogeneous resources re-
quirement and ultra-reliable transmission, and so forth. Then, (Com)?INet infrastructure integrates
awareness, forwarding, storage, computing and processing capabilities, which puts forward greater
flexibility requirements for network management. Moreover, an effective resource scheduling mech-
anism should enable the provider to obtain the maximum benefit to motivate more providers to
participate in the communication and computation integrated (Com)?INet. Furthermore, the obtained
scheduling mechanism is translated into the network configuration files, which guide the optimal
network components to host required SCs to accomplish the computing service in serial or parallel
manner.

In summary, (Com)?INet can realize the mapping from computing service to a set of network
components through the intelligent integration of multi-space and multi-dimensional heterogeneous
resources, so as to facilitate dynamic and on-demand adjustment of services and networks.

3. Use Case: (Com)?INet for Levee Piping Hazard Inspection via Remote Sensing

Piping leakage is a critical factor leading to levee breaches and catastrophic flooding disasters.
Levee breaches often result in mass casualties, making piping leakage a major threat to flood disaster
prevention and mitigation in China. According to statistics, China’s river levees extend over 328,000
kilometers, protecting a population of 650 million and 42 million hectares of farmland. However, more
than 90% of these river levees consist of aging earth-rock dams, which are highly susceptible to severe
hazards during the annual flood season due to high water levels. UAV-based remote sensing technology
has demonstrated significant potential in the inspection and identification of piping hazards in levees.
UAV platforms are characterized by their portability, lightweight design, and low cost, enabling rapid
acquisition of levee data. Furthermore, various sensors can capture diverse morphological data of
levees, providing abundant information sources for identifying piping hazards. The remote sensing
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data processing techniques designed based on the (Com)?INet architecture can achieve rapid, accurate,
and large-scale inspections of levee hazards.

However, current UAV-based remote sensing approaches for levee piping hazard inspection face
challenges such as low recognition accuracy and poor scalability. Although piping hazards are visually
prominent in thermal infrared imagery, such imagery is heavily influenced by weather conditions. The
piping features extracted from thermal infrared imagery exhibit significant variability under different
weather and environmental conditions, leading to poor stability in distinguishing piping hazards from
other surface objects. Moreover, the complex flood-season levee environment introduces interference
to recognition algorithms. The levee surface is covered by diverse natural and manmade objects, and
the harsh conditions during the flood season further complicate the scene. Particularly in large-scale,
multi-sensor, and multi-object application scenarios, uncertain objects often affect the performance of
recognition algorithms.

Currently, deep learning-based object recognition algorithms typically rely on large sample
datasets. However, due to the difficulty in obtaining piping hazard data, the demand for extensive
training samples cannot be met. This study proposes an unsupervised machine learning-based method,
SC-based stepwise adaptive clustering method (SACM), for piping hazard segmentation using UAV
thermal infrared imagery. The SC-based SACM method extracts piping hazards through iterative
clustering and adaptive strategies. First, thermal infrared imagery is converted into temperature maps.
Second, a series of binary classifications is applied to the temperature maps to progressively exclude
background regions unrelated to piping hazards, thereby mitigating interference caused by complex
levee environments. Finally, the elbow method is introduced to determine the hyperparameters of the
clustering algorithm, overcoming the dependence on subjective manual settings for cluster centers
and achieving adaptive clustering based on data features.

SC-based SACM is an unsupervised clustering algorithm specifically designed for piping hazard
segmentation in UAV thermal infrared imagery. Unlike traditional clustering algorithms, SC-based
SACM employs a progressive and adaptive strategy to iteratively refine the segmentation process. By
leveraging temperature field analysis and stepwise clustering, SC-based SACM effectively eliminates
irrelevant background regions and accurately extracts piping hazard targets. This method is partic-
ularly robust in complex environments, ensuring high precision and reliability in hazard detection.
The SC-based SACM algorithm is composed of three key steps: temperature field preprocessing,
background removal, and stepwise adaptive clustering. Each step can be modeled as a VNF and
chained into an SC, which can be executed sequentially on multiple computing devices to achieve
the scalable levee piping hazard inspection. The SC-based SACM algorithm is designed to overcome
challenges such as interference from complex levee environments, variability in thermal infrared
imagery due to weather conditions, and the subjectivity of manual parameter selection. By introducing
the elbow method for hyperparameter determination, the SC-based SACM achieves fully adaptive
clustering based on data characteristics, without requiring predefined cluster centers. The specific
process is illustrated as Figure 7, and the main pseudo-code is as follows.
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SC-based SACM for levee piping hazard inspection

Input: UAV thermal infrared imagery I; Convergence threshold €; Maximum iterations T.
Process:
1. Temperature Field Preparation:
- Convert the thermal infrared imagery I into a temperature map T using the thermal
infrared radiative transfer mechanism.
- Normalize the temperature map T to ensure consistent data scaling across different images.
2. Background Removal:
+ Perform a series of binary segmentations on the temperature map T to isolate potential
piping hazard regions:
- Calculate the temperature threshold 7 for binary segmentation using statistical analysis
of the temperature distribution.
- Segment the image into background regions and suspected target regions based on .
- Iteratively refine the segmentation by updating 7 to progressively exclude irrelevant
background regions.
3. Stepwise Adaptive Clustering:
- Apply adaptive clustering to the refined target regions:
- Use the elbow method to determine the optimal number of clusters k based on the
within-cluster sum of squares (WCSS)
- Initialize cluster centroids adaptively based on the temperature distribution of the
target regions.
- Perform iterative clustering to assign each data point to the nearest cluster and update
cluster centroids.
- Continue the clustering to assign each data point to the nearest cluster and update
cluster centroids.
4. Output:
- Extracted piping hazard regions with precise boundaries.
- Cluster assignments U = {uq, uy, ..., u} representing the segmented target areas.

(i) Land surface temperature retrieval from UAV thermal infrared imagery. Utilizing thermal infrared
(TIR) imagery acquired by UAVs, the land surface temperature is retrieved according to the thermal
infrared radiative transfer mechanism. This step ensures the accurate reconstruction of temperature
fields, providing a solid foundation for subsequent analysis.

(if) Levee piping temperature field analysis for image background removal. Based on the retrieved tem-
perature map, the thermal characteristics of piping targets are analyzed. This involves extracting the
temperature distribution features of the target region and performing binary segmentation to separate
the image into background regions and regions containing potential piping targets. This segmentation
step effectively removes irrelevant background areas, reducing interference for subsequent clustering
analysis.

(iii) Feature construction using stepwise adaptive clustering. Following background removal, stepwise
adaptive clustering is employed to construct the thermal field features of the piping targets. This
process includes further refinement of the segmented target regions to extract suspected piping areas.
Automatic clustering is then applied to further delineate and refine the target regions, avoiding the
subjectivity associated with manual threshold selection. The SC-based SACM approach for levee
piping hazard inspection is particularly robust and adaptable for extracting piping targets in complex
scenarios, ensuring high scalability and accuracy in feature construction.
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Figure 7. llustration of SC-based SACM for levee piping hazard inspection via remote sensing.

Benchmarks. (1) k-Medoids (KM) algorithm is a classical partitioning clustering algorithm widely
used in data mining. Unlike k-Means, which relies on centroids as cluster representatives, KM selects
actual data points (medoids) to represent clusters, making it more robust to noise and outliers. The
algorithm aims to minimize the sum of dissimilarities between data points and their corresponding
medoids, ensuring the formation of compact and well-separated clusters. KM algorithm is particularly
suitable for scenarios with non-Euclidean distance metrics or when the dataset contains outliers that
could significantly distort the results of k-Means. By iteratively refining the medoids and cluster
assignments, KM seeks to achieve optimal clustering with respect to the chosen dissimilarity measure.
Because of the global dependence on the central object, the KM cannot be split and can only be executed
as a whole function on a separate computing device. The main pseudo-code is as follows.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.0868.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2025 doi:10.20944/preprints202505.0868.v1

14 of 21

KM-based levee piping hazard inspection

Input: Dataset D = {x1,x2,..., Xy }; Number of clusters k.
Process:
1. Randomly select k samples from D as the initial centroids {u1, yz, . .., px}-
2. Repeat: 3. Initialize C; = @ for1 <i<k.4.Forj=1,2,...,m:
- Compute the distance between sample x; and each centroid p;(1 <i < k) : dj; = [|x; — pill2-
- Assign x; to the cluster with the nearest centroid: A; = argmin;c(y 5 xydi-
-Update the cluster: Uy, = Uy, U {x;}.
v.End For
viFori=1,2,...,k:
- Compute the new centroid for each cluster: y;- = i Yxeu; X
If i; # i /
- Update the centroid:y; = p;.
Else:
- Keep the current centroid unchanged.
vii. End For
3. Until centroids remain unchanged or maximum iterations are reached.
Output: Cluster assignments U = {uy,up, ..., u}.

(2) Fuzzy C-Means (FCM) is a widely used unsupervised clustering algorithm based on fuzzy
set theory. Unlike traditional hard clustering methods, such as k-Means, where each data point is
assigned to exactly one cluster, FCM allows a data point to belong to multiple clusters with varying
degrees of membership. This flexibility makes FCM particularly suitable for applications where data
points exhibit overlapping characteristics or uncertainty in cluster boundaries. The objective of FCM is
to minimize the weighted sum of squared errors between data points and cluster centers, with the
weights determined by the membership degrees. The algorithm iteratively updates cluster centers and
membership degrees until convergence. Since FCM requires global consistency, it cannot be split and
can only be executed as a whole function on a separate computing device. The main pseudo-code is as
follows.

FCM-based levee piping hazard inspection

Input: Dataset D = {x1,xp, ..., X }; Number of clusters k; Fuzziness parameter m > 1;
convergence threshold € > 0; Maximum iterations T.
Process:
1. Initialization:
- Randomly initialize the membership matrix H = [h;;], where h;; € [0,1] and vk hij =1
forall j.

2. Repeat: 3. Update Cluster Centers:
" g
- Compute the cluster center ¢; fori = 1,2,...,k:¢; = Z];,l ],)_C] .
Z]':1 hz]

iv.Update Membership Degrees:
- For each data point x; and cluster i, update the membership degree h;;:

Lia (H%;H)ﬁ
v.Check Convergence:
- Compute the change in membership matrix 6H. If AH < € or the maximum
nember of iterations reached, stop the iteration.
3. End Repeat.
4. Assign each data point x; to the cluster with the highest membership degree.

Output: Cluster centers U = {uy, uy, . .., uy }; Membership matrix H = [h;;].

(3) Gaussian mixture model (GMM) is a probabilistic model widely used for clustering tasks. It
assumes that data points are generated from a mixture of several Gaussian distributions with unknown
parameters. Each Gaussian component represents a cluster, and GMM algorithm aims to model the
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entire dataset as a weighted sum of these Gaussian distributions. GMM is particularly effective for
datasets with overlapping clusters and can model more complex cluster shapes compared to simpler
algorithms like k-Means. Unlike hard clustering methods, such as k-Means, which assign each data
point to a single cluster, GMM performs soft clustering by assigning each data point a probability
of belonging to each cluster. This probabilistic approach makes GMM more flexible in capturing
underlying structure of the data. For the soft clustering process of GMM, the posterior probability
calculation and parameter update must be based on global data to ensure model convergence and
accuracy. Therefore, the GMM model cannot be split and can only be executed as a whole function on
a separate computing device. The main pseudo-code is as follows.

GMM-based levee piping hazard inspection

Input: Dataset D = {x1, xp, ..., Xy }; Number of clusters k; convergence threshold € > 0.
Process:
1. Initialization:
- Randomly initialize the parameters of the Gaussian components.
- Means x;(i =1,...,k).
- Covariance matrices ) ;(i =1,...,k).
- Mixing coefficients 7 such that Z{-‘Zl =1
2. Expectation-Maximization (EM) Algorithm:
- Repeat:
- E-step(Expectation):
- For each date point x]-(j =1,...,m) and each Gaussian componenti(i = 1,...,k),
compute the posterior probability (responsibility) that x; belongs to the i—th
i N (x| xi, 1)
o N(xlx5)
function:N(x;[x;, i) = MW
- M-step(Maximization):
- Update the parameters of the Gaussian components based on the responsibility ;;:
a.Update the mixing coefficients:7;; = % Z}”Zl Vji
L1 7jix
Yty vji

Gaussian:yj; = where N(x;|x;, ;) is the Gaussian probability density

b.Update the means:y; =

. . i (=) (—=xi) T
c.Update the covariance matrices:y; = ==L =7 &
p 1 Zj:1 Vji

- Check for Convergence:
- Compute the log-likelihood of the data under the current model:
logL = Y/ log(Yh_y 7t - N(xj|xi, X))
- If the change in log-likelihood is less than the threshold € stop the iteration.
3. Output:
- The parameters of the Gaussian components (x;, };, 77;) and the cluster assignments
based on the maximum posterior probability: Cluster assignment for x; = argmax;y;;.

Performance Evaluation. Evaluation Indicator. Mean Intersection over Union (mloU) and total
runtime of per frame are adopted in this paper for evaluating accuracy of target extraction and
algorithm efficiency. The mIoU quantitatively measures the accuracy of predicted segmentation results
com-pared to the label truth. It evaluates the overlap between the predicted segmentation region and
the true region for each class and computes the average across all classes. As a robust and interpretable
metric, mloU is particularly suitable for assessing the performance of clustering and segmentation
algorithms, including those applied to UAV thermal infrared imagery for levee piping hazard detection.
For the specific target, the IoU and the total runtime are computed as below.

TruePositive

0 True Positive + False Positive + False Negative

1)

Ttotal = Tend — Titart, (2)
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where True Positive is the number of pixels correctly predicted as belonging to piping target, False
Positive is the number of pixels incorrectly predicted as belonging to piping target. False Negative if
the number of pixels belonging to piping target.

Experimental Data. The experimental data in this manuscript were obtained using remote sensing
images captured by the DJI H20T sensor mounted on the DJI M300 UAV. The images were taken from
a nadir perspective with a flight speed of 8 meters per second, primarily acquiring thermal infrared
remote sensing images. The data collection took place in the Pajiang River Basin, Fogang County,
Qingyuan City, Guangdong Province, on April 20, 2023. The UAV operated at a flight altitude of
30 meters, and the thermal infrared camera had a resolution of 640 x 512 with a Noise Equivalent
Temperature Difference (NEDT) < 50mK@f /1.0. During this data acquisition, eight frames of thermal
infrared remote sensing images containing piping hazards were collected, as shown in Figure 8. These
thermal infrared remote sensing images with piping hazards were used in this manuscript to test and
evaluate the performance of the proposed SC-based SACM algorithm, which in terms of accuracy of
target extraction and computational time of benchmarks.

Piping Frame-2 Piping Frame-3

Piping Frame-7 Piping Frame-8 Scene and Sensor

Figure 8. Eight frames of thermal infrared imagery with piping targets.

Comparison in accuracy of target extraction. As shown in Table 1, SACM demonstrates a significant
advantage in terms of target extraction accuracy. As indicated by the data of Table 1, SACM consistently
achieves the highest mloU values across all tests, with an average mloU of 0.1469. This suggests that
SACM provides superior precision in extracting piping hazards. In contrast, traditional algorithms
such as KM, GMM, and FCM exhibit lower average mloU values of 0.0423, 0.0269, and 0.0303,
respectively. These conventional methods often struggle with the complexities of thermal infrared
remote sensing imagery, where background noise and environmental variations can adversely affect
target extraction accuracy.SACM effectively mitigates irrelevant background regions through its
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progressive adaptive clustering strategy, enhancing the precision of piping hazard extraction. Its
robust and reliable performance in complex environments is evident, maintaining stability under
varying weather conditions. Consequently, SACM demonstrates superior performance in piping
detection tasks, validating its applicability and efficacy in challenging scenarios.

Table 1. Accuracy of target extraction (mloU).

Piping Number KM GMM FCM SACM
1 0.0015 0.0266 0.0000 0.4694

2 0.0173 0.0078 0.0019 0.0198

3 0.0157 0.0013 0.0148 0.1094

4 0.0546 0.0600 0.0604 0.1662

5 0.1016 0.0019 0.0908 0.0741

6 0.0712 0.0788 0.0747 0.0755

7 0.0213 0.0182 0.0000 0.0165

8 0.0550 0.0208 0.0000 0.2441

Mean 0.0423 0.0269 0.0303 0.1469

Comparison in computational time. As shown in Table 2, SC-based SACM also exhibits a remarkable
advantage in computational efficiency. SC-based SACM achieves the lowest average runtime per
frame at 0.2288s, significantly outperforming other algorithms. This indicates that SC-based SACM
is highly efficient in processing thermal infrared imagery for piping hazard detection. In contrast,
traditional monolithic-based algorithms, such as KM, GMM, and FCM, have average runtimes of
6.7628, 96.3845, and 209.3182 seconds per frame, respectively. To be specific, the time complexity of
monolithic-based KM is O (k(n — k)?), where n indicates the number of data points and k indicates the
number of clusters. The time complexity of monolithic-based GMM is O(nkD?), where D indicates
the dimension of the covariance matrix. The time complexity of monolithic-based FCM is O(nkcI),
where c indicates the number of iterations and I indicates the dimension of data. Since FCM needs
to process fuzzy membership, the calculation process is relatively complicated and usually requires
multiple iterations to converge, so the computational time is higher. The efficiency of SC-based SACM
is attributed to the fact that the model can be split and coordinated among multiple computing devices,
and its streamlined clustering process, which reduces computational overhead while maintaining
higher accuracy. This efficiency makes SC-based SACM particularly suitable for real-time applications,
where rapid processing is crucial. The significant reduction in runtime not only demonstrates the
computational superiority of SC-based SACM but also its potential for large-scale deployment in
practical scenarios.

Table 2. Computational time (s).

Piping Number KM GMM FCM SACM
1 6.9079 99.7843 227.2507 0.6001

2 6.21663 93.2404 214.3872 0.1907

3 5.6533 83.7551 217.9142 0.2122

4 6.6272 101.6670 203.7636 0.1717

5 6.3952 99.0716 201.9092 0.1611

6 7.3378 104.0337 207.2638 0.1708

7 6.5378 89.0131 204.2211 0.1601

8 8.4267 100.5110 197.8356 0.1638

Mean 6.7628 96.3845 209.3182 0.2288
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4. Open Issues
4.1. Computing-Oriented Routing Protocol

In the (Com)?INet architecture, the essence of traffic scheduling is to coordinate and optimize
communication and computation, forward computing tasks to the optimal network components, and
achieve efficient use of multi-dimensional resources and end-to-end QoS and QoE guarantees. This
requires comprehensive consideration of network status and available computing resource information
to make optimal forwarding decisions to support traffic scheduling. In addition, how to effectively
balance resources between communication and computation in routing decision-making to avoid
resource waste or bottlenecks is still a complex optimization problem [31]. Especially in the case
of multi-task concurrency, how to design a computing-oriented routing protocol is an important
research topic to achieve ubiquitous connectivity and seamless collaboration of heterogeneous network
technologies in (Com)?INet computing paradigm.

4.2. Deterministic Scheduling for Massive Computing Traffic

Services such as emergency communications and the metaverse require not only computing
resources that are available at any time, but also deterministic guarantees for latency, packet loss, etc.
to satisfy the strict QoS and QoE requirements. For example, in emergency communications scenarios,
the real-time transmission of emergency disaster remote sensing and the rescue instructions requires
that data transmission has strict delay and jitter constraints to ensure accurate feedback of disaster
situation and timely release of instructions. The core challenge is how to achieve efficient, low-latency
resource allocation and path selection for massive computing traffic in a dynamic, heterogeneous
network environment [32]. Therefore, developing a deterministic scheduling mechanism for massive
computing traffic to support advanced computing services effectively is an urgent issue.

4.3. Federated-Enabled Privacy Protection

Security and privacy are critical to all computing paradigms. Although cryptographic techniques
such as differential privacy and homomorphic encryption have been used to improve system security
and privacy, they may reduce the output accuracy and increase computational overhead. Information
sharing and collaboration among multiple service providers make the (Com)?INet paradigm introduce
security and privacy concerns. The core issue is how to achieve a balance between privacy protection
and model performance in distributed data collaboration, and how to reduce overhead of computation
and communication while ensuring privacy remains an open issue and deserves further study. As
depicted in Figure 9, federated-enabled mechanism only shares model parameters instead of raw data
[33], which is an important research topic for privacy protection and reducing data transmission costs.
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Figure 9. Illustration of federated-enabled privacy protection.

5. Conclusions

In this work, we have exhibited (Com)?INet architecture for effectively managing the mapping
between multi-dimensional heterogeneous resources and the advanced computing services. Next,
we have introduced the system architecture, key technologies and working principles of (Com)?INet.
Furthermore, we have presented an use case of levee piping hazard inspection via remote sensing and
proposed an SC-based SACM to make the optimal joint decision for levee piping hazard identification.
Experimental results have confirmed the effectiveness of (Com)2INet architecture. Finally, we discuss
the open issues and potential research trends. For the future work, we will study an adaptive levee
piping hazard inspection mechanism for federated reinforcement learning to enable (Com)?INet to
support data-sensitive computing services, as illustrated in Figure 9.
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(Com)?INet Communication and computation integrated network

SDN Software defined network

NFV Network function virtualization

QoS Quality of service

QoE Quality of experience

Al Artificial intelligence

VNF Virtual network function

SC Service chain

UAV Unmanned aerial vehicle

SACM Stepwise adaptive clustering method
TIR Thermal infrared

KM k-Medoids

FCM Fuzzy C-Means

GMM Gaussian Mixture Model

mloU Mean Intersection over Union

NEDT Noise Equivalent Temperature Difference
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