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Abstract

Recently, time-series forecasting foundation models trained on large, diverse datasets have demon-
strated robust zero-shot and few-shot capabilities. Given the ubiquity of time-series data in IoT,
finance, and industrial applications, rigorous benchmarking is essential to assess their forecasting
performance and overall value. In this study, our objective is to benchmark foundational models from
Amazon, Salesforce, and Google against traditional statistical and deep learning baselines on both
public and proprietary industrial datasets. We evaluate zero-shot, few-shot, and full-shot scenarios
using metrics such as sMAPE and NMAE on fine-tuned models, ensuring reliable comparisons. All
experiments are conducted with onTime, our dedicated open-source library that guarantees repro-
ducibility, data privacy, and flexible configuration. Our results show that foundation models often
outperform traditional methods with minimal dataset-specific tuning, underscoring their potential
to simplify forecasting tasks and bridge performance gaps in data-scarce settings. Additionally, we
address non-performance criteria—such as integration ease, model size, and inference/training time,
which are critical for real-world deployment.

Keywords: zero-shot forecasting; foundation models; model benchmarking; time series analysis;
industrial applications

1. Introduction

The ability to forecast is one of the most prevalent uses of modeling. From weather forecasting
to anomaly detection for specific industrial machines, accurately predicting the next few data points
can significantly impact outcomes. Therefore, to be able to choose the right predictor is of capital
importance.

In this paper, we explore some of the most recent modeling methods to predict time series. Those
models are called foundation models and are becoming gradually more prevalent in the literature.
For instance, notable examples include Chronos by Amazon, Moirai by Salesforce, and TimesFM by
Google [1-3]. These models are based on methods similar to those used in foundation models for other
applications, such as NLP.

Today, data scientists can rely on existing benchmarks such as GIFT-Eval or ProbTS to guide the
selection of foundation models [4,5]. However, when applying these models to their own datasets,
the results may differ from those reported. Furthermore, the benchmarks often consider the zero-shot
scenario of those models, whereas the latter models can be trained and used in few-shot, or full-shot
scenarios as well, leaving practitioners with an incomplete view of the models’ true potential.

Therefore, our research question revolves around the use of time series with foundation models,
and is the following: “What is the performance of foundation models for time series forecasting and analysis on
industrial datasets, particularly in the context of few-shot and zero-shot learning for specific use cases?”

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Given the modernity of these models, this task involves challenges. Each model is rather large,
requires significant computational power, has no unified interface, can treat time series differently (e.g.
uni- or multi-variate, etc.), and metrics are difficult to choose.

In summary, the ability to position the performance of a given model on a specific dataset is of
utmost importance. It enables practitioners to leverage these models and accelerates the technological
transfer from academia to the industry.

The outline of our paper is structured within the framework of the scientific method. First, we
explain the method based on a benchmarking tool that we developed. Second, we present the results
of our benchmark. Finally, we discuss the implications of these results.

2. Materials and Methods

Our work’s objective is to evaluate the performance of recent foundation models in comparison
with traditional methods. The following sections introduce our method, which aims to be as fair as
possible. First, we present the choice of datasets, models, and metrics. Then, we introduce our method
that fits different training and evaluation scenarios.

2.1. Datasets

Our datasets selection, presented in Table 1, aims to represent both reference data frequently used
in academia and industrial data that no model has ever seen at training time. All academic datasets
were sourced through the Darts Python library [6]. For consistency, a context window of 512 time steps
is used across all datasets. We evaluate forecasting performance at horizons of 24, 48, 96, and 192 time
steps, with a particular focus on the 96-step horizon in most experiments.

Table 1. All datasets used to train the models. These datasets cover a wide range of use cases.

Dataset Type # Features Resolution # Target Features Size
Energy [7] Academic 20 1 hour 1 (Total load) 35,064
ETTh1 [8] Academic 7 1 hour 1 (Oil temp.) 17,420
ETTm1 [8] Academic 7 15 minutes 1 (Oil temp.) 69,680
ExchangeRate [9] Academic 8 1 day 8 (All) 7,588
Weather [10] Academic 21 10 minutes 21 (All) 52,704
ZurichElectricity [11,12]  Academic 10 15 minutes 2 (Consumption) 93,409
HEIA1h Industrial 8 1 hour 8 (All) 11,664
MeteoSwiss [13] Industrial 8 10 minutes 24 (All) 105,264

The Energy dataset covers hourly energy generation and weather in Spain from 2015 to 2018;
eight constant features were removed. ETTh1 and ETTm1 contain hourly and 15-minute multivariate
data from an electricity transformer, used to forecast oil temperature based on power load features.
ExchangeRate contains daily exchange rates for eight countries from 1990 to 2016. Weather includes
21 weather indicators, such as temperature and humidity, recorded every 10 minutes in Germany
during 2020. ZurichElectricity reports 15-minute resolution electricity consumption in Zurich up
to 2022, combining household and business usage with interpolated weather data. HEIA reports
hourly electricity consumption from eight buildings at our engineering school in Fribourg, Switzerland.
Finally, MeteoSwiss provides 10-minute meteorological data from Fribourg/Grangeneuve, with
features like pressure, wind, and humidity.

The datasets are split in a standard way, with 80% used for training and 20% for testing. For
the deep learning models presented in the next section, the data are standardized to zero mean and
unit variance using z-score normalization. In contrast, no normalization is applied to the statistical
models, while for the foundation models, data normalization is handled internally by their respective
implementations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.2. Models

Table 2 presents all models we considered for our benchmark. The 16 models can be split into
three categories: (1) statistical, (2) deep learning, and (3) foundational. Those models have different
characteristics: some are able to model multivariate data, while others focus on univariate series; their
number of parameters varies; and one statistical model is included as a naive baseline for reference.

Table 2. Overview of all models used for the benchmark. T These models are also finetuned.

Model Type Prediction type # Parameters
NaiveSeasonal Statistical Univariate Not applicable
AutoARIMA [14] Statistical Univariate <100
ExpotentialSmoothing Statistical Univariate Not applicable
GRU [15] Deep learning  Multivariate 3-160K

TiDE [16] Deep learning Multivariate 285K-8.5M
TFT [17] Deep learning  Multivariate 3-36K
TSMixer [18] Deep learning  Multivariate 19-931K
Chronos TinyJr [1] Foundation Univariate 8M

Chronos LargeJr [1] Foundation Univariate 710M
Chronos Bolt Small [1] Foundation Univariate 48M

Chronos Bolt Base [1] Foundation Univariate 205M

Moirai smallt [19] Foundation Multivariate 14M

Moirai largeJr [19] Foundation Multivariate 311M

Moirai MoE Small [2] Foundation Multivariate 117M

Moirai MoE Base [2] Foundation Multivariate 935M
TimesFM [3] Foundation Univariate 500M

The hyperparameters of the deep learning models are optimized using the Optuna library in
Python [20]. While each model has its own specific set of tunable parameters, several common
hyperparameters—such as output chunk length, learning rate and its scheduler, dropout rate, and
batch size—were consistently optimized across all models.

2.3. Metrics

The different metrics chosen for this benchmark must enable comparison across datasets and
model characteristics (for instance, uni- vs multivariate output). Therefore, scale-independent metrics
such as sSMAPE and NMAE were chosen over traditional metrics like MSE or MAE.

SMAPE (Symmetric Mean Absolute Percentage Error) evaluates the relative error as a percentage,
symmetrically penalizing over- and under-predictions. sMAPE is calculated as shown in Equation 1.
Unlike traditional MAPE, sMAPE avoids division by zero and ensures that the metric remains bounded,
making it well-suited for datasets with values near zero.

NMAE (Normalized Mean Absolute Error) expresses the total absolute error relative to the total
magnitude of the true values. It provides an interpretable, scale-independent measure of forecast
accuracy, particularly useful for comparing performance across datasets with different units or scales.
NMAE is computed as shown in Equation 2.

SMAPE = 200 x + i ye =9 (1)
T = (lyel + [9:0)
T 4
NMAE = Zi=1l¥t —Jt] )
Y|l

By normalizing the absolute error by the total observed magnitude, NMAE avoids scale-related
issues and allows a fair evaluation across different datasets or targets.

For multivariate forecasting, metrics are computed per component and averaged to yield a single
aggregated performance score across all target variables.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.4. Scenarios

Once the trio of models, datasets, and metrics is defined, different training scenarios are tested
along two dimensions : (1) the amount of training data and (2) the prediction length.

The amount of training data can vary from none (zero-shot), a little (few-shots), to most of the
dataset (full-shot). Statistical and deep-learning models have been trained in full-shot setting on the
datasets from Section 2.1. Foundation models are first evaluated in a zero-shot setting, then fine-tuned
for few-shot scenarios of varying training data proportion, and finally for full-shot. This dimension
allows us to understand how effectively a model can capture patterns or characteristics within the
data.

Regarding the prediction length, the lengths mentioned in Section 2.1 are considered (24, 48,
96, and 192 time-steps). This allows evaluating the ability of a model to capture dependencies as a
function of time.

2.5. Evaluation Framework and Infrastructure

To create this benchmark, we developed an evaluation framework based on the onTime library [21].
This tool eases the development of all scenarios while increasing the certainty that experiments are
executed in the exact same way. To define such experiments, the trio datasets, models, and metrics can
be defined easily in a Python file. This framework is extensible via abstract classes, which allows a
practitioner to specify a custom implementation.

While training is handled by each model’s implementation, evaluation is performed in a unified
way across all models to ensure fair comparison. Specifically, a sliding window with a stride equal to
the prediction horizon is used to generate multiple input-target samples from the test set. These are
provided to the model after training, or directly in the case of zero-shot foundation models. Figure 1
illustrates this sampling process.

full series
) -
. N
|
samples { ‘——
» time

Figure 1. Sliding window sampling on the test set. Each sample includes an input (context) and a target (ground
truth for the prediction horizon).

In terms of infrastructure, all experiments are performed on a Slurm cluster in version 24.05.3
with the following NVIDIA GPUs: (1) RTX A6000 with 48GB, (2) A40 with 48GB and (3) TITAN RTX
with 24GB. Once all models are trained, a single GPU (A40) is used to compute all inference times,
thus allowing a fair comparison.

3. Results

In this section, we present the results of the benchmark described in Section 2. First, we report the
performance of the baseline models and compare them to the foundation models in a zero-shot setting
(Section 3.1). Next, we analyze the performance of the foundation models across varying prediction
horizons (Section 3.2). Finally, we evaluate the foundation models in few-shot settings, considering
different proportions of the training data (Section 3.3).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0279.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 d0i:10.20944/preprints202507.0279.v1

50f 10

3.1. Predictions Across Models

The baseline results from Table 3 feature deep learning and statistical models. The results are
consistent across metrics, and TiDE provides the best predictions in most cases, followed by Naive
Seasonal and AutoARIMA.

Table 3. Forecasting performance of baseline models on a prediction horizon of 96 time steps. The best score per
row is in bold, the second best is underlined. T ES = Exponential Smoothing.

Deep learning Statistical

Metrics GRU TFT TiDE TSMixer Naive AutoARIMA ESt
Seasonal

Ener SMAPE 13.49 15.25 8.102 9.724 20.56 1334 22.67
8y NMAE 1332 1507 0825 .0952 1946 1318 2215
ETThi SMAPE 35.00 47.15 40.11 38.13 34.49 33.60 35.80
NMAE 4003 6310 4097 5261 3627 3526 3781
ETTmi1 SMAPE 32.11 4153 55.02 26.05 22.27 23.59 24.55
m NMAE 3190 6568 1.040 2950 2325 2369 2462
ExchanseRate SMAPE 15.55 18.06 11.45 15.34 2.336 2,514 2537
8 NMAE 1428 1631 1049 1416 0234 0249 0252
Weather SMAPE 79.09 81.48 62.53 65.67 54.58 61.77 66.82
NMAE 250.0 2235 50.21 39.41 1.073 10.85 38.16
ZurichElectricity  SMAPE 14.20 21.87 5.395 8.260 18.53 18.49 23.39
Y NMAE 1401 2160 0548 .0835 1871 11858 2416
HEIA SMAPE 4226 52.47 29.56 39.48 39.99 41.65 31.28
NMAE 5380 6706 3240 5422 4182 4445 3606
MeteoSwiss SMAPE 75.64 89.08 64.64 80.11 68.98 71.96 72.76
NMAE 1.641 2.170 1.085 1.810 2.152 1.768 2.664

In Table 4, we observe that foundation models perform better than the best baseline from Table 3.
The best foundation models are Chronos Bolt Base, and Chronos Large, followed by Chronos Tiny and
TimesFM. For some datasets, the performance across metrics shows a slight instability.

Table 4. Forecasting performance of foundation models on a prediction horizon of 96 time steps, evaluated in
a zero-shot setting. Best baselines scores from Table 3 are also reported. The best score per row is in bold, the
second best is underlined.  TFM = TimesFM, t BB = Best baselines.

Moirai Moirai-MoE Chronos Chronos Bolt

TFM* BB#

Metrics Small Large Small Base Tiny Large Tiny Base
Ener sMAPE 7.360 7.134 7.088 7.062 7.508 4.854 6.183 5.095 7.035 8.102
8y NMAE 0744 0718 0719 0718 .0751 .0491 .0622 .0511 .0708 .0825
ETTh1 sMAPE 32.64 34.61 33.25 34.04 31.15 30.68 31.95 30.56 31.40 33.60
NMAE .3382 3344 .3333 .3370 3242 .3217 .3408 .3334 .3231 3526
ETTm1 sMAPE 23.66 24.64 24.78 23.64 22.95 21.61 21.58 22.40 22.45 22.27
NMAE 2461 2658 .2569 .2488 2347 .2303 2346 .2329 2521 2325
ExchangeRate SMAPE 2.505 2.687 2.470 2.535 2.714 2.583 2.412 2.552 2.565 2.336
& NMAE .0251 .0273 .0248 .0255 .0270 .0260 .0242 .0255 .0256 .0234
Weather sMAPE 64.20 64.43 62.01 59.47 63.47 61.83 62.40 61.81 45.05 54.58
NMAE 2.663 9.052 11.05 5.192 13.03 4987 6.455 4.629 1.243 1.073
ZurichElectricity SMAPE 17.92 18.06 17.30 15.63 8.368 6.119 5.635 4.177 7.292 5.395
Y NMAE 1769 .1804 1727 .1540 0872 0639 .0592 .0440 .0768 .0548
HEIA sMAPE 22.74 20.89 23.31 20.20 23.33 20.73 20.37 19.71 20.67 29.56
NMAE 2570 2423 2670 2321 2687 2411 2343 .2294 .2343 .3240
MeteoSwiss sMAPE 67.72 66.98 66.14 66.49 67.99 62.95 67.58 65.18 62.74 64.64
NMAE .8146 1.488 2.442 1173 1.657 1.662 .9932 1.377 9777 1.085

Figure 2 illustrates the trade-off between inference efficiency and forecasting error on the HEIA
dataset. The bar chart (on the right) shows large differences in inference time across models: deep
learning models are generally faster than foundation models, although lightweight variants like
Chronos Bolt Tiny and Moirai Small also exhibit low inference times. In contrast, larger models such as
Chronos Large and Moirai MoE Base are slower, as well as AutoARIMA and Exponential Smoothing.

© 2025 by the ). Distributed under a Creative Comm
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The scatter plot (on the left) highlights that foundation models offer the best accuracy while
maintaining competitive latency. Chronos Bolt and Moirai models represent a favorable trade-off,
achieving both low error and fast inference.

0.70
~0.65
~0.60
L 0.55 Model Inference time [s]
Naive Seasonal 0.02 -
L 0.50 TSMixer 0.02 -
Chronos Bolt Tiny 0.03
é A Moirai Small 0.03 -
Wy 1045 3 TIDE 0.03 -
m GRU 0.04 -
0.40 Chronos Bolt Base 0.05 -
Moirai Large 0.06 -
L 0.35 TFT 0.10 -
TimesFM 0.41 §
Chronos Tiny 0.66
[0-30 Moirai MoE Small 1.09
ExponentialSmoothing 1.11
A L0.25 ® AutoARIMA 4.03
| Moirai MoE Base 4.04
Chronos Large 6.68
T T T T — T T T T T T 1 0.20
0.01 0.020.03 0.10 0.200.30 1.00 2.003.00 10.00

Inference time [s]

Figure 2. Comparison of forecasting models trade-off between inference time (log scale) and forecasting accuracy
measured by NMAE on the HEIA dataset.

3.2. Predictions Horizons

In terms of prediction horizon, Table 5 showcases the ability of models to predict different horizons.
The best models align with the results from the previous Table 4. The awaited result is that the longer
the prediction horizon, the more difficult it is to predict. However, when looking at the scores, the
aforementioned statement is not always confirmed, which can be interpreted as instabilities difficult to
characterize.

Table 5. Forecasting performance of foundation models on different prediction horizons, evaluated in a zero-shot
setting. NMAE is reported. The best score per row is in bold, the second best is underlined. *TFM = TimesFM.

Moirai Moirai-MoE Chronos Chronos Bolt .

TFM

Horizons Small Large Small Base Tiny Large Tiny Base

24 0643 .0592 .0591 .0528 .0563 .0338 .0503 .0385 .0589

Ener 48 0719 .0678 .0678 0628 .0678 .0414 .0587 .0442 .0676
8y 96 0744 0718 .0719 0718 .0751 .0491 0622 .0511 .0708

192 .0773 .0755 0746 .0802 .0754 .0529 .0646 .0556 .0734

24 2048 2104 1970 2021 2011 2074 1999 1944 2077

ETThi 48 2619 2713 2503 2547 .2447 2490 .2495 2517 2536
96 .3382 .3344 .3333 .3370 3242 3217 .3408 .3334 .3231

192 .2883 2969 .3063 .2905 .2849 .2838 .3070 .2870 2784

24 1616 1967 1752 1755 1796 .1446 1479 1443 1643

ETTml 48 2515 2742 2574 2571 .2382 .2166 .2397 .2307 2594
96 2461 .2658 2569 .2488 .2347 .2303 2346 .2329 2521

192 2917 .3094 .3055 .3007 2950 .2870 .3008 .3017 2977

24 0138 0133 .0128 .0130 .0140 .0136 0131 .0136 .0132

ExchangeRate 48 0177 .0179 .0171 0174 .0186 .0184 .0170 .0182 .0180
8 96 .0251 .0273 0248 .0255 .0270 0260 .0242 .0255 .0256

192 .0350 .0472 .0394 .0397 .0406 .0375 .0340 .0343 .0346

24 .8605 4102 5990 .8083 2.260 3976 2.760 6189 6271

Weather 48 2915 1.317 6.538 7.237 1.779 9095 6.655 1.919 1.834
96 2.663 9.052 11.05 5.192 13.03 4987 6.455 4.629 1.243

192 .5276 .6359 .8007 7821 7816 .5519 6735 .5559 .6298

© 2025 by the ). Distributed under a Creative Commons CC BY license.
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Table 5. Cont.
Moirai Moirai-MoE Chronos Chronos Bolt
TFM*
Horizons Small Large Small Base Tiny Large Tiny Base
24 .0883 0758 0721 10596 10339 .0244 10292 .0233 0316
ZurichElectricit 48 1576 1413 11403 1076 0501 .0297 .0348 .0289 0441
urichblectricity % 1769 1804 1727 1540 0872 10639 0592 .0440 0768
192 1757 .1838 1752 1621 11056 .0825 .0667 .0501 10926
24 2220 11959 2131 1924 2123 .1837 11998 1937 2013
HEIA 48 2459 2177 2479 2111 2322 .2086 2173 .2098 12206
96 2570 2423 2670 2321 2687 2411 2343 2294 2343
192 2687 2659 2807 2467 2762 2540 2437 2408 2507
24 6949 8155 8457 6222 7558 7167 6576 8176 .6057
MeteoSwi 48 1.153 1.441 1.771 1.016 1.457 1.297 1.045 1.346 9871
eleoswiss 9% 8146 1.488 2442 1173 1.657 1.662 9932 1377 9777
192 1.226 1.530 1.850 1.898 1.584 1.374 1.295 1.231 1.336

3.3. Few-Shot Learning with Various Data Proportions

Finally, we test the gain in score as a function of the proportion of the data seen by the model.
Table 6 reports forecasting performance for 0% (zero-shot), 33%, 67%, and 100% (full-shot) scenarios.
The results indicate that fine-tuning provides added value in most cases. However, Chronos Large
appears to benefit less from fine-tuning compared to other models. Additionally, fine-tuning does not
yield improvements when the data presents a more random character, which could indicate a data
issue.

Table 6. Forecasting performance of finetuned foundation models using different proportions of available training
data from 0% (zero-shot) to 100% (full-shot). NMAE is reported. The best score for a given dataset and model
is shown in bold. The overall best score for each dataset across all models is highlighted in bold red, and the
second-best in underlined red.

Moirai Chronos
Proportions Small Large Tiny Large
0% .0744 0718 .0751 .0491
Energy 33% .0727 .0704 .0649 .0549
67% .0667 .0658 .0594 .0495
100% .0687 0661 .0599 .0445
0% .3382 3344 3242 3217
ETTh1 33% 3146 .3307 3315 .3161
67% 3173 3167 3157 3272
100% 3127 .3346 .3099 .3460
0% .2461 .2658 .2347 .2303
ETTm1 33% .2404 3616 .2459 .2540
67% .2686 .3693 2484 2754
100% 2437 .2558 2198 .2308
0% .0251 .0273 .0270 .0260
ExchangeRate 33% .0282 .0694 .0319 .0319
67% .0250 .0360 .0285 .0299
100% .0285 0779 .0251 .0302
0% 2.663 9.052 13.03 4987
Weather 33% 3.793 6.041 2.053 .9532
67% 6.670 2.425 1.670 3.274
100% 2.459 3.703 8.644 5.433
0% 1769 .1804 .0872 .0639
ZurichElectricity 33% .0482 .0475 .0326 .0295
67% .0419 .0526 .0323 .0277
100% .0499 .0535 .0333 .0265
0% .2570 .2423 2687 2411
HEIA 33% .2631 2736 3271 2574
67% 2991 2920 2981 2488
100% .2653 2728 .2494 .2420
0% .8146 1.488 1.657 1.662
MeteoSwiss 33% 5650 .6690 6111 9706
67% 4954 4532 1.446 7739
100% .5396 5316 7382 .6285

s). Distributed under a Creative Commons CC BY license.
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4. Discussion

In the context of this benchmark, we asked ourselves: What is the performance of foundation models
for time series forecasting and analysis on industrial datasets, particularly in the context of few-shot and zero-shot
learning for specific use cases?. To answer this question, we performed an extensive analysis of the
models listed in Table 2 with an evaluation procedure testing cases such as datasets, prediction length,
and data quantity.

The results presented in the previous section show the superiority of foundational models when
compared with traditional methods in various contexts. First, as seen on Table 4, the latter models
mostly provide better resulting metrics on prediction tasks. Second, as seen on 2, when their size
remains small, their inference speed is on par with the fastest traditional models. Third, when used in
zero-shot settings, they do not require model-specific retraining.

However, such models are not a solution to all predictive needs. Having sizes varying from 8M to
700M parameters, their larger versions are computationally intensive and slow, limiting applications in
resource-constrained contexts. Albeit, the smallest versions do provide great predictive performances
compared to most baseline models (see Figure 2) within a very portable model, thus allowing for
numerous applied usages.

When benchmarking, we noted interesting features of foundation models regarding (1) their
prediction stability, (2) their prediction length performance, and (3) their fine-tuning process.

Regarding the prediction stability, when looking at the metrics across datasets, it seems like
foundation models are more frequently specialized for some datasets (see Chronos Bolt Base) whereas
baseline models (see TiDE and NaiveSeasonal) obtained great performance for 50% of the datasets.
This seems slightly counterintuitive since one of the basic concepts of foundation models is to perform
well across different datasets.

Concerning prediction performance, irregular behaviors have been observed across different predic-
tion lengths. Indeed, longer predictions are usually harder to predict, and when looking at Table 5,
some errors did decrease. The case of the Weather dataset is particularly special and may be due to the
sampling length giving samples that are difficult to predict.

With respect to fine-tuning, such a process requires quite extensive knowledge, compute, and
can deliver a wide range of results depending on the chosen dataset; e.g. marginal gains on the
HEIA dataset and significant ones on the MeteoSwiss and ZurichElectricity datasets. Therefore, such
a process should be done carefully and is, for now, limited to practitioners having access to great
compute resources.

Finally, we can’t say that one foundation model is better than all others, but given our quantitative
evaluation, Chronos seems to perform generally better. However, the testing of such models should
also be done with a qualitative mindset and visual analysis, for instance, to validate their performance
together with applied experts.

5. Conclusions

This study benchmarks foundation models for industrial time series forecasting, highlighting
their superior zero-shot accuracy compared to traditional methods. Compact models, such as Chronos
Bolt Tiny, provide an optimal balance of speed and performance, suitable for resource-constrained
scenarios. However, larger models require substantial computational resources, and their performance
varies across datasets and prediction horizons. Future work should focus on improving model stability,
simplifying fine-tuning processes, and incorporating qualitative assessments to enhance practical
usability.
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