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Abstract: Asian dust (AD) events and total suspended particle (TSP) was observed at Kanazawa University 

Wajima Air Monitoring Station (KUWAMS), a Japanese background site, during the East Asian winter 

monsoon periods (from November to May of next year) from 2010 to 2021. Nine kinds of polycyclic aromatic 

hydrocarbons (PAHs) were determined in each TSP sample. In this study, a total of 54 AD events were 

observed. According to the different pathways of long-range transportation, AD events were divided into AD-

high (transported at higher altitude, around 4000 m) and AD-low (transported at lower altitude, around 2500 

m). The TSP concentrations increased sharply in the AD and was higher in AD-high (39.8 ± 19.5 μg/m³) than 

that in AD-low (23.5 ± 10.5 μg/m³). While AD didn’t have significant effect on ΣPAHs characteristic variation, 

as ΣPAHs concentration in non-AD periods, AD-high, AD-low were 543 ± 374, 404 ± 221, 436 ± 265 pg/m³, 

respectively. PAHs compositions were also consistent. As a result, TSP concentration was affected by the input 

air mass transported at higher altitude from the desert region while PAHs concentration was under the impact 

of air mass at lower altitude which carried the PAHs emitted from fossil fuels and biomass combustion in 

northeastern China. Moreover, the health risks of PAHs were calculated by inhalation lifetime cancer risk 

which ranged from 10−6 to 10−5 ng/m3, indicating a potential carcinogenic risk at KUWAMS during the East 

Asian winter monsoon period. 

Keywords: Asian dust; polycyclic aromatic hydrocarbons; long-range transportation  

 

1. Introduction 

Asian dust (AD) is composed of mineral aerosols derived from desert areas, such as the 

Taklimakan Desert and the Gobi Deserts in Mongolia and Northern China Desert [1]. Although AD 

is a natural phenomenon, it can affect air quality, atmospheric visibility, and human health negatively 
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[2]. AD occurs most frequently and has the widest impact area during East Asian winter monsoon 

periods (from November to May of next year) and then be transported to northern China, Korea, and 

Japan, where it causes significant atmospheric pollution and health impacts [3-6].  

During an AD outbreak, not only natural aerosols but also anthropogenic pollutants can be 

transported downwind [7-10]. Among the anthropogenic pollutants, polycyclic aromatic 

hydrocarbons (PAHs) have drawn great attention due to their substantial carcinogenicity and 

mutagenicity [11, 12]. PAHs principally originate from incomplete combustion of biomass or fossil 

fuels [13]. The East Asia, especially northern China, always has severe PAHs emissions due to 

increasing utilization of fossil fuels and biomass fuels. Through investigation at the remote back-

ground site in Japan (Kanazawa University Wajima Air Monitoring Station: KUWAMS), our previous 

researches indicated that PAHs from the East Asian continent can participate in long-range transport 

of air masses, which leads to enhanced pollutant concentrations and health risks at the affected site 

[11-14]. 

In addition, some reports suggest that AD not only acts as a carrier of pollutants but also is 

believed to expedite atmospheric chemical reactions due to the exist of transition metal ions and 

oxides [15, 16]. However, our previous laboratory simulations showed that natural AD particles had 

a weak adsorption capacity for PAHs and did not promote the photodegradation of PAHs [17]. 

Furthermore, a pilot comparative investigation of the background site in Japan indicate that the 

arrival of AD does not necessarily lead to an increase in long-range PAHs concentrations [14]. 

Therefore, there has been no systematic study of the association between AD and atmospheric 

pollutants up to now, especially for carcinogenic PAHs with strong reactivity in the atmosphere 

during AD events. A systematic observation of combined pollution from ADs and air pollutants over 

long distances will play a critical role in understanding the effect of long-range transportation on the 

downstream environment. 

In this study, the long-term observation of AD events and total suspended particulate (TSP) were 

carried out at KUWAMS, a background site in Japan, during the East Asian winter monsoon period 

from 2010 to 2021. The purposes were to evaluate the long-term variation of AD frequency and to 

compare the characteristics and source of particulate pollutants (TSP and PAHs) during AD events. 

2. Materials and Methods 

2.1. TSP sampling 

TSP sampling was conducted at KUWAMS (Figure 1, Nishifutamatamachi, Wajima City, 

Ishikawa Prefecture, Japan, 37.4°N, 136.9°E; 60 m above sea level), which is located on the Noto 

Peninsula between western Japan and mainland China, 2.1 km from the coastline; it is a background 

site without any dominant anthropogenic emission source of air pollutants [18-21]. 

The TSP sampling work started at 9:00 am by high-volume air sampler (AH-600, Sibata Sci. Tech. 

Ltd., Saitama, Japan) with a quartz fiber filter (8 inch × 10 inch, 2500QAT- UP, Pallflex Products, 

Putnam, CT, USA) and a flow rate of 700 L/min. The filters were change weekly from January 01, 

2010, to December 25, 2021. After sampling, the filters were dried in a desiccator, kept in the dark, 

weighed and kept in the refrigerator (-20°C) until use.  

2.2. Asian dust period 

The periods of the AD events were estimated by lidar images based on the Toyama Light 

Detection and Ranging Observatory database (TLO, 36.70°N, 137.10°E) (Figure 1) [22]. The straight-

line distance between TLO and KUWAMS is 80.13 km (Southeast). LIDAR (Light Detection and 

Ranging) is a device that emits laser beams into the sky, measures and analyzes scattered light such 

as particles, and observes the vertical distribution of particles floating in the sky. The aerosol was 

identified by the depolarization ratio at 532 nm. Through lidar images of depolarization ratio, we can 

determine whether the scatterers are dust or spherical aerosols (mostly atmospheric pollutants), 

water clouds and ice clouds. As shown in Figure S1, non-spherical particles such as dust storms show 

large values (above 0.1: Green color in lidar images), ice clouds have higher depolarization ratio, and 
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water clouds have lower values, while the value of spherical aerosols, mostly atmospheric pollutants, 

are smaller (below 0.1) and exhibits in the blue color in images. In this study, we observed 54 AD 

events from 2010 to 2021, during the East Asian winter monsoon period.  

 

Figure 1. Location of Kanazawa University Wajima Air Monitoring Station (KUWAMS; 

37.4°N,136.9°E) and Toyama Light Detection and Ranging Observatory (TLO; 36.70°N, 137.10°E) 

(Used by permission. Google map: https://www.google.com/maps). 

2.3. Backward trajectory cluster analysis 

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4, Windows-

based version, NOAA Air Resources Laboratory) was used to analyse the transport route of the air 

mass during the AD periods. The global data assimilation system (GDAS 1°) of days from 2010 to 

2021 provided by the National Centres for Environmental Prediction (NCEP) was used. Seventy-two 

hours backward trajectories of arrival at KUWAMS (37.4°N, 136.9°E), at arrival heights of 1500 m 

during each AD were applied. According to HYSPLIT User's Guide, a total of 634 observed 

trajectories were clustered into 3 categories [23].                  

2.4. PAHs analysis 

Nine kinds of target PAHs (fluoranthene (FR), pyrene (Pyr), benz[a]anthracene (BaA), chrysene 

(Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 

benzo[ghi]perylene (BgPe), and indeno[1,2,3-cd]pyrene (IDP)) were determined in each TSP sample 

[7, 8]. 

The methods of pretreatment, analysis and quality control were consistent with our previous 

study [14]. Each filter was cut into small pieces. Then placed them in a flask and added with internal 

standards (pyrene-d10 (Pyr-d10), benzo[a]pyrene-d12 (BaP-d12)). Targe PAHs were extracted via 

ultrasonic extraction with benzene/ethanol (3:1, v/v) which performed for twice. Then washed the 

extract with sodium hydroxide and sulfuric acid solutions, and twice with ultrapure water. After 

washing, 100 μL of dimethyl sulfoxide (DMSO) was added to the solution. After concentrated by 

rotation evaporator, the extract was dissolved to 1.0 mL by acetonitrile. The organic solution was 

filter by 0.45 μm HLC-DISK membrane (Kanto Chemical Co., Tokyo, Japan). Twenty μL solution was 

injected into a high-performance liquid chromatography (HPLC) system (LC-20A series, Shimadzu 

Inc., Kyoto, Japan) for quantitative determination. 

2.5. Quality assurance and quality control  

Particulate-bound PAHs were collected by quartz fiber filters. Before and after sampling, the 

filters were placed and weighted at stable conditions (temperature (21.5 ± 1.5 °C) and relative 

humidity (50 ± 5%)). Blank filters were used to measure the effects of background pollution, and no 

target compounds were found during the transport of blank samples. Analyze methods were 

confirmed by injecting PAHs standard solution into analysis system. The calibration curves of all 

PAHs had good linearity (r > 0.995). The relative standard deviations (n = 3) of all PAHs were less 
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than 5%. The internal standards recoveries of all samples ranged from 87% to 131%. The limit of 

determination is shown in Table S1. 

3. Results and discussions 

3.1. Source of ADs during the sample period 

Figure 2 shows the frequency variation of AD events observed at KUWAMS in the East Asian 

winter monsoon period from 2010 to 2021. Each AD event was identified by lidar images from TLO 

station, and the AD event is regarded as one event if the dust phenomenon continuously lasted for 

consecutive days. The frequency of AD events from 2010 to 2021 was 4.9 times per year. The AD 

events were mostly happened in the springtime (from March to May), with a total of 48 times, while 

6 AD events were observed in wintertime (from November to February), which was caused by the 

strong cyclone activity around the dust source regions in the springtime, which generates strong air 

convention and provides the dynamic conditions for the development of dust storms [24].  

 

Figure 2. The frequency of AD in Japan during the East Asian winter monsoon period from 2010 to 

2021. 

As mentioned above in 2.3, the backward trajectory cluster analysis was carried out to figure out 

the source of ADs, the transport pathway of each cluster will be explained dentally in this part. As 

shown in Figure 3, the air masses that reach an altitude of 1500m above KUWAMS were divided into 

three categories.  The category 1, which accounted for 26% of the total, was that the air mass over 

the Mongolia with the higher average transported height (around 4000 m) and faster transported 

speed (The speed calculated by linear distance of the trajectory was approximately 54.8 km/h), which 

was identified as AD-high for further discussion. The category 2 which accounted for 41% of the total 

was passed over northeast China at the lower average height (around 2500 m) with slower 

transported speed (The speed calculated by linear distance of the trajectory was around 21.5km/h) 

and was identified as AD-low. The category 3, accounting for 33%, showed the effect of local effects 

during the ADs, as the air mass came from Japan with the height lower than 1000 m, around the 

planet boundary layer showed in Figure S2. Because the duration of each AD event ranged from 1 to 

4 days, which was less than the sampling period (7 days) in this study (Figure S1). Therefore, category 

3 reflected that the transport pathway of air mass during non-AD period was included in sampling 

period. Via referring to lidar observation images at TLO and Sainshand during the sampling period 

(Figure S1), prior to the ADs observed in TLO, strong ADs were already outbroken in Sainshand at 

an altitude of 5000 m from the ground generally, with the depolarization ratio (δ532) ranged from 0.2 

to 0.3. Through combining the results of backward trajectory cluster analysis and lidar observation, 

the sources of ADs in this study were considered as the Gobi Desert region in Mongolia (AD-high) 

and northeastern China (AD-low), respectively.  
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Figure 3. Cluster-mean backward trajectory analysis at KUWAMS over 1500 m during AD events 

from 2010 to 2020. The different colors represent different transport pathway. The red line, blue line 

and green line represented for the AD-high (category 1), AD-low (category 2) and local effect 

respectively (category 3). The yellow part represents for the source region of each air mass category. 

3.2. TSP concentration 

Figure 4 compared the TSP concentration at KUWAMS between different AD types (AD-high 

and AD-low) and the period of the ADs were not observed (non-AD: NAD). As shown in Figure 4, 

TSP concentration was highest in AD-high (39.8 ± 19.5 μg/m³), followed by AD-low (23.5 ± 10.5 μg/m³) 

and NAD (16.9 ± 9.8 μg/m³). As the result of one-way ANOVA, TSP concentrations showed extremely 

significant difference between ADs (including AD-high and AD-low) and NADs (p < 0.001); while 

there was also significant difference between AD-high and AD-low as the p value was 0.003, which 

was consistent with previous studies [8, 25]. This indicated that the higher transported altitude and 

wind speed, such as AD-high, had a more notable effect of TSP concentration enhancement, while, 

as for AD-low, the lower altitude and slower wind speed caused that AD particles tended to be 

deposited before the air mass reached Japan. 

 

Figure 4. Concentration variation of TSP in different types of AD events during long-term observation 

from 2010 to 2021. (The plot represents for the outlier which the value is greater than the 75th percentile 

plus interquartile range; and the cross represents for the average value). 

3.3. PAHs concentration, composition and source 

Figure 5(a) shows ΣPAHs (ΣPAHs = Flu + Pyr + BaA + Chr + BbF + BkF + BaP + BgPe+ IDP) 

concentrations variation in NAD, AD- low and AD- high of KUWAMS during the East Asian winter 
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monsoon period from 2010 to 2021. The average PAHs concentration was the highest in NAD (543 ± 

374 pg/m³), followed by AD-low (436 ± 266 pg/m³) and AD-high (411 ± 215 pg/m³). Be different from 

TSP concentration variation, PAHs concentration had no significant difference between NAD and 

ADs (including AD-high and AD-low) with the p value was 0.500; and between AD-high and AD-

low (p = 0.687). The PAHs concentration also showed weak correlation with TSP (r = 0.104).  

Figure 5(b) show the composition of individual PAHs in total PAHs. Among each PAHs, FR, 

Pyr and BbF were predominant, with the average composition were 26.7 ± 4.29%, 17.6 ± 2.25% and 

13.9 ± 2.02%, respectively. Among them, 4-ring PAHs (FR, Pyr, BaA, and Chr) had the predominant 

contribution in the whole period, with the average concentration was 0.313 ± 0.234 pg/m³, followed 

by 5-ring PAHs (total of BbF, BkF and BaP: 0.133 ± 0.093 pg/m³) and 6-ring PAHs (total of IDP and 

BgPe: 0.084 ± 0.052 pg/m³). As for different aerosol type, the contribution of 4-ring PAHs showed a 

reduce trend in NAD (57.7 ± 6.1%), AD-low (55.9 ± 2.7%) and AD-high (55.0 ± 4.5%). On the contrary, 

the contribution of 5-ring PAHs and 6-ring PAHs showed an increasing trend (5-ring PAHs: 25.4 ± 

3.5%, 26.4 ± 1.6% and 26.6 ± 2.9% in NAD, AD-low and AD-high; 6-ring PAHs: 16.9 ± 3.8%, 17.7 ± 

2.7% and 18.4 ± 3.2% in NAD, AD-low and AD-high). However, this variation didn’t show significant 

difference neither between NAD and ADs (including AD-low and AD-high; 4-ring PAHs: p = 0.279; 

5-ring PAHs: p = 0.853; 6-ring PAHs: p = 0.089), nor between AD-high and AD-low (4-ring PAHs: p = 

0.468; 5-ring PAHs: p = 0.754; 6-ring PAHs: p = 0.508).  

These results illustrated that the occurrence and different type of ADs had nonsignificant on 

PAHs concentration and composition variation. This difference probably was contributed by the low 

accumulation of PAHs on AD particles. As previous laboratory studies have pointed out that the 

active groups on the AD particle surfaces tend to accumulate polar components, such as inorganic 

gases or water-soluble inorganic ions, while had weak adsorption to nonpolar PAHs and the 

adsorption of water vapor to AD particles further inhibit the accumulation of PAHs [26-29]. The 

kinetic model study also had proved that because of the extremely slow absorption rate of PAHs [30].  

  
(a) (b) 

Figure 5. Variation of PAHs (a) concentration and (b) composition in different types of AD events 

during long-term observation from 2010 to 2021. (The plot represents for the outlier which the value 

is greater than the 75th percentile plus interquartile range; and the cross represents for the average 

value). 

In this study, several PAHs isomer ratio ([Flu]/([Flu] + [Pyr]), [BaA]/([BaA] + [Chr]), [IDP]/([IDP] 

+ [BgPe]) and [BbF]/([BbF] + [BkF])) were applied for identifying the major sources of PAHs 

qualifiedly. Related studies have reported that 4-ring PAHs were iconic species released from coal 

and biomass combustion; and most 5,6-ring PAHs were generated from vehicle emission. The result 

of diagnostic ratio in NAD, AD-low and AD-high were showed in Figure 6. The distribution range 

of diagnostic ratio data of NAD, AD-low and AD-high was similar ( [FR]/ ([FR] + [Pyr]) (NAD: 0.45 - 

0.69; AD-low: 0.52 - 0.67; AD-high: 0.56 - 0.67), [BaA]/ ([BaA] + [Chr]) (NAD: 0.18 - 0.39; AD-low: 0.22 

- 0.30; AD-high: 0.22 - 0.30), [IDP]/ ([IDP] + [BgPe]) (NAD: 0.20 - 0.72; AD-low: 0.45 - 0.63; AD-high: 
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0.44 - 0.67), [BbF]/ ([BbF] + [BkF]) (NAD: 0.70 - 0.77; AD-low: 0.48 - 0.73; AD-high: 0.72 - 0.75) and 

there was no significant difference in either ratio (p > 0.05). This result suggests that whether AD 

occurred or not and the types of AD will not affect the variation of PAHs emission source. Through 

comparing the ratio ranges among emissions, traffic emission, coal and biomass combustion were the 

main source of PAHs [31-34]. As shown in Figure 6, coal combustion showed more notable 

contribution among PAHs emission sources, suggesting the overwhelm superiority of coal 

combustion on the PAHs concentrations in the East Asian winter monsoon period, which was 

consistent with previous study in KUWAMS, China and differed from the results in Korea where 

mainly contributed by vehicle emission [9, 35, 36]. Combining with the result of backward trajectory 

analysis, we speculate that PAHs at KUWAMS were predominantly contribute by the emission in 

northern China, whether the AD happened or not.  

 
Figure 6. Diagnostic ratios of PAHs in different types of AD events during long-term observation 

from 2010 to 2021. 

3.4. Health risks of PAHs 

PAHs have been well known for their serious carcinogenicity and mutagenicity [37-39]. To 

evaluate the possible health risk of PAHs under the effects of AD, the toxic equivalent concentrations 

relative to BaP (TEQ) of each PAH and the inhalation lifetime cancer risk (ILCR) were calculated, as 

shown in the following equations [40, 41]: 𝛴𝐵𝑎𝑃௘௤ = 𝛴ሺ𝐶௜ × 𝑇𝐸𝐹௜ሻ         (1) 𝐼𝐿𝐶𝑅 =  𝛴𝐵𝑎𝑃௘௤ × 𝑈𝑅஻௔௉        (2) 

The TEQ of individual PAH was evaluated as BaP equivalent concentration (BaPeq) since BaP is 

widely used as risk assessment for total PAHs and contribute to 40% - 80% cancer risk of PAHs 

(Figure 7, Table S2). As a result, the average TEQ of total PAHs in NAD, AD-low and AD-high were 

0.05 ± 0.03 pg/m3, 0.04 ± 0.03 pg/m3, 0.04 ± 0.03 pg/m3, respectively. The TEQ of total PAHs had 

nonsignificant variation in NAD, AD-low and AD-high (p = 0.471) and all of them were less than the 

European Union standard (1 ng/m3) (Figure 7) [42]. As for individual PAH, attributing to the similar 

PAH composition in NAD, AD-low and AD-high, the TEQ of each PAH was similar in each period. 

Except for BaP, the TEQ of IDP, BbF, BkF and BaA occupied for more than 30% in total PAHs, which 

suggest that the PAHs from traffic emission posted a higher carcinogenic risk to human health 

(Figure S3). In addition, as the result of PAHs concentration reduction, the TEQ of total PAHs showed 

a similar decreasing trend in the ADs from 2010 to 2021, illustrating a reduction in PAHs health effects 

(Figure S4).  
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Figure 7. Inhalation lifetime cancer risk values in different types of AD events during long-term 

observation from 2010 to 2021. (The plot represents for the outlier which the value is greater than the 

75th percentile plus interquartile range; and the cross represents for the average value). 

The ILCR value was calculated by multiplying the BaPeq concentration by the unit cancer risk 

originating from the BaP (URBaP) [40]. In this study, the value of URBaP was referred to the 

epidemiological data focused on coke oven workers (URBaP: 8.7 × 10-5 ng/m3) from World Health 

Organization [36]. As a result, the ILCR in NAD, AD-low and AD-high were 3.01 × 10-6, 2.28 × 10-6, 

2.23 × 10-6 ng/m3, respectively. The similar level of the ILCR in each periods suggests that AD had no 

significant effect on health risks caused by PAHs. Be similar with the variation of TEQ, the ILCR also 

showed a downward trend in ADs from 2010 to 2021 (Figure S3). However, the ILCR were all exceed 

the acceptable level (10-6) reported by the US EPA, indicating that the negative health effects of PAHs 

were noteworthy [43]. 

4. Conclusions 

In this study, TSP was collected at KUWAMS, a background site in Japan, during East Asian 

winter monsoon from January 01, 2010, to December 25, 2021. Nine kinds of PAHs were analyzed in 

each TSP sample. And AD frequency was monitored through the lidar images from Toyama lidar 

observation. As a result, from 2010 to 2021, the frequency of AD in Japan was at stable level. Under 

the effect of enhanced East Asian monsoon, the AD particles were able to be long-range transported 

from desert region under different transport pathways and resulted in a great increase in particulate 

matter concentration at KUWAMS in the AD periods. In contrast, the concentration and composition 

variations for PAHs differed from that for TSPs, indicating that AD does not necessarily lead to an 

effect on the change in PAHs characteristic. Based on the backwards trajectory analysis, the different 

concentration trends for PAHs and particulates were related to the heights of long-range air mass 

transport during the AD events: PAHs were affected by the air mass transported at lower altitude 

and generated from coal and traffic emission in northeastern China; particulate matters were under 

effect of air mass at higher altitude from the Gobi Desert. In addition, the ILCR values during the 

non-AD and AD periods remained similar and exceed the acceptable limit, indicating that the air 

quality in Japan still required attention. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. Figure. S1. Lidar observation of Volume Depolarization Ratio (532 nm) during 

AD events from 2010 to 2021 at Sainshand (44.5 °N, 110.8 °E) and Toyama (36.70°N, 137.10°E). The green color 

in lidar observation images shows the dust aerosol, the blue color represents for spherical aerosol and the red 

color represents for ice cloud. Each AD event is marked in black block. The absence of the lidar observation 

images at Sainshand during 2013 (03, 04), 2014 (05), 2015 (02, 03, 04), 2021 (03, 04, 05) here is due to the lack of 
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data in the official website. Red box represents for AD-high events, blue box represents for AD-low events and 

black box represents for AD events observed in Sainshand.; Figure S2. The height of planetary boundary layer 

during AD occurrence period from 2010 to 2021 over the Toyama area (longitude: 36 < x < 38, latitude: 136 < y < 

137).; Figure S3. The proportion of each PAH BaPeq in different types of AD during long-term observation from 

2010 to 2021.; Figure S4. ΣBaPeq and ILCR in AD events and AD frequency in the East Asian winter monsoon 

period from 2010 to 2021.; Table S1. LOD and LOQ of target PAHs.; Table S2. TEF of target PAHs. 
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