Pre prints.org

Article Not peer-reviewed version

A Comparative Analysis of Tokenization
Methods for Sinhala Natural Language
Processing

Ransaka Ravihara "

Posted Date: 7 August 2025
doi: 10.20944/preprints202508.0561.v1

Keywords: machine learning; natural language processing; low resource language; tokenization

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4657993

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Comparative Analysis of Tokenization Methods for
Sinhala Natural Language Processing

R R M Withanachchi

University of Moratuwa; withanachchirrm.25@uom.lk

Abstract

Tokenization is a foundational step in Natural Language Processing (NLP), yet its impact on mor-
phologically rich, low-resource languages like Sinhala is not well understood. This paper presents a
systematic evaluation of five tokenization strategies—Byte, Character, Grapheme Cluster, WordPiece,
and Word-level—to determine their effect on downstream task performance and computational effi-
ciency. We train and assess Transformer-based models on four datasets: a clean baseline, and three
variants synthetically corrupted with minor typos, aggressive typos, and code-mixing to simulate
real-world text. Our results reveal a critical trade-off. Word-level tokenization achieves the highest
Fl-score (0.727) on clean text and is the most computationally efficient, but its performance degrades
significantly on noisy text. Conversely, WordPiece demonstrates superior robustness, maintaining
high performance across all conditions, making it the most reliable choice for real-world applications,
albeit at a higher computational cost. Grapheme Cluster tokenization emerges as a strong, balanced
alternative. This study provides crucial empirical evidence to guide the selection of tokenizers for
Sinhala NLP, establishing a baseline for performance, robustness, and efficiency.

Keywords: machine learning; natural language processing; low resource language; tokenization

1. Introduction

Tokenization, the process of segmenting raw text into fundamental units, is a critical initial
step in any Natural Language Processing (NLP) pipeline. The chosen strategy directly dictates how
linguistic information is structured for a model, thereby influencing its performance, robustness, and
computational demands. While subword-based tokenizers like WordPiece [1] and Byte Pair Encoding
(BPE) [2] are standard for high-resource languages, their efficacy for morphologically complex, low-
resource languages such as Sinhala remains underexplored.

This research addresses this gap by investigating a central question: What is the optimal tokeniza-
tion strategy for Sinhala NLP, considering the trade-off between model performance, robustness to
textual noise, and computational efficiency?

To answer this, we conduct a comparative analysis of five distinct tokenization methods: Byte-
level, Character-level, Grapheme Cluster, WordPiece (subword), and Word-level. We evaluate these
by training Transformer-based classification models from scratch on four datasets designed to mirror
real-world conditions: a clean dataset from social media, and three variants synthetically generated to
include typographical errors and code-mixing (the use of Romanized "Singlish").

Although pre-training large language models (e.g., BERT [3]) from scratch for each tokenizer
would be ideal, the prohibitive computational cost necessitates a more focused approach. This study
therefore provides a rigorous evaluation of tokenizer effectiveness within a controlled experimental
framework, offering a vital baseline for researchers and practitioners building robust NLP systems for
the Sinhala language.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

20f6

2. Methodology

The core of our methodology involves a systematic comparison of five distinct tokenization
strategies in the four different Sinhala NLP corpus. This results in a total of 20 experimental setups
(5 tokenizers x 4 datasets), allowing for a comprehensive analysis of the interplay between tokeniza-
tion and task performance.

2.1. Tokenization Strategies

We evaluate five tokenization methods, ranging from simple character splits to complex subword
segmentation.

2.1.1. Character-Level Tokenization

This is the most granular tokenization method, where the input text is decomposed into individual
characters. While this approach creates a small, fixed vocabulary and avoids any out-of-vocabulary
(OOV) issues, it disassembles semantically meaningful units (like words or morphemes) into compo-
nents that lack intrinsic context.

SedBo®)6E > 3} a e ot || @ a8 ) %) ) ® ot

Figure 1. An example of Character-Level Tokenization in Sinhala.

2.1.2. Grapheme Cluster Tokenization

Unlike simple character splitting, Grapheme Cluster Tokenization splits text into visually and
linguistically cohesive units. In Sinhala, a single perceived "letter" is often composed of a base
consonant and one or more diacritics (vowel signs, or "pili"). This tokenizer correctly groups these
components into a single token, which preserves more semantic meaning than an individual character.

degBwmes » (B fec ) || 2 || @ || s

Figure 2. An example of Grapheme Cluster Tokenization, which correctly groups base consonants with their
diacritics.

2.1.3. Byte-Level Tokenization

This method tokenizes text at the raw byte level based on its UTF-8 encoding. As Sinhala
characters are typically represented by 3 bytes, this results in significantly longer token sequences. The
primary advantage is the ability to model any text without encountering OOV tokens. The trade-off is
that it creates long sequences and splits fundamental grapheme clusters into meaningless byte tokens,
posing a challenge for the model.

SedBowes > \xe0Axb73x80 | [\xe0ixb7%x92 | [\xcOixb6Yxaf | [\xe0¥xb7\x9a | |\xc0ixb7\x81

Figure 3. An example of Byte-Level Tokenization, showing how a single grapheme is split into multiple byte
tokens.

2.1.4. Subword-Based Tokenization (WordPiece)

Subword tokenization is the de facto standard in modern NLP. We use the WordPiece algorithm,
notably employed by BERT [3]. WordPiece starts with a vocabulary of individual characters and
iteratively merges frequent pairs of subword units to maximize the likelihood of the training corpus.
This method strikes a balance between character- and word-level approaches, keeping common words

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

30f6

intact while breaking rare words into meaningful subword units, effectively handling morphology
and reducing the OOV problem.

5@6@@(5)@(55 ..................... > g@é@@ ##(5)@65

Figure 4. An example of WordPiece subword tokenization.

2.1.5. Word-Based Tokenization

We also evaluate a traditional word-based tokenizer that splits text based on spaces and punctua-
tion. While this method produces the shortest token sequences, it suffers from the out-of-vocabulary
(OOV) problem, where any word not seen during training is mapped to a single "unknown" token.
This is particularly problematic for morphologically rich languages like Sinhala. Nevertheless, it is
included in our analysis to provide a comprehensive baseline.

3. Model Architecture

The classification model used for all experiments is based on the Transformer encoder architecture
introduced by Vaswani et al. [4]. As depicted in Figure 5, our classification model comprises three
main components: an embedding layer, a stack of Transformer encoder blocks, and a final classification
head.

Pooling + Classification Head

© mpus
( ] ‘9‘% énpusg

Multi-Head Attention

] N I
[ ( ( L Add & Norm

FFN |
[ Multi-Head Attention

-

| }
[/
7 )
.&0
&"’&
&
o )

FFN

Add & Norm

N (N ()
—

r

To Next layer

(Positiona.l Embeddings)—c}— L )
C Token Embeddings )

T
L e e ]

Figure 5. The Transformer-based classification architecture. Input tokens are converted into embeddings,
processed by a stack of N identical encoder layers, and the final representation of the first token is passed to a

linear layer for classification.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

40f6

First, the input sequence of token IDs is converted into dense vector representations by the
Token Embedding layer. To provide the model with information about the order of the tokens, these
embeddings are added element-wise with Positional Embeddings. The resulting combined embeddings
are passed through a stack of N identical Transformer Blocks. Each block contains two primary sub-
layers: a Multi-Head Self-Attention mechanism and a position-wise Feed-Forward Network (FEN).
A residual connection followed by layer normalization is applied after each sub-layer.

Finally, for classification, the output representation of the first token in the sequence (i.e., the
‘[CLS]’ token) from the final encoder block is used as an aggregate representation for the entire sequence.
This vector is passed through a linear layer followed by a softmax function to produce a probability
distribution over the target classes.

4. Experiment Setup
4.1. Datasets and Data Augmentation

To assess tokenizer effectiveness for a low-resource language in a manner that reflects real-world
use cases, we used the original SOLD [5] dataset as a baseline and created three synthetic variants. Real-
world text data often contains typographical errors and code-mixing. Therefore, our data augmentation
process was designed to simulate these practical concerns by generating the following datasets:

1. Minor Typos: Each character in the original text has a 5% probability of being randomly deleted,
replaced, or swapped with an adjacent character.

2. Aggressive Typos: The character-level error probability is increased to 10%.

3. Code-Mixing and Typos: This variant combines minor typos (5% character error rate) with
code-mixing, where each word has a 30% probability of being transcribed into its romanized
form ("Singlish").

An example of the data augmentation is shown below:
e  Original: 8 e6d8 e I 9e® B QS
o Aggressive Typos: 8 606d8® ¢ @ 98ler B DY
s Code-Mixing: ® 62608 tho 8 9836 gini OBYS

4.2. Model Training and Hyperparameters

For each of the 20 experiments, we train the Transformer-based classification model from scratch.
While the vocabulary size varies with the tokenizer, the core architecture hyperparameters are kept
constant to ensure a fair comparison. All models are trained using the AdamW optimizer. Model
performance is evaluated using the macro Fl-score, which is suitable for potentially imbalanced
datasets. The key hyperparameters are detailed in Table 1.

Table 1. Key hyperparameters for the Transformer model.

Hyperparameter Value
Hidden Size (dmodel) 512
FEN Intermediate Size 512
Number of Attention Heads 8
Dropout Probability 0.2
Learning Rate 5x107°
Max Sequence Length 512
Optimizer AdamW
Weight Decay 0

5. Results and Discussion

This section analyzes our empirical findings, focusing on the trade-offs between performance,
robustness across different data conditions, and computational cost.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

50f6

Discussion

Our results reveal a clear and critical trade-off between performance, robustness, and computa-
tional efficiency. We discuss these findings and their practical implications below.

Performance vs. Robustness

On clean, well-formed text (‘Original’ dataset), the Word-level tokenizer achieves the highest F1-
score (0.7274). This indicates that when the vocabulary is stable, preserving whole words as semantic
units is most effective. However, its performance is brittle, degrading significantly as data quality
worsens.

Conversely, tokenizers that operate at a sub-word level demonstrate superior robustness. Word-
Piece (WPE) excels in noisy conditions, becoming the top performer on the ‘Aggressive Typos’ dataset
(F1=0.7000). By breaking unknown words into known sub-units, it effectively mitigates the out-of-
vocabulary problem that cripples the Word-level tokenizer.

Performance Stability Across Tasks

The standard deviation reported in Table 2 measures how much a tokenizer’s performance varies
across the four different datasets. A low standard deviation indicates high stability. The Byte-level
tokenizer is the most stable (Std. Dev. = 0.0060), but this is stability at a low performance level. More
importantly, WordPiece shows remarkable stability (Std. Dev. = 0.0142) at a high performance level,
making it a reliable choice for diverse applications. The relatively high deviation for Word (0.0215) and
GCT (0.0250) highlights their sensitivity to changes in data quality.

Table 2. F1-Scores for all tokenization methods across four datasets. The highest Fl-score in each row is in bold.
The final row shows the standard deviation of Fl-scores for each tokenizer across the four tasks, indicating
performance stability under varying data conditions.

Dataset Byte Char GCT Word WPE
Original 0.6580 0.6671 0.7073 0.7274 0.7100
Minor Typos 0.6566 0.6651 0.7007 0.7044 0.7000
Aggressive Typos 0.6604 0.6785 0.6987 0.6884 0.7000
Mixed Coding 0.6468 0.6526 0.6528 0.6779 0.6776

Std. Dev. (across tasks) 0.0060 0.0106 0.0250 0.0215 0.0142

The Efficiency-Robustness Trade-off

Figure 6 starkly illustrates the computational cost of robustness. There is an inverse relationship
between representational granularity and training speed. The Word-level tokenizer is the fastest by a
significant margin, making it attractive for rapid prototyping. The most robust methods, WPE and
Byte-level, are the slowest due to the much longer token sequences they produce, which increases the
computational load on the Transformer architecture.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 August 2025 d0i:10.20944/preprints202508.0561.v1

6 of 6

Comparison of Tokenizer Training Runtimes

1000 +

800

600

400 +

Runtime (seconds)

200

Word Char Byte GCT WPE

Figure 6. Total training time comparison. The Word-level tokenizer is over 3x faster to train than the most robust
tokenizer, WPE, highlighting a critical performance-efficiency trade-off.

6. Conclusions

This study provides a comprehensive analysis of five tokenization methods for Sinhala NLP,
evaluating the trade-offs between performance, robustness, and efficiency.

The Word-level tokenizer is fastest and best on clean text but is too brittle for noisy, real-world
data. Conversely, WordPiece (WPE) emerges as the most effective all-around strategy, offering the best
robustness against textual corruption, making it the premier choice for production systems despite its
high computational cost. For applications where this cost is prohibitive, the Grapheme Cluster (GCT)
tokenizer presents an excellent, balanced alternative.

Future work should extend this analysis by pre-training large language models from scratch for
each tokenization strategy to explore their full potential. Nonetheless, this study provides a crucial
empirical foundation for making informed, scenario-aware decisions when developing NLP systems
for Sinhala and other morphologically rich, low-resource languages.

References

1. Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

2. Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909, 2015.

3. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

4.  Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages
5998-6008, 2017.

5. Ranasinghe, T., Anuradha, I., Premasiri, D. et al. SOLD: Sinhala offensive language dataset. Lang Resources
& Evaluation 59, 297-337 (2025). https:/ /doi.org/10.1007 /s10579-024-09723-1

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0561.v1
http://creativecommons.org/licenses/by/4.0/

