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Abstract: Bayesian models allow us to investigate children’s belief revision alongside physiological 
states like “surprise”. Recent work finds that pupil dilation (or the “pupillary surprise response”) 
following expectancy-violations may be predictive of belief revision. How can probabilistic models 
inform interpretations of “surprise”? Shannon Information considers the likelihood of an observed 
event, given prior beliefs – suggesting stronger surprise occurs following unlikely events. In con-
trast, Kullback-Leibler divergence considers the “dissimilarity” between prior beliefs and updated 
beliefs following observations – with greater surprise indicating more change between belief states 
to accommodate information. To assess these accounts under different learning contexts, we use 
Bayesian models that compare these computational measures of “surprise” to contexts where chil-
dren are asked to either predict or to evaluate the same evidence during a water displacement task. 
We find correlations between the computed Kullback-Leibler divergence and children’s pupillom-
etry responses only when children actively make predictions, and no correlation between Shannon 
Information and pupillometry. This suggests that when children attend to their beliefs and make 
predictions, pupillary responses may signal the degree of divergence between a child’s current be-
liefs and updated, more accommodating beliefs. 

Keywords: Bayesian Inference; Cognitive Development; Learning; Prediction; Pupil Dilation; Sci-
ence Learning; Surprise 
 

1. Introduction 
To no surprise, understanding the process of belief revision is of great interest and 

has a rich history in many fields including philosophy, psychology, education, and com-
puter science (e.g. [1-4]). Psychological and philosophical work suggests that two interre-
lated components of human intelligence are the ability to deploy abstract, causal, “intui-
tive theories” to support inference and the ability to revise these theories in light of evi-
dence [3,5,6]. Contemporary approaches in the Cognitive Sciences align empirical work 
with computational implementations, typically finding that Bayesian models can provide 
a framework with which to understand human inference from, and learning of causal be-
liefs [7-11]. These models provide an account of how learners can draw rich inferences 
relatively rapidly even when data is limited or ambiguous and have been extended to 
account for the ways in which learners form and revise more abstract intuitive theories as 
well [12-18]. However, until recently, less work has investigated epistemic emotions and 
physiological expressions as they relate to rational models of human learning, despite the 
well-established connection between these arousal states and learning [19-20]. In fact, 
Bayesian models provide a means to not only understand how humans draw rich infer-
ences from limited data and revised intuitive theories, but also to compare human physi-
ological responses to competing computational theories of surprise and learning.   
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A large body of literature highlights the importance of affective and physiological 
states for learning and cognition in general. Physiological states, such as pupil dilation, 
are often accompanied by phenomenological affective states, like surprise [21-22]. This is 
why many researchers studying the effects of surprise on cognition rely on objective phys-
iological measures – such as pupil dilation – as a proxy for surprise [23-28]. However, how 
these physiological states relate to learning via belief revision remains less well under-
stood. This challenge of determining what factors are closely linked to concept learning 
and how they affect learning is critical to address, as understanding these specific factors 
themselves provides multiple positive outcomes for research. Thus, doing so computa-
tionally may improve our understanding of belief revision while also improving our abil-
ity to design human-inspired learning agents.  

In the current study, we look to extend Bayesian learning models for investigating 
the potential relationships between the physio-emotional experience of surprise (as in-
dexed by pupil dilation) and learning. Specifically, we contrast two predictive models re-
lated to learning: “Shannon Surprise” and “Kullback-Leibler divergence” belief updating. 
By building specific predictive models and relating them to children’s physiological re-
sponses (via pupil dilation), we can better understand the mechanisms that underlie learn-
ing in different contexts. Specifically, we will investigate correlations between these two 
models and children’s pupillary surprise as they perform belief revision during a water 
displacement learning task under different conditions. In one condition, children are 
asked to predict outcomes prior to observing events (engaging their prior beliefs) and in 
another, children make post hoc evaluations of the same evidence. By evaluating these dif-
ferent types of models and their fit to physiological behavior in these two conditions, we 
can better understand how different contexts might engage the interplay between cogni-
tive and physiological mechanisms that support learning.   

In what follows, we discuss the measure of pupil dilation and what pupil dilation 
indicates. Next, we describe scenarios where pupil dilation may most likely be elicited 
and more strongly linked to belief revision, namely when making predictions. Then, we 
investigate two candidates for computationally estimating the pupillary surprise response 
based on empirical findings and their theoretical interpretations. First, Shannon Infor-
mation as a data-driven surprise; second, Kullback-Leibler divergence as a belief-driven 
surprise. Thus, we aim to face the specific challenge of understanding how the pupil dila-
tion response as a cognitive-behavioral response relates to learning via belief revision in 
our tasks. 
1.1 The Pupil Dilation Response, Attention & Learning 

Pupil dilation holds a special status among multiple connected fields such as psy-
chology, cognitive science, neuroscience, biology, and computer science. This is because 
pupil dilation has for a long time been considered a reliable instrument for identifying the 
temporal dynamics of arousal [29-32]. More recently, pupil dilation has been considered 
a physiological response that represents an integrated readout of an attentional network 
containing multiple contributing factors [33,34]. Within this attentional network, recent 
work suggests that pupil dilation in this network may occur as a result of an interactive 
cascade among varied components, including low-level (e.g., light and focal distance; 
[35,36]), intermediate-level (e.g., alerting and orienting; [37-39]), and high-level factors 
(e.g., physio-emotional responses, inference, and executive function; [25,33,40]). Overall, 
accounts of pupil dilation as an attentional indicator highlight that pupillometry can 
broadly be attributed to either directed attention or higher-level sensory operations for 
processing the content that the observer is currently perceiving. 

However, it remains unclear whether these discussed attentional factors and their 
related processes are what pupil dilation is expressing specifically in relation to learning. 
Further – if so, whether some, none, or all of these factors are being expressed in the same 
fashion or to the same degree during belief revision. That is, we know quite a bit about 
what might elicit pupil dilation during learning scenarios (e.g., violations of expectations; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2022                   doi:10.20944/preprints202211.0142.v1

https://doi.org/10.20944/preprints202211.0142.v1


 3 of 21 
 

 

[25,26, 28,41]), but less about what the processes coupled with pupil dilation actually are 
and the implications of said processes. Thus, we propose designing computational Bayes-
ian models of learning that can potentially estimate the degree of surprise experienced by 
learners, relative to their pupil dilation measurements during a learning task.  

With these Bayesian models, we will contrast two broader accounts of “surprise” that 
may help to clarify the relevance of this physiological marker of belief revision. The first 
candidate, originating from research on Information theory (i.e., Shannon Information; 
[42]), posits that surprise (and thus, pupil dilation) correlates with objective expectations 
of the data and how informative it is given the data's likelihood. The second candidate 
highlights divergence and dissimilarity (i.e., Kullback-Leibler divergence; [43]) between 
what is believed by a learner and what revised beliefs the learner expects to better accom-
modate incoming data, quantifying the degree of belief change needed to correctly repre-
sent the actual outcome of a given event by transforming the prior belief into the appro-
priate posterior.  

In fact, recent work has looked into disentangling the pupillary surprise response as 
separable, distinct processes that can be represented computationally by Shannon Infor-
mation and Kullback-Leibler divergence. One study by O’Reilly and colleagues [44] per-
formed a combined brain imaging and pupillometry study where participants completed 
a saccadic eye movement response task. Here, participants needed to use their prior 
knowledge about a spatial distribution to locate a target (a colored dot) before returning 
to a fixation cross. The findings showed that there were separate, specific neural signals 
associated with pupil dilation acting as temporal indicators of surprise (within the poste-
rior parietal cortex) and belief revision (within the anterior cingulate cortex). Specifically, 
less-likely events were considered more surprising via Shannon Information, and elicited 
pupil dilation. Meanwhile, they found that the Kullback-Leibler divergence related to 
when pupil diameters decreased on trials when belief updating may be occurring. This 
work provides important demonstration of the dissociable roles of Shannon Surprise and 
Kullback-Leibler divergence in computationally capturing surprise and belief updating, 
respectively, using a Bayesian framework.  

Similarly, Kayhan et al. [45] investigates pupillary surprise and learning with 18-
month-old infants and 24-month-old toddlers. Here, young children completed a statisti-
cal learning task that measured their pupil dilation as they viewed movies where an agent 
sampled five colored balls from a transparent bin containing multiple balls of two colors. 
These bins depicted the distribution of ball colors inside of it (e.g., a majority of yellow 
balls (80%) and minority of green balls (20%)). Critically, 24-month-olds’ (but not 18-
month-olds’) pupillary responses followed a pattern similar to the prediction error of a 
causal Bayesian model, calculated as the Kullback-Leibler divergence between prior and 
updated probability distributions.  

Thus, inspired by these exciting results, we designed a study that lets us explore fur-
ther nuances of how different contexts (asking children to predict vs post hoc evaluate out-
comes) might engage the cognitive mechanisms associated with these two different ac-
counts of surprise. This provides a means to explore the relationship between behavioral 
results that find differences in learning via different interventions with the physiological 
response and potential cognitive mechanisms (surprise vs belief updating) that might un-
derlie them. 

In what follows, we first describe these two potential mechanisms of pupil dilation, 
and highlight key theoretical differences between their interpretations and implementa-
tions. Then, we will describe specific contexts where these proposed mechanisms of pupil 
dilation may be most prevalent, via model-based prediction, as highlighted by a signifi-
cant amount of recent empirical research. Next, we provide a brief description of the prob-
abilistic Bayesian model used and what metrics we are investigating from it. Finally, we 
will compare the two estimates of surprise – Shannon Information and Kullback-Leibler 
divergence – based on their correlations with children’s pupil dilation during a water dis-
placement learning task. 
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2. Competing accounts of Surprise: Shannon and Kullback-Leibler 

2.1. Estimating Pupil Dilation as Data-driven via Shannon Information 
Shannon Information is a well-known metric in information theory and describes 

how informative an outcome is [42,46-49]. It is largely found in machine learning literature 
to describe computational "surprise" - quantifying how meaningful incoming data is rel-
ative to a specific target despite other unwanted, noisy interference. When interpreted 
with respect to learning (via Bayesian inference), Shannon Information can be used to de-
scribe the “unexpectedness” of incoming data given the prior beliefs of the learner. Com-
putationally, Shannon Information can be calculated as the negative log-likelihood of 
some data’s probability, p(d), given some beliefs over models of the world (H), where 
Shannon Information Surprise (Eq. (1)) is  

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  −𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑑𝑑)). (1) 

Shannon Information for some incoming data given an inferred model is typically 
quantified as a “signal” of information. Information theory captures this intuition as 
simply the negative log probability of the data. Note that this is computationally the same 
as marginalizing out hypotheses by considering the probability of the data given each 
hypothesis in space H, weighed by the prior probability of each hypothesis, h. One might 
interpret Shannon surprise psychologically as a violation of expectation, which depends 
on comparing the observation to a prior prediction of outcome likelihoods given the 
weighted set of prior beliefs.   

If Shannon Information correlates more strongly with children’s pupillometry com-
pared to its competitor, the Kullback-Leibler divergence, then we posit that perhaps the 
pupillary surprise response may be more “objective” or “external-focused”, acting as a 
reaction to acknowledge the unexpectedness of an event that has occurred and draw at-
tention to it. Specifically, “surprise as information” would represent an attentional mech-
anism homed in on incoming data – emerging as a sign to alert the learner and re-orient 
(or heighten) their attention; a process of an “intermediate-level” of complexity among 
cognitive responses (per recent review of pupillometry research [34]). Thus, finding that 
Shannon Information best fits pupil responses may indicate a response akin to prediction 
error, as typically associated with surprise during violation of expectation events. 

2.2. Estimating Pupil Dilation as Belief-driven via Kullback-Leibler Divergence 
In contrast, other computational accounts describe pupil dilation and surprise in re-

gard to how effectively new data “transforms” a learner’s prior beliefs into their posterior 
beliefs [50,51]. Here, the summed Kullback-Leibler divergence is considered the second 
candidate for estimating surprise, measuring the summed dissimilarity or relative en-
tropy between a learner’s distributions of prior and posterior beliefs, given the observa-
tion of some new data [43,52]. Computationally, the Kullback-Leibler divergence for mod-
els considering multiple, competing hypotheses is calculated (Eq. (2)) as the weighted log-
odd ratio between a posterior belief, p(h|d), and prior belief, p(d), summed across hypoth-
eses within the set of hypotheses considered (h𝜖𝜖 H)1: 

  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �𝑝𝑝(ℎ|𝑑𝑑) log �
𝑝𝑝(ℎ|𝑑𝑑)
𝑝𝑝(ℎ) �

ℎ𝜖𝜖 𝐻𝐻

. (2) 

                                                           
1 A symmetric (and finite value) form of Kullback-Leibler divergence (Jensen-Shannon) can also be used to compute 
distance. In the computational analyses that follow, we apply standard Kullback-Leibler divergence, but results are not 
qualitatively different if the Jensen-Shannon divergence is used instead. 
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As mentioned, Kullback-Leibler divergence calculations describe not simply a dis-
tance between distributions, but a measure of dissimilarity between them. Thus, when 
describing belief revision processes, Kullback-Leibler divergence can be considered as 
how much 'work' is needed to affect an initial probability distribution (e.g., one’s prior 
beliefs) in a way that changes it into another (e.g., updated posterior beliefs). Here, if we 
find that Kullback-Leibler divergence relates to learning responses, then we believe that 
pupil dilation may be a more “subjective” physiological marker of learning that follows 
from the belief updating process.   

Central to our empirical question, this computational approach will allow us to con-
trast different models of “surprise” when learning. Specifically, Shannon Information will 
quantify the probability of the data accumulated by learners trial-by-trial. Here, Shannon 
Information might be depicting pupil dilation as a temporal indicator of when children 
may be alerted to an unexpected, highly “informative” outcome that the child should ori-
ent themselves toward. Meanwhile, Kullback-Leibler divergence will quantify the dissim-
ilarity between a child’s prior beliefs and what inferred models of the world would best 
explain potential outcomes. This means that Kullback-Leibler divergence presents pupil 
dilation as a physiological signal of the amount of effort needed to update their beliefs 
(given the learner’s current belief distribution and the to-be posterior belief distribution 
that best explains the new data). 
2.3 Model-Based Learning through Prediction 

Asking learners to generate predictions is a popular method for improving children’s 
learning. Studies investigating prediction generation (or “hypothesis generation”) in chil-
dren tend to find that explicitly predicting an outcome before seeing it improves learning 
(e.g., of physics; [53-55]). The benefits of making predictions have been connected to suc-
cessful activation of prior knowledge when learning new material, but less is known about 
the specific mechanisms by which predicting affects learning success, in particular when 
it comes to theory revision [56]. Understanding the cognitive processes that are engaged 
during prediction generation can help us understand how, why, and when these inter-
ventions are likely to be successful.  

Experiments on making predictions that investigate pupil dilation and learning find 
that actively generating a prediction compared to making post hoc evaluations increases 
the degree of pupil dilation, particularly when faced with events that are predicted incor-
rectly [25,57]. Furthermore, this work has found a positive relationship between the de-
gree of pupil dilation and successful belief revision [27,28,40]. The enhanced pupillary 
surprise response after a violation of expectations may be due to children activating some 
task-relevant prior knowledge when they generate a prediction (i.e., leveraging their prior 
beliefs). Further, if the outcome following a prediction is different from what the learner 
expects, then conflict awareness may be heightened and increase the subjective value of 
the outcome’s informativeness, which facilitates belief revision.  

We believe that with all other things equal, making a prediction may give children 
an “edge” over their peers and promote their learning by engaging cognitive mechanisms 
associated with surprise. Assessing this prediction depends on two measures. First, it re-
quires building models for individual learners that predict computationally when sur-
prise is highest given the learners beliefs and the observed evidence. Relating these model 
predictions to physiological markers like pupillometry helps us understand the computa-
tional and potentially mechanistic basis for pupil-marked surprise in learning. It also al-
lows us to contrast competing computational markers of surprise under different learning 
contexts. Second, we can relate the degree to which individual children’s physiological 
states are correlated with these quantitative models and predict that children who have 
better “alignment” between physiological and model based surprise may also be more 
“optimal” learners, in the sense that their learning behavior is better matched to idealized 
learning models. That is, if a heightened, “rational surprise” response leads to more effi-
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cient learning, then children who experience surprise when a rational model (e.g., a prob-
abilistic Bayesian model) would expect them to, may also be better simulated by said ra-
tional model, as well. Thus, the second hypothesis in our investigation is that children 
whose pupillometry measures are better fit by the model estimates are also more strongly 
represented by the simulated behaviors of an ideal learner, depicted by an Ideal Bayesian 
learning model.  

3. The Current Study 
The broad hypothesis of this paper is that children that engage more with a learning 

task by making predictions will have stronger correlations between their pupil dilation 
measurements and the model estimates of the pupillary surprise response, compared to 
peers that are only making post hoc evaluations (specific regarding the modeled data to be 
described, below). However, two alternative hypotheses are also considered here regard-
ing which of the model estimates better fits their responses. Recent interpretations of pre-
diction suggest that actively making a prediction entails leveraging one's prior beliefs and 
extrapolating potential outcomes given these beliefs (e.g., [11,27,28,40]). Both Shannon In-
formation and Kullback-Leibler divergence accounts are consistent with this proposal be-
cause they both leverage prior beliefs towards predictions. However, they differ in the 
mechanism (and potential) implications of leveraging those beliefs. If the pupil measure-
ments for children making predictions are better matched by the Shannon Information 
metric, then this suggests that pupil dilation may indicate more robust engagement with 
the feedback they receive. In particular, good performance of the Shannon Information 
estimate may represent children’s heightened attention to evidence that violates their be-
liefs (e.g., [47-49]). Such heightened response could support later learning by increasing 
arousal and thus improve the encoding of surprising data, but the Shannon response does 
not reflect the learning in the moment. However, if the Kullback-Leibler divergence in-
stead performs better than Shannon Information, we would find support for physiological 
responses capturing belief-updating in the moment, suggesting that children may be per-
forming an effortful computation that captures degree of belief change. Critically, as-
sessing the performance of these candidate metrics of quantifiable pupillary surprise – 
both in general and in competition with one another – helps us better understand the role 
of surprise during belief revision. Does surprise simply serve to guide attention to rele-
vant outcomes? Or does it aid learners by highlighting their beliefs and inform their inte-
gration of new information?   

We modeled data from an experiment that investigated elementary school (six- to 
nine-year-old) children’s theories of water displacement for the current model (experi-
mental procedure, data, and empirical results are those found in [40]. Children’s causal 
beliefs of water displacement were chosen as children frequently have the misconception 
that water displacement depends on the weight of an object or a combination of weight 
and size rather than on its size only (e.g., [58]), providing an appropriate domain for the 
investigation of variability across individual children’s beliefs, as well as their impact on 
children’s subsequent learning. Furthermore, previous work has modeled this experi-
mental data for investigation of children's learning during a belief revision task [11] and 
found very strong fits between “optimal” Bayesian learning and children’s performance 
on the task.  

The to-be-modeled experiment’s design in [40] entailed a Pretest phase, a Learning 
phase, and a Posttest phase. On each trial, children (regardless of assigned condition) were 
presented with two spheres of varied features (e.g., in size, material, and/or weight) side-
by-side (see Figure 1 for a trial example). Then, children stated which sphere they thought 
would displace the most water (between two identical containers). These judgments were 
assessed using a 5-point-scale (e.g., (1 = certainly the left sphere, 2 = maybe the left sphere, 3 = 
equal amounts of water for both, 4 = maybe the right sphere, 5 = certainly the right sphere). During 
the Pretest and Posttest phases, no feedback was provided to the children to allow for a 
clean initial assessment of beliefs (prior to learning) and final learning outcomes. Children  
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were randomly assigned to one of two experimental conditions – a Prediction or a Post-
diction Condition, and were provided feedback during the Learning Phase of the experi-
ment according to condition. Children in the Prediction condition were asked to provide 
a response prior to seeing the outcome; responses were values from 1-5 stating their expec-
tation (and confidence) about which sphere displaces more water. In contrast, children in 
the Postdiction condition first saw the results of the presented trial, then were asked to 
state what their expectations had been (prior to the evidence)2. Importantly, children’s pupil 
dilation measurements were collected as outcomes were presented during the Learning 
phase for both conditions.  

Figure 1. An example of a trial during the original experiment. Here, the correct response for the 

trial example is option “5 - Right Wins”, highlighted by the green dashed circle. This is provided as 
evidence following children’s response (Prediction Condition) or preceding their response (Postdic-
tion Condition). Children with the correct “Size” rule would accurately select “5” (or “4”) here and 
see confirming feedback. However, because in this trial the metal ball is much heavier than the 
styrofoam ball, despite its smaller size children with the incorrect Material or Mass beliefs may in-
correctly respond 1, 2, or 3 in their predictions or postdictions, and potentially be surprised by the 
evidence (that 5 “wins”). 

3.1 Bayesian Model of the Pupillary Surprise Response 
The Ideal Bayesian learning model that we employ for our investigations builds on a 

recent investigation of individual differences in children’s belief revision (the Optimal 
Bayesian model described in [11]). Here, the Bayesian model constructed computational 
representations of children’s beliefs based on their task responses. Doing so highlighted 
the importance of individual differences in prior beliefs during learning, while further 
demonstrating the impact of multiple, competing beliefs that guide inferences, as the 
Bayesian model’s correlations to children’s behavioral responses were significantly 
stronger than competing frameworks for the entire subject pool (Bayesian Correlations > 
.8; Directional accuracy > 90%). Additionally, this model found that children in the exper-
iment’s Prediction condition were better simulated by the model than children in the Post-
diction condition. 

                                                           
2 Measures in this study and others reveal that children are honest about their responses in these postdiction conditions. 
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We will build upon the Bayesian model’s simulations for estimating children's pupil 
dilation measurements during the original experiment. Specifically, we will look at the 
Bayesian trial-by-trial surprise predictions for individual children. Children’s estimated 
beliefs are based on their responses during the pretest and follow Bayesian posterior up-
dating during the test trial observations (p(ht|dt) ∀ ht𝜖𝜖 Ht). Surprisal (whether Shannon or 
Kullback-Leibler divergence) for each trial depends on an individual child’s expected be-
lief state given the evidence for that trial.  

Children’s beliefs about how much water will be displaced by different objects have 
been identified by past literature (e.g., [58] Burbules & Linn, 1978), falling into relatively 
simple causal rules for predictions: a rule based on the size of the objects, one based on 
the material of the objects, one on based on mass of the objects (a mixture of size and 
material), and one reflecting random responding. Thus, in our model children’s beliefs 
were represented computationally as a distribution across these four possible beliefs 
(“Size” (S), “Material” (M), “Mass” (W), and finally a “Random” (R) ). Thus, each child’s 
“model” (p(Ht|dt); Eq. (3)) of water displacement on a given trial (t) could be represented 
as the posterior probability over just four rules (S, M, W, R): 

𝑝𝑝(𝐻𝐻𝑡𝑡|𝑑𝑑𝑡𝑡)  = [𝑝𝑝(ℎ𝑠𝑠𝑠𝑠 = 𝑆𝑆|𝑑𝑑𝑡𝑡), 𝑝𝑝(ℎ𝑚𝑚𝑚𝑚 = 𝑀𝑀|𝑑𝑑𝑡𝑡), 𝑝𝑝(ℎ𝑤𝑤𝑤𝑤 = 𝑊𝑊|𝑑𝑑𝑡𝑡), 𝑝𝑝(ℎ𝑟𝑟𝑟𝑟 = 𝑅𝑅|𝑑𝑑𝑡𝑡)]. (3) 

3.1.1 Calculating Shannon Information 
From Eq. (1), we derive the model’s trial-by-trial SI surprise estimates in Eq. (4). That 

is, on some trial (t), we determine the likelihood (p(dt|Ht)) of that trial’s new data (dt) ob-
served by the child given their currently inferred model (Ht):  

𝑆𝑆𝑆𝑆 =  −𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑑𝑑𝑡𝑡)). (4) 

Here, Eq. (5) describes how our model calculates the probability of the data (p(dt)) on a 
given trial (t), as marginalizing over the four competing beliefs at time t, (hi = h(w,m,w,r)), which 
is the summation over the likelihood and prior for each model:  

 𝑝𝑝(𝑑𝑑𝑡𝑡)  = ∑ 𝑝𝑝(𝑑𝑑𝑡𝑡|ℎ𝑡𝑡,𝑖𝑖)𝑝𝑝(ℎ𝑡𝑡,𝑖𝑖)ℎ,𝑖𝑖 𝜖𝜖 𝐻𝐻𝑡𝑡 . (5) 

This calculation entails treatment of each individual hypothesis’s (hi) current state at each 
trial (ht). The likelihood is weighed by the strength of belief for each model under this 
summation. Thus, evidence that is less likely under more strongly held beliefs will con-
tribute more to surprise than when evidence is unlikely under a weakly held belief. (See 
Figure 2 for illustration.) 
 
3.1.2 Calculating Kullback-Leibler Divergence 

From Eq. (2), we derive trial-by-trial Kullback-Leibler divergence as a surprise esti-
mate in Eq. (6).  For some trial (t), we calculate the relative entropy for each considered 
belief (hypothesis ht,i) of the child’s currently held distribution of prior beliefs (p(ht,i|dt) ∀ 
ht,i𝜖𝜖 Ht) with its respective posterior belief, p(ht+1, i|dt+1). Kullback-Leibler divergence (KLD) 
is taken as the sum of these relative entropies between prior and posterior beliefs captur-
ing the shift in distributions between time (t) and after observing the data at time (t+1): 

 𝐾𝐾𝐾𝐾𝐾𝐾(𝐻𝐻𝑡𝑡+1|| 𝐻𝐻𝑡𝑡)  =  � 𝑝𝑝(ℎ𝑡𝑡+1,𝑖𝑖  |𝑑𝑑𝑡𝑡+1) 𝑙𝑙𝑙𝑙𝑙𝑙[
𝑝𝑝(ℎ𝑡𝑡+1,𝑖𝑖 |𝑑𝑑𝑡𝑡+1)
𝑝𝑝(ℎ𝑡𝑡,𝑖𝑖  |𝑑𝑑𝑡𝑡)ℎ𝑡𝑡,𝑖𝑖𝜖𝜖 𝐻𝐻𝑡𝑡

]. (6) 

Here, on a trial (t), the data have not yet been observed and capture the distribution of 
beliefs prior to observing the evidence, where-as trial t+1 captures the posterior distribu-
tion. Kullback-Leibler is simply capturing the relative change between prior and posterior 
given some observation. (See Figure 3 for illustration.) 

Assessing the performance of these candidate metrics of quantifiable pupillary sur-
prise – both in general and in competition with one another – provides a means to explore  
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Figure 2. Example of the procedure for calculating Shannon Information given the current model’s simulations, formally described by Eq. (4) and Eq. (5). Row A and B display two 
examples of the different profiles of children’s prior beliefs captured in graph (Column 1) and numeric (Column 2) form. Given some incoming data (e.g., the example trial from 
Figure 1; a Small Metal ball vs a Large Styrofoam ball), the likelihood of the observation (that event “5 - Right Wins” occurs) is estimated for all four models (Column 3). Then, a 
posterior probability is calculated by weighing the individual child’s prior beliefs against the likelihood (Column 4). Shannon Information is calculated by summing over (marginal-
izing out ht,i) these posteriors and taking the negative log likelihood of the final summed total.  Thus, there is an inferred negative relationship between data likelihood (p(dt) and 
model surprise according to the Shannon Information account (Column 5). That is, when the weighted likelihood of data is low, model surprise is high; similarly, when the likelihood 
of data is high, model surprise is low. 
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Figure 3. Example of the procedure for calculating Kullback-Leibler Divergence (KLD) given the current model’s simulations, as formally described by Eq. (6). Row A and B display 
two examples of the different profiles of children’s prior beliefs captured in graph (Column 1) and numeric (Column 2) form. Given some incoming data (e.g., observing option “5” 
= right side wins for the example trial in Figure 1; a Small Metal ball vs a Large Styrofoam ball) and the prior beliefs of the learner (Belief Distributions, Ht), we consider the posterior 
belief distribution that best accommodates the observed data (e.g., p(Ht|“5”)), again, captured in graph (Column 5) and numeric (Column 4) form. Then, the Kullback-Leibler Diver-
gence, is calculated as the sum of relative entropies between the prior probability and posterior probability between each of the individual competing beliefs (ht,i). Thus, there is an 
inferred positive relationship between the degree of dissimilarity between distributions (divergence between the prior and posterior) and model surprise according to the Kullback-
Leibler Divergence account. That is, when the prior and posterior are dissimilar, model surprise is high; conversely, when the prior and posterior are similar, model surprise is low. 
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the implications of different learning responses to data at the individual level, trial-by-
trial. If the Shannon Information (SI) estimates better correlate with children’s pupil dila-
tion, then this may suggest that pupil dilation is an indicator of robust engagement with 
incoming data – particularly when it is of low likelihood and highly “informative”. If the 
Kullback-Leibler divergence (KLD) correlates more strongly with pupil dilation, then this 
may suggest that pupil dilation is an indicator of belief updating “in-the-moment”. As-
sessing these correlations under different contexts (prediction vs postdiction) allows ex-
ploration of potentially different mechanisms engaged by different types of learning in-
terventions. 

4. Results 

4.1. Assessing Fit of Model-Estimates 
The analyses performed for assessing each of the surprise estimates, Shannon Infor-

mation and Kullback-Leibler divergence, use direct correlations between model predic-
tions of and children’s pupil dilation responses recording during the experiment. Bonfer-
roni correction is performed where needed for conservative analyses and interpretation, 
with correlation p-values tested against a Bonferroni-corrected alpha (Condition [Predic-
tion, Postdiction] × Estimate [SI, KLD], 𝛼𝛼 = 0.05/4 = 0.0125. All correlations discussed in the 
Results section are additionally compiled in a table found in Appendix A for ease of com-
parison. 
4.1.1 Condition-combined analyses 

When looking at the full dataset (2890 trials across 94 children), we found no signifi-
cant correlation for either the  Shannon Information (r(2889) = 0.01, p = 0.49) or the Kullback-
Leibler divergence model (r(2889) = 0.02, p = 0.12) to children’s pupillometry measurements. 
As noted, our primary question involves assessing the models accounting for two differ-
ent response modalities (prediction and postdiction) to assess the potential differences be-
tween these interventions. 
4.1.2 Condition-separate analyses 

We first explored condition differences of children’s pupillometry response as related 
to Shannon Information. The Shannon Information estimate did not correlate with the pu-
pillary response for either the Prediction (r(1437) = 0.03, p = 0.20) or Postdiction (r(1461) = 
0.01, p = 0.62) condition. In contrast, exploring condition differences of children’s pupil-
lometry response as related to Kullback-Leibler divergence did reveal differences. The 
Kullback-Leibler divergence estimate was significantly correlated with children’s pupillary 
response within the prediction condition (r(1437) = 0.07, p = 0.004 < 𝛼𝛼). There was no cor-
relation between pupillary response and Kullback-Leibler divergence for children in the 
Postdiction condition (r(1461) = -0.003, p = 0.90). The difference between the strength of 
the Kullback-Leibler divergence and Shannon Information correlations within the Prediction 
condition was also significant, (z = 2.98, p = 0.0014)3. Correlations between Kullback-Leibler 
divergence and pupillary response were also significantly different between the Prediction 
and Postdiction conditions (Fisher’s r-to-z transformation; z = 2.11, p = 0.0174). 
4.1.3 Exploratory analysis with data subsets 

Sources of noise, such as individual differences in prior beliefs and an identified crit-
ical learning period (both highlighted in previous modeling work; Colantonio et al., in 
review) may have affected the correlation between the model estimates and pupillary sur-
prise. Therefore, we looked to control for two additional sources of noise in our data via 
follow-up analyses. First, not all of the children in the study were still “learners”, as a 

                                                           
3 Similar results are found for a bounded version of the Kullback-Leibler divergence measure, the Jensen-Shannon 
divergence [59,60]. These results can be found in Appendix A.  
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subset of the participants began the Learning Phase with the correct Size-belief. Applying 
the same method as above, we looked at just the children who did not have beliefs based 
on the correct theory of water displacement at the beginning of the experiment (19 chil-
dren had the correct theory already, leaving n = 75 of 94 children who began with an in-
correct theory, approximately equally between conditions). Re-analyzing the data with 
this subset replicated the results above. There was no significant correlation between 
Shannon Information and children’s pupillometry for the “learners” subset (overall r(2259) 
= 0.02, p = 0.29; Prediction, r(1142) = 0.04, p = 0.11; Postdiction, r(1116) = 0.01, p = 0.54). 
Meanwhile, while the Kullback-Leibler divergence had no significant correlation with the 
entire “learner” subset (r(2259) = 0.036, p = 0.08), there were significantly stronger correla-
tions between Kullback-Leibler divergence and the pupil dilation response for learners 
within the Prediction condition (r(1142) = 0.08, p = 0.002 < 𝛼𝛼) compared to the Postdiction 
condition (r(1116) = -0.002, p = 0.93; comparing conditions: Fisher’s r-to-z transformation; 
z = 2.15, p = 0.0158). The Kullback-Leibler divergence did not have a significantly stronger 
correlation than Shannon Information for “learners” in the Prediction condition (z = 0.99, p 
= 0.16) for this subset4. 

Our second subset analysis explored only trials where “learning” was likely to take 
place. Previous modeling of children’s learning over the course of the study revealed that 
most children converged onto the correct Size belief by trial 19 based on their choice be-
havior (where the 19th trial was the 75th percentile of when children in the study seemed 
to have “learned” the Size belief according to the model; discussed in more detail in Col-
antonio et al., in review). The sharp-then-plateaued learning rate was likely because the 
initial trials (n = 9) provided in the Learning Phase provided no differentiation between 
the competing belief models (Size, Material, Mass). They were selected to be “congruent” 
with all theories and thus offered no “surprise” for any model or opportunity for learning. 
Following a handful of incongruent evidence (trials 10-19) the majority of children revised 
their beliefs and began responding consistently with the correct Size belief. This design 
(no conflicting evidence to support learning initially, nor learning after the correct beliefs 
are settled) may have artificially created “noise” in our pupillometry correlations. This is 
because variability of responses in pupillometry measures caused by other artifacts could 
temper correlations due to a relatively large number of trials where Shannon Information 
and Kullback-Leibler divergence estimates were both very low. Thus, we also looked at “crit-
ical learning trials” – those that started with the first incongruent trial (trial 10, where data 
would be differentiated by the competing beliefs) and extended to trial 19 where almost 
all children (n = 74 of 94 children) had learned the correct belief (size dictates water dis-
placement) as measured by Bayes Posterior Odds. For these “critical learning trials”, we 
again replicated the overall pattern of results. Shannon Information did not correlate overall 
during these critical trials (r(858) = 0.04, p = 0.24), nor did it correlate within either condi-
tion (Prediction condition: r(431) = 0.05, p = 0.26; Postdiction condition: r(426) = 0.06, p = 
0.18). Again, the Kullback-Leibler divergence did not correlate for all children across all of 
the “critical” trials, (r(858) = 0.04, p = 0.24). However, (replicating the other analyses) there 
was a significant correlation between the Kullback-Leibler divergence estimate and pupillary 
response within the Prediction condition (r(431) = 0.12, p = 0.013 < 𝛼𝛼); while no correlation 
was found in the Postdiction condition (r(426) = -0.003, p = 0.90). These correlations are 
significantly different between Prediction and Postdiction conditions for Kullback-Leibler 
divergence (Fisher’s r-to-z transformation; z = 2.11, p = 0.0174). . The difference between 

                                                           
4  As would be expected by small sample size and the fact that children’s with the correct theory would have predicted 
low surprise for trials across the full study, none of these correlations are significant when looking at the subset of 
“already-knowers” (overall for SI, r(639) = -0.05, p = 0.20; for KLD, r(639) = -0.02, p = 0.58), even when looking between 
the Prediction (for SI, r(294) = -0.07, p = 0.19; for KLD, r(294) = 0.01, p = 0.79) and Postdiction condition (for SI, r(344) = -
0.03, p = 0.52; for KLD, r(344) < 0.01., p = 0.99).  
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Kullback-Leibler divergence and Shannon Information for the Prediction condition yielded a 
significant difference, as well (z = 2.98, p = 0.0014) during these “critical” trials. This sug-
gests that the pupillary surprise response reflects something like belief-updating, but only 
in conditions when children are actively engaged in prediction (a point we return to in the 
Discussion). 

4.2. Modeling Individual Differences 
We were also interested in relating pupillary response and modeled surprise to learn-

ing. Thus, we looked at how, at the individual level, the degree of fit between physiolog-
ical response and model response related to the degree to which children’s responses re-
flected Bayesian “optimal” learning. That is, we are correlating two correlations. Specifi-
cally, for this investigation, we looked at the correlation of children’s answer behavior (1-
5) to Bayesian model predictions of those answers as one set of correlations, and children’s 
pupillary response performance and our models of surprise as the second set of correla-
tions. If pupillary response relates to learning, we might expect to see that those children 
whose pupillary responses are more aligned with model predictions are also the same 
children who learn more “optimally”. Indeed, we found that the correlation of individual 
children’s pupil response to Kullback-Leibler divergence correlated significantly to the cor-
relation of those children’s answers and ideal Bayesian learning  (r(88) = 0.27, p = 0.007). 
In contrast, correlations based on children’s pupil response and Shannon Information did 
not correlate to this learning measure (r(88) = 0.05, p = 0.58). The difference between the 
correlation coefficients was marginally significant (z = 1.49, p = 0.06). 

5. Discussion 
This paper describes one of the first computational investigations of the links be-

tween children’s pupillary surprise response and their science concept learning, as related 
to the contextual effects of engaging in an explicit prediction or postdiction. We modeled 
data, including pupillometry responses, collected from elementary school children who 
provided predictions or predictions in a water-displacement learning task. By modeling 
individual children’s beliefs and learning over trials, we could capture two different forms 
of “surprise”: Shannon Information and Kullback-Leibler divergence. Overall, we find 
that the children’s pupillary surprise response is related to Kullback-Leibler divergence – 
but only in cases where children have generated an explicit prediction prior to observing 
the potentially surprising events. Furthermore, we found that children whose pupillome-
try data was best estimated by the Kullback-Leibler divergence also tended to be the chil-
dren whose behavioral response data (from an experiment on learning water displace-
ment via belief revision) was best fit by an ideal Bayesian learning model. 

 Our findings fit well with the theory described at the intersection of cognitive, emo-
tional, and physiological research (e.g., [33,34]), with particular links to recent work in-
vestigating the role of prediction in belief revision (e.g., [25,27,40,57,61,62]). Our findings 
also converge with other related research. Like Kayhan and colleagues [45], we found a 
relationship between pupil dilation and the Kullback-Leibler divergence. Both this previ-
ous work and the current investigation find that the calculated divergence may affect be-
lief revision in regard to the amount of updating needed to adjust current beliefs. How-
ever, there are two key differences between our modeling work and that of Kayhan et al. 
[45] which are important to note. First, the current paper investigates children’s pupillary 
surprise under different contextual conditions. The current results find that the relation-
ship between modeled surprise (via Kullback-Leibler divergence) and children’s pupil-
lary surprise response may only occur when children are actively making predictions – 
but not when they are passively observing and evaluating. This highlights that there are 
instances where pupillary surprise might be more likely to occur when making predic-
tions – as proposed by other recent empirical work (e.g., [28]). Second, in line with the 
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original paper that we draw our model from [11], the current model accounts for individ-
ual differences among children’s prior beliefs and the processes by which they update. In 
of Kayhan et al. [45], children’s behaviors are modeled to all follow the same inferred 
computational model5. In contrast, we formalize the prior beliefs that children may have 
at the individual level, as informed by their past behavior.  

Like other work investigating surprise during learning, we found a relationship be-
tween the Kullback-Leibler divergence and the pupillary surprise response (e.g., [44,45]). 
However, unlike O’Reilly and colleagues [44], we did not find a relationship between like-
lihood-based Shannon Information and pupil dilation. One potential reason for this di-
vergence is that there are differences in the degree of complexity of the learned “concept” 
of each study and in the number of hypotheses considered. Specifically, the previous work 
entailed a task that only required reasoning about one variable (the angle that the target 
appeared at on a screen; [44]), however the angle of the target may have taken many dif-
ferent values. In contrast, the currently modeled task may require reasoning about more 
complex, causal beliefs (e.g., whether an object’s size, material, or weight determines the 
amount of water displaced and how each of these features generates displacement; [40]), 
but only considered a few possible hypotheses6. Thus, one particular reason for the sig-
nificant relationship in past work between pupil dilation and Shannon Information (or 
likelihood-based prediction error), and the poorer fit with children’s pupillometry in the 
Prediction condition of the current dataset may relate to either differences in the complex-
ity of the concept being inferred or differences in the size of hypothesis space being con-
sidered.  

A second difference between our results and O’Reilly and colleagues’ [44] was that 
we found a positive correlation between pupil dilation and the Kullback-Leibler diver-
gence during prediction, whereas a negative correlation was found in this past work.  Our 
task differed in both the types of beliefs being considered, and whether children were 
actively engaged in prediction. If beliefs are already engaged in this process (as they likely 
were for our participants following the explicit prediction prompt), then a relatively in-
stantaneous pupillary growth response to the observed outcome is feasible. In our task, 
the number of options being considered and “simulated” by children is bounded7, with 
children only deciding among five options (really three directional outcomes).  One pos-
sibility is that the positive dilation we observed in the prediction condition captured the 
amount of mental effort generated by explicitly considering outcomes over more complex 
hypotheses. It has been suggested that when the necessary ‘work’ appears unexpectedly 
“large”, more mental effort may be exerted to accommodate the new information (e.g., to 
reduce the ‘work’; Friston et al., 2006; Friston, 2010), and be reflected by increases in chil-
dren’s pupil dilation – similar to findings linking reduction of uncertainty to the presence 
of signals from neuromodulators (e.g., acetylcholine and norepinephrine; [65,66]). Of 

                                                           
5 Understandably, we acknowledge limitations of Kayhan et al.’s [45] investigation given the population being studied. 
Specifically, Kayhan and colleagues faced the challenge of investigating this domain in18-month-old infants and 24-
month-old toddlers. Thus, acquiring explicit measures to inform computational representations of prior beliefs may 
have been difficult or not plausible.  
6 It is of course likely that children were entertaining a more varied set of potential causal beliefs about displacement 
than the four considered here. Responses in the pretest aligned well across these four and past work has focused on 
these, but we are open to there being a more complex space of beliefs in this domain as well. Indeed, as learners consider 
more complex interactions (like buoyancy, water permeable materials like sponges, etc.) the space will balloon. 
7  Additional analyses investigating a bounded divergence measure, Jensen-Shannon divergence [59,60], is also 
performed and described in Appendix A. Importantly, the Jensen-Shannon divergence performs almost identically to 
the Kullback-Leibler divergence in terms of its correlations with children’s pupillometry. 
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course, we do not have enough evidence that confirms that pupil dilation actually accom-
panies a more “effortful” mental process (e.g., like those found by [29,67]), only that the 
found correlations indicate a relationship between pupil dilation and the amount of ‘work’  
needed to update beliefs. 

5.1. Understanding potential cognitive mechanisms 
Both Shannon Information and Kullback-Leibler divergence accounts of pupillary 

surprise have support in the literature exploring cognitive mechanisms. Specifically, these 
proposed computational interpretations align with the mentioned attentional network de-
scribed in past work and are not necessarily exclusive. Shannon Information has been 
suggested to relate more to the “intermediate-level” factors, addressing what it is exter-
nally a learner might be trying to process when pupil dilation occurs (e.g., [37-39]). Simi-
larly, the Kullback-Leibler divergence has been suggested to represent “higher-level” fac-
tors relating to internal processes and state-like fluctuations that the learner might be ex-
periencing (e.g., [25,33,40]). Thus, support for either the Shannon Information or the Kull-
back-Leibler divergence (or potentially both) estimating children's pupillometry would 
have fit with various findings and interpretations of pupil dilation as some form of atten-
tional network activation (see a thorough review in [34]).  

If these accounts of Shannon capturing “intermediate-level” factors and Kullback-
Leibler divergence capturing “higher-level” features are correct, our results provide sup-
port for “higher-level” factors being engaged in our task – at least when children are ex-
plicitly making predictions. Perhaps when making predictions, children are orienting 
their attention toward their beliefs. That is, pupil dilation in our task may be an indicator 
of children’s online assessment of their current models of the world and what the implica-
tions would be (how much effort is needed to change these models) given the potential 
outcomes of an upcoming event.   

Why might Kullback-Leibler divergence capture greater attention or cognitive effort? 
As described earlier, Shannon Information quantifies a single signal of data informative-
ness against only the current hypothesis space [42,46-49]. In contrast Kullback-Leibler re-
quires a computation over two hypothesis spaces – the prior and the posterior. In this 
way, Kullback-Leibler might reflect more effortful cognitive processes. 

5.2. Limitations & Future Work 
The implications of this work highlight key investigations that future work should 

pursue. Specifically, one such avenue entails empirically and computationally capturing 
a “construct” of surprise that accounts for its emotional, cognitive, and physiological com-
ponents. Next, future work may also be interested in further refining our understanding 
of the “higher-level” processes that our results suggest being associated with surprise – 
that is, interactions among prediction, planning, and other executive functioning. 
5.2.1 The Noisiness of Pupillometry Measurements 

We acknowledge the impact of noise within the original experiment’s pupillometry 
data, which could be due to many possible reasons. First, both the children and the model 
seemed to “quickly” learn the scientific concept (that size determines the amount of dis-
placed water). Thus, opportunities for experiencing pupillary surprise may have been in 
short supply as misconceptions of water displacement were not held onto for long. In 
response to this, we also analyzed subsets of the data to account for potential noise due to 
learning dynamics: whether children had already “known” the size principle at Pretest, 
and the “critical” trials where learning would be most likely to happen. Doing so did lead 
to improvements in the fit between the Kullback-Leibler divergence when estimating sur-
prise, and did not affect the lack of fit with Shannon Information. 

 The second reason that noise may have been prevalent was that despite best efforts 
for careful task administration and data collection, there do exist drawbacks when collect-
ing pupillometry measures. For example, careful preparation of the study’s location is 
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needed8, as low-level issues like light levels and focal distance do affect fluctuations in 
pupil size [34-36]. This is important to acknowledge, as many interpretations of pupillom-
etry entail an assessment of the average change in pupil size within a timeframe. Addi-
tionally, work investigating the influence of low-level factors like light levels finds that 
pupil dilation can be oscillatory with respect to fluctuations in the luminance of objects 
and their environments [68]. This may lead to a pupillary surprise response with a short 
latency (relative to the measured timeframe), but particularly strong amplitude being 
washed out by constriction of the pupil (whether by nervous system relaxation or slight 
light level variance) during the timeframe when measures are averaged. 

Finally, following the acknowledgment of the potential sources of noise, we also 
acknowledge the relative strength of the found correlations (e.g., in order of the Results 
section, the significant correlations held Pearson’s correlation coefficients of r = 0.07, 0.08. 
0.12). However, these correlations were found to be significant even when performing 
analyses conservatively (via Bonferroni correction). To the best of our knowledge, this 
work seems to be the first to find significant correlations between pupillometry and a 
computational model estimate during science concept learning. 
5.2.2 Capturing Pupillary Surprise across Modalities 

Notably, we found no correlations between either Shannon Information or Kullback-
Leibler divergence and the pupillometry measures of children in the Postdiction condi-
tion. As described in the previous section, this may be partially due to noise leading to 
underpowered detection. However, it may also suggest that perhaps another mechanism 
(and thus another model surprise metric) needs to be considered and investigated in fu-
ture work regarding when (or even, if) pupillary surprise occurs in different response mo-
dalities. The current work highlights that when making predictions, pupil dilation may 
be indicating the performance of a higher-level, learning-effort estimates. However, we 
did not find significant correlations between pupillary response and model predictions in 
the postdiction condition despite the fact that over the course of the experiment, these 
children also learned. Indeed, pupil dilation did occur at times during the original study 
for children in the Postdiction condition – just not in a way that correlated with models of 
surprise. Thus, future work should investigate whether other response modalities indicate 
that processes are being performed when pupil dilation is elicited with theory-based met-
rics for estimating said pupillometry computationally. 
5.2.3 Empirically Measuring Surprise 

In contemporary work on surprise, the physiological measure of pupil dilation is 
commonly collected as a proxy or marker that signals an individual’s experience of sur-
prise (e.g., [22]). This tends to be proposed due to the occurrence of pupil dilation follow-
ing a violation of one’s expectations – often inducing heightened attention, physiological 
arousal (e.g., the release of noradrenaline and norepinephrine), and increased activity in 
brain areas (e.g., within the brainstem) related to monitoring uncertainty [23,30,69]. But, 
as with most emotions, special care needs to be taken when discussing measures and ex-
pressions of affective states. In particular, surprise has received considerable attention 
since the mid-20th century that still informs theoretical concerns regarding what surprise 
actually is and connecting the (less-so recently) disparate fields that investigate surprise 
(see [19,20,70]). Importantly, these conceptualizations and implementations of surprise 
only relate to physiological instances of surprise’s attentional capacities. Thus, future re-
search that looks to finely define surprise not only in terms of its proposed physiological 
markers but also subjective experiential phenomena, could also collect self-reported 

                                                           
8 In collecting the modeled data (Theobald & Brod, 2021), great efforts were made to prepare the study location at a 
local science museum. For example, the experimenters used a room with no windows, allowing only for artificial light 
to keep the light levels as consistent as possible. 
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measures of experienced surprise as an additional correlate to further substantiate claims 
surrounding physiological measures of surprise. 
5.2.4 Investigating Modalities that Potentially Leverage Prior Beliefs 

Future work might consider investigating science concept learning by revisiting in-
terview methods of past studies to further understand children’s subjective prior beliefs 
and what processes children (propose that they) may have employed to revise them (e.g., 
as in earlier water displacement studies; [58]). In fact, recent work highlights that thought 
experiments – imagining outcomes of an event and revising assumptions – can be benefi-
cial for learning in both adults [71] and young children (six-year-olds; [72]). Thus, future 
work may tackle the integration of key experimental design aspects from the currently 
modeled data (the role of prediction and pupillometry) and research on other learning-
by-thinking methods like thought experiments. Doing so may help determine whether 
such planning is being implemented by children. However, such approaches should be 
done carefully and interpreted cautiously, as such meta-cognitive awareness and perfor-
mance of thought experiments may be difficult to do, and work explicitly on whether 
people (especially children) typically benefit from thought experiments (compared to or-
igins in allusions to scientific revolutionaries like Galileo, Kepler, and Einstein) is rela-
tively new to the field [73]. 
5.2.5 Potential Roles of Executive Function 

Strides in research on attention highlight that top-down regulation and executive 
control are vital for processing and awareness of relevant information in the environment 
(extensively reviewed in [33,34]). Specifically, executive function is important for the 
guidance of intermediate-level attentional processes (e.g., alerting and orienting) for sen-
sory operations. Here, we propose that future work should perform further computa-
tional investigations centered on incorporating measures of executive function. Modeling 
any relationships among theory change, prediction, pupillary, and executive function 
skills (such as inhibition and cognitive flexibility; [74,75]) may provide further insight into 
other relevant mechanisms that support science concept learning. Such modeling would 
highlight whether executive function affects model performance straightforwardly, where 
higher executive function measures might correlate with better model performance. Ad-
ditionally, future work may entail the design of Bayesian models that account for various 
executive function skills. For example, would a model that has the ability to inhibit incor-
rect prior beliefs perform better? Or perhaps, would a model that flexibly switches focus 
towards updated, “more correct” theories be plausible and sufficiently capture children’s 
behavior? 

5.3. Conclusions 
Here, we have identified a candidate computational measure that may capture the 

pupillary surprise response in a quantifiable way when children are making predictions 
during science learning.  Specifically, we found that when children make predictions, 
their pupil dilation in response to observed outcomes may be a temporal indicator of the 
child leveraging their initial prior beliefs and extrapolating the implications of those out-
comes given said prior beliefs. The current work contributes to our knowledge of what 
pupil dilation may be an expression of during the learning process. Specifically, by iden-
tifying contexts where pupillometry can be estimated computationally via the Kullback-
Leibler divergence, we have also identified candidate mechanisms and processes that chil-
dren may be performing when pupil dilation is elicited. That is, since the Kullback-Leibler 
divergence typically describes dissimilarity, or the amount of “work” needed to transform 
one probability distribution into another, the current findings have highlighted that ex-
plicit prediction may elicit the pupil dilation response as a physiological marker of chil-
dren’s belief revision – estimating how much “work” is needed to move from prior to 
posterior. This behavior was not associated for children who were only post hoc evaluat-
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ing, suggesting a privileged role for prediction in engaging learning-relevant physiologi-
cal responses. This computational modeling investigation, alongside the recent experi-
ments centered on prediction, provides some initial insight into why engaging children to 
generate predictions may support learning more effectively than other interventions. Such 
a simple manipulation may differently engage affective states and impact children’s learn-
ing; that is perhaps most surprising of all. 
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Appendix A 
Table A. Correlations between children’s pupillometry measurements and each of 

three computational estimates of pupillary surprise: Shannon Information, Kullback-
Leibler Divergence, and Jensen-Shannon Divergence. Values in boldface formatting high-
light significant correlations following Bonferroni correction among the three measures 
(α =  0.05 / 3 =  0.1667). 

 

 
Shannon 

Information 

Kullback-Leibler 

Divergence 

Jensen-Shannon  

Divergence 

Condition Prediction Postdiction Prediction Postdiction Prediction Postdiction 

All  

Trials 

Combined 

r(2889) = 0.01, p = 0.49 

Combined 

r(2889) = 0.028, p = 0.12 

Combined 

r(2886) = 0.029, p = 0.11 

r(1437) = 0.03 

p = 0.20 

r(1461) = 0.01 

p = 0.62 

r(1437) = 0.07 

p = 0.004 

r(1461) = -0.003 

p = 0.90 

r(1435) = 0.07 

p = 0.005 

r(1459) = 0.01 

p = 0.59 

Learners  

Only 

Combined 

r(2259) = 0.02, p = 0.29 

Combined 

r(2259) = 0.036, p = 0.082 

Combined 

r(2259) = 0.04, p = 0.056 

r(1142) = 0.04 

p = 0.11 

r(1116) = 0.01 

p = 0.54 

r(1142) = 0.08 

p = 0.002 

r(1116) = -0.002 

p = 0.93 

r(1142) = 0.09 

p = 0.002 

r(1116) = 0.01 

p = 0.70 

“Already  

Knowers” 

Combined 

r(639) = -0.05, p = 0.20 

Combined 

r(639) = -0.02, p = 0.58 

Combined 

r(636) = -0.01, p = 0.76 

r(294) = -0.07 

p = 0.19 

r(344) = -0.03 

p = 0.52 

r(239) = 0.01 

p = 0.79 

r(344) = 0.01 

p = 0.99 

r(292) = -0.01 

p = 0.82 

r(342) = 0.10 

p = 0.054 

Critical  

Trials  

Combined 

r(858) = 0.04, p = 0.17 

Combined 

r(858) = 0.039, p = 0.24 

Combined 

r(858) = 0.04, p = 0.18 

r(431) = 0.05 

p = 0.26 

r(426) = 0.06 

p = 0.18 

r(431) = 0.11 

p = 0.013 

r(426) = -0.01 

p = 0.72 

r(431) = 0.10 

p = 0.03 

r(426) = 0.02 

p = 0.60 
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