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Abstract: Bayesian models allow us to investigate children’s belief revision alongside physiological
states like “surprise”. Recent work finds that pupil dilation (or the “pupillary surprise response”)
following expectancy-violations may be predictive of belief revision. How can probabilistic models
inform interpretations of “surprise”? Shannon Information considers the likelihood of an observed
event, given prior beliefs — suggesting stronger surprise occurs following unlikely events. In con-
trast, Kullback-Leibler divergence considers the “dissimilarity” between prior beliefs and updated
beliefs following observations — with greater surprise indicating more change between belief states
to accommodate information. To assess these accounts under different learning contexts, we use
Bayesian models that compare these computational measures of “surprise” to contexts where chil-
dren are asked to either predict or to evaluate the same evidence during a water displacement task.
We find correlations between the computed Kullback-Leibler divergence and children’s pupillom-
etry responses only when children actively make predictions, and no correlation between Shannon
Information and pupillometry. This suggests that when children attend to their beliefs and make
predictions, pupillary responses may signal the degree of divergence between a child’s current be-
liefs and updated, more accommodating beliefs.

Keywords: Bayesian Inference; Cognitive Development; Learning; Prediction; Pupil Dilation; Sci-
ence Learning; Surprise

1. Introduction

To no surprise, understanding the process of belief revision is of great interest and
has a rich history in many fields including philosophy, psychology, education, and com-
puter science (e.g. [1-4]). Psychological and philosophical work suggests that two interre-
lated components of human intelligence are the ability to deploy abstract, causal, “intui-
tive theories” to support inference and the ability to revise these theories in light of evi-
dence [3,5,6]. Contemporary approaches in the Cognitive Sciences align empirical work
with computational implementations, typically finding that Bayesian models can provide
a framework with which to understand human inference from, and learning of causal be-
liefs [7-11]. These models provide an account of how learners can draw rich inferences
relatively rapidly even when data is limited or ambiguous and have been extended to
account for the ways in which learners form and revise more abstract intuitive theories as
well [12-18]. However, until recently, less work has investigated epistemic emotions and
physiological expressions as they relate to rational models of human learning, despite the
well-established connection between these arousal states and learning [19-20]. In fact,
Bayesian models provide a means to not only understand how humans draw rich infer-
ences from limited data and revised intuitive theories, but also to compare human physi-
ological responses to competing computational theories of surprise and learning.
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A large body of literature highlights the importance of affective and physiological
states for learning and cognition in general. Physiological states, such as pupil dilation,
are often accompanied by phenomenological affective states, like surprise [21-22]. This is
why many researchers studying the effects of surprise on cognition rely on objective phys-
iological measures — such as pupil dilation — as a proxy for surprise [23-28]. However, how
these physiological states relate to learning via belief revision remains less well under-
stood. This challenge of determining what factors are closely linked to concept learning
and how they affect learning is critical to address, as understanding these specific factors
themselves provides multiple positive outcomes for research. Thus, doing so computa-
tionally may improve our understanding of belief revision while also improving our abil-
ity to design human-inspired learning agents.

In the current study, we look to extend Bayesian learning models for investigating
the potential relationships between the physio-emotional experience of surprise (as in-
dexed by pupil dilation) and learning. Specifically, we contrast two predictive models re-
lated to learning: “Shannon Surprise” and “Kullback-Leibler divergence” belief updating.
By building specific predictive models and relating them to children’s physiological re-
sponses (via pupil dilation), we can better understand the mechanisms that underlie learn-
ing in different contexts. Specifically, we will investigate correlations between these two
models and children’s pupillary surprise as they perform belief revision during a water
displacement learning task under different conditions. In one condition, children are
asked to predict outcomes prior to observing events (engaging their prior beliefs) and in
another, children make post hoc evaluations of the same evidence. By evaluating these dif-
ferent types of models and their fit to physiological behavior in these two conditions, we
can better understand how different contexts might engage the interplay between cogni-
tive and physiological mechanisms that support learning.

In what follows, we discuss the measure of pupil dilation and what pupil dilation
indicates. Next, we describe scenarios where pupil dilation may most likely be elicited
and more strongly linked to belief revision, namely when making predictions. Then, we
investigate two candidates for computationally estimating the pupillary surprise response
based on empirical findings and their theoretical interpretations. First, Shannon Infor-
mation as a data-driven surprise; second, Kullback-Leibler divergence as a belief-driven
surprise. Thus, we aim to face the specific challenge of understanding how the pupil dila-
tion response as a cognitive-behavioral response relates to learning via belief revision in
our tasks.

1.1 The Pupil Dilation Response, Attention & Learning

Pupil dilation holds a special status among multiple connected fields such as psy-
chology, cognitive science, neuroscience, biology, and computer science. This is because
pupil dilation has for a long time been considered a reliable instrument for identifying the
temporal dynamics of arousal [29-32]. More recently, pupil dilation has been considered
a physiological response that represents an integrated readout of an attentional network
containing multiple contributing factors [33,34]. Within this attentional network, recent
work suggests that pupil dilation in this network may occur as a result of an interactive
cascade among varied components, including low-level (e.g., light and focal distance;
[35,36]), intermediate-level (e.g., alerting and orienting; [37-39]), and high-level factors
(e.g., physio-emotional responses, inference, and executive function; [25,33,40]). Overall,
accounts of pupil dilation as an attentional indicator highlight that pupillometry can
broadly be attributed to either directed attention or higher-level sensory operations for
processing the content that the observer is currently perceiving.

However, it remains unclear whether these discussed attentional factors and their
related processes are what pupil dilation is expressing specifically in relation to learning.
Further - if so, whether some, none, or all of these factors are being expressed in the same
fashion or to the same degree during belief revision. That is, we know quite a bit about
what might elicit pupil dilation during learning scenarios (e.g., violations of expectations;
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[25,26, 28,41]), but less about what the processes coupled with pupil dilation actually are
and the implications of said processes. Thus, we propose designing computational Bayes-
ian models of learning that can potentially estimate the degree of surprise experienced by
learners, relative to their pupil dilation measurements during a learning task.

With these Bayesian models, we will contrast two broader accounts of “surprise” that
may help to clarify the relevance of this physiological marker of belief revision. The first
candidate, originating from research on Information theory (i.e., Shannon Information;
[42]), posits that surprise (and thus, pupil dilation) correlates with objective expectations
of the data and how informative it is given the data's likelihood. The second candidate
highlights divergence and dissimilarity (i.e., Kullback-Leibler divergence; [43]) between
what is believed by a learner and what revised beliefs the learner expects to better accom-
modate incoming data, quantifying the degree of belief change needed to correctly repre-
sent the actual outcome of a given event by transforming the prior belief into the appro-
priate posterior.

In fact, recent work has looked into disentangling the pupillary surprise response as
separable, distinct processes that can be represented computationally by Shannon Infor-
mation and Kullback-Leibler divergence. One study by O'Reilly and colleagues [44] per-
formed a combined brain imaging and pupillometry study where participants completed
a saccadic eye movement response task. Here, participants needed to use their prior
knowledge about a spatial distribution to locate a target (a colored dot) before returning
to a fixation cross. The findings showed that there were separate, specific neural signals
associated with pupil dilation acting as temporal indicators of surprise (within the poste-
rior parietal cortex) and belief revision (within the anterior cingulate cortex). Specifically,
less-likely events were considered more surprising via Shannon Information, and elicited
pupil dilation. Meanwhile, they found that the Kullback-Leibler divergence related to
when pupil diameters decreased on trials when belief updating may be occurring. This
work provides important demonstration of the dissociable roles of Shannon Surprise and
Kullback-Leibler divergence in computationally capturing surprise and belief updating,
respectively, using a Bayesian framework.

Similarly, Kayhan et al. [45] investigates pupillary surprise and learning with 18-
month-old infants and 24-month-old toddlers. Here, young children completed a statisti-
cal learning task that measured their pupil dilation as they viewed movies where an agent
sampled five colored balls from a transparent bin containing multiple balls of two colors.
These bins depicted the distribution of ball colors inside of it (e.g., a majority of yellow
balls (80%) and minority of green balls (20%)). Critically, 24-month-olds’ (but not 18-
month-olds’) pupillary responses followed a pattern similar to the prediction error of a
causal Bayesian model, calculated as the Kullback-Leibler divergence between prior and
updated probability distributions.

Thus, inspired by these exciting results, we designed a study that lets us explore fur-
ther nuances of how different contexts (asking children to predict vs post hoc evaluate out-
comes) might engage the cognitive mechanisms associated with these two different ac-
counts of surprise. This provides a means to explore the relationship between behavioral
results that find differences in learning via different interventions with the physiological
response and potential cognitive mechanisms (surprise vs belief updating) that might un-
derlie them.

In what follows, we first describe these two potential mechanisms of pupil dilation,
and highlight key theoretical differences between their interpretations and implementa-
tions. Then, we will describe specific contexts where these proposed mechanisms of pupil
dilation may be most prevalent, via model-based prediction, as highlighted by a signifi-
cant amount of recent empirical research. Next, we provide a brief description of the prob-
abilistic Bayesian model used and what metrics we are investigating from it. Finally, we
will compare the two estimates of surprise — Shannon Information and Kullback-Leibler
divergence — based on their correlations with children’s pupil dilation during a water dis-
placement learning task.
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2. Competing accounts of Surprise: Shannon and Kullback-Leibler

2.1. Estimating Pupil Dilation as Data-driven via Shannon Information

Shannon Information is a well-known metric in information theory and describes
how informative an outcome is [42,46-49]. It is largely found in machine learning literature
to describe computational "surprise" - quantifying how meaningful incoming data is rel-
ative to a specific target despite other unwanted, noisy interference. When interpreted
with respect to learning (via Bayesian inference), Shannon Information can be used to de-
scribe the “unexpectedness” of incoming data given the prior beliefs of the learner. Com-
putationally, Shannon Information can be calculated as the negative log-likelihood of
some data’s probability, p(d), given some beliefs over models of the world (H), where
Shannon Information Surprise (Eq. (1)) is

Shannon Information = —log(p(d)). (1)

Shannon Information for some incoming data given an inferred model is typically
quantified as a “signal” of information. Information theory captures this intuition as
simply the negative log probability of the data. Note that this is computationally the same
as marginalizing out hypotheses by considering the probability of the data given each
hypothesis in space H, weighed by the prior probability of each hypothesis, h. One might
interpret Shannon surprise psychologically as a violation of expectation, which depends
on comparing the observation to a prior prediction of outcome likelihoods given the
weighted set of prior beliefs.

If Shannon Information correlates more strongly with children’s pupillometry com-
pared to its competitor, the Kullback-Leibler divergence, then we posit that perhaps the
pupillary surprise response may be more “objective” or “external-focused”, acting as a
reaction to acknowledge the unexpectedness of an event that has occurred and draw at-
tention to it. Specifically, “surprise as information” would represent an attentional mech-
anism homed in on incoming data — emerging as a sign to alert the learner and re-orient
(or heighten) their attention; a process of an “intermediate-level” of complexity among
cognitive responses (per recent review of pupillometry research [34]). Thus, finding that
Shannon Information best fits pupil responses may indicate a response akin to prediction
error, as typically associated with surprise during violation of expectation events.

2.2. Estimating Pupil Dilation as Belief-driven via Kullback-Leibler Divergence

In contrast, other computational accounts describe pupil dilation and surprise in re-
gard to how effectively new data “transforms” a learner’s prior beliefs into their posterior
beliefs [50,51]. Here, the summed Kullback-Leibler divergence is considered the second
candidate for estimating surprise, measuring the summed dissimilarity or relative en-
tropy between a learner’s distributions of prior and posterior beliefs, given the observa-
tion of some new data [43,52]. Computationally, the Kullback-Leibler divergence for mod-
els considering multiple, competing hypotheses is calculated (Eq. (2)) as the weighted log-
odd ratio between a posterior belief, p(h|d), and prior belief, p(d), summed across hypoth-
eses within the set of hypotheses considered (he H)!:

p(hld)
p(h) |

Kullback — Leibler Divergence = Z p(h|d) log[

he H

2)

1 A symmetric (and finite value) form of Kullback-Leibler divergence (Jensen-Shannon) can also be used to compute
distance. In the computational analyses that follow, we apply standard Kullback-Leibler divergence, but results are not

qualitatively different if the Jensen-Shannon divergence is used instead.
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As mentioned, Kullback-Leibler divergence calculations describe not simply a dis-
tance between distributions, but a measure of dissimilarity between them. Thus, when
describing belief revision processes, Kullback-Leibler divergence can be considered as
how much ‘work’ is needed to affect an initial probability distribution (e.g., one’s prior
beliefs) in a way that changes it into another (e.g., updated posterior beliefs). Here, if we
find that Kullback-Leibler divergence relates to learning responses, then we believe that
pupil dilation may be a more “subjective” physiological marker of learning that follows
from the belief updating process.

Central to our empirical question, this computational approach will allow us to con-
trast different models of “surprise” when learning. Specifically, Shannon Information will
quantify the probability of the data accumulated by learners trial-by-trial. Here, Shannon
Information might be depicting pupil dilation as a temporal indicator of when children
may be alerted to an unexpected, highly “informative” outcome that the child should ori-
ent themselves toward. Meanwhile, Kullback-Leibler divergence will quantify the dissim-
ilarity between a child’s prior beliefs and what inferred models of the world would best
explain potential outcomes. This means that Kullback-Leibler divergence presents pupil
dilation as a physiological signal of the amount of effort needed to update their beliefs
(given the learner’s current belief distribution and the to-be posterior belief distribution
that best explains the new data).

2.3 Model-Based Learning through Prediction

Asking learners to generate predictions is a popular method for improving children’s
learning. Studies investigating prediction generation (or “hypothesis generation”) in chil-
dren tend to find that explicitly predicting an outcome before seeing it improves learning
(e.g., of physics; [53-55]). The benefits of making predictions have been connected to suc-
cessful activation of prior knowledge when learning new material, but less is known about
the specific mechanisms by which predicting affects learning success, in particular when
it comes to theory revision [56]. Understanding the cognitive processes that are engaged
during prediction generation can help us understand how, why, and when these inter-
ventions are likely to be successful.

Experiments on making predictions that investigate pupil dilation and learning find
that actively generating a prediction compared to making post hoc evaluations increases
the degree of pupil dilation, particularly when faced with events that are predicted incor-
rectly [25,57]. Furthermore, this work has found a positive relationship between the de-
gree of pupil dilation and successful belief revision [27,28,40]. The enhanced pupillary
surprise response after a violation of expectations may be due to children activating some
task-relevant prior knowledge when they generate a prediction (i.e., leveraging their prior
beliefs). Further, if the outcome following a prediction is different from what the learner
expects, then conflict awareness may be heightened and increase the subjective value of
the outcome’s informativeness, which facilitates belief revision.

We believe that with all other things equal, making a prediction may give children
an “edge” over their peers and promote their learning by engaging cognitive mechanisms
associated with surprise. Assessing this prediction depends on two measures. First, it re-
quires building models for individual learners that predict computationally when sur-
prise is highest given the learners beliefs and the observed evidence. Relating these model
predictions to physiological markers like pupillometry helps us understand the computa-
tional and potentially mechanistic basis for pupil-marked surprise in learning. It also al-
lows us to contrast competing computational markers of surprise under different learning
contexts. Second, we can relate the degree to which individual children’s physiological
states are correlated with these quantitative models and predict that children who have
better “alignment” between physiological and model based surprise may also be more
“optimal” learners, in the sense that their learning behavior is better matched to idealized
learning models. That is, if a heightened, “rational surprise” response leads to more effi-
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cient learning, then children who experience surprise when a rational model (e.g., a prob-
abilistic Bayesian model) would expect them to, may also be better simulated by said ra-
tional model, as well. Thus, the second hypothesis in our investigation is that children
whose pupillometry measures are better fit by the model estimates are also more strongly
represented by the simulated behaviors of an ideal learner, depicted by an Ideal Bayesian
learning model.

3. The Current Study

The broad hypothesis of this paper is that children that engage more with a learning
task by making predictions will have stronger correlations between their pupil dilation
measurements and the model estimates of the pupillary surprise response, compared to
peers that are only making post hoc evaluations (specific regarding the modeled data to be
described, below). However, two alternative hypotheses are also considered here regard-
ing which of the model estimates better fits their responses. Recent interpretations of pre-
diction suggest that actively making a prediction entails leveraging one's prior beliefs and
extrapolating potential outcomes given these beliefs (e.g., [11,27,28,40]). Both Shannon In-
formation and Kullback-Leibler divergence accounts are consistent with this proposal be-
cause they both leverage prior beliefs towards predictions. However, they differ in the
mechanism (and potential) implications of leveraging those beliefs. If the pupil measure-
ments for children making predictions are better matched by the Shannon Information
metric, then this suggests that pupil dilation may indicate more robust engagement with
the feedback they receive. In particular, good performance of the Shannon Information
estimate may represent children’s heightened attention to evidence that violates their be-
liefs (e.g., [47-49]). Such heightened response could support later learning by increasing
arousal and thus improve the encoding of surprising data, but the Shannon response does
not reflect the learning in the moment. However, if the Kullback-Leibler divergence in-
stead performs better than Shannon Information, we would find support for physiological
responses capturing belief-updating in the moment, suggesting that children may be per-
forming an effortful computation that captures degree of belief change. Critically, as-
sessing the performance of these candidate metrics of quantifiable pupillary surprise —
both in general and in competition with one another — helps us better understand the role
of surprise during belief revision. Does surprise simply serve to guide attention to rele-
vant outcomes? Or does it aid learners by highlighting their beliefs and inform their inte-
gration of new information?

We modeled data from an experiment that investigated elementary school (six- to
nine-year-old) children’s theories of water displacement for the current model (experi-
mental procedure, data, and empirical results are those found in [40]. Children’s causal
beliefs of water displacement were chosen as children frequently have the misconception
that water displacement depends on the weight of an object or a combination of weight
and size rather than on its size only (e.g., [58]), providing an appropriate domain for the
investigation of variability across individual children’s beliefs, as well as their impact on
children’s subsequent learning. Furthermore, previous work has modeled this experi-
mental data for investigation of children's learning during a belief revision task [11] and
found very strong fits between “optimal” Bayesian learning and children’s performance
on the task.

The to-be-modeled experiment’s design in [40] entailed a Pretest phase, a Learning
phase, and a Posttest phase. On each trial, children (regardless of assigned condition) were
presented with two spheres of varied features (e.g., in size, material, and/or weight) side-
by-side (see Figure 1 for a trial example). Then, children stated which sphere they thought
would displace the most water (between two identical containers). These judgments were
assessed using a 5-point-scale (e.g., (1 = certainly the left sphere, 2 = maybe the left sphere, 3 =
equal amounts of water for both, 4 = maybe the right sphere, 5 = certainly the right sphere). During
the Pretest and Posttest phases, no feedback was provided to the children to allow for a
clean initial assessment of beliefs (prior to learning) and final learning outcomes. Children
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were randomly assigned to one of two experimental conditions — a Prediction or a Post-
diction Condition, and were provided feedback during the Learning Phase of the experi-
ment according to condition. Children in the Prediction condition were asked to provide
a response prior to seeing the outcome; responses were values from 1-5 stating their expec-
tation (and confidence) about which sphere displaces more water. In contrast, children in
the Postdiction condition first saw the results of the presented trial, then were asked to
state what their expectations had been (prior to the evidence)?. Importantly, children’s pupil
dilation measurements were collected as outcomes were presented during the Learning
phase for both conditions.

Figure 1. An example of a trial during the original experiment. Here, the correct response for the

Example Trial

—

il

' i

“Which ball would displace the most water?”

Left Maybe Tie Maybe  Right
Wins Left Right Wins

trial example is option “5 - Right Wins”, highlighted by the green dashed circle. This is provided as
evidence following children’s response (Prediction Condition) or preceding their response (Postdic-
tion Condition). Children with the correct “Size” rule would accurately select “5” (or “4”) here and
see confirming feedback. However, because in this trial the metal ball is much heavier than the
styrofoam ball, despite its smaller size children with the incorrect Material or Mass beliefs may in-
correctly respond 1, 2, or 3 in their predictions or postdictions, and potentially be surprised by the
evidence (that 5 “wins”).

3.1 Bayesian Model of the Pupillary Surprise Response

The Ideal Bayesian learning model that we employ for our investigations builds on a
recent investigation of individual differences in children’s belief revision (the Optimal
Bayesian model described in [11]). Here, the Bayesian model constructed computational
representations of children’s beliefs based on their task responses. Doing so highlighted
the importance of individual differences in prior beliefs during learning, while further
demonstrating the impact of multiple, competing beliefs that guide inferences, as the
Bayesian model’s correlations to children’s behavioral responses were significantly
stronger than competing frameworks for the entire subject pool (Bayesian Correlations >
.8; Directional accuracy >90%). Additionally, this model found that children in the exper-
iment’s Prediction condition were better simulated by the model than children in the Post-
diction condition.

2 Measures in this study and others reveal that children are honest about their responses in these postdiction conditions.
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We will build upon the Bayesian model’s simulations for estimating children's pupil
dilation measurements during the original experiment. Specifically, we will look at the
Bayesian trial-by-trial surprise predictions for individual children. Children’s estimated
beliefs are based on their responses during the pretest and follow Bayesian posterior up-
dating during the test trial observations (p(h:|d:) V¥ h:e Hr). Surprisal (whether Shannon or
Kullback-Leibler divergence) for each trial depends on an individual child’s expected be-
lief state given the evidence for that trial.

Children’s beliefs about how much water will be displaced by different objects have
been identified by past literature (e.g., [58] Burbules & Linn, 1978), falling into relatively
simple causal rules for predictions: a rule based on the size of the objects, one based on
the material of the objects, one on based on mass of the objects (a mixture of size and
material), and one reflecting random responding. Thus, in our model children’s beliefs
were represented computationally as a distribution across these four possible beliefs
(“Size” (S), “Material” (M), “Mass” (W), and finally a “Random” (R) ). Thus, each child’s
“model” (p(H:!d:); Eq. (3)) of water displacement on a given trial (f) could be represented
as the posterior probability over just four rules (S, M, W, R):

p(Hldy) = [p(hse = S|de), p(hine = Mde), p(hye = W|d,), p(hye = Rldy)]. (3)

3.1.1 Calculating Shannon Information

From Eq. (1), we derive the model’s trial-by-trial SI surprise estimates in Eq. (4). That
is, on some trial (), we determine the likelihood (p(d:|H)) of that trial’s new data (d:) ob-
served by the child given their currently inferred model (H:):

SI = —log(p(dy)). (4)

Here, Eq. (5) describes how our model calculates the probability of the data (p(d:)) on a
given trial (t), as marginalizing over the four competing beliefs at time ¢, (}i=h(wmwn), which
is the summation over the likelihood and prior for each model:

p(dy) = Zh’isHt p(d¢|he)p(heo). (5)

This calculation entails treatment of each individual hypothesis’s (hi) current state at each
trial (h:). The likelihood is weighed by the strength of belief for each model under this
summation. Thus, evidence that is less likely under more strongly held beliefs will con-
tribute more to surprise than when evidence is unlikely under a weakly held belief. (See
Figure 2 for illustration.)

3.1.2 Calculating Kullback-Leibler Divergence

From Eq. (2), we derive trial-by-trial Kullback-Leibler divergence as a surprise esti-
mate in Eq. (6). For some trial (), we calculate the relative entropy for each considered
belief (hypothesis h.i) of the child’s currently held distribution of prior beliefs (p(h.ild:) ¥
htie Hr) with its respective posterior belief, p(h1,i1di+1). Kullback-Leibler divergence (KLD)
is taken as the sum of these relative entropies between prior and posterior beliefs captur-
ing the shift in distributions between time (¢) and after observing the data at time (t+1):

P(hesai desn)
KLD(Hei4|| Hy) = Z P(hesri |desa) log[ﬁ

h[’iE H¢

(6)

Here, on a trial (t), the data have not yet been observed and capture the distribution of
beliefs prior to observing the evidence, where-as trial t+1 captures the posterior distribu-
tion. Kullback-Leibler is simply capturing the relative change between prior and posterior
given some observation. (See Figure 3 for illustration.)

Assessing the performance of these candidate metrics of quantifiable pupillary sur-
prise —both in general and in competition with one another — provides a means to explore
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Figure 2. Example of the procedure for calculating Shannon Information given the current model’s simulations, formally described by Eq. (4) and Eq. (5). Row A and B display two
examples of the different profiles of children’s prior beliefs captured in graph (Column 1) and numeric (Column 2) form. Given some incoming data (e.g., the example trial from
Figure 1; a Small Metal ball vs a Large Styrofoam ball), the likelihood of the observation (that event “5 - Right Wins” occurs) is estimated for all four models (Column 3). Then, a
posterior probability is calculated by weighing the individual child’s prior beliefs against the likelihood (Column 4). Shannon Information is calculated by summing over (marginal-
izing out hi) these posteriors and taking the negative log likelihood of the final summed total. Thus, there is an inferred negative relationship between data likelihood (p(d:) and
model surprise according to the Shannon Information account (Column 5). That is, when the weighted likelihood of data is low, model surprise is high; similarly, when the likelihood
of data is high, model surprise is low.
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Figure 3. Example of the procedure for calculating Kullback-Leibler Divergence (KLD) given the current model’s simulations, as formally described by Eq. (6). Row A and B display
two examples of the different profiles of children’s prior beliefs captured in graph (Column 1) and numeric (Column 2) form. Given some incoming data (e.g., observing option “5”
= right side wins for the example trial in Figure 1; a Small Metal ball vs a Large Styrofoam ball) and the prior beliefs of the learner (Belief Distributions, Ht), we consider the posterior
belief distribution that best accommodates the observed data (e.g., p(H:| “5”)), again, captured in graph (Column 5) and numeric (Column 4) form. Then, the Kullback-Leibler Diver-
gence, is calculated as the sum of relative entropies between the prior probability and posterior probability between each of the individual competing beliefs (/1i). Thus, there is an
inferred positive relationship between the degree of dissimilarity between distributions (divergence between the prior and posterior) and model surprise according to the Kullback-
Leibler Divergence account. That is, when the prior and posterior are dissimilar, model surprise is high; conversely, when the prior and posterior are similar, model surprise is low.
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the implications of different learning responses to data at the individual level, trial-by-
trial. If the Shannon Information (SI) estimates better correlate with children’s pupil dila-
tion, then this may suggest that pupil dilation is an indicator of robust engagement with
incoming data — particularly when it is of low likelihood and highly “informative”. If the
Kullback-Leibler divergence (KLD) correlates more strongly with pupil dilation, then this
may suggest that pupil dilation is an indicator of belief updating “in-the-moment”. As-
sessing these correlations under different contexts (prediction vs postdiction) allows ex-
ploration of potentially different mechanisms engaged by different types of learning in-
terventions.

4. Results

4.1. Assessing Fit of Model-Estimates

The analyses performed for assessing each of the surprise estimates, Shannon Infor-
mation and Kullback-Leibler divergence, use direct correlations between model predic-
tions of and children’s pupil dilation responses recording during the experiment. Bonfer-
roni correction is performed where needed for conservative analyses and interpretation,
with correlation p-values tested against a Bonferroni-corrected alpha (Condition [Predic-
tion, Postdiction] x Estimate [SI, KLD], a = 0.05/4 = 0.0125. All correlations discussed in the
Results section are additionally compiled in a table found in Appendix A for ease of com-
parison.

4.1.1 Condition-combined analyses

When looking at the full dataset (2890 trials across 94 children), we found no signifi-
cant correlation for either the Shannon Information (r(2889) = 0.01, p = 0.49) or the Kullback-
Leibler divergence model (r(2889) = 0.02, p = 0.12) to children’s pupillometry measurements.
As noted, our primary question involves assessing the models accounting for two differ-
ent response modalities (prediction and postdiction) to assess the potential differences be-
tween these interventions.

4.1.2 Condition-separate analyses

We first explored condition differences of children’s pupillometry response as related
to Shannon Information. The Shannon Information estimate did not correlate with the pu-
pillary response for either the Prediction (r(1437) = 0.03, p = 0.20) or Postdiction (r(1461) =
0.01, p = 0.62) condition. In contrast, exploring condition differences of children’s pupil-
lometry response as related to Kullback-Leibler divergence did reveal differences. The
Kullback-Leibler divergence estimate was significantly correlated with children’s pupillary
response within the prediction condition (1(1437) = 0.07, p = 0.004 < @). There was no cor-
relation between pupillary response and Kullback-Leibler divergence for children in the
Postdiction condition (r(1461) = -0.003, p = 0.90). The difference between the strength of
the Kullback-Leibler divergence and Shannon Information correlations within the Prediction
condition was also significant, (z=2.98, p = 0.0014)3. Correlations between Kullback-Leibler
divergence and pupillary response were also significantly different between the Prediction
and Postdiction conditions (Fisher’s r-to-z transformation; z = 2.11, p = 0.0174).

4.1.3 Exploratory analysis with data subsets

Sources of noise, such as individual differences in prior beliefs and an identified crit-
ical learning period (both highlighted in previous modeling work; Colantonio et al., in
review) may have affected the correlation between the model estimates and pupillary sur-
prise. Therefore, we looked to control for two additional sources of noise in our data via
follow-up analyses. First, not all of the children in the study were still “learners”, as a

3 Similar results are found for a bounded version of the Kullback-Leibler divergence measure, the Jensen-Shannon

divergence [59,60]. These results can be found in Appendix A.
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subset of the participants began the Learning Phase with the correct Size-belief. Applying
the same method as above, we looked at just the children who did not have beliefs based
on the correct theory of water displacement at the beginning of the experiment (19 chil-
dren had the correct theory already, leaving n = 75 of 94 children who began with an in-
correct theory, approximately equally between conditions). Re-analyzing the data with
this subset replicated the results above. There was no significant correlation between
Shannon Information and children’s pupillometry for the “learners” subset (overall r(2259)
=0.02, p = 0.29; Prediction, r(1142) = 0.04, p = 0.11; Postdiction, 7(1116) = 0.01, p = 0.54).
Meanwhile, while the Kullback-Leibler divergence had no significant correlation with the
entire “learner” subset (r(2259) = 0.036, p = 0.08), there were significantly stronger correla-
tions between Kullback-Leibler divergence and the pupil dilation response for learners
within the Prediction condition (r(1142) = 0.08, p = 0.002 < a) compared to the Postdiction
condition (r(1116) = -0.002, p = 0.93; comparing conditions: Fisher’s r-to-z transformation;
z = 2.15, p = 0.0158). The Kullback-Leibler divergence did not have a significantly stronger
correlation than Shannon Information for “learners” in the Prediction condition (z =0.99, p
=0.16) for this subset*.

Our second subset analysis explored only trials where “learning” was likely to take
place. Previous modeling of children’s learning over the course of the study revealed that
most children converged onto the correct Size belief by trial 19 based on their choice be-
havior (where the 19th trial was the 75th percentile of when children in the study seemed
to have “learned” the Size belief according to the model; discussed in more detail in Col-
antonio et al., in review). The sharp-then-plateaued learning rate was likely because the
initial trials (n = 9) provided in the Learning Phase provided no differentiation between
the competing belief models (Size, Material, Mass). They were selected to be “congruent”
with all theories and thus offered no “surprise” for any model or opportunity for learning.
Following a handful of incongruent evidence (trials 10-19) the majority of children revised
their beliefs and began responding consistently with the correct Size belief. This design
(no conflicting evidence to support learning initially, nor learning after the correct beliefs
are settled) may have artificially created “noise” in our pupillometry correlations. This is
because variability of responses in pupillometry measures caused by other artifacts could
temper correlations due to a relatively large number of trials where Shannon Information
and Kullback-Leibler divergence estimates were both very low. Thus, we also looked at “crit-
ical learning trials” — those that started with the first incongruent trial (trial 10, where data
would be differentiated by the competing beliefs) and extended to trial 19 where almost
all children (n = 74 of 94 children) had learned the correct belief (size dictates water dis-
placement) as measured by Bayes Posterior Odds. For these “critical learning trials”, we
again replicated the overall pattern of results. Shannon Information did not correlate overall
during these critical trials (r(858) = 0.04, p = 0.24), nor did it correlate within either condi-
tion (Prediction condition: r(431) = 0.05, p = 0.26; Postdiction condition: 7(426) = 0.06, p =
0.18). Again, the Kullback-Leibler divergence did not correlate for all children across all of
the “critical” trials, (r(858) =0.04, p = 0.24). However, (replicating the other analyses) there
was a significant correlation between the Kullback-Leibler divergence estimate and pupillary
response within the Prediction condition (r(431) = 0.12, p = 0.013 < a); while no correlation
was found in the Postdiction condition (r(426) = -0.003, p = 0.90). These correlations are
significantly different between Prediction and Postdiction conditions for Kullback-Leibler
divergence (Fisher’s r-to-z transformation; z = 2.11, p = 0.0174). . The difference between

¢ Aswould be expected by small sample size and the fact that children’s with the correct theory would have predicted
low surprise for trials across the full study, none of these correlations are significant when looking at the subset of
“already-knowers” (overall for SI, #(639) =-0.05, p = 0.20; for KLD, r(639) =-0.02, p = 0.58), even when looking between
the Prediction (for SI, #(294) =-0.07, p = 0.19; for KLD, 7(294) = 0.01, p = 0.79) and Postdiction condition (for SI, r(344) = -
0.03, p =0.52; for KLD, r(344) <0.01., p =0.99).
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Kullback-Leibler divergence and Shannon Information for the Prediction condition yielded a
significant difference, as well (z =2.98, p = 0.0014) during these “critical” trials. This sug-
gests that the pupillary surprise response reflects something like belief-updating, but only
in conditions when children are actively engaged in prediction (a point we return to in the
Discussion).

4.2. Modeling Individual Differences

We were also interested in relating pupillary response and modeled surprise to learn-
ing. Thus, we looked at how, at the individual level, the degree of fit between physiolog-
ical response and model response related to the degree to which children’s responses re-
flected Bayesian “optimal” learning. That is, we are correlating two correlations. Specifi-
cally, for this investigation, we looked at the correlation of children’s answer behavior (1-
5) to Bayesian model predictions of those answers as one set of correlations, and children’s
pupillary response performance and our models of surprise as the second set of correla-
tions. If pupillary response relates to learning, we might expect to see that those children
whose pupillary responses are more aligned with model predictions are also the same
children who learn more “optimally”. Indeed, we found that the correlation of individual
children’s pupil response to Kullback-Leibler divergence correlated significantly to the cor-
relation of those children’s answers and ideal Bayesian learning (#(88) = 0.27, p = 0.007).
In contrast, correlations based on children’s pupil response and Shannon Information did
not correlate to this learning measure (r(88) = 0.05, p = 0.58). The difference between the
correlation coefficients was marginally significant (z =1.49, p = 0.06).

5. Discussion

This paper describes one of the first computational investigations of the links be-
tween children’s pupillary surprise response and their science concept learning, as related
to the contextual effects of engaging in an explicit prediction or postdiction. We modeled
data, including pupillometry responses, collected from elementary school children who
provided predictions or predictions in a water-displacement learning task. By modeling
individual children’s beliefs and learning over trials, we could capture two different forms
of “surprise”: Shannon Information and Kullback-Leibler divergence. Overall, we find
that the children’s pupillary surprise response is related to Kullback-Leibler divergence —
but only in cases where children have generated an explicit prediction prior to observing
the potentially surprising events. Furthermore, we found that children whose pupillome-
try data was best estimated by the Kullback-Leibler divergence also tended to be the chil-
dren whose behavioral response data (from an experiment on learning water displace-
ment via belief revision) was best fit by an ideal Bayesian learning model.

Our findings fit well with the theory described at the intersection of cognitive, emo-
tional, and physiological research (e.g., [33,34]), with particular links to recent work in-
vestigating the role of prediction in belief revision (e.g., [25,27,40,57,61,62]). Our findings
also converge with other related research. Like Kayhan and colleagues [45], we found a
relationship between pupil dilation and the Kullback-Leibler divergence. Both this previ-
ous work and the current investigation find that the calculated divergence may affect be-
lief revision in regard to the amount of updating needed to adjust current beliefs. How-
ever, there are two key differences between our modeling work and that of Kayhan et al.
[45] which are important to note. First, the current paper investigates children’s pupillary
surprise under different contextual conditions. The current results find that the relation-
ship between modeled surprise (via Kullback-Leibler divergence) and children’s pupil-
lary surprise response may only occur when children are actively making predictions —
but not when they are passively observing and evaluating. This highlights that there are
instances where pupillary surprise might be more likely to occur when making predic-
tions — as proposed by other recent empirical work (e.g., [28]). Second, in line with the
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original paper that we draw our model from [11], the current model accounts for individ-
ual differences among children’s prior beliefs and the processes by which they update. In
of Kayhan et al. [45], children’s behaviors are modeled to all follow the same inferred
computational model®. In contrast, we formalize the prior beliefs that children may have
at the individual level, as informed by their past behavior.

Like other work investigating surprise during learning, we found a relationship be-
tween the Kullback-Leibler divergence and the pupillary surprise response (e.g., [44,45]).
However, unlike O’'Reilly and colleagues [44], we did not find a relationship between like-
lihood-based Shannon Information and pupil dilation. One potential reason for this di-
vergence is that there are differences in the degree of complexity of the learned “concept”
of each study and in the number of hypotheses considered. Specifically, the previous work
entailed a task that only required reasoning about one variable (the angle that the target
appeared at on a screen; [44]), however the angle of the target may have taken many dif-
ferent values. In contrast, the currently modeled task may require reasoning about more
complex, causal beliefs (e.g., whether an object’s size, material, or weight determines the
amount of water displaced and how each of these features generates displacement; [40]),
but only considered a few possible hypotheses®. Thus, one particular reason for the sig-
nificant relationship in past work between pupil dilation and Shannon Information (or
likelihood-based prediction error), and the poorer fit with children’s pupillometry in the
Prediction condition of the current dataset may relate to either differences in the complex-
ity of the concept being inferred or differences in the size of hypothesis space being con-
sidered.

A second difference between our results and O’Reilly and colleagues’ [44] was that
we found a positive correlation between pupil dilation and the Kullback-Leibler diver-
gence during prediction, whereas a negative correlation was found in this past work. Our
task differed in both the types of beliefs being considered, and whether children were
actively engaged in prediction. If beliefs are already engaged in this process (as they likely
were for our participants following the explicit prediction prompt), then a relatively in-
stantaneous pupillary growth response to the observed outcome is feasible. In our task,
the number of options being considered and “simulated” by children is bounded’, with
children only deciding among five options (really three directional outcomes). One pos-
sibility is that the positive dilation we observed in the prediction condition captured the
amount of mental effort generated by explicitly considering outcomes over more complex
hypotheses. It has been suggested that when the necessary ‘work” appears unexpectedly
“large”, more mental effort may be exerted to accommodate the new information (e.g., to
reduce the ‘work’; Friston et al., 2006; Friston, 2010), and be reflected by increases in chil-
dren’s pupil dilation — similar to findings linking reduction of uncertainty to the presence
of signals from neuromodulators (e.g., acetylcholine and norepinephrine; [65,66]). Of

5 Understandably, we acknowledge limitations of Kayhan et al.’s [45] investigation given the population being studied.
Specifically, Kayhan and colleagues faced the challenge of investigating this domain in18-month-old infants and 24-
month-old toddlers. Thus, acquiring explicit measures to inform computational representations of prior beliefs may
have been difficult or not plausible.

6 It is of course likely that children were entertaining a more varied set of potential causal beliefs about displacement
than the four considered here. Responses in the pretest aligned well across these four and past work has focused on
these, but we are open to there being a more complex space of beliefs in this domain as well. Indeed, as learners consider
more complex interactions (like buoyancy, water permeable materials like sponges, etc.) the space will balloon.

7 Additional analyses investigating a bounded divergence measure, Jensen-Shannon divergence [59,60], is also
performed and described in Appendix A. Importantly, the Jensen-Shannon divergence performs almost identically to

the Kullback-Leibler divergence in terms of its correlations with children’s pupillometry.
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course, we do not have enough evidence that confirms that pupil dilation actually accom-
panies a more “effortful” mental process (e.g., like those found by [29,67]), only that the
found correlations indicate a relationship between pupil dilation and the amount of ‘work’
needed to update beliefs.

5.1. Understanding potential cognitive mechanisms

Both Shannon Information and Kullback-Leibler divergence accounts of pupillary
surprise have support in the literature exploring cognitive mechanisms. Specifically, these
proposed computational interpretations align with the mentioned attentional network de-
scribed in past work and are not necessarily exclusive. Shannon Information has been
suggested to relate more to the “intermediate-level” factors, addressing what it is exter-
nally a learner might be trying to process when pupil dilation occurs (e.g., [37-39]). Simi-
larly, the Kullback-Leibler divergence has been suggested to represent “higher-level” fac-
tors relating to internal processes and state-like fluctuations that the learner might be ex-
periencing (e.g., [25,33,40]). Thus, support for either the Shannon Information or the Kull-
back-Leibler divergence (or potentially both) estimating children's pupillometry would
have fit with various findings and interpretations of pupil dilation as some form of atten-
tional network activation (see a thorough review in [34]).

If these accounts of Shannon capturing “intermediate-level” factors and Kullback-
Leibler divergence capturing “higher-level” features are correct, our results provide sup-
port for “higher-level” factors being engaged in our task — at least when children are ex-
plicitly making predictions. Perhaps when making predictions, children are orienting
their attention toward their beliefs. That is, pupil dilation in our task may be an indicator
of children’s online assessment of their current models of the world and what the implica-
tions would be (how much effort is needed to change these models) given the potential
outcomes of an upcoming event.

Why might Kullback-Leibler divergence capture greater attention or cognitive effort?
As described earlier, Shannon Information quantifies a single signal of data informative-
ness against only the current hypothesis space [42,46-49]. In contrast Kullback-Leibler re-
quires a computation over two hypothesis spaces — the prior and the posterior. In this
way, Kullback-Leibler might reflect more effortful cognitive processes.

5.2. Limitations & Future Work

The implications of this work highlight key investigations that future work should
pursue. Specifically, one such avenue entails empirically and computationally capturing
a “construct” of surprise that accounts for its emotional, cognitive, and physiological com-
ponents. Next, future work may also be interested in further refining our understanding
of the “higher-level” processes that our results suggest being associated with surprise —
that is, interactions among prediction, planning, and other executive functioning.

5.2.1 The Noisiness of Pupillometry Measurements

We acknowledge the impact of noise within the original experiment’s pupillometry
data, which could be due to many possible reasons. First, both the children and the model
seemed to “quickly” learn the scientific concept (that size determines the amount of dis-
placed water). Thus, opportunities for experiencing pupillary surprise may have been in
short supply as misconceptions of water displacement were not held onto for long. In
response to this, we also analyzed subsets of the data to account for potential noise due to
learning dynamics: whether children had already “known” the size principle at Pretest,
and the “critical” trials where learning would be most likely to happen. Doing so did lead
to improvements in the fit between the Kullback-Leibler divergence when estimating sur-
prise, and did not affect the lack of fit with Shannon Information.

The second reason that noise may have been prevalent was that despite best efforts
for careful task administration and data collection, there do exist drawbacks when collect-
ing pupillometry measures. For example, careful preparation of the study’s location is
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needed?, as low-level issues like light levels and focal distance do affect fluctuations in
pupil size [34-36]. This is important to acknowledge, as many interpretations of pupillom-
etry entail an assessment of the average change in pupil size within a timeframe. Addi-
tionally, work investigating the influence of low-level factors like light levels finds that
pupil dilation can be oscillatory with respect to fluctuations in the luminance of objects
and their environments [68]. This may lead to a pupillary surprise response with a short
latency (relative to the measured timeframe), but particularly strong amplitude being
washed out by constriction of the pupil (whether by nervous system relaxation or slight
light level variance) during the timeframe when measures are averaged.

Finally, following the acknowledgment of the potential sources of noise, we also
acknowledge the relative strength of the found correlations (e.g., in order of the Results
section, the significant correlations held Pearson’s correlation coefficients of » = 0.07, 0.08.
0.12). However, these correlations were found to be significant even when performing
analyses conservatively (via Bonferroni correction). To the best of our knowledge, this
work seems to be the first to find significant correlations between pupillometry and a
computational model estimate during science concept learning.

5.2.2 Capturing Pupillary Surprise across Modalities

Notably, we found no correlations between either Shannon Information or Kullback-
Leibler divergence and the pupillometry measures of children in the Postdiction condi-
tion. As described in the previous section, this may be partially due to noise leading to
underpowered detection. However, it may also suggest that perhaps another mechanism
(and thus another model surprise metric) needs to be considered and investigated in fu-
ture work regarding when (or even, if) pupillary surprise occurs in different response mo-
dalities. The current work highlights that when making predictions, pupil dilation may
be indicating the performance of a higher-level, learning-effort estimates. However, we
did not find significant correlations between pupillary response and model predictions in
the postdiction condition despite the fact that over the course of the experiment, these
children also learned. Indeed, pupil dilation did occur at times during the original study
for children in the Postdiction condition — just not in a way that correlated with models of
surprise. Thus, future work should investigate whether other response modalities indicate
that processes are being performed when pupil dilation is elicited with theory-based met-
rics for estimating said pupillometry computationally.

5.2.3 Empirically Measuring Surprise

In contemporary work on surprise, the physiological measure of pupil dilation is
commonly collected as a proxy or marker that signals an individual’s experience of sur-
prise (e.g., [22]). This tends to be proposed due to the occurrence of pupil dilation follow-
ing a violation of one’s expectations — often inducing heightened attention, physiological
arousal (e.g., the release of noradrenaline and norepinephrine), and increased activity in
brain areas (e.g., within the brainstem) related to monitoring uncertainty [23,30,69]. But,
as with most emotions, special care needs to be taken when discussing measures and ex-
pressions of affective states. In particular, surprise has received considerable attention
since the mid-20th century that still informs theoretical concerns regarding what surprise
actually is and connecting the (less-so recently) disparate fields that investigate surprise
(see [19,20,70]). Importantly, these conceptualizations and implementations of surprise
only relate to physiological instances of surprise’s attentional capacities. Thus, future re-
search that looks to finely define surprise not only in terms of its proposed physiological
markers but also subjective experiential phenomena, could also collect self-reported

8 In collecting the modeled data (Theobald & Brod, 2021), great efforts were made to prepare the study location at a
local science museum. For example, the experimenters used a room with no windows, allowing only for artificial light

to keep the light levels as consistent as possible.
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measures of experienced surprise as an additional correlate to further substantiate claims
surrounding physiological measures of surprise.

5.2.4 Investigating Modalities that Potentially Leverage Prior Beliefs

Future work might consider investigating science concept learning by revisiting in-
terview methods of past studies to further understand children’s subjective prior beliefs
and what processes children (propose that they) may have employed to revise them (e.g.,
as in earlier water displacement studies; [58]). In fact, recent work highlights that thought
experiments — imagining outcomes of an event and revising assumptions — can be benefi-
cial for learning in both adults [71] and young children (six-year-olds; [72]). Thus, future
work may tackle the integration of key experimental design aspects from the currently
modeled data (the role of prediction and pupillometry) and research on other learning-
by-thinking methods like thought experiments. Doing so may help determine whether
such planning is being implemented by children. However, such approaches should be
done carefully and interpreted cautiously, as such meta-cognitive awareness and perfor-
mance of thought experiments may be difficult to do, and work explicitly on whether
people (especially children) typically benefit from thought experiments (compared to or-
igins in allusions to scientific revolutionaries like Galileo, Kepler, and Einstein) is rela-
tively new to the field [73].

5.2.5 Potential Roles of Executive Function

Strides in research on attention highlight that top-down regulation and executive
control are vital for processing and awareness of relevant information in the environment
(extensively reviewed in [33,34]). Specifically, executive function is important for the
guidance of intermediate-level attentional processes (e.g., alerting and orienting) for sen-
sory operations. Here, we propose that future work should perform further computa-
tional investigations centered on incorporating measures of executive function. Modeling
any relationships among theory change, prediction, pupillary, and executive function
skills (such as inhibition and cognitive flexibility; [74,75]) may provide further insight into
other relevant mechanisms that support science concept learning. Such modeling would
highlight whether executive function affects model performance straightforwardly, where
higher executive function measures might correlate with better model performance. Ad-
ditionally, future work may entail the design of Bayesian models that account for various
executive function skills. For example, would a model that has the ability to inhibit incor-
rect prior beliefs perform better? Or perhaps, would a model that flexibly switches focus
towards updated, “more correct” theories be plausible and sufficiently capture children’s
behavior?

5.3. Conclusions

Here, we have identified a candidate computational measure that may capture the
pupillary surprise response in a quantifiable way when children are making predictions
during science learning. Specifically, we found that when children make predictions,
their pupil dilation in response to observed outcomes may be a temporal indicator of the
child leveraging their initial prior beliefs and extrapolating the implications of those out-
comes given said prior beliefs. The current work contributes to our knowledge of what
pupil dilation may be an expression of during the learning process. Specifically, by iden-
tifying contexts where pupillometry can be estimated computationally via the Kullback-
Leibler divergence, we have also identified candidate mechanisms and processes that chil-
dren may be performing when pupil dilation is elicited. That is, since the Kullback-Leibler
divergence typically describes dissimilarity, or the amount of “work” needed to transform
one probability distribution into another, the current findings have highlighted that ex-
plicit prediction may elicit the pupil dilation response as a physiological marker of chil-
dren’s belief revision — estimating how much “work” is needed to move from prior to
posterior. This behavior was not associated for children who were only post hoc evaluat-
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ing, suggesting a privileged role for prediction in engaging learning-relevant physiologi-
cal responses. This computational modeling investigation, alongside the recent experi-
ments centered on prediction, provides some initial insight into why engaging children to
generate predictions may support learning more effectively than other interventions. Such
a simple manipulation may differently engage affective states and impact children’s learn-
ing; that is perhaps most surprising of all.
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Appendix A

Table A. Correlations between children’s pupillometry measurements and each of
three computational estimates of pupillary surprise: Shannon Information, Kullback-
Leibler Divergence, and Jensen-Shannon Divergence. Values in boldface formatting high-
light significant correlations following Bonferroni correction among the three measures
(¢ = 0.05/3 = 0.1667).

Shannon Kullback-Leibler Jensen-Shannon
Information Divergence Divergence
Condition Prediction Postdiction Prediction Postdiction Prediction Postdiction
Combined Combined Combined
All 7(2889) = 0.01, p = 0.49 r(2889) = 0.028, p = 0.12 r(2886) = 0.029, p = 0.11
Wil 1(1437)=0.03 | r(1461)=0.01 | r(1437)=0.07 | r(1461)=-0.003 | r(1435)=0.07 | r(1459)=0.01
p=0.20 p=0.62 p =0.004 p=0.90 p = 0.005 p=0.59
Combined Combined Combined
Learners r(2259)=0.02, p =0.29 r(2259) = 0.036, p = 0.082 r(2259) =0.04, p = 0.056
Only r(1142) = 0.04 r(1116) = 0.01 r(1142) =0.08 | r(1116)=-0.002 | r(1142)=0.09 r(1116) = 0.01
p=0.11 p=0.54 p =0.002 p=093 p =0.002 p=0.70
Combined Combined Combined
“Already r(639) =-0.05, p=0.20 r(639) =-0.02, p = 0.58 r(636) =-0.01, p = 0.76
SHuREs r(294)=-0.07 | #(344)=-003 | ~(239)=0.01 r(344) = 0.01 r(292) = -0.01 r(342) = 0.10
p=0.19 p=052 p=0.79 p=0.99 p=0.82 p=0.054
Combined Combined Combined
Critical r(858)=0.04, p =0.17 r(858) =0.039, p = 0.24 r(858)=0.04, p=0.18
Trials _ _ _ _ _ _
r(431)=0.05 r(426) = 0.06 r(431)=0.11 r(426) =-0.01 r(431) =0.10 r(426) = 0.02
p=0.26 p=0.18 p=0.013 p=0.72 p=0.03 p=0.60
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