
Article Not peer-reviewed version

ANN-Based Real-Time Prediction of

Heat and Mass Transfer in the Paper-

Based Storage Enclosure for

Sustainable Preventive Conservation

Bo Han , Fan Wang * , Julie Bon , Linda Mac Millan , Nicholas K Taylor

Posted Date: 20 May 2025

doi: 10.20944/preprints202505.1551.v1

Keywords: heat and mass transfer; artificial neural network (ANN); prediction, hygrothermal condition;

buffering effect; storage enclosure; preventive conservation

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4455878
https://sciprofiles.com/profile/426076
https://sciprofiles.com/profile/4464569
https://sciprofiles.com/profile/136844


 

 

Article 

ANN-Based Real-Time Prediction of Heat and Mass 

Transfer in the Paper-Based Storage Enclosure for 

Sustainable Preventive Conservation 

Bo Han 1, Fan Wang 1, *, Julie Bon 2, Linda MacMillan 2 and Nick K Taylor 3 

1 School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, 

UK 

2 National Library of Scotland, Edinburgh EH1 1EW, UK 

3 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK 

* Correspondence: fan.wang@hw.ac.uk 

Abstract: The storage enclosures are vital for stabilising the micro-environment within, facilitating 

preventive conservation efforts and enabling energy savings by reducing the need for extensive 

macro-environmental control within the room. However, real-time conformity monitoring of the 

micro-environment to ensure compliance with preventive conservation specifications poses a 

practical challenge due to a limitation in implementing physical sensors for each enclosure. This 

study aims to address this challenge by using an ANN-based prediction for temperature and RH 

changes in response to macro-environmental fluctuations. A numerical model was developed to 

simulate transient heat and mass transfer between macro and micro environments, and then 

employed to determine an acceptable macro-environmental range for sustainable preventive 

conservation and to generate a dataset to train a sequence-to-sequence ANN model. This model was 

specially designed for real-time prediction of heat and mass transfer and to simulate the micro 

condition under varying levels of control accuracy over the macro environment The effectiveness of 

the prediction model was tested through a real trial application in the laboratory revealed a robust 

prediction of micro-environments inside different enclosures under various macro-environmental 

conditions. This modelling approach offers a promising solution for monitoring the micro-

environmental conformity and further implementing the relaxing control strategy in the macro-

environment without compromising the integrity of the collections stored inside the enclosures. 

Keywords: heat and mass transfer; artificial neural network (ANN); prediction; hygrothermal 

condition; buffering effect; storage enclosure; preventive conservation 

 

1. Introduction 

Preventive conservation of heritage collections plays an important role in minimising climate-

induced decay and avoiding detrimental effect when they are maintained in an indoor environment 

as stable as possible [1]. As many of these collections are made of organic materials such as paper 

which shrink and expand with dropping and rising moisture content, especially fluctuations in 

relative humidity (RH) should be avoided to prevent mechanical damage at a fast strain rate in the 

storage space of libraries, galleries, and museums [2]. Climate change exacerbates this risk, 

accelerating degradation, increasing conservation costs, and necessitating climatization [3]. While 

maintaining a stable environment is essential, it requires precision air conditioning with tight control, 

resulting in substantial energy consumption and carbon emissions [4,5]. Effective conservation and 

protection of heritage collections require well-informed management tools grounded in an 

understanding of how environmental parameters evolve over time and vary across the environment 

[[6]]. In addition, a great number of collections are usually stored in some European historic buildings 

with poor energy performance, posing a challenge for retrofitting the buildings where exterior 
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façades are decorated with carvings and sculptures while interior walls are decorated with frescoes 

[7]. Consequently, improving operational energy efficiency is a challenging task for achieving 

sustainable preventive conservation. 

Many approaches have been developed for controlling the micro-environment within 

enclosures rather than whole macro-environment in the room. Adding some buffering materials 

inside the enclosures to achieve passive control is a prevalent approach [8]. The enclosure separates 

the micro-environment inside from the macro-environment, the room where the enclosure presents 

and the confined space with buffering materials provide a degree of hygrothermal buffering effect. 

In the National Library of Scotland (NLS), the paper-based enclosures are used for storing books 

in storage rooms, like many other cultural institutions. These enclosures are made of functional 

cardboard with specific elements and porous structure. The cardboard consists of three layers: an 

external water-proof layer, a middle multi-thin layer, and an internal lining layer. The external layer 

contains polypropylene to provide water-proof and thermal-insulation functions [9,10]. The middle 

and inner layers contain pulp cotton and calcium carbonate to regulate the micro-environmental 

temperature and humidity [11,12]. To consider fabric permeability, a thin multi-layer structure is 

designed in the middle layer to increase the tortuosity of porous channels. This design can increase 

moisture retention through small air gaps between these layers, thus improving the buffering effect 

[13]. 

The enclosures can stabilize the micro-environment, especially mitigating fluctuations in RH 

due to its buffering effect. This buffering effect has been rigorously evaluated in a laboratory test [14]. 

It quantified the enclosure’s capacity to minimize the micro-environmental fluctuations over some 

given periods under two distinct macro-environmental conditions (10%RH fluctuation within 

50%~60%RH at fixed 20oC for humidity buffering test; 5oC fluctuation within 17~22oC at fixed 50%RH 

for temperature buffering test). The results demonstrated that the micro-environmental fluctuations 

are 2% to 8%RH and 1 to 2oC smaller than the macro-environmental ones. These findings confirmed 

that the enclosures can provide a degree of buffering capacity to mitigate micro-environmental 

fluctuation, by reducing its response to that of the macro-environment. Such buffering capacity 

enables a relaxing control for macro-environment when the micro-environment complies with the 

standards of preventive conservation. This observation aligns with a key insight from an Italian study 

[15], suggesting that the control accuracy of precision air conditioning systems can be relaxed within 

the macro-environment, while still ensuring effective preventive conservation within the micro-

environment. However, achieving real-time conformity monitoring of the micro-environment to 

ensure compliance with preventive conservation specifications is constrained by the practical 

difficulty of implementing multitude physical sensors inside the enclosures to map their conditions. 

Numerical model that simulates heat and mass transfer between macro and micro environments 

can predict the micro-environment in response of the macro-environment. This technique has been 

proven effective for conducting hygrothermal analysis [16]. It was used to develop a model to 

simulate coupled diffusive heat and mass transfer between hygroscopic building structure and 

indoor air. The model was used to investigate the indoor humidity and air quality in a timber house 

after its validation with a set of field measurement data [17]. Also based on this technique, a full 

dynamic hygrothermal model was developed to couple heat and moisture transfer in porous building 

materials to predict the hygrothermal performance of buildings while incorporating convection and 

advection [18]. These models excel in capturing hygrothermal interaction between the micro and 

macro environments with good representations of the physical principles. Their application not only 

enhances understanding of the hygrothermal interaction but also establishes a foundation for 

assessing the conformity of preventive conservation within the micro-environment and further 

achieving the relaxing control of the macro-environment. 

However, the heat and mass simulation is highly time-consuming, typically running in hours, 

so it is not feasible to use it practically in precision air conditioning systems with a feedback control 

loop that operates on a scale of minutes. To address this issue, an artificial neural network (ANN) 

offers a feasible solution when it is trained with a purposely prepared dataset emerges as. This 
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approach has seen successful application in various domains of thermal science. A mathematical 

model of the refrigerant cycle was created to generate data regarding evaporator cooling capacity 

and relevant parameters such as air flow, temperature, and RH. Subsequently, this data was used for 

training ANN model [19]. Similarly, in a study about structure optimization of latent heat thermal 

storage units, computational fluid dynamic simulations were used to describe the transient thermal 

behaviour. Based on the simulation results, an ANN was trained to predict stored energy [20]. 

Additionally, ANN models trained with historical real data have been instrumental in optimising 

building energy use with acceptable indoor microclimate [21]. 

Above studies show that ANN is an effective tool for capturing the complex operating 

characteristics of building system. However, there are only several studies investigated the 

hygrothermal interaction in the realm of building science by integrating traditional mathematical 

modelling with ANN. Remarkably, no prior study has delved into exploring the buffering effect of 

the storage enclosures in facilitating a relaxing control of macro-environment for sustainable 

preventive conservation. Therefore, this study aims to achieve real-time conformity monitoring of 

micro-environment as macro-environmental control is relaxed. To achieve the aim, there are three 

objectives: 

• to develop a coupled heat and mass transfer model for predicting the micro-environment. 

• to determine acceptable macro-environment for obtaining associated range of the relaxing 

control. 

• to train an ANN model for real-time conformity monitoring of the micro-environment. 

2. Methodology 

In alignment with these three stated objectives, the methodology framework comprised three 

parts. First, a numerical model was developed to simulate the heat and mass transfer between the 

two environments: the macro and micro and was validated after. Second, a three-stage method based 

on the heat and mass transfer simulation was employed to determine the upper limit of acceptable 

macro-environmental condition through a trial-and-error process. Following this, a series of 

simulations was run to acquire data, representing conditions under the relaxing control. In the third 

part, four distinct sets of data were generated within this acceptable range to capture the main 

characteristics of heat and mass transfer interaction between macro and micro environments under 

relaxed control. Leveraging these generated datasets alongside on-site collected data for tight control, 

a Long Short-Term Memory (LSTM) neural network was trained for real-time prediction of micro-

environmental conditions. Subsequently, the robustness of this real-time prediction was assessed in 

a practical application. Further details of these activities are provided below. 

2.1. Numerical Simulation of Heat and Mass Transfer 

The model geometry was 180mm wide, 230mm tall, 80mm deep, and its envelope was 1.14mm 

thick, exactly those of a real enclosure used in the library (Figure 1). The laminar airflow was assumed 

aligns with the width of the enclosure, infiltrating through both envelope and gas of the enclosure. 

The air can flow through the gaps to free flow domain inside the empty enclosure and also permeate 

the porous domain of the cardboard. 
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Figure 1. Geometry diagram of the model. 

In the storage room, air flow velocity of supply air was about 0.2m/s (the Reynold number =
𝜌𝑣𝑙

𝜇
=

1.2×0.2×0.002

1.8𝑒−5
= 26 < 2000 laminar flow), and the temperature was between 15-25oC. The airflow was 

expected to affect the convective heat and mass transfer, which consequently lead to phase change 

and water vapor diffusion in the cardboard material. This hygrothermal response of the material was 

a key point to understand the buffering effect on mitigating the hygrothermal fluctuation in the micro 

environment inside the enclosure. The enclosure envelope could retain and release heat and moisture 

and its hygrothermal condition was influenced by the conditions in both the micro and macro 

environments. Meanwhile, the hygrothermal conditions of both the micro and macro environments 

were interacting with each other through both the porous material and the gap. Hence, a two-way 

coupling was necessary in this study to the two-fold interaction with the two hygrothermal variables. 

Figure 2 shows the interdependence of heat, and moist-air transfer. The heat and moisture 

balance are coupled in a way that the latent heat, moisture state, transfer characteristic and thermal 

storage affect the heat transfer while the heat transfer determines the saturated vapor pressure, 

moisture driving force and storage conditions. The heat and moist-air convection balance are coupled 

in a way that the temperature affects the air density, and reversely the air convective heat transfer 

affects the temperature field. The moisture and air convection balance are coupled in a way that the 

air flow determines the convective moisture transfer, and in turn the vapor permeability determines 

the air flow in the porous media. To consider the complexity of modelling, we selected direct coupling 

method, regarding the water vapor and air as one fluid in both free flow domain and porous domain. 

The space of these two domains is continuous and a single set of conservation equations are solved 

by one solver in the simulation [22]. 
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Figure 2. Interdependence of heat and moist-air transfer, which involves three components: heat, air 

and moisture. 

The Equations 1-3 show the mathematical description [23,24]: 

(𝜌𝐶𝑝)𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑝𝑢 ∙ ∇𝑇 − ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇 + 𝐿𝑉𝛿𝑃∇(𝜙𝑝𝑠𝑎𝑡)) = 𝑄 (1) 

𝜉
𝜕𝜙

𝜕𝑡
+ 𝜌𝑢∇𝜔𝑣 − ∇ ∙ (𝜉𝐷𝑊∇𝜙 + 𝛿𝑃∇(𝜙𝑝𝑠𝑎𝑡)) = 𝐺 (2) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ ∇𝑢) + ∇ ∙ (𝑝𝐼 − 𝐾) = 𝐹 (3) 

where (𝜌𝐶𝑝)𝑒𝑓𝑓  is the effective volumetric heat capacity at constant pressure, 𝜌 is moisture air 

density [kg/ m3], 𝐶𝑝 is heat capacity [J/(kg·K)]. 𝑢 is moisture air velocity [m/s]. 𝑇 is the temperature 

[K]. 𝑘𝑒𝑓𝑓  is the effective thermal conductivity [W/(m·K)]. 𝐿𝑉 is the latent heat of evaporation [J/kg]. 

𝛿𝑃 is vapor permeability [s]. 𝜙 is the relative humidity. 𝜔𝑣 is vapor mass fraction. 𝑝𝑠𝑎𝑡  is the vapor 

saturation pressure [Pa]. 𝑄 is the heat source [W/ m3·s]. 𝜉 is the moisture storage capacity [kg/ m3], 

𝜉 =
𝜕𝑤(𝜙𝑤)

𝜕𝜙𝑤
. 𝐷𝑊 is the moisture diffusivity [m2/s]. 𝐺 is the moisture source [kg/m3·s]. 𝑝 is the fluid 

pressure [N/m2]. 𝐼  is the identity tensor. 𝐾  is the viscous force [N/m2]. 𝐹  is the external forces 

applied to the fluid [N/m2]. 

2.1.1. Model Setting 

Because of limited computing resource in transient heat and mass simulation, a 2D axial-

symmetry model with depth was used to represent 3D model. The heat and mass model was 

developed in COMSOL. Associated settings include four parts, 1) material setting, 2) boundary and 

initial conditions, 3) building mesh for the model, 4) solver setting, as Table 1 shows. 

Table 1. Model setting. 

Description Value Unit 

① Carboard material   

Density 662 kg/m³ 

Thermal conductivity 0.055 W/(m·K) 

Heat capacity at constant 

pressure 

1.028 J/(kg·K) 

Diffusion coefficient 1.49E-10 m²/s 

Water content 𝑊𝑐 = 𝜌(0.1237× 𝑅𝐻 + 0.0034)/1000 kg/m³ 

Vapor resistance factor 95.63 - 

② Boundary condition   

Laminar air flow 0.2 m/s 

Temperature  Macro-environmental temperature oC 

RH Macro-environmental RH %RH 

Upper and lower gaps of the 

enclosure 

open boundary - 

Initial conditions   

Temperature and RH in both 

domains 

Macro-environmental temperature and RH at the 

first second 

oC and 

%RH 

Velocity in both domains 0.2 m/s 

Pressure in both domains (Ambient pressure – reference pressure) Pa 

③ Meshing   

Element types triangular or quadrilateral - 
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No. of layers in porous media 2~4 - 

Mesh density dense in the porous domain and gradually course 

toward the centre of free flow domain 

- 

Maximum element growth rate 1.05 - 

Maximum curvature factor 0.2 - 

④ Solver   

Time stepping second-order BDF - 

Maximum step 0.25 h 

Solving method automatic Newton - 

tolerance factor 0.01 - 

maximum No. of iterations 4 - 

2.1.2. Model Validation 

To meet the library’s preventive conservation requirements, the macro-environment must be 

strictly maintained at 15-25°C and 40%-60% RH Within these bands, different macro-environmental 

fluctuations affect the interaction of heat and mass transfer, especially for the hygrothermal response 

from porous media of the cardboard. Therefore, the measurement data used for model validation 

should encompasses different degrees of these fluctuations. 

Three sets of micro-environmental data were gathered under varying levels of macro-

environmental control accuracy. The first set originated from the library’s storage room, where tight 

control was maintained. The second and third sets were obtained in a controlled test chamber, where 

fluctuations of 10%RH (ranging from 50% to 60%RH) and 5°C (fluctuating between 17°C and 22°C) 

occurred cyclically every 60 minutes. In each case, fixed conditions of 20°C and 50%RH were 

maintained, respectively. 

The temperature and RH in the centre of free flow domain were selected as simulated data to 

compare with the measured data. The maximum absolute and relative errors were used to evaluate 

the model accuracy [25]. 

{
𝑀𝑎𝑥. 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥{| 𝑇 𝑜𝑟 𝑅𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑇 𝑜𝑟 𝑅𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|𝑡}

𝑀𝑎𝑥 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = max {
(𝑇 𝑜𝑟 𝑅𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡−𝑇 𝑜𝑟 𝑅𝐻𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

𝑇 𝑜𝑟 𝑅𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑡
}

 (4) 

where 𝑡 is the sampling time for each 15min in measurement and simulation. 

Additionally, agreement between measurement and simulated data was indicated by Kling-

Gupta Efficiency (KGE). It is given as Equation 5 [26]. 

𝐾𝐺𝐸 = 1−√(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2 (5) 

where 𝛽 =
𝜇𝑠

𝜇𝑜
, 𝜇𝑠 and 𝜇𝑜 are means of the simulated and measurement data with time series; 𝛼 =

𝜎𝑠

𝜎𝑜
, 𝜎𝑠 and 𝜎𝑜 are standard deviations of the simulated and measurement data with time series. 

Negative KGE values are regarded as a bad model performance while the positive values show 

a good performance. KGE=1 indicates perfect agreement in terms of correlation, mean, and 

variability. KGE>0.5 indicates that a model performance is upon the baseline in empirical terms [27]. 

2.2. Determination of Acceptable Macro-Environment 

Relaxing tight macro-environment on the site is impractical due to strict regulations of 

management in the storage room. Therefore, it is necessary to amplify the macro-environmental 

fluctuations based on the HAM simulation. The three-stage method of data acquisition was 

developed to generate data and further determine acceptable macro-environment. It included macro-

environmental data amplification, heat and mass simulation, and acceptable macro-environment 
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determination (Figure 3). Stage 1 was about macro-environment data acquisition. In Stages 2 and 3, 

there was a loop to search the upper limit of acceptable macro-environment by using the trial-and-

error method. 
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Figure 3. Framework of acceptable macro-environment determination. 

2.2.1. Typical Reference Data Selection 

The choice of typical reference (TR) data was intended to identify four representative weeks of 

data, each encapsulating the distinct characteristics of the four seasons within a two-year dataset 

collected from the storage room. The typical-meteorological-year (TMY) data generation method in 

building energy simulation was used [28]. It was based on the Finkelstein–Schafer (FS) statistical 

method [29]. Each week was selected within specific season in these two years. The daily means of 

macro-environmental temperature and RH were calculated. Then, they were sorted into an ascending 
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order to calculate the cumulative distribution function (Equation 6) for each week (𝐹𝑛,𝑤(𝑥)) in long 

term and individual season of that week (𝐹𝑛,𝑤,𝑠(𝑥)) in short term. 

𝐹𝑛(𝑥) = {

0, 𝑥 < 𝑥1 
(𝑘 − 0.1), 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1

1, 𝑥 > 𝑥𝑛

 (6) 

where 𝑥 is the daily mean of temperature or RH, 𝑘 is the rank order, 𝑛 is the number of 𝑥. 

The FS statistic was calculated by Equation 7. 

𝐹𝑆(𝑠,𝑤) = ∑ |𝐹𝑛,𝑤,𝑠(𝑥𝑘) − 𝐹𝑛,𝑤(𝑥𝑘)|
𝑛
𝑘=1  (7) 

where 𝐹𝑛,𝑤,𝑠(𝑥𝑘) was calculated by the daily means within that week and that season. 𝐹𝑛,𝑤(𝑥𝑘) was 

calculated by the daily means over these two years. The typical week for each season was determined 

by that week which has the smallest 𝐹𝑆(𝑠, 𝑤). 

The typical reference data was amplified to obtain new data reflecting the macro-environment 

in the relaxing control. 

2.2.2. Data Amplification 

The principle of data amplification was drawn inspiration from electroencephalogram (EEG) 

signal processing. The EEG signal can be regarded as time-dependent amplitude function that 

expressed as a spectrum in different frequencies [30,31]. It was associated with five typical brain 

activities, including relaxed awareness without any attention (alpha waves), active thinking (beta 

waves), deep sleep (delta waves), deep meditation (theta waves), some certain brain diseases (gamma 

waves) [32]. An analogy was made between the EEG signal processing and the macro-environment 

data processing. The data can be decomposed into many components to represent the data features. 

Each key feature can be regarded as a factor which affects the macro-environmental fluctuations. The 

Fourier transfer (FT) is a tool to achieve data transformation between time domain (original data) and 

frequency domain (features). It can be expressed by Equation 8 [33]. 

𝑋(𝑘) = ∑ 𝑥(𝑗)𝑊𝑛
(𝑗−1)(𝑘−1)𝑛

𝑗=1  (8) 

And the inverse FT can be expressed by Equation 9. 

𝑥(𝑗) =
1

𝑛
∑ 𝑋(𝑘)𝑊𝑛

−(𝑗−1)(𝑘−1)𝑛
𝑘=1  (9) 

where 𝑋(𝑘)  and 𝑥(𝑗)  are the FT pairs in time and frequency domains. 𝑋(𝑘)  is the macro-

environmental data with 𝑘  points sequence. 𝑥(𝑗)  can be regarded as 𝑗  data features with 

successive amplitude at specific frequencies. 𝑊𝑛 = 𝑒(−2𝜋𝑖)/𝑛 is a primitive n-th root of 1. 𝑖 = √−1, the 

imaginary unit. 

The daily RH data, 𝑋(𝑘), was decomposed to the data features, 𝑥(𝑗), by using the FT function 

tool in MATLAB software. Some of key features were intentionally selected to represent the original 

data. These key features were combined by using the inverse FT. The more key components, the more 

accurate representation. The number of key features was determined by a high R-squared value, 

R2≧0.95, between the original data and represented data. Sequentially, the selected key features 𝑥(𝑗) 

were multiplied by an amplification factor and inversely transferred to obtain the data with large 

fluctuation. 

The trial-and-error method was used to amplify the fluctuations gradually until the micro-

environment didn’t comply with the specifications of preventive conservation in the risk assessment. 

The data amplification of macro-environment applied to the RH only, excluding temperature, 

there are two reasons. First, as a useful approximation in RH control for preventive conservation, a 

coupled RH change of 3% occurs for each degree of temperature change [34]. A slight temperature 

changes possibly could cause the RH out of the control band or allowable range of 24h fluctuation. 

The setting of temperature change is dependent on the RH control requirement in the precision air 

conditioning with humidity priority because the RH change in paper-based collection storage directly 

impacts on paper stability and preservation. Second, the thermal mass of the library’s storage room 

can ensure a small fluctuation for indoor temperature. Throughout the two-year dataset, the macro-

environmental temperature remained consistently within the range of 17-20°C, with fluctuations of 

≤0.2°C occurring for 95% of the time. The relaxation of temperature control was not considered. 
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2.2.3. Determination Process of Acceptable Macro-Environment 

In the preventive conservation, the micro-environmental data must comply with the 

specifications, 15~25oC, 40%~60%RH control bands and <±5oC, <±10%RH 24h-fluctuations for most 

paper-based collections. The risk assessment checked the micro-environmental temperature and RH 

which were output from the heat and mass simulation. 

A sliding window calculator was developed as Equation 10 shows, which helps to check the 

maximum and minimum values and the biggest fluctuation in any 24h (96 sampling points). In this 

risk assessment, if the micro-environment complies with the specifications, the associated macro-

environment can be accepted. The amplification factor was increased to amplify the macro-

environmental fluctuations in the loop designed to search the upper limit of acceptable macro-

environment. 
𝑓𝑜𝑟 𝑖 = 1: 𝑛 

{

max{𝑅𝐻𝑖 , … , 𝑅𝐻𝑖+95} −min{𝑅𝐻𝑖 , … , 𝑅𝐻𝑖+95} ≤ 10%

max{𝑅𝐻𝑖 , … , 𝑅𝐻𝑖+95} ≤ 60%

min{𝑅𝐻𝑖 , … , 𝑅𝐻𝑖+95} ≥ 40%

 (10) 

where 𝑛 is the number of sliding windows, 𝑛=2592 (4-week of data). 

2.3. ANN Modelling 

2.3.1. Data Preparation 

Based on above section 2.2, within the range of acceptable macro-environment, four sets of data 

were prepared to represent four levels of macro-environmental control accuracy in the relaxing 

control (Table 2). 

Table 2. Four datasets in the relaxing control. 

Level 24h Fluctuation (band) in 

macro-environment 

24h Fluctuation (band) in 

micro-environment 

Amplification factor 

1 ±10 (42.2~56.1) %RH ±7.1 (45.5~55) %RH 10 

2 ±12 (39.6~57.4) %RH ±7.9 (44.7~55.4) %RH 11.6 

3 ±14 (37~59.4) %RH ±8.1 (43.8~56.8) %RH 13.4 

4 ±16 (33~65) %RH ±9.1 (43~57.3) %RH 15 

These levels from 1 to 4 signify the control accuracy of macro-environment from current control 

requirement level based on the specifications of preventive conservation to the most relaxing level 

determined in section 2.2.3. These four generated datasets, along with the on-site collected dataset in 

the tight control, denote varying levels of control accuracy within the acceptable conditions. They 

were used for ANN training. The macro-environmental temperature and RH were input, and the 

corresponding micro-environmental ones were output. To improve stability during the training, it 

requires a normalization process for all input and output data before the training [35]. An inverse 

normalization is necessary to predict the outputs after the training. Thus, Z-score normalization was 

used to rescale the data with zero mean and a unit variance here. The time-series data was divided 

into two parts in the training. 90% of the data was allocated for the training process and the rest of 

10% was allocated for testing the trained networks to evaluate the prediction accuracy [36,37]. 

2.3.2. Architecture of the ANN 

The real-time prediction of the micro-environment should consider the data relationship 

sequence-to-sequence, inputting 24h macro-environmental temperature and RH to predict the 

corresponding micro-environmental ones. Long short-term memory (LSTM) network, a type of 

ANN, was designed to solve this problem [38] (Figure 4). The architecture consisted of forget gate, 
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input gate and output gate to achieve appropriate-term memory. The mathematical expression about 

forget gate, input gate, output gate, and hidden layer are given by Equation 11 [39]. 

Neural node Pointwise operation Vector transfer

Concatenate Copy Bias

h(t-1)

σ

c(t)c(t-1)

f(t)

x(t)

σ tanh

o(t)
i(t)

h(t)

σ

tanh

)(~tc

h(t)

Forget 

gate

Input 

gate

Output 

gate

 

Figure 4. Architecture of LSTM memory unit. 

{
 
 
 

 
 
 
𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)

𝑐̃𝑡 = tanh(𝑊𝑐̃ℎℎ𝑡−1 +𝑊𝑐̃𝑥𝑥𝑡 + 𝑏𝑐̃)

𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ 𝑐̃𝑡
𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∙ tanh (𝑐𝑡)

𝑦𝑡 = ℎ𝑡

 (11) 

where 𝑓𝑡 is the forget factor to decide on which information should be kept and which to forget. 𝜎 

and 𝑡𝑎𝑛ℎ are sigmoid (the value is between 0~1) and hyperbolic tangent (the value is between -1~1) 

activation functions, respectively. ℎ𝑡 , 𝑖𝑡 , 𝑐̃𝑡  , 𝑐𝑡  and 𝑜𝑡  denote the recurrent information, input 

factor, candidate cell state, cell state and output factor. 𝑊𝑓, 𝑊𝑖, 𝑊𝑐̃ and 𝑊𝑜 are the weights, and 𝑏𝑓, 

𝑏𝑖, 𝑏𝑐̃ and 𝑏𝑜 are the bias. 𝑐𝑡 denotes the cell state of neural network. The operator ‘∙’ denotes the 

pointwise multiplication of two vectors. 𝑥𝑡 and 𝑦𝑡  are the input and output. 

The LSTM network uniquely captured sequence-to-sequence relationships between macro and 

micro environments, demanding deep learning for intelligent decision-making during training. Its 

architecture included specialized layers to leverage the intelligence of its three gate-operated memory 

units. Dropout was a regularization technique to prevent overfitting issue in the neural network. 

Setting dropout layer between the hidden layers and the last hidden layer - fully connected layer 

(also call dense layer) could effectively prevent this issue in RNN training [40,41]. Fully-connected 

layer allowed the network to capture the dependence between various features by using non-linear 

transformations to the input data [42]. Because there was dependence between temperature and RH 

with highly non-linear relationship, a fully-connected layer could contribute to effective data 

mapping here. Regression layer was selected as output layout because the data mapping between 

macro and micro environments was a many-to-many regression problem. 

Therefore, the basic architecture of our LSTM should include a sequence input layer, LSTM 

layer(s), drop layer(s), fully-connected layer, and regression output layer (Figure 5). The optimal 
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number of LSTM layers and associated neurons were determined by a trial-and-error method (Figure 

6). We relied on past research on LSTM training to determine the maximum numbers of LSTM layers 

and neurons (5 and 250) for searching the optimal architecture [43,44]. To assess the accuracy of 

trained network, the latest RMSE and absolute errors of trained network were compared with the 

errors from previous training in the loop and the measurement errors (±0.5oC and ±3%RH in the 

library’s storage room) respectively. If they are smaller than both the earlier prediction errors and the 

measurement errors, it means that this trained network has minimal prediction errors and acceptable 

accuracy. Otherwise, the numbers of layers and neurons should be increased gradually until the best 

architecture was found. 

 

Figure 5. Basic architecture of LSTM regression network. 
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Figure 6. Flowchart of determining the network architecture. 

2.3.3. Evaluation of the Optimal LSTM Network 

An evaluation of the network was conducted in training set and testing set respectively. 

Overfitting problem happened when there was an extremely high accuracy in the training set but a 

low accuracy in the testing set happens. Oppositely, underfitting problem happened when both 

accuracies were low, but the testing one was higher than the training one [45,46]. Their accuracies 

were assessed to guarantee the model at the sweet spot between underfitting and overfitting, which 

ensures a good generalization performance. 

Following statistical criteria was used to evaluate the accuracy of LSTM network [47]: coefficient 

of determination (𝑅2), mean square error (𝑀𝑆𝐸), root mean square error (𝑅𝑀𝑆𝐸), mean absolute error 

(𝑀𝐴𝐸) and standard deviation of the errors (StD of errors). These evaluation indicators were defined 

mathematically as follows: 

𝑅2 = 1−
∑ (𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦̂𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2𝑚
𝑖=1

∑ (𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦̅𝑖(𝑎𝑐𝑡𝑢𝑎𝑙))
2𝑚

𝑖=1

 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2
𝑚

𝑖=1
 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2
𝑚

𝑖=1

2

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑦𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)|

𝑚

𝑖=1
 

𝑆𝑡𝐷 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 = √
1

(𝑚 − 1)
∑ (𝐸𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − 𝐸̅𝑖(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))

2
𝑚

𝑖=1

2
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where 𝑦(𝑎𝑐𝑡𝑢𝑎𝑙) and 𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) are actual value and predicted value, 𝑚 is the number of data, and 

𝐸 is the error between actual value and predicted value. 

2.3.4. Practical Application of Real-Time Conformity Monitoring 

The evaluation of the ANN model demonstrates the accuracy of micro-environmental prediction 

for the empty enclosure, which represents the worst-case scenario for hygrothermal buffering 

compared to enclosures containing paper-based collections. However, assessing the performance of 

the ANN model in practical application is essential. This part of the study aims to assess the 

robustness of real-time prediction for monitoring micro-environmental conformity in practical 

scenario where enclosures with the paper-based collections. 

Validation Experiment 

The trial was carried out in a test room, 5m long, 3m wide, and 3m tall (Figure 7). Inside the 

room, the air distribution was created to match that of the library’s air-conditioning configuration, 

with air supplied from the top and returned from bottom, setting the velocity of supply air around 

0.2m/s to prevent dust buoyancy. The macro-environment was controlled to fall within the range of 

16~32oC and 30%~80%RH, with an accuracy of approximate ±2oC and ±10%RH. The operational 

points were set at 20oC and 55%RH for this trial. 

The trial was carried out in the controlled chamber of 5m long, 3m wide and 3m tall (Figure 7). 

Inside this room, the conditioned air went into the room space through a void above a grid ceiling 

then returned at low level through three vents 0.1m above the floor. The desk panel was meant to 

separate two airflow zones. The upper zone was inside the main stream whilst the lower one 

experienced more turbulence. These configuration efforts were to replicate the air distribution of the 

real scenario for the validation purposes. 

Two enclosures were strategically placed the two zones to account for temperature and 

humidity fluctuations across varying spatial gradients inside the space., They were filled with 70% 

full newspapers to represent the most common use of these enclosures. Additionally, two 

temperature and humidity loggers (loggers 2 & 4 in Figure 12) were placed inside these enclosures 

to record the micro-environment conditions. Another two loggers (loggers 1 & 3 in Figure 12) were 

positioned near these enclosures to monitor the macro-environment. Their measurement accuracies 

are ±1°C (within the range of 5-60°C) and ±3%RH (within the range of 20-80%RH). The sampling 

interval for all loggers was set at 15 minutes, consistent with the interval used in the BMS (Building 

Management System). 
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Figure 7. Diagram of test room (5m×3m×3m). 

Parallel Prediction 

To predict the micro-environment within various enclosures positioned differently, we 

replicated the trained ANN for each of those sensors located in the macro-environment. The trained 

ANN models were to act as parallel predictors in a BMS (Figure 8). The ANNs were fed with the 

latest 24h macro-environmental data, consisting of 96 data points with 15min sampling interval from 

the on-site monitoring, to predict the micro-environmental condition. 

The maximum fluctuations and associated bands in the predicted results were calculated. 

Simultaneously, a real-time measurement of micro-environment was conducted to assess the 

prediction in the trial test. Analysing environmental data helps identify risks specific to the 

collections with various materials, but this inherent diversity makes this process complex [48]. 

Therefore, the ANN prediction was based on the worst-case scenario or least buffering effect, an 

empty box with no collections inside to further moderate the micro-environmental fluctuations. This 

resulted in a larger predicted fluctuations and bands compared to real-time measurements, which 

understandably led to deviations between the predicted and measured data. These deviations are 

defined as follows: 

1) 24h Fluctuation𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 24h Fluctuation𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  

2) T/RH band
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

∈ T/RH band
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

 (the measurement bands are included in the 

prediction control ones). 

These deviations provide a critical region between safe and dangerous conditions for preventive 

conservation. A positive value indicates that the actual micro-environment is more stable and safer 

than the predicted condition. Conversely, a negative value indicates that there is no critical region, 

and the actual conditions fall outside the scenarios captured by the trained ANN predictor, which 

triggers a built-in alarm. In such conditions, re-training the ANN with new measurement data is 

necessary. 
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Figure 8. Framework of parallel prediction (“n” predictors for “n” sensors). 

The test was run continuously for four days to assess the robustness of these ANN predictors 

worked in real-time. If any alarm triggered during the test, that ANN model should be retrained with 

new data to improve its robustness. Conversely, if no alarm was triggered, the robustness could be 

considered acceptable. 

3. Results and Discussion 

3.1. Comparison of Measured and Simulated Data in Heat and Mass Simulation 

Comparison between the measured data and the simulated data for micro-environment 

temperature and RH shows relative errors within ±4% for temperature and ±4.5% for RH, and 

absolute errors below 0.7°C for temperature and 2.5% for RH (Figure 9). In details, the accuracy of 

the simulation is demonstrated through a series of comparative figures. The first figure a) illustrates 

the data for tight control condition, where the errors are kept below 3.5% for temperature and 4.5% 

for RH. The subsequent figures present the conditions under more relaxed control. The second figure 

b) depicts a scenario with a 5°C fluctuation over a 60-minute period at a fixed 50% RH, where the 

relative errors are under 4% for both temperature and RH. The third figure c) represents a 10% RH 

fluctuation over a 60-minute period at a fixed 20°C, with errors below 3% for temperature and 1% for 

RH. These results confirm the high accuracy of the simulation, validating their effectiveness in 

replicating real-world conditions. 
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(a) 24h data in tight control 

  

  
(b) ↑↓5oC fluctuation during 60min period at fixed ~50%RH 
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(c) ↑↓10%RH fluctuation during 60min periods at fixed ~20oC 

Figure 9. Comparison between measured data and simulated data. 

To assess the agreement between measured and simulated data, Table 3 shows the KGE values 

in these three validation conditions. All values exceed the baseline (KGE≥0.5), which indicates an 

acceptable agreement in simulating the heat, air and moisture transfer between the micro-

environment and macro-environment. The model effectively reproduces the variation trends and 

fluctuation periods in the measurement conditions for subsequent study about determination of 

acceptable macro-environment. 

However, the results show relatively high values in the last two measurement conditions with 

the relaxing control, compared to the first condition with tight control. This suggests that the model 

exhibits greater agreement in the relaxing control than in the tight control. 

Table 3. KGE values for micro-environmental temperature and RH. 

 Tigh-control ↑↓5oC @50%RH ↑↓10%RH @20oC 

KGE for temp. 0.51 0.84 0.97 

KGE for RH 0.58 0.77 0.63 

3.2. Acceptable Macro-Environment 

The upper limit of acceptable macro-environmental conditions was determined using the trial-

and-error method within the searching loop. The macro-environment can be relaxed to an upper limit 

of 33% to 65% RH with a ±16%RH fluctuation over 24 hours while the current requirement is 40% to 

60% RH with a ±10%RH fluctuation. 

Correspondingly, the micro-environment RH can be maintained within the range of 43% to 

57.3%RH, with 24-hour fluctuation of <±9.1%RH, as showed in Figure 10. These results illustrate that 

the buffering capacity of enclosure ensures a stable micro-environment with low RH fluctuation 

amplitude. This stability opens up a potential to relax current tight control in the macro-environment 

without any detrimental effect for the collections. 
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Figure 10. Acceptable macro and micro environmental RH in the most relaxing condition. 

3.3. Real-Time Prediction of Micro-Environment 

For data acquisition, four sets of data that were generated to represent different levels of macro-

environmental control accuracy from ±10%RH 24h fluctuation to the most relaxing condition. They 

were prepared to illustrate the four levels of relaxing control within the acceptable macro-

environment range, as showed in Figure 11. From the perspective of data expression, these datasets 

and the on-site dataset can reflect characteristics about the interaction of heat and mass transfer 

between macro and micro environments within the acceptable range. 

 

Figure 11. The macro and micro environments in four levels of control accuracy. 
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For searching the optimal architecture, multiple LSTM networks were trained through a gradual 

increase in the number of hidden layers and neurons. The resulting RMSE and absolute errors are 

detailed in Table 4. The RMSE values range from 0.037 to 0.188 for temperature and 0.467 to 1.73 for 

RH. Correspondingly, absolute errors vary from |-0.13| to 0.64°C for temperature and |-8.2%| to 

6.3% for RH. 

The architecture with 2 layers demonstrates relatively high accuracy in prediction while a single-

layer configuration shows relatively low accuracy in RH prediction. As the number of layers increases 

from 1 to 4 in the networks with an equal number of neurons per layer, accuracy typically improves. 

However, as the number of neurons increases in the networks with an equal number of layers, 

beyond a certain threshold where the number of neurons exceeds a maximum, further increasing the 

number of neurons per layer can lead to a decline in accuracy. Both a relatively shallow LSTM 

network with many neurons and a deeper network with fewer neurons demonstrate strong 

performance. 

In detail, for the 2-layer networks, the configuration with 200 neurons in each layer stands out 

as the most accurate. Comparing its absolute errors with measurement errors (±0.5°C and ±3%RH), it 

is noted that the absolute errors ranging from -0.13 to 0.15°C and -2.2% to 2.2% RH are smaller than 

the measurement errors. This suggests that the network can predict micro-environmental 

temperature and RH as accurately as on-site measurements. 

Based on these findings, we conclude that the optimal LSTM network architecture consists of 2 

layers, with each layer comprising 200 neurons. 

Table 4. RMSE and absolute errors in the test set. 

-1℃

+1℃

-0.26

+0.44

-3%RH

+3%RH

-7.8

+5.6

-0.24

+0.43

-3%RH

+3%RH

-6.9

+5.7

-3%RH

+3%RH

-4.7

+4.6

-0.2
+0.46

-8.2

+5.4
0.188

1.73

-0.38

+0.38

0.166

1.52

0.131
1.16

0.165

1.52

-0.15
+0.53

-3%RH

+3%RH

-6.9

+5.4

-0.21
+0.28

-3%RH

+3%RH

-5.7

+5.6

-3%RH

+3%RH

-3.7

+3.5

-0.13
+0.15

-3%RH

+3%RH

-2.2

+2.2

0.117

1.54

-0.22
+0.21

0.088

1.148

0.058 0.763 0.037 0.467

-0.28
+0.21

+3%RH
0.071

0.946

-1℃

+1℃

-3%RH
-4.9

+5.0

-0.14
+0.41

-3%RH

+3%RH

+5.8

-0.28
+0.36

-3%RH

+3%RH

-6.7

+5.2

-3%RH

+3%RH
0.081

1.421

-0.31

+0.42

0.071
1.31

0.141

1.60

-6.0 -6.2

+5.9

-0.51

+0.30

-3%RH

+3%RH +3.2

-0.20
+0.42

-3%RH

+3%RH

-6.2

+5.9
0.121 0.867 0.148

1.37

-3.1

-0.44

+0.43

-3%RH

+3%RH
0.147

1.123

-4.1

+4.1

MIN.

MIN.

MIN.

MIN.

√

RMSE 
value 

change

A
cc

e
p

ta
b

le
 r

an
ge

RMSE

A
b

so
lu

te
 e

rr
o

rs

RMSE

-1℃

+1℃

-1℃

+1℃

-3%RH

+3%RH

-1℃

+1℃

50-neuron/layer 100-neuron/layer 150-neuron/layer 200-neuron/layer 250-neuron/layer

1
 la

ye
r

2
 la

ye
rs

3
 la

ye
rs

4
 la

ye
rs

5
 la

ye
rs

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

-1℃

+1℃

×

×

×

A
b

so
lu

te
 e

rr
o

rs

RMSE

A
cc

e
p

ta
b

le
 r

an
ge

 
o

f 
e

rr
o

rs

-3%RH

+3%RH

-c
+d

e
f

-a

+b

-1℃

+1℃

A
cc

e
p

ta
b

le
 r

an
ge

 
o

f 
e

rr
o

rs

A
b

so
lu

te
 e

rr
o

rs

RMSE

Up or down comparing 
with the RMSEs of 
surrounding neural 
networks

RMSE 
value 

change

Legends:

 

Table 5 shows the performance results of the optimal LSTM network. All coefficients of 

determination are close to 1 while the values of MSE, RMSE, MAE and StD are near 0. In addition, 
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Figures 12 and 13 illustrate: 1) the time-series prediction adeptly capture the fluctuation trends with 

accurate periods in both training and testing sets; 2) the absolute errors predominantly remain below 

±0.2oC and ±3%RH in the training set, and ±0.1oC and ±2%RH in testing set; 3) the error histograms 

present a distribution centred around zero with minimal deviation. These indicators indicate high 

accuracy in both training and testing processes. They affirm that this optimal network has robust 

generalization and accurate prediction performance without underfitting and overfitting problem. 

Table 5. Performance results of the optimal LSTM network. 

 R2 RMSE  MSE MAE StD 

Training data (temperature) 0.999 0.035 0.001 0.023 0.035 

Training data (RH) 0.984 0.364 0.132 0.230 0.364 

Testing data (temperature) 0.965 0.037 0.001 0.025 0.037 

Testing data (RH) 0.963 0.468 0.219 0.313 0.468 

 

  
(a) Comparison between actual values and predicted values 

  
(b) Errors 

  
(c) Error histogram 

Figure 12. Evaluation of the optimal LSTM in the train set. 
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(a) Comparison between actual values and predicted values 

  
(b) Errors 

  
(c) Error histogram 

Figure 13. Evaluation of the optimal LSTM in the test set. 

Additionally, the prediction time for daily data, comprising 96 data points, was less than 5 

seconds by using a 1.6GHz CPU with 16GB RAM. Based on this trained LSTM network, any 24h time-

sequence macro-environmental temperature and RH data can be input to predict the corresponding 

micro-environmental ones inside the storage enclosure. 

The model evaluation above confirmed the accuracy of micro-environmental prediction under 

the worst-case scenario without any buffering effect from paper-based collections. The following 

results focus on assessing the model robustness in practical applications involving enclosures with 

collections inside. 

Figure 14 shows data comparison between onsite measurement and ANN prediction. Notably, 

the micro-environment in return air zone exhibits better stability compared to that in the supply air 

zone. Associated absolute errors are ±0.6oC & ±1.6%RH for the return air zone and ±0.9oC & ±3%RH 

for the supply air zone. These prediction accuracies are smaller than the onsite monitoring accuracy 

of ±1oC and ±3%RH, which is deemed acceptable for the real-time micro-environment prediction. 

In addition, the temperature and humidity fluctuations in return air zone range from 0.75 to 1oC 

and 1 to 11%RH, while the supply air zone has the fluctuations of 2.5 to 3oC and 4 to 13%RH. Despite 
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the larger fluctuations in the supply air zone, deviations of both zones are negative value with the 

critical region of approximate 0.3oC and 1%RH. It means that the measurement temperature and RH 

bands are encompassed within the prediction ones for any 24h period, thus triggering no alarms. 

This real-time prediction provides a feasible way to monitor the micro-environment, and to map 

the hygrothermal condition over multitude enclosures in the macro environment, the storage room. 

This would easily allow us to test relaxing the macro-environmental control to reduce operational 

energy consumption of the precision air-conditioning system without risk of damaging collection by 

doing it in the reality. 

Consequently, this ANN prediction is robust in conformity monitoring of the micro-

environment and protecting the collections stored inside the enclosures. Furthermore, this prediction 

contributes to implementation of the relaxing control in macro-environment, thereby promoting 

sustainable preventive conservation practices. 
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(a) Return air zone 
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(b) Supply air zone 

Figure 14. Data comparison between onsite measurement and ANN prediction. 
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4. Conclusions 

The storage enclosure offers a buffering capacity that moderates micro-environmental 

temperature and RH fluctuations, enabling energy savings by relaxing macro-environmental control 

in the room. Nevertheless, there is a practical barrier in implementing physical sensors for each 

enclosure to achieve a real-time conformity monitoring of the micro-environment to ensure 

compliance of preventive conservation specifications. To address this limitation, this study 

developed a coupled heat and mass transfer model. This model served to establish acceptable macro-

environmental conditions while ensuring compliance of the micro-environment with preventive 

conservation specifications. Additionally, the data generated from the heat and mass simulation were 

utilized to train an ANN model. This ANN model was successfully deployed in a real-world 

application, demonstrating promising results for real-time conformity monitoring of the micro-

environment. The key conclusions are outlined as follows. 

1) The coupled heat and mass model effectively captured the hygrothermal interaction between 

macro and micro environments with high accuracy and acceptable agreement. It can reproduce the 

variation trends and fluctuation periods in the measurement conditions to determine acceptable 

macro-environment. 

2) The acceptable macro-environment can be relaxed from 40% to 60% RH with a ±10%RH 24-h 

fluctuation to 3% to 65% RH with a ±16%RH fluctuation, while ensuring the compliance of micro-

environment with the specifications of preventive conservation. 

3) The ANN-based prediction can achieve highly accuracy 24h time-sequence prediction of 

micro-environment within 5 seconds. This prediction demonstrates satisfactory robustness in real-

time conformity monitoring, further facilitating implementation of the relaxing control strategy for 

sustainable preventive conservation practices. 

These efforts leverage the advantage of ANN-based approach to overcome the limitation about 

real-time conformity monitoring of micro-environment without disrupting on-site operation of the 

air conditioning system in the NLS. In a practical application, using real-time prediction for the micro-

environment temperature and RH eliminates the necessity for monitoring sensors inside each 

enclosure and offers an easy way to map the micro environmental conditions inside multitude of 

enclosures in the large storage space. This particular predictive capacity could enable monitoring the 

micro-environment within the enclosures against the desirable condition under various control 

accuracy in the storage room, the macro-environment, consequently testing the control levels that 

saves energy in the service system and safe to the collections inside the enclosures without 

detrimental effect of the collections stored inside the enclosures. 

While this study provides valuable insights, it is based on a limited dataset for ANN training. 

Future work should focus on continuous data training, updating the current network with new data 

to enhance prediction accuracy and ensure the safeguarding of collection care. This modelling 

approach offers a promising solution for monitoring micro-environmental conformity and 

implementing a relaxed control strategy in the macro-environment without compromising the 

integrity of the collections stored inside the enclosures. 
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