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Abstract

Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and com-
promises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot
blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption,
conflicting with enterprise cost-saving and efficiency-enhancement goals. This study introduces an
integrated framework combining real-time ash monitoring, dynamic process modeling, and predictive
optimization to address these challenges. A modified soot blowing protocol was developed using
combustion process parameters to quantify heating surface cleanliness via a cleanliness factor (CF)
dataset. A comprehensive heat loss model was constructed by analyzing the full-cycle interaction
between ash accumulation, blowing operations, and post-blowing refouling, incorporating steam con-
sumption during blowing phases. An optimized subtraction-based mean value algorithm was applied
to minimize cumulative heat loss by determining optimal blowing initiation/cessation thresholds.
Furthermore, a bidirectional gated recurrent unit network with quantile regression (BiGRU-QR) was
implemented for probabilistic blowing time prediction, capturing data distribution characteristics
and prediction uncertainties. Validation on a 300 MW supercritical boiler in Guizhou demonstrated a
3.96% energy efficiency improvement, providing a practical solution for sustainable coal-fired power
generation operations.

Keywords: ash fouling; economizer; cleanliness factor; subtraction-average-based optimizer; quantile
regression; bi-directional gated recurrent units

1. Introduction
Achieving a green, low-carbon energy system [1,2] while ensuring energy security and sustainable

development [3,4] is a global imperative. Within the critical transition of energy structures [5,6], coal-
fired power remains indispensable, as evidenced by IEA data: coal dominates Asia-Pacific generation
(57%), fossil fuels and nuclear power lead in the Americas (64%), and while natural gas prevails
in Europe/Middle East (72%), coal still contributes 21%. In Africa, gas (42%) and coal/nuclear
(34%) are primary sources [7]. Given that existing renewable energy infrastructure cannot yet fully
supplant thermal power, enhancing the thermal efficiency of coal-fired units by minimizing heat
losses is paramount. A major factor in the degradation of efficiency is the fouling of the ash on the
surfaces of the boiler heat exchanger, making regular soot removal operations essential. Consequently,
determining the optimal timing ("When?") and duration ("How long?") for soot-blowing is a persistent
challenge in power plant operation and optimization.

Research into boiler efficiency optimization via soot-blowing includes various approaches. Wen
et al. [8] formulated soot-blowing as an equipment health management problem using the Hamilton-
Jacobi-Bellman equation and Markov processes. While enabling sensitivity analysis, its computational
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complexity hinders practical engineering application. Shi et al. [9] employed dynamic mass and energy
balance for online thermal efficiency calculation and soft sensing to optimize soot-blowing frequency
and duration without special instruments. However, this method assumes perfect cleaning after each
cycle and lacks per-cycle effectiveness evaluation, limiting its robustness. Leveraging big data and
deep learning, Pena et al. [10] developed probabilistic soot-blowing impact prediction models using
ANNs and ANFIS, validated on a 350 MW plant. Xu et al. [11] combined the principles of heat balance,
genetic algorithms (GA), and back propagation neural networks (BPNN) for dynamic monitoring and
optimization of lag in a 650MW boiler, improving the net heat gain. Yet, traditional BPNNs struggle to
capture dynamic heat loss trends accurately, affecting prediction fidelity. Kumari et al. [12] used an
extended Kalman filter for Cleanliness Factor (CF) estimation and GA-GPR for prediction on a 210MW
plant. However, dataset screening risks overlooking low-frequency variable influences, potentially
biasing results.

Crucially, traditional single-point predictions do not quantify the uncertainty of the prediction,
preventing operators from adjusting the proactive soot-blowing strategy.

Therefore, this case study focuses on the economizer of a 300MW coal-fired boiler in Guizhou
province. We construct an ash deposition monitoring model based on key combustion parameters. The
heat loss area under the economizer surface CF curve per cycle serves as the optimization objective
function. An improved Subtraction-Average-Based Optimizer (SABO) is employed to evaluate and
optimize the soot-blowing strategy for each cycle, identifying the soot-blowing node and duration
minimizing heat loss. The target fouling segment for prediction is identified by applying the optimized
node and threshold to operational data. Finally, a Quantile Regression-based interval prediction
algorithm forecasts the target soot-blowing period within the time series. This integrated approach,
combining thermodynamics and deep learning for holistic modeling, optimization, and prediction,
aims to bridge mathematics and AI, enhancing practical soot-blowing optimization without excessive
computational overhead, ultimately boosting economizer heat transfer efficiency.

The main contribution of this paper can be summarized in the following three points:
(1) In this paper, a dynamic multi-objective optimization model of heat loss for the whole process

of economizer is established with the soot-blowing node and soot-blowing duration as the optimization
objectives. It is more accurate and intuitive than previous models.

(2) Improvement of optimization algorithms for features of real problems so that the improved
algorithms have higher convergence speed and convergence accuracy when facing specific issues.

(3) The interval prediction method based on quantile regression effectively reflects the overall
distribution of the data and characterizes the uncertainty of the predicted point distribution, thereby
improving prediction accuracy.

The integrated modeling-optimization-prediction approach provided in this paper is also a better
guide for practical engineering. It optimizes and quantifies the soot-blowing nodes and durations
for each cycle. It also gives the boiler operator more time to prepare for soot-blowing operations and
develop a more reasonable soot-blowing strategy.

2. Problem Description
2.1. Introduction to the Structure of the Boiler and Economizer

This study focuses on a 300MW coal-fired power station boiler located in Guizhou province
of China. The boiler operates using a tangential combustion mode at four corners, as illustrated in
the accompanying figure. The model of the boiler is HG-1210/25.73-HM6, characterized by a steam
drum-type configuration. It is a once-through boiler that features primary intermediate reheat and
operates under supercritical pressure with variable conditions. The boiler employs an atmospheric
expansion start-up system that does not utilize a recirculation pump. It is designed with a single
furnace, balanced ventilation, solid slag discharge, an all-steel frame, a fully suspended structure, a
type layout, and tight closure. Furthermore, the boiler incorporates a medium-speed mill positive
pressure direct blowing pulverizing system, with each furnace equipped with five coal pulverizers.
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Under the BMCR working conditions, four coal pulverizers are operational while one mill remains on
standby. The fineness of the pulverized coal is R90 = 18/20% (design/check coal type). The schematic
diagram of the boiler heat transfer flow chart is shown in Figure 1
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1-Wind powder mixtures 2-Burners 3-Steam drum                   
4-Plate superheater 5-High temperature superheater                 

6-High temperature reheater 7-Low temperature reheater         
8-Economizer 9-Air preheater

Figure 1. HG-1210/25.73-HM6 boiler.

The type of economizer is cast-iron economizer, and its internal structure is shown in Figure 2.
It is installed in the vertical flue at the end of the boiler and is used to recover the waste heat in the
exhaust gas from the equipment; the boiler feed water is heated into the saturated water under the
pressure of the steam natural circulation system of the heated surface since it absorbs high-temperature
flue gas heat, reduces the temperature of the flue gas, saves energy, improves the efficiency, so it is
called the coal economizer. It has many functions, for instance:

• Absorbing the heat of low-temperature flue gas, lowering the exhaust temperature, reducing
sensible heat loss of the flue gas, and saving fuel.

• Increase the temperature of boiler feed water so that the feed water into the steam drum after the
wall temperature difference is reduced, the thermal stress is reduced accordingly to extend the
service life of the steam drum, etc.
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Convection heat transfer is mainly embodied in the flue gas heating water, so the flue gas temperature
is reduced simultaneously to enhance the feedwater temperature.

Flue gas Sent 

to 

boiler

To the induced draft fan 

System backwater

1-Flue gas baffle, 2-Bypass flue baffle, 3-Bypass flue, 4-Cast iron ribbed pipe, 5-

Connection elbow, 6-Flue baffle,  7-Safety valves, 8-Stop valve, 9-Bypass tube, 

10-Safety valves, 11-Backstop valve, 12-Drain pipe

Figure 2. Economizer internal structure diagram.

2.2. Grey Pollution Monitoring Model Construction

The heat transfer method of the coal economizer is mainly convection heat transfer, as shown in
Figure 3, taking a single cast iron ribbed pipe as an example, the surface of the ribbed piece accumulates
ash and scaling, which will reduce the convective heat transfer efficiency of the economizer.
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Figure 3. Schematic of scaling of a single ribbed pipe.
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In this study, the boiler’s cleanliness factor (CF) dataset is classified and screened for soot-blowing
node optimization, ash scaling monitoring, scaling prediction, improvement of heat transfer efficiency,
and development of a more rational soot-blowing strategy. Generally, due to the complex working
conditions of the heat transfer surfaces in a boiler, the ash accumulation state on the heat transfer
surfaces cannot be measured directly. The boiler’s ash fouling state, combined with indirect parameters,
can reflect the fouling accumulation state of the heat transfer surfaces. In this paper, the CF represents
the ash fouling state:

CF =
Kr

K0
(1)

where Kr and K0 are the heat transfer coefficients of the heat transfer surface and the theoretical heat
transfer coefficient, respectively. The values of CF lie in the interval [0, 1], with one corresponding to
the clean status of the heat transfer surface.

At this point, it is important to highlight the construction process of the soot monitoring model.
The theoretical heat transfer coefficient K0 is the heat transfer efficiency of the heating surface in the
original light pipe state without soot deposition. It is usually the sum of the theoretical radiation
heat transfer coefficient and the theoretical convective heat transfer coefficient, ignoring the thermal
resistance between the working medium and the pipe wall as well as the internal thermal resistance of
the metal.

K0 = α f + αd (2)

where α f is the theoretical radiation heat transfer coefficient and αd is the theoretical convection heat
transfer coefficient. The following mechanism equation usually obtains the heat transfer coefficient of
the heated surface:

α f = 5.7 × 10−8 agb + 1
2

ahT3κ (3)

αd = 0.65CsCz
λ

d
(Re)0.64Pr1/3 (4)

κ =

{(
1 −

(Tgb

T

)4
)

/
(

1 −
Tgb

T

)}
(5)

Where, agb and ah are the blackness of the tube wall and flue gas, respectively; T and Tgb are the
temperatures of the flue gas and the tube wall, respectively, ; CS and CZ are the transverse and
longitudinal structural parameters of the heated surface of the economizer, respectively; λ is the
thermal conductivity of the flue gas; d is the diameter of the tube in m; Re = ωd

v is the Reynolds
number; ω is the flow rate of the flue gas in m/s; υ is the kinetic viscosity of the flue gas; and Pr is the
Plumtree constant.

The flue gas flow rate can be found from the Equation (6)

ω =
Vb
A

(6)

Where A is the heat transfer surface of the convection heat transfer surface, unit m2;Vb is the flue gas
flow rate through the convective heating surface at standard conditions in m3/s, which can be obtained
by measuring the actual flue gas flow rate Vr via the Crabtree property.

Vb =
prVr

pb
/
(

1 +
Tr

273.15

)
(7)

Where Vr is the actual measured flue gas flow rate in m3/s; Tr is the measured temperature of the flue
gas in the section, ; pr is the pressure of the flue gas, Pa; pb is the standard atmospheric pressure, Pa.

The actual heat transfer coefficients are obtained through a dynamic energy balance.

Kr =
qy

A∆Tm
(8)
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Where qy is the heat released by the flue gas flowing through the heated surface, kJ/s;∆Tm is the
average temperature difference between the flue gas side and the mass side of the heat transfer surface,
C.

Considering the energy balance between the flue gas side and the work mass side, the heat
released by the flue gas on the flue gas side, qy, is equal to the heat absorbed by the work mass on the
work mass side, qq (kJ/s), there is:

qy = qq (9)

Heat absorbed on the work side
qq = D(hout − hin) (10)

Where D is the work mass flow rate through the heated surface, kg/s; hout and hin are the enthalpy
of the work mass flowing through the outlet and inlet of the heated surface, kJ/s, respectively. hout

and hin are calculated using the IAPWS − IF97[12] formula.Where the saturated steam parameters
bh = 0, temperature T = 350, pressure P for 2.5Mpa.

The calculated CF image with the normalized load profile is shown in Figure 4.

Figure 4. Cleanliness factor and load variation curves.

Since the load changes in the previous period are more frequent and are not suitable for the study
of soot-blowing optimization, some of the curves in Figure 4 are selected as the objective function of
soot-blowing optimization in section 3.

3. Full Process Modeling of Economizer Energy Efficiency
3.1. Raw Data Plotting

In the axes shown in Figure 5, the indigo blue curve is the soot accumulation segment 1, the
green curve is the soot-blowing segment, the yellow curve is the soot accumulation segment 2, the
two purple and red dotted lines indicate the soot-blowing start point and the soot-blowing endpoint,
respectively, and the vertical coordinate indicates the trend of the change of cleanliness factor, and the
horizontal coordinate indicates the time, with a sampling period of 5 seconds.
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Figure 5. Economizer cleanliness factor raw data.

3.2. Data Pre-Processing

Since the curve of the original data of the coal economizer cleanliness factor (shown in Figure 5) is
non-linear and non-stable, the direct calculation of the area by a definite integral will produce a large
error, so we use the polynomial fitting method to deal with the original data. The expression for the
polynomial fit is:

y = a0 + a1x + a2x2 + a3x3 + a4x4 (11)

After obtaining the fitted curve, reduce the calculation error by calculating the boundary and the
fitted curve enclosing the area, which is convenient for calculating the area. The polynomial fitting
results and expressions for the three processes for the trend change in the cleanliness coefficient of the
economizer are shown in Figure 6. The polynomials corresponding to ash accumulation segment 1,
soot-blowing segment, and ash accumulation segment 2 are Equation (12), (13) and (14), respectively.

y1 = 0.78499 − 1.05678 × 10−5x1 + 8.63269 × 10−10x2 − 4.37152 × 10−14x3+

6.99596 × 10−19x4 (12)

y2 = 1416.15676 − 0.16281x1 + 7.02413 × 10−6x2 − 1.34737 × 10−10x3+

9.69771 × 10−16x4 (13)

y3 = 161.41513 − 0.01616x1 + 6.09207 × 10−7x2 − 1.0198 × 10−11x3+

6.39346 × 10−17x4 (14)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2025 doi:10.20944/preprints202507.1278.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1278.v1
http://creativecommons.org/licenses/by/4.0/


8 of 27

0    5000 10000 15000 20000 25000 30000 35000 40000 45000

Time series

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
le

a
n
lin

e
s
s
 f
a
c
to

r

Raw data fitting

Ash accumulation segment 1

Soot-blowing segment

Ash accumulation segment 2

Ashes-blowing starting point

Soot-blowing endpoint

Figure 6. Comparison of raw data before and after fitting.

3.3. Optimization Problem Description

Figure 7 a schematic diagram of the reduction of heat transfer coefficient from the heated surface
of the economizer. The area of the curved trapezium enclosed by the fitted curve y1 with x0 = 0, y = 1,
x1 = 32725 is A1.

Figure 7. Heat loss at the heating surface of the economizer.
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The area of the curved trapezium enclosed by the fitted curve y2 with x1 = 32725, x2 = 36660,
y = 1 is A2. A2 is used as the soot-blowing stage and includes a portion of the steam loss Qsb[13].
Since the soot-blowing method is used in the 300MW unit of the Guizhou power plant, the research
object is steam soot-blowing, and steam loss is inevitably caused during soot-blowing operations. In
this study, steam loss Qsb is used as part of the fitness function of the optimization problem to optimize
the entire soot-accumulation-soot-blowing-soot-accumulation cycle globally.

Qsb = msts(hsi − hso) (15)

ms represents the soot-blowing steam flow rate in kg/s, ts represents the soot-blowing time in s, and hsi

represents the enthalpy of the soot-blowing steam source in kJ/kg, while hso represents the enthalpy
of the condenser inlet steam in kJ/kg.

The area of the curved trapezium enclosed by the fitted curve y3 with x2 = 36660, x3 = 44690,
y = 1 is A3. The total area of heat loss for these three operating processes of the economizer is:

Ag = A1 + A2 + A3 + Qsb (16)

Agis the sum of the heat losses from the three processes on the heating surface of the heat accumulator
and is also the objective function of the optimization problem. When x1 = 32725,x2 = 36660, the heat
loss area Ag at the heated surface of the economizer before the optimization is 12836.7124. At this time,
the percentage heat loss from the heated surface of the economizer is:

12836.7124
44690

× 100% = 28.7239% (17)

The percentage reduction of heat transfer coefficient of the original economizer dataset is 28.7239%.

4. Improved Subtraction-Average-Based Optimizer and Optimization Results
4.1. Subtraction-Average-Based Optimizer

The idea of SABO’s algorithm [14] is to update the positions of the population members in the
search space using the subtracted averages of multiple intelligences, such as the mean, the difference
in the positions of the search agents, and the sign of the difference between the two values of the
objective function, using the arithmetic average position of all the search agents. SABO is based on the
special operation“−v” called v− subtraction from search agent A to search agent B, expressed as:

A − v B = sign(F(A)− F(B))(A − v̄ ∗ B) (18)

The displacement of any search agent Xi in the search space is computed by the arithmetic mean of v−
the subtractions of each search agent Xj:

Xnew
i = Xi + r⃗i ∗

1
N

N

∑
j=1

(
Xi − vXj

)
, i = 1, 2, ..., N (19)

Determine whether to accept a new agent:

Xi =

{
Xnew

i , Fnew
i < Fi

Xi, else
(20)

The illustration of the use of "v-subtraction" for exploration and mining is shown in Figure 8:
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(a) (b)

Figure 8. (a) v-subtraction" extraction phase. (b) v-subtraction" exploratory phase.

4.2. Golden Ratio Strategy

Traditional optimization algorithms are inefficient in interval partitioning as they require more
function evaluations to narrow the search interval. For some gradient-based algorithms, it is easy to
fall into topical optimal solutions, and the golden ratio strategy is a global search method that helps
avoid premature convergence to topical minima or maxima.

(1) Initialization intervals: Set an initial search interval [a, b], where a and b are the upper and
lower bounds of the solution space.

(2) Determine the subinterval: the interval [a, b] is divided into two subintervals according to the
golden ratio. Let c and d be two points in the interval such that:

c = a + (1 − ϕ) ∗ (b − a) (21)

d = a + ϕ ∗ (b − a) (22)

ϕ ≈ 0.618, it is a mathematically specific ratio.
(3) Evaluation function value: Compute f (c) and f (d). f (x) is the objective function, and we

want to find the minimal or maximal value of f (x) in this interval.
(4) Update interval: Compare the values of f (c) and f (d); if f (c) < f (d) the new search interval

becomes [a, d]; on the contrary, if f (c) > f (d) the new search interval becomes [c, b]. After each
iteration, the length of the interval is reduced according to the golden ratio.

(5) Repeat steps (2) to (4) until the length of the search interval is less than a predefined threshold
or an upper limit on the number of iterations is reached.

4.3. Piecewise Chaos Mapping

In many traditional optimization algorithms, the initialization of the population is not random
enough, leading to premature convergence of the algorithm to the topical optimal solution, which fails
to achieve the desired effect. To address this problem, piecewise chaos mapping has been added to the
algorithm for further improvement. Piecewise chaos mapping has good statistical performance and is
a segmented mapping function. The piecewise chaos mapping formula is:

xi+1 =





xi
P 0 ≤ xi < P
xi−P
0.5−P P ≤ xi < 0.5
1−P−xi
0.5−P 0.5 ≤ xi < 1 − P

1−xi
P 1 − P ≤ xi < 1

(23)

P takes values in [0, 0.5], a segmented control factor used to divide the 4-part function of this segmented
function. Generally, d = 0.3. The range of chaotic orbital state values is (0, 1). The effect of population
initialization with adding Piecewise chaos mapping is shown in Figure 9.
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Figure 9. (a) Distribution of the population after chaotic mapping. (b) Population chaos values and corresponding
frequencies.

4.4. Roulette Wheel Selection

Since the objective problem with nonlinear constraints solved in this paper is minimization, the
probability of the optimal solution appearing at the boundary is much higher. The insensitivity of
traditional optimization algorithms to boundary values makes the optimal solution easy to ignore.
Most optimization algorithms have only one process, which makes it easy for non-optimal solutions to
be selected.

The roulette strategy is one of the commonly used strategies in genetic algorithms.
(1) Proportions the probability of an individual being selected with the size of its fitness value (as

shown in Equation (24)).

P(xi) =
f (xi)

∑N
j=1 f

(
xj
) (24)

xi is a certain individual.
(2) Cumulative probability represents the probability of everyone using line segments of different

lengths, which are combined to form a straight line with a length of 1 (the sum of the probability of
everyone), such that the longest line segment of a certain segment in the line represents the higher
probability of the individual being selected. Its mechanism is:

• Arbitrarily selecting a sequence of permutations of all individuals (this sequence can be arbitrary
because it is the length between certain line segments as representing the probability of selection
of a particular individual)

• The cumulative probability of any individual (as shown in Equation (25)) is the cumulative sum
of the previous data corresponding to that individual.

Q(xi) =
i

∑
k=1

p(xk) (25)

(3) Generate a random number between the intervals [0, 1], and it is judged in which interval the
number falls, and if it falls in a certain interval, that interval is selected. Obviously, for an individual
with a larger fitness value, the length of the corresponding line segment will be long. Hence, the
probability of a randomly generated number falling in this interval is large, and the probability of that
individual being selected is also large. Figure 10 shows a simple example of four independent trials
using the roulette wheel selection algorithm
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Figure 10. Schematic diagram of the four independent test roulettes.

In this paper, we also extend the single process of the algorithm to multi-process by converting
the fitness of the individuals in each process into a probability, eliminating the individual with the
smallest probability, and looping the others into the next process. After many experiments, the optimal
solution can be locked in about three cycles.

4.5. Solving Targeted Problems with GRSABO

In the subsection 3.3 of this paper, the objective function Ag of the GRSABO algorithm is obtained.
Now, we set x1(ashes-blowing starting point) and x2(soot-blowing endpoint) as unknown variables,
and let x1 and x2 move freely on the x − axis subject to the constraints. The main task of the optimiza-
tion part of this paper is to minimize the value of Ag by varying the values of x1 and x2. As shown in
Figure 11.
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Figure 11. Schematic of the objective function.

According to the operating regulations of thermal power plants, the interval between two soot-
blowing operations cannot be less than 8 hours(x1 ≥ 28800), and the duration of each soot-blowing is
in the range of 4500 to 5400 seconds(4500 ≤ x2 − x1 ≤ 5400), which are the two non-linear constraints
of the optimization problem.

4.6. Optimization Results and Validation

In this paper, six intelligent optimization algorithms are used, such as the whale optimization algo-
rithm (WOA), the gray wolf optimization algorithm (GWO), the subtraction-average-based Optimizer
(SABO), the particle swarm optimization algorithm (PSO), the seagull optimization algorithm (SOA),
and the sparrow optimization algorithm (SSA) in the comparison of the improved subtraction-average-
based Optimizer. 20 independent trials of each optimization algorithm on the objective function, the
starting point of ashes blowing x1, the endpoint of soot blowing x2, and the heat loss area Ag of the
heated surface of the economizer obtained from each experiment were recorded. The results obtained
by the seven optimization algorithms are plotted in box plots of x1, x2 and Ag respectively, and the
results obtained are analyzed. Firstly, through all the experiments, we get the minimum value of Ag as
11057.3562, which corresponds to x1 value of 28800 and x2 value of 33300.
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Figure 12. (a) Soot-blowing starting points calculated by seven optimization algorithms. (b) Soot
blowing end points calculated by seven optimization algorithms. (c) Heat loss areas calculated by
seven optimization algorithms.
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Figure 12. (a) Soot-blowing starting points calculated by seven optimization algorithms. (b) Soot blowing
end points calculated by seven optimization algorithms. (c) Heat loss areas calculated by seven optimization
algorithms.

Figure 12(a) shows the soot-blowing starting points obtained by seven optimization algorithms.
y = 28800 represents the value of x1 when Ag is at its smallest, and by the box plot, the results of the
20 experiments of GRSABO converge more efficiently around 28800 and have fewer outliers.

Figure 12(b) shows the experimental results at the endpoint of soot-blowing obtained by seven
different optimization algorithms. y = 33300 represents the value of x2 when Ag is at its smallest point,
and through the box plots, the results of the 20 experiments of GRSABO converge more efficiently and
with fewer outliers around 33300.

Figure 12(c) shows the experimental results of the heat loss area Ag of the heated surface of the
economizer obtained by seven different optimization algorithms, and through the box plots, the results
of the 20 experiments of GRSABO converge more efficiently around y = 11057.3562 and with fewer
outliers. The optimized thermal efficiency of the heated surface of the economizer A

′
g is shown in

Equation (26)
11057.3562

44690
× 100% = 24.7423% (26)

In summary, GRSABO shows a clear advantage over other optimization algorithms in its conver-
gence accuracy. Throughout the optimization module, we obtain the ideal soot-blowing starting point
x1 = 28800, soot-blowing endpoint x2 = 33300, and the heat loss area of the heating surface of the
economizer Ag = 11057.3562. This paper will use this soot-blowing threshold point in the prediction
module to perform interval prediction. Table 1 shows the optimal solutions selected by different
optimization algorithms and the frequency of selection of optimal solutions in 20 independent trials.
After algorithmic optimization, the thermal efficiency of the economizer is increased by approx:

28.7239% − 24.7423% = 3.9816% (27)

Table 1. Comparison of optimal solutions of 7 optimization algorithms and frequency of occurrence of optimal
solutions.

Optimization
algorithms x1 x2 Ag

WOA 29000 33500 11324.74
GWO 28890 33432 11187.51
SABO 28800 33300 11057.36
PSO 28800 33308 11058.48
SOA 28800 33400 11071.07
SSA 28800 33378 11068.12

GRSABO 28800 33300 11057.36

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 July 2025 doi:10.20944/preprints202507.1278.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1278.v1
http://creativecommons.org/licenses/by/4.0/


15 of 27

5. Optimization Results Applied to Interval Prediction
5.1. Integration and Application of Optimization Results

According to subsection 4.6, we obtain the optimized soot-blowing start point and the correspond-
ing soot-blowing threshold, bring the soot-blowing threshold and the soot-blowing start point into the
original cleanliness factor dataset, and intercept the 1000 sets of data before the soot-blowing threshold.
We have the soot accumulation segment for which we will perform interval prediction.
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Figure 13. (a) Optimization results graphic. (b) Interval forecast target data.
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5.2. Wavelet Thresholding Method for Denoising

The wavelet threshold noise removal method [15,16] is a time-frequency localization analysis
method. After the wavelet transforms the signal, the signal is decomposed into several sub-bands of
time domain components. The noise signals with small wavelet coefficients can be filtered by selecting
appropriate threshold values. Too large a threshold value will cause the loss of effective information,
while too small a threshold value will cause the residual noise signal, affecting the prediction results’
accuracy.

The steps of wavelet threshold denoising are as follows:
(1) For the original signal characteristics and application background, select the appropriate

wavelet basis find the number of layers, and use wavelet decomposition to process the original signal
containing noise to obtain the wavelet coefficients [17].

(2) After selecting a suitable threshold, the threshold function processes the layer coefficients
[18]. Considering that the hard threshold function will cause the reconstructed signal to oscillate and
the soft threshold signal will easily lead to signal distortion when dealing with nonlinear signals, the
unbiased risk estimation threshold is selected as the threshold function in this paper.

The unbiased risk estimation threshold function is calculated as follows:

• The absolute values of all elements in the original signal s(t) are first extracted, and then the
sequence of absolute values is ordered from smallest to largest. The expression is:

y(k) = (sort(|s(i)|))2 (28)

• Set λj be the square root of the jth element of yk

λj =
√

y(j) (29)
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• Then the risk function with this threshold is shown in Equation (30)

Risk(j) =
1
N

[
N − 2j +

j

∑
i=1

y(i) + (N − j)y(N − j)

]
(30)

• vvThe corresponding risk curve can be obtained from the risk function, and then the value of j
corresponding to the smallest risk is recorded as jmin, and the unbiased risk estimation threshold
can be obtained from jmin.

λ =
√

y(jmin) (31)

(3) The signal after noise removal is obtained by processing the wavelet coefficients with the unbiased
risk estimation threshold.

Here, we evaluate the denoising effect using three metrics: signal-to-noise ratio (SNR), root-mean-
square error (RMSE), and running time. The signal-to-noise ratio (SNR) and root-mean-square error
(RMSE) are shown in Equation (32) and Equation (33):

SNR(dB) = 10 log10

(Psignal

Pnoise

)
(32)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (33)

where Psignal is the signal power, P_{noise} is the noise power, n is the number of observations, yi is
the true value of the ith observation. ŷi is the predicted value of the observation.

5.3. Ensemble Empirical Mode Decomposition

The traditional empirical modal decomposition (EMD) [19] has significant advantages when
dealing with nonlinear and non-smooth time series; it is based on the distribution of the extreme points
of the signal itself, so there is no need to choose a basis function, and in addition, it is data-driven
and adaptive. It is not constrained by Heisenberg’s principle of inappropriateness of measurement
[20,21]. However, EMD is highly susceptible to modal aliasing. Modal aliasing leads to false time-
frequency distributions and renders the IMFs physically meaningless. Ensemble empirical modal
decomposition(EEMD) [22] is an improved version of EMD, which reduces the problem of modal
aliasing in EMD by adding Gaussian white noise to the original signal and then performing EMD
decomposition of multiple noisy versions of the signal finally averaging the results. Here are the basic
steps of EEMD:

(1) Add Gaussian white noise: add a set of randomly generated Gaussian white noise n(t) to the
original signal x(t) to create a set of noise-added signals ki(t), i is the number of times the noise is
added [23,24].

ki(t) = xi(t) + ni(t) i = 1, 2..., N (34)

(2) EMD decomposition: an EMD decomposition is performed for each noisy signal ki(t) to obtain
a series of intrinsic mode functions (IMFs). [25]

(3) Average treatment: the IMFs of the same sequences obtained from each noisy signal are
averaged to obtain the final stable set of IMFs.

IMFj =
1
N

N

∑
i=1

IMFj(xi) j = 1, 2, ..., M (35)

M is the number of IMF components.
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Table 2. Comparison of four threshold function evaluation indicators.

Evaluation
indicators Rigrsure Minimax Sqtwolog Heursure

SNR 60.7562 53.5176 49.7381 51.3049
RMSE 0.000595 0.001369 0.002116 0.001767

Runtime(second) 0.3429 0.3517 0.3712 0.3498

5.4. T-Test

After using the EEMD decomposition, we need to classify and integrate the obtained IMF compo-
nents to obtain three key features for interval prediction: high-frequency components, low-frequency
components, and trend terms, and the method for integrating these features t-test [25,26] is described
below. The obtained IMF components were preprocessed by noting IMF1 as indicator 1, IMF1+IMF2
as indicator 2, and so on, with the sum of the first i IMF components adding up to indicator i. A T-test
was performed to determine whether this mean differed significantly from 0. The specific steps of the
t-test are as follows:

(1) Set the assumptions: Null hypothesis(H0): The mean of the sample is equal to 0. Alternative
hypothesis(Ha): The sample’s mean is not equal to 0.

(2) Selecting the significance level: usually, α = 0.05 is chosen as the significance level. We will
reject the null hypothesis if there is a 5% probability that the observed data is inconsistent with the
hypothesized overall mean.[27]

(3) Calculating t-statistics: statistics calculation using Equation (36).

t =
x̄ − µ

s/
√

n
(36)

x̄ is the sample mean, µ is the hypothesized overall mean, s is the sample standard deviation and n is
the sample size.

(4) Determining sample degrees of freedom (d f ): d f = n − 1.
(5) Finding the t critical value: find the t critical value corresponding to the degree of freedom

(d f ) and significance level (α) in the t distribution table.
(6) Comparing t-statistics and t-critical values: if the absolute value of the calculated t-statistic is

greater than the t critical value, the null hypothesis is rejected, and the sample mean is considered to
be significantly different from 0.

(7) Conclusion: If the absolute value of the t statistic is greater than the t-critical value, then you
can conclude that the sample mean is significantly different from 0, based on the direction of the
alternative hypothesis.

If the absolute value of the t-statistic is less than or equal to the t-critical value, then you cannot
reject the null hypothesis; there is not enough evidence that the sample mean is significantly different
from 0.

5.5. Interval Forecasting
5.5.1. Quantile Regression

The main goal of traditional mean regression (OLS) [28] is to estimate the conditional mean of
the dependent variable (response variable) about one or more independent variables (explanatory
variables). In the simplest case, the OLS regression attempts to find a straight line (or hyperplane in
multidimensional space) such that the sum of the squares of the distances (residuals) of all observations
from this line is minimized. This means that the OLS regression estimates the model parameters
by reducing the residual sum of squares (RSS). OLS regression is usually required to satisfy several
assumptions, such as zero mean of the error term, homoskedasticity, no autocorrelation, etc. At
the same time, it is susceptible to extreme values or outliers because the squares amplify the larger
residuals. Therefore the OLS regression cannot portray the uncertainty of the predicted points [29].
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Quantile regression (QR) aims to estimate the relationship between the dependent and indepen-
dent variables at different quantile levels, not just the mean. For example, it can estimate the regression
relationship for median regression (When the quantile τ = 0.5 ), upper quartile regression (τ = 0.5), or
other regression relationships at any quantile level. Quantile regression uses different loss functions
to minimize a weighted sum of the absolute values of the residuals, with the weights depending on
the direction of the residuals and the chosen quantile level. Quantile regression [30] is more robust
to outliers because it uses the absolute value of the residuals rather than the square. It also allows
for heterogeneity analysis, permitting analyses of how the effect of the dependent variable may vary
across quartiles, providing more comprehensive information about the relationship between variables.
At the same time, quantile regression does not require that the error term obey a particular distribution
or that homoskedasticity be present [31].

Quantile regression is usually divided into 5 steps as follows:
(1) Data preparation: Determine the response variable Y and explanatory variable X. Split the

dataset into a training set and a test set.
(2) Model setting: Set the form of the quantile regression model, which is usually a linear model:

QY(τ | X) = XβT , where QY(τ | X) = XβT is the τth quantile of Y for a given, X and βτ is the
corresponding regression coefficient.

(3) Definition of loss function: Quantile regression uses a special loss function that adjusts the
weights according to the sign of the residuals. The loss function Lτ is defined as:

Lτ(u) =

{
τu u ≥ 0
(τ − 1)u u < 0

(37)

u = Y − Xβ is the residual, and τ is the quantile (between 0 and 1) one wants to estimate.
(4) Parameter estimation: The parameter βτ is estimated by minimizing the overall loss function.

β̂τ = arg min
n

∑
i=1

Lτ(Yi − Xiβ) (38)

Here, Yi and Xi are the response and explanatory variables for the ith observation, respectively.
(5) Model validation: Using test set data to assess a model’s predictive power, some measure of

error between predicted and actual values can be calculated, such as mean absolute error (MAE) or
quantile absolute deviation (QAD).

(6) Model interpretation: analyze the estimates of βτ to understand the effect of the explanatory
variables on the response variable at a particular quantile level.

5.5.2. Gated Recurrent Unit

Gated recurrent unit (GRU) [32] is a type of recurrent neural network, an improvement of recurrent
neural network (RNN) and long short-term memory network (LSTM) [33], which can better capture
dependencies on sequences with a long time-step distance, Reset Gate helps to capture short-term
dependencies in sequences; Update Gate helps to capture long-term dependencies in sequences. When
the reset gate is open, the gated recurrent unit contains the basic recurrent neural network; when
the update gate is open, the gated recurrent neural unit can skip subsequences. Figure 14 shows the
internal structure of GRU.
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Figure 14. Structure diagram of GRU model.

Firstly, we obtain two gating states from the last transmission state ht−1 and the current node’s
input xt. Where rt controls reset gating and zt controls update gating.

β̂τ = arg min
n

∑
i=1

Lτ(Yi − Xiβ) (39)

σ is the sigmoid function by which the data is normalized to a value between [0,1], which acts as a
gating signal. WZ,Wr, W is a machine learning process that replaces the weights with new ones after
each iteration.

h
′
t−1 = ht−1 ⊙ rt (40)

After getting the gating signal, use the reset gating to get the data after the "reset," where ⊙ is the
Hadamard Product.

Splicing h̃t with the input xt and then normalizing the data to values between [-1,1] by the tanh
activation function yields the candidate value h̃t, h̃t contains the signal features in the current input xt

and adds the new features recorded through learning.

h̃t = tan h(W · [rt ∗ ht−1, xt]) (41)

The most critical step of GRU - "updating memory" - is the step in which both "forgetting" and
"remembering" take place.

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (42)

The closer the gating signal zt is to 1, the more data is "remembered," and the closer it is to 0, the
more data is "forgotten."

5.5.3. Bidirectional Gating Unit

A bidirectional gating unit (BiGRU) is essentially a two-layer GRU network, where features are
fed into the network training through forward propagation in the forward GRU layer while mining
the forward correlation of the data. In the reverse GRU layer, the input sequences are trained by
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back-propagation to mine the inverse correlation of the data, and this network architecture allows for
bidirectional extraction of the input features to enhance the completeness and global nature of the
features. Figure 15 shows the internal structure of the BiGRU.

Forward
-GRU

Backward
-GRU

GRU GRUGRU

GRUGRU GRU
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  tanh


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Figure 15. BiGRU internal structure diagram.

5.5.4. An Interval Prediction Method Incorporating EEMD-QRBiGRU

Since a single BiGRU model can only learn the deterministic mapping relationship between the
input features and the prediction target and cannot reflect the information, such as its uncertainty
error distribution in the prediction results, this paper combines the theory of quantile regression. It
proposes a BiGRU prediction model based on quantile regression, which can realize the prediction of
the trend of the coal economizer cleaning factor under different quantiles and thus achieve the function
of interval prediction.

The parameters in the BiGRU model are the weights W and bias vectors b of each neuron. The
quantile regression method is introduced into the neural network to establish the BiGRU model based
on the quantile regression loss function. The conditional quantile of the output response variable Y at
the τ quantile is:

Y(τ) = QY(τ|X ) = f

(
J

∑
j=1

wj(τ)hj(τ) + b(τ)

)
(43)

where J is the number of units of the hidden state, f is the activation function of the output layer, hj(t)
is the output of the BiGRU hidden state, and wj(t) and bj(t) are the weight and bias of the output layer
respectively.

Updating the network parameters according to the gradient descent algorithm (Adam) yields l
BiGRU models with different weights and biases. After a series of forward propagation and backward
learning, the predicted values of the response variables under each quantile at the moment t + h can
be obtained:

Yt+h|t =
{

Y(τ1)
t+h|t , Y(τ2)

t+h|t , ..., Y(τl)
t+h|t

}
(44)

This enables the estimation of the probability density distribution of Yt+h|t , as well as the calcula-
tion of confidence intervals for Yt+h|t from discrete conditional quartiles.

T(β)
t+h =

[
Y(τ)

t+h|t , Y(τ)
t+h|t

]
(45)

where T(β)
t+h is the prediction interval at the β significance level, τ and τ are the upper and lower limits

of the prediction interval, respectively, and β = 1 − (τ − τ), the confidence level of the interval is
1 − β.
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Figure 16. EEMD-QRBiGRU flowchart.

In summary, the prediction process of the proposed EEMD-QRLSTM is shown in Figure 16, and
its algorithm execution steps are as follows:

• Denoising the original data using the wavelet thresholding method
• Decompose the denoised data into EEMD data, and obtain 9 sets of IMF components after

decomposition.
• Classify the IMF components using the t-test to obtain three features: high-frequency components,

low-frequency components, and trend terms.
• Determine the structure of the network, the number of nodes, and the number of quantile points

l, initialize the network, and construct the training set and test set;
• Input the training set into QRBiGRU, train and update the BiGRU model under each quantile

point τ;
• The explanatory variable Xt from the test set is entered into the trained QRBiGRU to obtain the

conditional quantile Yt+h|t of the response variable at time t and output the results.
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6. Interval Prediction Result Display
6.1. Wavelet Thresholding Method Denoising Module

In this paper, four different threshold functions are used to process the raw data (as shown
in Figure 17), namely Rigrsure: unbiased risk estimation threshold, Heursure: heuristic threshold
function, Minimax: substantial and tiny thresholds, and Sqtwolog: fixed thresholds Evaluation metrics
of the results of the four threshold functions are shown in Table 3.
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Figure 17. Comparison of the processing results of four threshold functions.

By comparing the evaluation indexes, we find that the unbiased risk estimation threshold has
the highest signal-to-noise ratio with the smallest root-mean-square error, and it also has the shortest
running time, so in this paper, we use the unbiased risk estimation threshold function to deal with the
optimized time series.

Table 3. T-value from T-test between indicators.

Indicator 1,2 2,3 3,4 4,5 5,6 6,7 7,8

t-value 0.359666 0.65325 0.494376 0.796583 0.353716 0.828541 1.76e-9

6.2. Modal Decomposition of the Cleanliness Factor Time Series Using EEMD and Classification Using T-Test

The data after wavelet threshold denoising still have nonlinear and non-smooth characteristics.
Hence, it needs to be further subjected to ensemble empirical modal decomposition (EEMD) to get
the topical signals containing different time scales of the original signals: the intrinsic mode function
components (IMFs), which are shown in Figure 18, and after decomposition, eight Intrinsic Mode
Function components and a trend term are obtained.
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Figure 18. EEMD decomposition of ash accumulation curve.

After the ensemble empirical modal decomposition, a t-test is needed to classify these Intrinsic
Mode Function components into three categories: high-frequency components, low-frequency com-
ponents, and trend terms. Knowing that RES is the trend term, IMF1 is defined as indicator 1, IMF1
+ IMF2 is defined as indicator 2, and so on, comparing the t-values of indicator 1 and indicator 2,
indicator 2 and indicator 3, respectively. We find that the t-values at indicator 7 and indicator 8 are close
to 0, which indicates that IMF1∽IMF7 are high-frequency components, and IMF8 are low-frequency
components.

6.3. BiGRU Time Series Forecasting Based on Quantile Regression

After obtaining the three key features, the high-frequency component, the low-frequency compo-
nent, and the trend term, interval prediction of the cumulative grey time series is performed using a
two-way gated neural network based on quantile regression. Setting training set data: test set data =
8:2, the experimental results are obtained as shown in Figure 19.

In this paper, we use mean square error (MAPE), mean square error (MSE), interval coverage
(PICP), and predicted interval average width (PINAW) as the evaluation metrics to evaluate the
prediction effect of the test set and the training set.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣ (46)

The value of MAPE ranges from [0,+∞), with a MAPE of 0% indicating a perfect model and a MAPE
greater than 100% indicating a poor quality model.

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (47)

The range of values for MSE is [0,+∞), which is equal to 0 when the predicted value coincides exactly
with the true value, and the model is perfect; the larger the error, the larger the MSE value.

PICP =
1
K

K

∑
i=1

ai

{
yi ∈ [Li, Ui], ai = 1
yi ∋ [Li, Ui], ai = 0

(48)

ai is a Boolean variable, Li and Ui represent the next and previous terms corresponding to the ith
prediction interval, respectively, and yi represents the actual value. The closer the PICP is to 1, the
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higher the probability of falling into the prediction interval, which means the better the prediction
is. However, when the prediction interval is wider, the coverage of the prediction interval will also
increase, and the information that can be provided will be less, so this paper introduces the average
bandwidth of the prediction interval (PINAW).

PINAW =
1

KR

K

∑
i=1

(Ui − Li) (49)

R = ymax − ymin, R represents the extreme deviation from the true value. The smaller PINAW means
a better prediction, and there is actually an inverse relationship between PICP and PINAW. The
comparison of the evaluation metrics for the test set and the training set is shown in Table 4.

Comparison of test set prediction results
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Comparison of training set prediction results
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Figure 19. (a) Test set prediction results. (b) Error histogram. (c) Training set prediction results. (d) Data fitting
curve.

Table 4. Comparison of evaluation indexes related to test set training set.

Evaluation indicators Training sets Test sets

MAPE 0.00037 0.00046
MSE 9.431e-08 1.437e-07
PICP 0.96875 0.98000

PINAW 0.00221 0.00264

6.4. Comparison of the Results of 4 Prediction Models Based on Quantile Regression

Through the evaluation indexes of the above experiments, it can be seen that the bi-directional
gated cyclic unit based on quantile regression is very effective in predicting the intervals of the
accumulated grey segments, so can it perform better in comparison with other optimization algorithms
for which this paper carries out the following kinds of comparisons. Including the comparison among
QRBiGRU, QRBiLSTM, QRLSTM [34], QRGRU, and the original data.
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Figure 20. Comparison of four improved models based on quantile regression.

From Figure 20, it can be seen that the prediction results of QRBiGRU have the highest degree of
fit with the original data, and the following is a comparison of the evaluation indexes of the prediction
results of these four methods. These evaluation indicators allow us to visualize the strengths and
weaknesses of the prediction results more intuitively.

7. Conclusions
This study presents an integrated framework combining deep learning and quantile regression

to optimize energy efficiency in coal-fired power plant economizers. A soot deposition monitor-
ing model was developed using critical boiler combustion parameters to calculate the economizer’s
cleanliness factor, enabling characterization of convective heat transfer efficiency. The derived heat
loss function was optimized using an improved Generalized Subtraction-Average-Based Optimizer
(GRSABO) algorithm to determine soot-blowing start/end points that minimize combined heat and
steam loss Qsb. Subsequently, processed soot buildup segments underwent interval prediction through
a Bidirectional GRU network integrated with quantile regression (QRBiGRU), effectively quantifying
prediction uncertainty. Validation on a 300MW unit in Guizhou Province demonstrated QRBiGRU’s
superior accuracy over benchmark models and achieved 4% improvement in heat transfer efficiency
while robustly characterizing uncertainty distributions without complex computational overhead. The
framework provides validated operational guidance for cost reduction and efficiency enhancement.
Looking forward, developing adaptive digital twin models capable of accommodating diverse op-
erating conditions and load fluctuations represents a critical pathway to address renewable energy
intermittency, with this study providing a methodological foundation for such advancements in power
plant digitalization.
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Abbreviations
The following abbreviations are used in this manuscript:

CF Cleanliness Factor
BiGRU Bi-directional Gated Recurrent Units
QR Quantile Regression
SABO Subtraction-Average-Based Optimizer
WOA Whale Optimization Algorithm
GWO Grey Wolf Optimization
PSO Particle Swarm Optimization
SOA Seagull Optimization Algorithm
SSA Sparrow Search Algorithm
GA Golden Sine Algorithm
EEMD Ensemble Empirical Mode Decomposition
LSTM Long Short-Term Memory
GRU Gated Recurrent Units
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
PICP Prediction Interval Coverage Probability
PINAW PI Normalized Average Width
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