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Abstract

Background

Reliable and field-applicable diagnosis of schistosome infections in non-human animals is
important for surveillance, control, and verification of interruption of human schistosomiasis
transmission. This study aimed to summarize uses of available diagnostic technigues through a
systematic review and meta-analysis.

Methods and principal findings

We systematically searched the literature and reports comparing two or more diagnostic tests in
non-human animals for schistosome infection. Out of 4,909 articles and reports screened, 18
met our inclusion criteria, four of which were considered in the meta-analysis. A total of 14
techniques (parasitologic, immunologic, and molecular) and nine types of non-human animals
were involved in the studies. Notably, four studies compared parasitologic tests (miracidium
hatching test (MHT), Kato-Katz (KK), the Danish Bilharziasis Laboratory technique (DBL), and
formalin-ethyl acetate sedimentation-digestion (FED-SD)) with quantitative polymerase chain
reaction (QPCR), and sensitivity estimates (using qPCR as the reference) were extracted and
included in the meta-analyses, showing significant heterogeneity across studies and animals
hosts. The pooled estimate of sensitivity was 0.21 (95% confidence interval (Cl): 0.03 — 0.48)
with FED-SD showing highest sensitivity (0.89, 95% CI: 0.65 — 1.00).

Conclusions and significance

Our findings suggest that the parasitologic technique FEA-SD and the molecular technique,

gPCR, are the most promising field-applicable techniques for schistosome diagnosis in non-
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human animal hosts. Future studies are needed for validation and standardization of the

techniques for real-world field applications.

Author summary

The diagnosis of schistosome infection in non-human hosts is important for control and
elimination of human schistosomiasis. Many diagnostic techniques have been developed and
adapted for the detection of schistosome infections in the animal hosts. This study aimed to
summarize effectiveness of available diagnostic techniques through a systematic review of the
literature and reports comparing two or more diagnostic tests in non-human animals. Overall,
4,909 articles and reports were screened. Nineteen articles met our inclusion criteria and were
analyzed in greater detail. A total of 14 techniques (parasitologic, immunologic and molecular)
and nine types of non-human animals were involved in the studies. Four studies comparing
parasitological tests (miracidium hatching test(MHT), Kato-Katz (KK), the Danish Bilharziasis
Laboratory technigue (DBL), and formalin-ethyl acetate sedimentation-digestion (FED-SD)))
with quantitative polymerase chain reaction (QPCR) were included in the meta-analyses. The
findings suggest that the parasitologic technique FEA-SD and molecular techniques, especially
gPCR, are promising field-applicable technigues. However, further validation and

standardization of the techniques under field condition are much needed.
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Introduction

Effective disease surveillance is a critical component of health systems, by providing
timely information to monitor disease trends, guide interventions, evaluate health outcomes, and
set disease control and elimination goals. The transmission of several parasitic diseases
involves multiple species of hosts, in addition to humans. Hence, identifying infections in human
and non-human hosts through accurate diagnostic tools is central to their surveillance.
Schistosomiasis, caused by infection of blood flukes of the genus, Schistosoma, is one such
disease and poses health threats to an estimated 800 million people in the tropics and
subtropics with more than 250 million people currently infected globally [1-3]]. There are six
species that infect humans, among which, Schistosoma mansoni, S. haematobium, and S.
japonicum have a wide geographical distribution, are of primary public health concerns, and
account for the majority of human disease burdens [4-6]. Furthermore, it is becoming
increasingly apparent that humans can be infected, often at very high prevalence levels, with
viable hybrids between S. haematobium with the livestock schistosome species of S. bovis, S.
curassoni, and S. mattheii across parts of sub-Saharan Africa, as well as rarer cases of human
infections with viable hybridized S. bovis with S. currassoni [7-12].

With extensive global efforts to control schistosomiasis over the past 15-20 years, the
world has witnessed a significant change in patterns of infection, including remarkable
reductions in disease-associated mortality and morbidity that have been achieved in many
endemic areas [13-16]. Some successful control programs, including areas that have achieved
local elimination of transmission, have been achieved in, for example, certain Caribbean island
nations and Brazil in the Americas; Egypt, Morocco, Tunisia, Algeria, and Mauritius in North
Africa and the Middle East; Saudi Arabia and Iran in the Persian Gulf; and Japan and the
People’s of Republic of China in Asia. Such success has encouraged the development of an
agenda of schistosomiasis elimination at the global scale [13-15, 17]. Yet, it has been well

recognized that, given the complexity of factors involved in the Schistosoma transmission,
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disease elimination will require integrated efforts targeting multiple components and
transmission processes [18-21]. A central element of control efforts is the identification of
infection sources for intervention (e.g., finding infected individuals for treatment) through
diagnosis of infections. However, as transmission levels are reduced with control efforts, and
traditional techniques for diagnosis of schistosome infections butt up against their limits of
detection, there is a critical need for sensitive and field-applicable diagnostic procedures for
humans [13, 22-24] and possible animal reservoirs of the parasite [25-27]. Such tools would
enable effective monitoring and surveillance, as well as verification of elimination of the disease
transmission (e.g., no circulation of the pathogen).

Natural infections of non-human animals by the three species of Schistosoma parasites
have been reported with varying public health implications based on available evidence. S.
japonicum is the causative agent of schistosomiasis in Asia, primarily in the People’s Republic
of China, the Philippines, and parts of Indonesia [18, 28, 29], and is widely recognized as a
zoonotic parasite [4, 27, 30]. Over 40 species of wild and domestic mammalian animals can
serve as reservoirs of S. japonicum [26, 30, 31]. Studies in the People’s of Republic of China
[20, 21, 32-35] and the Philippines [36-39] have revealed that some mammalian reservoirs, in
particular buffaloes, have played important roles in the local transmission of schistosomiasis to
humans. For example, studies have suggested that bovines may play an important role in
sustaining transmission in the lower Yangtze River region of the People’s Republic of China
[40-43], contributing to from around 60% of infection sources in the Poyang Lake area [33, 34]
to 90% in Anhui province [44]. Other mammalian hosts, such as horses, pigs, dogs, cats [35,
44], and wild rodents [40-43, 45], have been observed with varying levels of infections from field
surveys, and their contributions to human infections have received less interest to date
compared to bovine hosts.

In hilly and mountainous regions in the southwestern part of the People’s Republic of

China, longitudinal surveillance data have shown a high correlation between prevalence of
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infection in humans and rodents at the regional [43, 46] and bovines at the county scales
[unpublished data], and studies have suggested that bovines and rodents were a key factor
underlying re-emergence of schistosomiasis transmission in areas previously controlled or
locally eliminated [32, 47]. Field studies in the Philippines have also reported a wide range of S.
japonicum-infected animal species, with buffaloes and dogs both likely important players in
parasite transmission to humans [28, 39, 48-50].

Natural infections of S. mansoni, S. haematobium, and also notably S. haematobium
with S. bovis hybrids, have been observed in some non-human animals such as primates (e.qg.,
baboons), rodents, and pigs [51-57]. Further, there is also evidence that human S. mansoni is
maintained in non-human primates, e.g., in East Africa [57], that shared phylogenetic genotypes
are matched, indicative of shared transmission between humans and rodents in West Africa [58].
Yet, the contribution of these animals to the epidemiology of human schistosomiasis
transmission remains poorly understood, and further research is needed to estimate the burden
of disease attributable to non-human animal circulation [25, 52, 59]. Accurate detection of
Schistosoma infection, to the species and ideally strain/genotype level, in animals would provide
critical information to guide surveillance and inform control [7, 27, 46, 58, 60].

Diagnosis of Schistosoma infection in humans and diagnosis of animal infections rely on
techniques that fall in three categories: parasitologic, immunologic, and molecular. Parasitologic
techniques typically involve microscopy such as the Kato-Katz (KK) thick smear test and
miracidium hatching test (MHT); immunodiagnostic techniques detect species-specific antigens
or antibodies; and molecular techniques use parasite DNA for detection. These techniques have
been widely used in field settings either separately or in combination, exhibiting varying levels of
effectiveness and utility. Similar challenges as those facing the diagnosis in humans arise when
seeking to diagnose infections of animal hosts (e.qg., insensitivity of the KK and MHT with
decreasing infection intensities). Furthermore, diagnosis of infection in animal hosts presents

additional challenges, typically associated with sample collection and processing. To assess the
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effectiveness of currently available techniques for Schistosoma diagnosis of non-human animals,
we pursued a systematic review and meta-analysis of the literature on diagnosis of animal

Schistosoma infections.

Methods
Search strategy and selection criteria

A systematic literature review was performed with the aim to identify relevant studies,
spanning from 1990 to 2020, that examined Schistosoma infections in non-human animal hosts
using diagnostic techniques and assess their relative effectiveness in the diagnosis. The
PRISMA guidelines [61] for systematic reviews were followed to report this review. We
performed searches in the following electronic databases: PubMed, Web of Science, and
Science Direct. We also searched the electronic archives of relevant of international agencies,
including the World Health Organization (WHO)'’s Library Database, the Food and Agriculture
Organization (FAO), and World Organization for Animal Health (OIE). Considering that the
People’s Republic of China is a major S. japonicum endemic country and many relevant studies
are published in Chinese, we searched China National Knowledge Infrastructure (CNKI) and
Wanfang for Chinese language papers. Books, dissertation, conference abstracts, and
unpublished reports were also considered.

The following keywords and combinations were used in the search: “schistosomiasis”,

“schistosome”, “Schistosoma”, in combination with “diagnosis”, “detection”, “infection”,
“veterinary screening”, “parasitological assay”, “immunoassay”, “molecular assay”, and “non-
human animal”, “animal reservoir(s)”, and “animal host(s)”. Searches included appropriate
wildcards and truncations, and the bibliographies of identified documents were hand-searched

for additional references. No language restriction was imposed for database searches. Titles of

papers retrieved from each database were manually screened first to remove irrelevant
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references. Then abstracts were further screened and the full texts of potentially relevant papers
were reviewed. This process was conducted independently by two reviewers (KP and YBZ).

The inclusion and exclusion criteria of articles/studies in the present review are
summarized in Figure 1. We considered field-based epidemiologic studies (e.g., cross-sectional)
and laboratory-based studies involving diagnosis of Schistosoma infection in non-human
animals, as well as relevant veterinary screening (e.g., non-research) and veterinary medicine
research. As we are interested in relative effectiveness of diagnostic techniques, only
publications, if in the absence of a diagnostic ‘gold’ standard of infection, reporting the use of at
least two diagnostic tools (e.g., parasitologic, or immunodiagnostic, or molecular (e.g., PCR-
based) tests, or a combination of them) in the same study were included. Publication reporting,
if with confirmed animal infections (as the ‘gold’ standard, e.g., confirmed artificial infection), two
or more diagnostic tests were eligible for inclusion. The study search and selection were

performed by two independent reviewers.

Data extraction and types of outcome measures

Following the identification of eligible studies, relevant information from each reference
was extracted and the information included: year of publication, study area (e.g., site and
country), study design (e.qg., field- or laboratory-based), diagnostic tests, animal species, and
sample size (e.g., number of specific animal host examined), outcome measured (e.g., numbers
of positive and negative tests), and entered into a standardized Excel sheet by authors
independently. The primary outcome is proportion of test positive (test positive/examined x
100%) by diagnosis through a specific test (e.g., parasitologic, immunologic, or molecular tests).
For studies with comparable information (involving consistent comparisons across diagnostic
techniques, e.g., a study comparing a few parasitologic techniques with a molecular technique,
gPCR), they were included in the assessment of agreement test and relative sensitivity of

diagnosis, cross-tabulated information was extracted.
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Statistical analysis

Due to limited availability of data using comparable tests, statistical analyses were
limited to a subset of comparisons between parasitologic assays and immunoassays (limited to
MHT vs. enzyme-linked immunosorbent assay (ELISA), the colloidal gold
immunochromatography assay (GICA), the dot immunogold filtration assay (DIGFA), and dye
dipstick immunoassay (DDIA), and molecular assays and parasitological assays (limited to
gPCR vs. MHT, KK, the Danish Bilharziasis Laboratory (DBL), and formalin-ethyl acetate
sedimentation techniqgue(FEA-SD), see Table 1 for detail). Cohen’s Kappa estimate was used to
assess the degree of agreement between two tests across the studies with comparable
information [62]. For studies with comparable data on tests, which were limited to four
parasitologic techniques — MHT, KK, DBL, and FEA-SD), sensitivity was estimated using qPCR
result as the reference given the availability of comparable data and gPCR being reported to be
a highly sensitive technique in the detection of schistosome infection in animals [63-66]. The
Kappa and sensitivity summary statistics across comparisons were estimated using generic
inverse variance weighting method. Heterogeneity across comparisons was tested using 1
statistic (e.g., inconsistency or variability in effect estimates across studies) .

Pooled estimates of sensitivity of selected diagnostic tests were analyzed in a meta-
analysis using a random-effects model. Due to heterogeneity of diagnostic tests across the
included studies and limited studies with comparable information, we restrict our analysis to the
studies with comparable information for the meta-analysis. The meta-analysis was performed in

STATA Version 10 [67].

Results

Search results
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The search process and results are shown in Figure 1. The search terms returned 4,909
records from all databases, reducing to 712 records after the title screening and duplicate
removal. Through further examination by removing articles on review, development of
diagnostic assays (e.g., not for field and/or laboratory applications), non-human Schistosoma
species, 62 studies were identified for full-text review. Of these, 43 articles contained insufficient
information or only one diagnostic test and were excluded from the review. The remaining 19
studies (Table 1) were included for qualitative analysis in this review and four of them were

included in the meta-analysis [45, 50, 66, 68-72].

4,909 studies searched

v e Reviews

712 studies identified *  Diagnostic assay
development

e Non-human Schistosoma

> (e.g., S. bovis)
A
_62 stu_dies r_ne(_ating e  Studies with insufficient data
inclusion criteria (e.g., very limited animals in
the study)

e  Only one diagnostic test with
no comparison

e Description of the methods
without animals being tested

19 studies documenting
comparisons of diagnostic assay

v .

15 studies documenting 2 or more 4 studies documenting animals of
assays (14 on S. japonicum; 1 on S. confirmed infection (3 on S.japonicum; 1 on
mansoni) S. mansoni.)

Figure 1. Flowchart showing inclusion and exclusion of studies on diagnosis of Schistosoma
infections in non-human animals and search results. Note that, for the four studies with
confirmed infections prior to diagnostic testing (on lower right box), more than two diagnostic

techniques were also examined in each study.


https://doi.org/10.20944/preprints202105.0075.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 d0i:10.20944/preprints202105.0075.v1

11

General characteristics

This review identified 19 studies published between 1993 and 2020; key characteristics of
the included studies are summarized in Table 1. Among the included studies, 15 were field-
based (e.g., cross-sectional surveys of non-human animals), three were based on
experimentally infected animals, and one involved both. Seventeen of them were based on S.
japonicum, involving a range of hosts including domestic animals (e.g., buffalo, cattle, dog, goat,
and pig), laboratory animals (e.g., mouse and rabbit), and wild animals (e.g., rodent) in the
People’s Republic of China and the Philippines, while the other two papers examined S.
mansoni in chimpanzee and rodents in Uganda and Brazil, respectively (Table 1).

All studies involved the use of two or more diagnostic techniques in the three categories of
Diagnostic techniqgues—parasitologic (n=4), immunologic (n=8), and molecular techniques (n=2).
Key characteristics of these techniques are summarized in Box 1. Among the 19 studies, two
studies used all three types of techniques, five studies used both parasitologic and molecular
techniques, five used both parasitologic and immunologic techniques, two studies used both
immunologic and molecular techniques, and five studies used two immunologic techniques
(Table 1). Sample sizes varied substantially across the studies and different animal hosts, with
the majority of study animals being buffalo and cattle, accounting for 87.7% (8,145/9,284) of the
total number of animals examined. Thirty-nine non-human primate (all chimpanzees) were

examined for S. mansoni in Uganda [73].

Box 1: Key characteristics of diagnostic techniques in the included studies
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As diagnosis of Schistosoma infections in humans, development and utilization of diagnostic
tools for Schistosoma infections in non-human animals are also important for surveillance and
control of the disease involving zoonotic transmission. The development and use of diagnostic
tools for animal infections have, to some extent, paralleled those of diagnosis of human
Schistosoma infections. Many techniques have been developed and/or adapted (e.g., from
diagnostic techniques of human infection) and these techniques can be broadly grouped to
three major categories — parasitologic, immunologic, and molecular techniques. The techniques

used in the studies included in this review are summarized below.

Parasitological techniques

As for the diagnosis of human schistosome infection, detection of excreted schistosome eggs
from fecal samples of animal hosts is a customary method, which is direct and specific. Four
techniques were used in the 13 studies — the KK thick smear test, the MHT, the DBL technique,
and the FEA-SD technique.

The Kato-Katz technigue (KK). The KK is the standard method recommended by WHO for both

qualitative and quantitative diagnosis of intestinal schistosomiasis (e.g., S. japonicum and S.
mansoni) and the most commonly used method in the field for diagnosis of human infections
with these species [23, 74]. The KK was also adapted for detection of schistosome infection in
non-human animal hosts. Briefly, fresh, homogenized stool sample is pressed through
approximately 60-105 pm mesh and filled in a standard volume template designed to contain
approximately 41.7 mg of stool on a microscopic slide. The resulting sample on the slide is then
covered with glycerin/methylene blue-soaked cellophane (to clear the fecal samples) and
pressed to spread the stool evenly on the slide which is then checked under a microscope. Two
to three slides for each stool sample are prepared and screened by experienced microscopists
with the egg count is expressed typically as the number of eggs per gram of stool (EPG)

through multiplication with a correction factor (e.g., 8 or 12 depending on the number of slides).



https://doi.org/10.20944/preprints202105.0075.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 d0i:10.20944/preprints202105.0075.v1

13

Miracidium hatching test (MHT). The MHT is another commonly used method for detection of

schistosome (in particular S. japonicum) infections in humans and animals. The technique
checks for live miracidia through egg hatching to detect infection. Briefly, homogenized stool
samples, usually ~50 g, are sieved through 1-2 layers (with slight variations over different
studies/applications) of mesh, the sediment is then collected and placed to an Erlenmeyer flask
filled with fresh, unchlorinated water (with pH around 7.0), and is subjected to artificial or natural
light at room temperature controlled in the range of 25°C to 30°C. The neck of the flask is then
examined at intervals (typically 1, 4, 8, 12, and 12 hours) to detect the presence of miracidia
[75]. Slight modifications, depending on field and laboratory logistics, have been made across
field applications [26, 32, 35, 45, 50].

The Danish Bilharziasis Laboratory (DBL) technique. The DBL technigue was initially developed

for the evaluation of S. japonicum eggs in pig feces. The basic procedure involves filtration,
sedimentation and centrifugation [76]. Briefly, 5 g of feces taken from homogenized specimens
is mixed with 100 ml of 1.2% saline, agitated for 5-10 min, and gone through 3 layers of sieves
at 400, 100, and 45 um mesh size, respectively. The residue materials remaining on the 45 pum
mesh sieve is then removed to a sedimentation flask, filled with saline to allow sedimentation in
the dark. The sediment was then centrifuged and re-suspended to obtain a final volume of 2.25
ml. After thoroughly mixing, 150 ul of the solution is then removed to a 1 ml microscope
chamber slide mixed with 850 pl of saline. Three chamber slides are then examined under a
microscope to count the number of schistome eggs to obtain the intensity measure, the total
number of EPG [36, 76].

Formalin-ethyl acetate sedimentation-digestion (FEA-SD) technique. A procedure has been

developed for quantification of S. japonicum eggs from bovine feces. The basic procedure
involves filtration, sedimentation, potassium hydroxide digestion, centrifugation, and then
microscopy [77]. Briefly, ~50 g of homogenized fecal sample is sieved through 40-60 copper

mesh ( 234-380 um) sieve and subsequently a 260 copper mesh (61 pum) sieve. The sediment
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on the second layer mesh is then washed into a conical flask, mixed through shaking, and
sedimented for 30 min. The sediment is re-suspended in 10% (v/v) formalin and natural

sedimentation repeated twice. The resulting suspension is then subjected to two rounds of
centrifugations and digestion using potassium hydroxide, and further centrifugation before

microscopy. The detailed operation procedures are reported by Xu et al. [77].

Immunodiagnostic techniques

Like diagnosis of human schistosome infections, a range of immunodiagnostic techniques have
been developed targeted on anti-schistosome antibodies or schistosome antigens present in
serum/urine for infection detection of non-human animals. In this review, eight
immunodiagnostic techniques were reported in the included studies, including ELISA,
circumoval precipitin test (COPT), the colloidal gold immunochromatography assay (GICA),
indirect hemagglutination assay (IHA), DIGFA, the dipstick dye immunoassay (DDIA), polyacetal
polystyrene immunization microspheres (PAPS), and circulating cathodic antigen (CCA).

Enzyme-linked immunosorbent assay (ELISA) There are a few ELISA-based serologic tests

developed for detection of animal schistosome infection. Among them, the ELISA test that uses
soluble egg antigen (SEA) as the target is the most widely used technique for a range of hosts,
such as buffalo, goat, mice, rabbit, rodents, and sheep [78-82]. Some recombinant proteins-
based ELISA (e.g., SjTPx-1) tests were developed and tested in buffalo [78].

Indirect hemagglutination assay (IHA). IHA is one of widely used alternative test to detect

human and animal infections with Schistosoma [75, 79, 83]. The test uses erythrocytes coated
with schistosome adult worm antigen and has been widely used in diagnosis of S. japonicum
infections in buffalo and cattle in the People’s Republic of China.

Circumoval precipitin test (COPT). The test is a simple and inexpensive immunodiagnostic test

used to detect serum antibodies to schistosome and developed for diagnosis of schistosome in
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humans [84, 85]. The test was adapted for detection of schistosome infection in animals such as
buffaloes [78].

Dipstick dye immunoassay (DDIA). DDIA was developed for detection of antibodies against S.

japonicum in humans using SEA labelled with a colloidal dye [86]. The technique has
subsequently extended to diagnosis of animals [87].

The colloidal gold immunochromatography assay (GICA). GICA combines with the double-

antigen sandwich assay and has been used for detection of antibody caused by schistosome
infection. Most current applications focus on S. japonicum in a wide range of animal hosts [70,
79, 81].

The dot immunogold filtration assay (DIGFA). DIGFA is a rapid technique, based on an immune

labelling technique developed in the late 1980s, for detection of antibodies to infectious agents.
The technique was developed for detection of anti-S. japonicum antibody in humans in the
People’s Republic of China [88] and then extended to diagnosis of S. japonicum infection in
cattle [69, 82].

Polyaldehyde polystyrene immunization microspheres (PAPS). This technique for schistosome

detection was developed in late 1980s in the People’s Republic of China. It uses
immunospheres of polyaldehyde polystyrene to link with special antigenic ligates (SEA of S.
japonicum) and was used for diagnosis of S. japonicum in cattle in the People’s Republic of
China [71, 89].

Circulating cathodic antigen (CCA) assay. This technique detects the presence of schistosome

CCA released from adult worms and is a widely used technique for all three species of
Schistosoma of main public health concern. In this review, CCA assay was used (in

comparative test) only in one study on S. mansoni [73].

Molecular techniques
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PCR-based technigues. The techniques detect (e.g., qualitative) and quantify (e.g., both

qualitative and quantitative) Schistosoma-specific DNA from samples (e.qg., fecal or urine

depending on species). Extensive studies across different Schistosoma species claim very high
sensitivities and specificities. Both qualitative (classic PCR) and quantitative PCR (qPCR) have
been explored for S. japonicum and S. mansoni in animals and evaluated in both laboratory and

field settings [45, 66, 72, 73, 78, 80, 81, 90].

Comparisons of results from different diagnostic techniques

The 19 studies included in the review used 14 diagnostic tests—13 studies used one or more
parasitologic assays, 14 studies used one or more immunologic assays, and nine studies used
either PCR, or gPCR, or both (Table 1). Given the availability of comparable information within

and across studies, the following comparisons and analysis were conducted.

Parasitologic, immunodiagnostic, and molecular technigues. Two studies (both on S. mansoni)

used all three types of diagnostic techniques. In the first study that examined intestinal
schistosome infections in wild-born chimpanzees in Uganda, Standley et al. [73] reported results
of different diagnostic tests with substantial variations in outcome measures — proportions of test
positive were 5.3%, 93.5%, 50.0%, and 54.2% by duplicate KK thick smears, ELISA, CCA, and
gPCR tests, respectively. The second study used the KK, ELISA, and PCR tests on
experimental rodents, yielding results of proportions of test positive at 68%, 100%, and 79%,

respectively [90].

Parasitologic and immunodiagnostic techniques. Five studies (all pertaining to S. japonicum)

used the two types of diagnostic techniques. For parasitologic tests, all studies used MHT, and
for immunologic tests, six of them (ELISA, DDIA, IHA, PAPS, DIGFA, and GIGA) were involved
in the studies. Jiang et al. [68] used MHT and ELISA to examine cattle in an endemic area of

Hunan, the People’s Republic of China and reported 13.4% and 18.5% of proportion of positive
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by the two tests, respectively. Sun and Zhang [71] compared MHT and PAPS tests in cattle in a
highly endemic area of Hubei province, where both tests showed 100% prevalence of
schistosome infections among the cattle. Peng et al. [70] compared the use of MHT, GICA, and
IHA in goats, buffalo, and cattle, showing significant variations in positive detected by MHT (in
the range of 3.1% to 5.1%) and GICA/IHA (in the range of 7.4% to 10.2%) Lu et al. [69]
examined the performance of MHT, ELISA, and DIGFA, all showing 100% proportion of positive

in the cattle in a field study in Zhejiang province, People’s Republic of China.

Parasitologic and molecular technigues. Eight studies used molecular (PCR and/or gPCR) and

parasitologic (KK, MHT, DBL, and FEA-SD) techniques (Table 1). In the study on buffalo in the
Philippines, Wu et al. [66] compared gPCR vs. KK, MHT, and DBL, and found substantial
variations in schistosome detection associated with the different tests — the three parasitologic
assays reported proportions of test positive from 0 to 3.7% while gPCR test indicated about
51.5% proportion of test positive. In another study pertaining to buffalo also conducted in the
Philippines, Gordon et al. [72] evaluated the performance of KK, MHT, a newly developed
parasitologic test, FEA-SD, and qPCR, showing that 25.0% and 19.1% proportions of test
positive were identified by KK and MHT, while the FEA-SD and qPCR picked up 93.2% and
90.9% of the test positives, respectively. Fung et al. [63] compared MHT and PCR in the
detection of schistosome infection in bovine, which gave the same result (62.5% test positive)
There were two studies on S. mansoni conducted in Brazil and Uganda, respectively. The
Brazilian study used KK and PCR tests on rodents and found 65% (KK) and 75% (PCR)
proportions of test positive, respectively [90], while the study on chimpanzee in Uganda reported
test positive at 5.3% by KK, 1.1% by MHT, 93.5% by ELISA, 50.0% by PCR, and 54.2% by
gPCR, respectively [73].

Given the availability of comparable data, four studies were included in meta-analysis of

sensitivity analysis of the four parasitological techniques, using gPCR a reference test. The four
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studies, all pertaining to S. japonicum, used one or two of parasitological tests — KK, MHT, DBL,
or FEA-SD — and gqPCR. Estimates of sensitivity associated with each of the four parasitological
assays were included in the meta-analysis which showed substantial variations over
parasitological tests across different hosts. The pooled estimates of sensitivity for MHT, KK,
FED-SD, and DBL tests were 0.01 (95% CI: 0-0.05), 0.06 (95% ClI: 0-0.21), 0.89 (95% CI: 0.65—
1.0), and 0.06 (95% CI: 0.02-0.15), respectively, with the overall estimate of 0.21 (95% CI:

0.03-0.48) (Figure 2).
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Table 1. Key characteristics of identified studies on diagnosis of schistosome infections in non-human animals

Species Location Study Hosts Sample Parasitologic Immunoassay Molecular Reference
size assay assay
S, Dongting Field Rodent, 76, 52, 145, KK, MHT qPCR, [45]
Lake, dog, goat, 10, 10 ddPCR
China buffalo,
cattle
Sj. China Exp+ Mice, rabbit, 70, 50, 132, ELISA, GICA [81]
Field buffalo, goat 117
S, Leyte, Field Cattle, 48, 105 FEA-SD gPCR [72]
Philippines carabao
S.. Samatr, Field Carabao 44 KK, MHT PCR, [50]
Philippines gqPCR
S, Sichuan, Field Bovine 8 MHT PCR [63]
China
S, Cagayan, Field Buffalo 50 ELISA, COPT PCR [78]
Philippines
S.m. Lake Field Chimpanzee 39 KK, MHT ELISA gPCR [73]
Victoria,

Uganda


https://doi.org/10.20944/preprints202105.0075.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021

S,.

S.j.

S.i.

Sj.

S|

S

Si.

Sj.

Sij.

S,

Brazil
Hubei,
China
Leyte,
Philippines
Hunan,

China
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China
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China
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China
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China
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China

Zhejiang,
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Field
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178
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314, 197,

162

110
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139,140
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33, 50
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KK ELISA
ELISA
KK, MHT, DBL
MHT GICA, IHA
ELISA, DIGFA
ELISA, GICA
MHT ELISA, T-
DIGFA
MHT ELISA
MHT DDIA
IHA, PAPS
ELISA, IHA

PCR

PCR

gPCR

[90]

[80]

[66]

[70]

[82]

[79]

[69]

[68]

(87]

(89]

(91]
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China rabbit
S.j. Hubei, Field Cattle 4217 MHT PAPS [71]
China

Species, S.j. — Schistosoma japonicum; S.m. — Schistosoma mansoni

Study, field — field-based epidemiologic study (primarily cross-sectional studies); Exp — experiment-based studies; cases (animals experimentally infected)
and controls (not infected) were included

Parasitologic assay, KK- Kato-Katz technique; MHT — miracidium hatching test; DBL — the Danish Bilharziasis Laboratory technique; FEA-SD — the
formalin-ethyl acetate sedimentation technique.

Immunoassay, ELISA — enzyme-linked immunosorbent assay; GIGA - gold immunochromatography assay; COPT - circumoval precipitin test; DDIA -
dipstick dye immunoassay; IHA — indirect hemagglutination; PAPS - polyacetal polystyrene immunization microspheres; DIGFA -dot immunogold filtration
assay; CCA- circulating cathodic antigen

Molecular assay, PCR — polymerase chain reaction; gqPCR - real-time (or quantitative) polymerase chain reaction
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Table 2: Result of different diagnostic techniques used in the included studies
(proportion of test positive, and numbers of tested and test positive)
Ref Hosts Parasitologic Immunoassay Molecular
assay assay
COPT KK MHT DBL FEA-SD FECT ELISA GICA IHA DDIA DIGFA  PAPS CCA PCR gPCR
[81] Mouse 100% 100%
(50/50) (50/50)
Rabbit 100% 100%
(30/30) (30/30)
[45] Rodent 0%
(0/83)
Dog 0% 0% 18.4%
(0/52) (0/52) (9/49)
Goat 25.5% 27.6% 6.9%
(37/145) (40/145) (10/145)
Buffalo 0% 10% 90%
(0/10) (1/10) (9/10)
Cattle 80% 100% 100%
(8/10) (10/10) (10/10)
[72] Cattle 77.1% (37/48) 87.5%
(42/48)
Carabao 55.2% (58/105) 79.1%
(84/105)
[78] Buffalo 73.9% 0
(17/23) (0/23)
Carabao 25% 19.1% 93.2% 90.9%
(11/44) (4/19) (41/44) (40/44)
[63] Bovine 10.4% 62.5% 62.5%

(11/106) (718) (7/8)
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Discussion

Over the past 30-40 years, many diagnostic techniques have been developed and
adapted for the detection of Schistosoma infection in non-human hosts. Some of these
techniques have been used widely, while others have had limited application in practice.
Establishing optimal techniques for field application is challenging, as the ‘effectiveness’ of a
diagnostic test depends on a wide array of factors, such as parasite biology, transmission levels
of the parasite, species of animal hosts involved, and local infrastructure and capacity, among
others. Here, by means of a systematic review, 19 studies were identified that employed 14
diagnostic techniques, classified as parasitologic, immunologic, or molecular (Table 1).
Consistent, quantitative comparisons could not be undertaken for many of the reported
techniques for lack of comparable published data, particularly for immunodiagnostic assays.
Quantitative comparisons were performed between four parasitologic assays and qPCR for a
subset of studies. While limited, these comparisons yielded valuable information and identified
important, remaining knowledge gaps.

As for diagnosis of human schistosome infections, parasitological tests, in particular
direct microscopic techniques such as KK and MHT, are widely used for the diagnosis of
zoonotic schistosome infections. Important limitations of these techniques are widely recognized.
First, their test sensitivities decease with the declining infection intensity or level of transmission
[13, 23, 26, 35]. Second, for diagnosis of schistosome infection in animals, in particular large
animals such as buffalo and cattle, which play an important role in schistosomiasis transmission
to humans in parts of East Asia, the MHT was preferred over the KK due to the use of much
larger size of fecal samples, yieldinga better performance of diagnosis based on extensive
fieldwork reported in the People’s Republic of China [32, 35, 63, 77]. However, it should be
noted that MHT results were highly sensitive to pH, temperature, and quality of the water used
in the hatching assays and if not controlled well, could significantly impact test results [77]. A

recent study in West Africa on the detection of S. bovis and S. curassoni, as well as hybrids in
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livestock (cattle, goat, and sheep) using KK and MHT techniques (and using abattoir data to
estimate sensitivities of the tests used) also suggested that overall MHT tests had significantly
higher sensitivities than KK for cattle, although there were significant differences in the
performance of the MHT depending on infecting schistosome species [8]. In contrast, there
were no significant differences in estimates of test sensitivity by parasite species in sheep and
goats, nor between proportions testing positive by each test [8].

Among the four parasitological techniques, the FEA-SD, a recently developed
microscopic test, has shown high sensitivity and specificity [77]. The procedure involved in the
FEA-SD technique is relatively straightforward and easy to implement under field conditions.
This technique is an important improvement, overcoming the limitations of classic parasitologic
techniques in detecting schistosome eggs in animals - for example, the feces of large animals
(e.g., bovine) typically comprise large masses containing cellulosic fiber and abundant debris
that obscure egg detection under microscope using the classic KK test. The FEA-SD procedure
can clear large proportions of the debris, enabling more efficient observation [77]. Using the
gPCR as the reference test, the sensitivity of each of the four tests was estimated for the four
eligible studies, and meta-analysis shows that the FEA-SD has the highest pooled estimate of
sensitivity, 0.89 (95% CI: 0.61-1.00) in contrast with much lower estimates for the other three
parasitological assays (Figure 2). The FEA-SD provides a very similar level of diagnostic
accuracy as gPCR. Given the much lower cost of diagnosis using FEA-SD compared to that of
gPCR, the newly developed parasitologic technique has the potential as an affordable test for
detection of schistosome infection in animals. It should be noted that, in the study by Van
Dorssen and colleagues [45], the performance of both KK and MHT in the diagnosis of goats
was better than that of qPCR, resulting in high sensitivity of both tests using gPCR as a
reference. The low performance of gPCR in comparison with KK and MHT was unexpected and
the authors later identified that this might be due to presence of inhibitors in the goat stools [45].

Hence the information on goats was not included in the meta-analysis. It should also be noted
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that, although not included in the review due to lack of comparisons, a non-invasive technique,
mini-FLOTAC, was used for detection of schistosome and other trematode infections in wildlife
with promising results [92].

In addition to the comparisons included in the present study, we identified studies
reporting on promising results of immunodiagnostic tests. A recent study examining thioredoxin
peroxidase-1 in an ELISA system showed effective identification of S. japonicum in bovine hosts
[78]. There are some other widely applied immunodiagnostic techniques in the field (e.qg.,
indirect immunodiagnostic assays detecting specific schistosome induced antibody including
COPT, and DDIA), which demonstrate high sensitivity but generally low specificity [26].
Circulating antigen based detection has a relatively high sensitivity, whereas the specificity
becomes an issue, particularly in low transmission settings [26]. Nevertheless, it is well-
recognized that immunodiagnostic techniques face many challenges, in particular those related
to cross-reactivity and identification of past infections, rather than current infections. These
issues have limited, to some extent, their value as effective tools for detection of schistosome
infections.

Note that only two studies pertaining to S. mansoni involved comparative diagnostic
tests, and hence were included in the review. The Gentile et al. [90] study compared KK, ELISA,
and PCR in 20 experimental rodents (Nectomys squamipes) and found that ELISA generated
highest detection rate (100%), followed by PCR (75%) and KK (65%). Standley et al. [73]
pursued a cross-sectional survey on chimpanzees in Uganda using KK, MHT, ELISA, CCA, and
gPCR and reported highest detection by ELISA (93.5%), qPCR (54.2%), CCA (50.0%), KK
(5.3%), and MHT (1.1%). However, no specific comparison across studies and tests could be
made due to lack of cross-tabulated information. The overall patterns of findings are in general
agreement with those on S. japonicum. It is worth noting that, using molecular techniques (e.g.
ITS/ICOX-1 and PCR), some recent studies have offered important data suggesting non-human

primates [93] and rodents [56] as reservoirs for S. mansoni. Although future research is needed
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to deepen the understanding of these and other potential reservoirs to human infection, these
studies offer important and promising prospect for diagnosis of animal schistosome, particularly
in the context of elimination of human Schistosoma transmission. Highly sensitive and accurate
techniques will be the key to verification of transmission interruption.

Taking together, having reviewed and analyzed available data, we found that diagnostic
techniques across the three categories exhibit substantial heterogeneities in their strengths and
limitations with respect to Schistosoma diagnosis in non-human animals. The parasitologic
technique, the FEA-SD and molecular techniques, especially gPCR, are potentially promising,
and field-applicable techniques for schistosome diagnosis in non-human animal hosts. Future
studies are needed for validation and standardization for their broader applications under real-

world conditions.
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Figure 2. Meta-analysis of sensitivity of four parasitological tests (MHT, KK, DBL, and FED-SD)
vs. gPCR for diagnosis of S. japonicum infection in animal hosts. Sensitivity of each

parasitologic technique was estimated using gPCR a reference test.
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