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HIGHLIGHTS 

• Scan sequence is the order in which prescribed geometric patterns are scanned 

• Existing scan sequences are selected by trial-and-error and heuristics 

• Conversely, SmartScan is an intelligent approach (model-based and optimization-driven) 

• It results in significantly more uniform temperature distribution and lower deformations 

• It is computationally-efficient and robust enough to be run online  

 

ABSTRACT 

Parts produced by laser or electron-beam powder bed fusion (PBF) additive manufacturing are 

prone to residual stresses, deformations, and other defects linked to non-uniform temperature 

distribution during the manufacturing process. Several researchers have highlighted the important 

role scan sequence plays in achieving uniform temperature distribution in PBF. However, scan 

sequence continues to be determined offline based on trial-and-error or heuristics, which are 

neither optimal nor generalizable. To address these weaknesses, we have articulated a vision for 

an intelligent online scan sequence optimization approach to achieve uniform temperature 

distribution, hence reduced residual stresses and deformations, in PBF using physics-based and 

data-driven thermal models. This paper proposes SmartScan, our first attempt towards achieving 

our vision using a simplified physics-based thermal model. The conduction and convection 
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dynamics of a single layer of the PBF process are modeled using the finite difference method and 

radial basis functions.  Using the model, the next best feature (e.g., stripe or island) that minimizes 

a thermal uniformity metric is found using control theory. Simulations and experiments involving 

laser marking of a stainless steel plate are used to demonstrate the effectiveness of SmartScan in 

comparison to existing heuristic scan sequences for stripe and island scan patterns. In experiments, 

SmartScan yields up to 43% improvement in average thermal uniformity and 47% reduction in 

deformations (i.e., warpage) compared to existing heuristic approaches.  It is also shown to be 

robust, and computationally efficient enough for online implementation. 

 
Keywords: 3D printing; scanning strategy; finite difference method; radial basis functions; 

optimal control. 

 

1 INTRODUCTION 

Powder bed fusion (PBF) is an increasingly popular approach for additive manufacturing 

(AM) of metals (and other materials). It is used in various industries, ranging from aerospace, to 

automotive, to biomedical. It builds 3D parts by using a high-power source of thermal energy, 

typically a laser or an electron beam, to selectively fuse or melt powder layer by layer. Compared 

with other AM techniques for metals, PBF is popular for fabricating parts with intricate features 

and dense microstructure at relatively high tolerances and build rates [1,2]. However, parts 

produced by PBF are prone to residual stresses, deformations, and other defects linked to non-

homogeneous temperature distribution during the process [1–5]. In order to mitigate these defects, 

post-process heat treatment is often required, which takes several hours or even days and increases 

the overall manufacturing costs [6]. Moreover, post-process heat treatment cannot rectify 

deformations or cracking caused by residual stresses prior to being relieved. For this reason, it is 
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preferable to avoid residual stresses and related defects as much as possible during the build 

process, by minimizing temperature gradients. 

Several works have revealed the importance of scanning strategy in achieving uniform 

temperature distribution in PBF [3,4,6–9]. The term scanning strategy is often used in the literature 

to refer to disparate aspects of scanning in PBF. Here, we use the term in its broadest sense which 

includes all process parameters associated with scanning in PBF, e.g., laser or electron beam power, 

scan speed, hatch spacing, scan pattern and scan sequence. Scanning strategy is often selected by 

round-robin testing, trial and error, or heuristics [1,3]. However, given its importance in 

determining temperature distribution, a growing body of research is focused on controlling various 

elements of scanning strategy. Review articles [1,3,10] have presented comprehensive surveys on 

process monitoring and control in PBF. They have identified that beam power and scan speed are 

the elements of scanning strategy often controlled online or offline, e.g.,  [11–17]. However, Mani 

et al. [1] noted that there are opportunities for different control loops beyond beam power and 

speed. 

One such opportunity that is of particular interest to the proposed work is scan sequence. 

Scan sequence refers to the order in which a pre-specified geometric scan pattern is traced. For 

example, two of the most commonly used scan patterns in practice are the stripe and island (see 

Fig. 1). Scan sequence in these examples could mean the order in which each line in the stripe 

pattern is scanned, or the order in which each island in the island pattern is scanned. Researchers 

have shown that scan sequence significantly affects temperature distribution, residual stresses and 

distortions in PBF [5,18–21].   
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Fig. 1. Two common scan patterns for a layer in PBF: (a) island, (b) stripe. Scan sequence 

refers to the order in which the features (i.e., islands or stripes) of each pattern are scanned. 

 Given the importance of scan sequence, researchers have proposed new approaches to 

determine scan sequence offline using heuristics. For example, in the context of the island scan 

pattern, Kruth et al. [21] presented the least heat influence (LHI) sequence which places the next 

island to be scanned as far as possible from the previously scanned islands. Malekipour et al. 

proposed a Genetic Algorithm Maximum Path (GAMP) sequence [22] which claimed to maximize 

the path connecting the centers of all islands using a genetic algorithm, even though no details of 

the algorithm were presented. Ramos et al. [20] proposed the intermittent strategy which avoids 

scanning adjacent islands consecutively by using a geometry-based formula having weights and 

radial thresholds. However, no systematic procedure was provided for selecting the weights and 

thresholds in the formula, hence making it difficult to generalize. Taken together, a major 

weakness of existing heuristic scan sequences is that they only rely on geometric relationships that 

do not accurately represent the physics of temperature distribution, and they are non-generalizable. 

For example, it is not necessarily true that scanning islands that are furthest away from the prior 

scanned islands minimizes thermal gradients. It highly depends on the heat diffusion process, 

which involves much more than geometry. Reiff et al. [23] presented a concept, without details, 

where the hotter islands from a measured or simulated temperature map of a prior layer were 

scanned later than the cooler islands to prevent layer-to-layer heat accumulation. However, this 

(a) (b)

islands stripes
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approach of selecting scan sequences is not necessarily optimal as it does not consider the transient 

nature of thermal distribution during scanning of the current layer. 

Our research envisions an intelligent approach, dubbed SmartScan, that uses physics-based 

models, combined with data-driven models obtained from online thermal measurements, to 

efficiently determine optimal scan sequence online that minimize thermal gradients layer-by-layer 

[24] (see Fig. 2).  Three key characteristics of SmartScan are that it is model-based, optimization-

driven, and computationally efficient enough to be run online within the interlayer time of PBF 

processes, which is typically less than one minute. The vision of SmartScan will be achieved in 

phases, with increasing complexity of the models and optimization techniques adopted. 

 

Fig. 2. Flowchart of SmartScan vision for intelligent online scan sequence optimization [24]. 

As its original contribution, this paper (and its preliminary version [25]) proposes our first 

attempt at achieving SmartScan using a simplified physics-based model of PBF, realized via the 

finite difference method (FDM) combined with radial basis functions. Using the simplified model, 

the next best feature (e.g., stripe or island) that minimizes a thermal uniformity metric is 

determined using control theory. Simulations and experiments involving laser marking of a AISI 

316L stainless steel plate are used to demonstrate the effectiveness of SmartScan in comparison to 

existing heuristic approaches for stripe and island scan patterns. In experiments, SmartScan yields 

Thermal models

Measured temperature of layer

Online optimization

Optimal 
scan 

sequence

+

Physics-
based

Data-
driven ( )min ( , , , )R T x y z t

IR cameraIntelligent Online Scan Sequence Optimization
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up to 43% and 47% improvement in average thermal uniformity and deformations, respectively, 

compared to existing heuristic approaches.  It is also shown to be robust and computationally 

efficient enough for online implementation. 

The rest of this paper is organized as follows: Section 2 presents the simplified thermal 

model used for SmartScan and the approach for determining optimal scan sequences using control 

theory. Section 3 presents simulation case studies, while Section 4 presents experiments performed 

on an open-architecture laser powder bed fusion (LPBF) machine to demonstrate the effectiveness 

of the proposed SmartScan approach. Section 5 concludes the paper and discusses our future work. 

2 PROPOSED SMARTSCAN APPROACH 

This section discusses the simplified thermal modeling of the PBF process using the FDM 

[13], reduction of the higher-order FDM model using radial basis functions [26], and an 

optimization approach based on control theory to find the best scan sequence for a layer. 

2.1 Simplified Finite Difference Thermal Model and State Space Representation 

In the simplified model presented in this section, a single layer of PBF is assumed. Only 

conductive and convective heat transfer are assumed to occur within the layer, and/or between the 

layer and its surroundings. Radiative heat transfer, latent heat effects, Marangoni convection, and 

other melt pool phenomena, are ignored. The simplified model is representative of the re-scanning 

process in PBF [27], or the plate marking process often used to evaluate the effects of heat 

accumulation and scanning strategies in PBF, e.g., [5,28]. Without loss of generality, LPBF is 

assumed in the rest of this paper. 
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Fig. 3. Simplified finite difference model of PBF used in this paper. 

Heat conduction in a medium with conductivity kt and diffusivity α is governed by the 

equation 

2 2 2

2 2 2

1



   
+ + + =

   t

T T T u T

x y z k t
 (1) 

where T is the temperature, x, y and z are the spatial coordinates, t is time and u is the power per 

unit volume. The FDM can be used to discretize Eq. (1) to obtain 

( ) ( ) ( )
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z
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 (2) 

where Δx, Δy and Δz are the dimensions of each element (see Fig. 3), i, j and k are the spatial 

indices of the elements, l is the temporal index (i.e., t = lΔt), Δt is the time step and T(i,j,k,l) is the 

temperature of the element located at (i,j,k) at time l. Rearranging Eq. (2) gives the state equation  

( )1 ( ) ( )+ = +l l lT AT Bu  (3) 

i

j

k Δx
Δy

Δz

Ta

Element with 

temperature T(i,j,k,l)
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where T(l) is the state vector comprising the temperatures of all ne elements of the model at time 

l, A is the state matrix, B is the input matrix and u(l) denotes the power input to the elements at 

time l. The vector u(l) is sparse. Only elements experiencing the effect of the laser heat at any 

given time l have non-zero values of u(l). In this paper, we assume that the laser heats one element 

at a time. Hence only one member of the vector u(l) has a non-zero value at any given time. The 

heat flux of the laser beam is described by a Gaussian profile [20] given by      

2

2

2

2

2
b

b

r

R

b

P
Q e

R





−

=  (4) 

where Q, λ, P, Rb and rb are the heat flux, absorptance, laser power, laser beam spot radius and 

distance to the beam center, respectively. Eq. (4) is integrated over the beam area and the 

equivalent heat is applied uniformly over the area of the heated element.     

The FDM is an excellent method for developing our simplified model for SmartScan 

because it is versatile. It can accommodate arbitrary layer geometries and allow for a variety of 

boundary conditions, e.g., convection, isothermal or adiabatic. For example, convection at the top 

surface can be incorporated into the model using the heat sink solution [29] as shown in Fig. 3. 

The power per unit volume term in Eq. (2) for the top-surface elements can be expressed as 

( ) ( ) ( ), ,1, , ,1, , ,1,= −s convu i j l u i j l u i j l  (5) 

where us and uconv respectively denote the contributions of the laser source and convection to the 

total power for the element. The convection term can be expressed as 

( ) ( )( ), ,1, , ,1,= −


conv a

h
u i j l T i j l T

z
 (6) 

where h and Ta denote the convection coefficient and ambient temperature, respectively. The 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2021                   doi:10.20944/preprints202110.0158.v1

https://doi.org/10.20944/preprints202110.0158.v1


 

9 

 

power due to convection can be easily embedded into the AT(l) term of the state equation (Eq. (3)) 

by incorporating an additional state Ta that does not vary with time.  A similar process can be 

applied to any surface of the model. 

Typical scan patterns, such as stripe or island, consist of simple constant velocity (vs) and 

constant power (P) lines, and each line can be visualized as heating of a one-dimensional array of 

FDM elements. Our simplified FDM model assumes that the laser heat on an element acts at the 

center of the element (as shown in Fig. 4). The number of time steps spent on an element can be 

approximated as 





c

s

x
n

v t
 (7) 

The corresponding state equation for heating of an element can then be written as   

( )
1

0

1 ( ) ;

;  ( );  
c

c

c c c c

n
n m

c c c c

m

l l

m l n l
−

=

+ = +

= = =

T A T b

A A b A Bu
 (8) 

Note that, different from Eq. (3), the state-space model of Eq. (8) has a sampling interval of ncΔt 

(see Fig. 4). Similarly, this idea can be extended to any feature (e.g., stripe or island) of a scan 

pattern to obtain a feature-level state-space representation given by 

( )
1

0

1 ( ) ;

;  ( );  
p

p

p p p p

n
n m

p p p p

m

l l

m l n l

−

=

+ = +

= = =

T A T b

A A b A Bu

 (9) 

where np is the number of time steps required to trace a feature (e.g., stripe or island) of the pattern. 

Note that the state equation given by Eq. (9) has a sampling time npΔt.  

Remark 1: Notice that the point-to-point positioning time of the laser is not included in the 
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formulation above because it is negligible compared to the time spent scanning, as observed by 

Mugwagwa et al. [5]. This is because the point-to-point positioning speed (also known as jump 

speed) is typically 5 to 10 times higher than the scanning speed. Also, it is assumed in Eq. (9) that 

the number of time steps needed to scan each feature is constant. This is often the case with stripe 

and island patterns of fixed dimension. 

 

 

Fig. 4. Diagram depicting the assumption that the laser heat acts at the center of each element 

(for a sample case where nc = 2): (a) actual situation, (b) simplified assumption. 

2.2 Model Reduction using Radial Basis Functions 

Computation and optimization using the FDM model can become cumbersome as the 

number of elements/states grow (for example, due to an increase in the size of the layer or the 

addition of a substrate to the model). This section describes the use of radial basis functions to 

reduce the higher-order FDM model. Radial basis functions have been used for thermal modeling 

of PBF in the literature, e.g., [30]. 

For any given time step, l, the temperature T at location (i,j,k) can be expressed using radial 

vs

Element 1 Element 2

Element 1 Element 2

l = 0 l = 1 l = 2 l = 3

lc = 0 lc = 1

Δx

Δt

2Δt

(a) Actual situation

(b) Simplified assumption
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basis functions [26] as follows 

( ) ( ) ( ) ( )
2

1

2

, , ;    ;     p

ps
r

p p p p p

p

p

i i

T i j k w r r e r j j

k k


 

−

=

  
  

= = = −   
     

  (10) 

where ε is the shape parameter; φ is the radial basis function, [ip jp kp]
T is the location of the 

representation elements; s is the number of representation elements; and rp (p = 1, 2, …, s) is the 

Euclidean distance between the element at (i, j, k) and the representation element (ip, jp, kp). In the 

matrix form, Eq. (10) can be expressed as 
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 (11) 

If we consider the temperature of all elements in a layer, the state vector T (from Eq. (9)) can be 

expressed as 

( 1)+ =p tlT M W  (12) 

where W = [w1 w2 … ws]
T and Mt is obtained by aggregating m for all elements in the model.  The 

coefficients wp are obtained by enforcing the interpolation conditions at the representation 

elements and solving the system of linear equations 
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(13) 

where rpq is the Euclidean distance between elements (ip, jp, kp) and (iq, jq, kq). The solution to the 
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linear equation is given by   

1−= r rW M T  (14) 

Substituting Eq. (14) into Eq. (12) gives 

1( 1) ( 1) ( 1)−+ = + = +p t r r p r pl l l

Σ

T M M T ΣT  
(15) 

Substituting Eq. (15) into Eq. (9) gives 

( 1) ( )+ = +r p p r p pl lΣT A ΣT b  (16) 

Pre-multiplying Eq. (16) byΩ  (where Ω is the pseudoinverse ofΣ ) gives 

( 1) ( )
=

+ = +

pp

r p p r p pl l
I

bA

ΩΣT ΩA ΣT Ωb  
(17) 

I is the identity matrix. Hence, the transformed (reduced) state-space equation using radial basis 

functions is given by 

( 1) ( )r p p r p pl l+ = +T A T b  (18) 

Remark 2: Equation (18) has reduced the FDM model from the total number of ne elements in the 

original formulation in Eq. (9) to the s number of representation elements, where s << ne. This will 

enable more efficient computation and optimization for larger models.  

2.3 Scan Sequence Optimization using Control Theory 

Based on the assumption that each layer in LPBF can be divided into similar features, such 

as stripes or islands, for the purpose of scanning (see Fig. 1), the objective is to find an optimal 

scan sequence such that at the end of scanning each feature the following temperature uniformity 
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metric R(lp) is minimized 

( ) ( )( )
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where Tr,avg(lp) is the average temperature of representation elements Tr(i,j,k,lp) at time lp and Tm 

is the melting temperature of the material. Note that the definition of R(lp) is altered slightly from 

that used in [19] by adopting the melting temperature of the material in the denominator, rather 

than the average temperature. A smaller value of R(lp) implies a more uniform temperature 

distribution.  Notice that R(lp) is a function of the state vector Tr(lp) and can be expressed as 

2
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ssT
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 (20) 

where I is the identity matrix, 1 is a row vector whose elements are all equal to 1, and 0 is a null 

matrix used to account for any elements of Tr(lp) that are not needed to calculate R(lp) – e.g., Ta. 

The optimization problem can be formulated as 

( )
2( )

min ( 1) ( 1)

s.t.  ( 1) ( ) ( )

eq p
p eq r p

l

r p eq r p eq eq p

R l l

l l l

+ = +

+ = +

u
C T

T A T B u

 (21) 

where =eq pA A , the columns of Beq represent corresponding vectors pb  (see Eq. (18)) for each 

feature and ueq(lp) is a vector consisting of only one element equal to 1 and all other elements equal 

to 0. The location of 1 in ueq(lp) represents the column of Beq and, hence, the feature to be scanned. 

The objective of the optimization problem can be written as 
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The last term of the summation in Eq. (22) is independent of ueq(lp), thus it does not affect the 

optimization. The vector ueq(lp) has one element equal to 1 and all others equal to 0 which results 

in only the diagonal terms of T T

eq eq eq eqB C C B  affecting the summation. Hence, the optimization 

problem can be reformulated as 

T T T T

min

s.t.  ( ) 2 ( )



= +

i
i

eq eq eq eq eq eq eq eq r pdiag l

Γ Λ

λ B C C B B C C A T
 (23) 

where λi are the elements of λ. Since Γ and Λ are known a priori, they can be pre-computed offline. 

Accordingly, the process for determining optimal scan sequence using the proposed SmartScan is 

summarized in Fig. 5. 

 

Fig. 5. Flowchart of the proposed SmartScan approach. 

Determine λ

T T T T( ) 2 ( )eq eq eq eq eq eq eq eq r pdiag l= +

Γ Λ

λ B C C B B C C A T

0,   (0) is known,   ,  ,  ,   and  are givenp r eq eq eql = T A B C Γ Λ

Set the ith element in ueq equal to 1

Calculate the thermal distribution using the state 

equation

( 1) ( ) ( )r p eq r p eq eq pl l l+ = +T A T B u

Set lp = lp + 1

Find the index i corresponding to the smallest 

element of λ
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3 NUMERICAL EVALUATION OF SMARTSCAN 

3.1 Comparative Evaluation of Thermal Uniformity 

Here, we demonstrate the effectiveness of the proposed SmartScan approach in terms of 

optimizing thermal distribution using two case studies: (1) an island scan pattern (see Fig. 1(a)); 

and (2) a stripe scan pattern (see Fig. 1(b)). In both cases, we assume that an area of 5 cm x 5 cm 

is scanned in the middle of a solid AISI 316L stainless steel plate with a length of 6 cm, a width 

of 6 cm and a thickness of 1 mm (a similar set up is used for experiments in Sec. 4). The FDM 

model has two layers.  The first layer has a thickness of Δz = 200 μm (representing the scanned 

layer) and a second layer of thickness 800 μm, representing the rest of the plate’s thickness. For 

both layers, Δx = Δy = 200 μm (resulting in 300×300 elements per layer; hence the total number 

of elements in the model, ne = 180,000). The time step Δt is selected as 0.333 ms. The top and 

bottom surfaces of the plate experience convection whereas the peripheral surfaces are assumed to 

have adiabatic boundary conditions, due to their negligible surface areas. The RBF representation 

elements are evenly distributed (60×60) across the top layer, with a shape parameter of ε = 0.8; 

hence s = 3,600. The parameters for the thermal model are summarized in Tab. 1. Note that the 

absorptance, conductivity, diffusivity and melting temperature are obtained from the references 

cited in the table for AISI 316L stainless steel (under solidus conditions, where relevant). The 

convection coefficient for a surface under still air is obtained from Ref. [31]. The other parameters 

in the table correspond to those used in experiments in Sec. 4. 
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Parameter, symbol (Units) Value 

Laser power, P (W) 200 

Laser spot diameter, 2Rb (μm) 77 

Absorptance, λ [32] 0.37 

Mark/scan speed, vs (mm/s) 600 

Hatch spacing (μm) 200 

Conductivity, kt (W/(mK)) [33] 22.5 

Diffusivity, α (m2/s) [33] 5.632 × 10−6 

Melting temperature, Tm (K) [33] 1658 

Convection coefficient, h (W/(m2K)) [31] 25 

Initial temperature, T(x,y,z,0) (K)   293 

Ambient temperature, Ta (K) 293 

Table 1: Parameters used in simulations (and experiments). 

3.1.1 Case 1: Island Scan Pattern 

 

Fig. 6. (a) Island numbering template; and color maps of island scan sequences for (b) LHI and 

(c) Proposed SmartScan approaches.  

For this case study, the 5 cm × 5 cm area to be scanned is divided into 100 (0.5 cm × 0.5 

cm) islands numbered from 1 to 100 as shown in Fig. 6(a). As is typical [5,21], the direction of the 

scan vectors within each island is rotated by 90o for the even numbered islands relative to the odd 

numbered islands (see Fig. 1(a)). Three common heuristic sequences, namely: Successive (i.e., 1, 

2, 3, …, 100), Successive Chessboard (i.e., 1, 3, 5, …, 99, 2, 4, 6, …, 100), and LHI, are used as 

benchmarks to evaluate the proposed SmartScan approach. The LHI approach used in our 

(b) LHI

100th

1st
1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

(a) Island Numbering Template

(c) SmartScan
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numerical study is based on the tessellation algorithm proposed by Malekipour [19] because it 

provided an unambiguous description of its working principle and input variables, thus making it 

straightforward to be reproduced. The tessellation algorithm maximizes the pairwise Euclidean 

distance between the next island to be scanned and each of the already scanned islands (as shown 

in the color map of Fig. 6(b)).  The first ten entries of the LHI sequence are: 1, 91, 10, 100, 45, 52, 

86, 5, 41 and 23; the full LHI sequence is provided in the Appendix. Note that there is a large set 

of solutions that meet the condition of the tessellation algorithm, but it has no mechanism to select 

the optimal solution from the set of possible solutions. As a result, several islands were scanned in 

close proximity to one another towards the end of the scanning process (see Fig. 6(b)).  Figure 6(c) 

shows a color map of the optimal sequence determined by the proposed SmartScan approach. Its 

first ten entries are: 49, 79, 19, 93, 6, 10, 45, 96, 75, and 41; the full SmartScan sequence is 

provided in the Appendix. Notice that it is difficult – if not impossible – to decipher the SmartScan 

sequence via intuition or heuristics because it is model-based and optimization-driven.  

Figure 7 shows the temperature uniformity metric, R, defined in Eq. (19) as a function of 

the number of islands scanned. Observe that SmartScan performs much better than the Successive, 

Successive Chessboard and LHI scan sequences. The value of R is calculated based on the 5 cm × 

5 cm scanned area, not the area of the entire plate. The mean value of R is reported in Fig. 7. 

SmartScan yields 2.19, 1.43 and 1.47 times (or 54.2%, 30.1% and 31.9%) lower mean R than the 

Successive, Successive Chessboard and LHI approaches, respectively. This indicates that the 

proposed SmartScan sequence yields better thermal uniformity compared to the competing 

approaches. This fact is confirmed by Fig. 8 which shows the thermal distribution of the four 

approaches at four instances – after 25, 50, 75 and 100 islands are scanned. SmartScan generally 
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shows better temperature distribution than the heuristic approaches at all instances except at the 

beginning and at the end of the scanning process where all methods show very similar uniformity. 

 

Fig. 7. Simulated thermal uniformity metric (R) for different scan sequences as a function of 

the number of islands scanned. The numbers in parentheses show the mean value of R for each 

scan sequence. 

 

Fig. 8. Simulated temperature distribution of 6 cm × 6 cm AISI 316L stainless steel plate for 

island scan pattern at four instances during the scanning process. The proposed SmartScan shows 

more uniform temperature distribution than the competing heuristic approaches. 
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3.1.2 Case 2: Stripe Scan Pattern 

 

Fig. 9. Color map of SmartScan sequence for the stripe pattern. 

For this case study, the 5 cm × 5 cm area to be scanned is divided into 250 stripes numbered 

sequentially from 1 at the bottom edge to 250 at the top edge of the scanned area. The first ten 

sequences of SmartScan are: 250, 1, 27, 51, 75, 224, 200, 176, 152 and 12; the full SmartScan 

sequence is depicted using a color map in Fig. 9, and is listed in the Appendix. Notice that, as with 

the island case, the stripe SmartScan sequence is difficult – if not impossible – to decipher via 

intuition or heuristics because it is model-based and optimization-driven. It is compared with 

common heuristic stripe sequences, namely, the Sequential (1, 2, 3, …, 250), Alternating (1, 3, …, 

249, 2, 4, …, 250) and Out-to-in (1, 250, 2, 249, …125,126) approaches. Figure 10 shows the 

temperature uniformity metric as a function of number of stripes scanned.  The mean value of R is 

reported in Fig. 10. The proposed optimal approach yields 2.59, 1.76 and 1.67 times (or 61.4%, 

43.2% and 40.0%) lower mean R value than the Sequential, Alternating and Out-to-in approaches, 

respectively. This fact is confirmed by Fig. 11 which shows the thermal distribution of the four 

approaches at four instances – after 62, 124, 186 and 250 stripes are scanned. SmartScan generally 

shows better temperature distribution than the heuristic approaches at all instances.   

250th

1st
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Fig. 10. Simulated thermal uniformity metric (R) for different scan sequences as a function of 

number of stripes scanned. The numbers in parentheses show the mean value of R for each scan 

sequence. The proposed SmartScan shows more uniform temperature distribution than the 

competing heuristic approaches. 

 

Fig. 11. Simulated temperature distribution of 6 cm × 6 cm AISI 316L stainless steel plate for 

stripe scan pattern at four instances during the scanning process. The proposed SmartScan shows 

more uniform temperature distribution than the competing heuristic approaches. 
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3.2 Evaluation of Computational Efficiency and Robustness of SmartScan 

Firstly, in this section we seek to elucidate the tradeoff between temperature uniformity 

and computational efficiency as the number of radial basis functions used in the proposed 

SmartScan approach are varied. Table 2 shows the online computation time and mean R values as 

the number of representation elements are varied for both the island and stripe cases. The 

computations are performed on a computer with a Xeon E-2136 6C 3.30 GHz processor, Z Turbo 

Drive 512 GB SSD drive and 32GB RAM. It is observed that increasing the number of 

representation elements from 40×40 to 60×60 improves the temperature uniformity by more than 

30% at the expense of about 3 times increase in the online computation time. Increasing the 

representation elements to 80×80 from 60×60 results over 2 times increase in the computational 

time but the resultant improvement in temperature uniformity is less than 8%. This fact 

demonstrates that 60×60 representation elements achieve a good tradeoff between accuracy and 

computation time. Therefore, 60×60 representation elements were used for the simulations in Sec. 

3.1 and the experiments Sec. 4.2.  

Number of 

representation 

elements 

Island Stripe 

Online computation 

time [s] 

Mean R value Online computation 

time [s] 

Mean R value 

40×40 2 0.0692 3 0.0721 

60×60 6 0.0493 8 0.0490 

80×80 13 0.0485 15 0.0452 

 Table 2: Online computation time and mean R values as the number of representation 

elements are varied for island and stripe cases. 

Remark 3: For Cases 1 and 2, described in Sec. 3.1, it takes only 6 and 8 seconds, respectively, 

for the online computation of the optimal scan sequences following the process outlined in Fig. 5, 

after the constant matrices (e.g., Γ and Λ) have been pre-computed offline. This implies that the 

proposed SmartScan approach is computationally efficient enough to be computed within the 

interlayer time of PBF.  
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Secondly, in this section, we seek to explore the robustness of SmartScan with respect to 

simulation parameters like conductivity, convection coefficient and absorptivity, which were 

obtained from generic references, hence are subject to uncertainty. Note that since diffusivity is 

proportional to conductivity, its uncertainty considered along with that of conductivity. Table 3 

shows the mean R values for different percentage errors in conductivity, convection coefficient 

and absorptivity for both the island and stripe cases. The maximum variations in thermal 

uniformity with respect a maximum of ±10% error in conductivity, convection coefficient and 

absorptivity are 3.7%, 1.2% and 1.4%, respectively. This example shows that SmartScan is 

reasonably robust with respect to parametric errors. The implication is that very precise calibration 

of model parameters may not be needed for the proposed SmartScan.       

% Error 

Mean R value 

Conductivity Convection Coefficient Absorptivity 

Island Stripe Island Stripe Island Stripe 

-10% 0.0511 0.0503 0.0492 0.0491 0.0493 0.0488 

-5% 0.0503 0.0495 0.0492 0.0490 0.0489 0.0497 

0% 0.0493 0.0490 0.0493 0.0490 0.0493 0.0490 

5% 0.0488 0.0478 0.0493 0.0490 0.0490 0.0492 

10% 0.0487 0.0476 0.0499 0.0492 0.0490 0.0486 

Table 3: Mean R values as functions of errors in conductivity, convection coefficient and 

absorptivity for island and stripe cases. 

4 EXPERIMENTAL EVALUATION OF SMARTSCAN 

4.1 Experimental Setup and Procedure 

To evaluate the effectiveness of SmartScan in experiments, a similar setup and case studies 

as used in the simulations reported in Sec. 3 were adopted. The experiments were conducted using 

the open-architecture PANDA 11 LPBF machine (from OpenAdditive, LLC, Beavercreek, OH) 

shown in Fig. 12 (a). The machine is equipped with a 500 W IPG Photonics 1070 nm fiber laser 

combined with a SCANLAB hurrySCAN galvo scanner with an F-theta lens on its z-stage. It is 

controlled using the Open Machine Control software that allows custom scan patterns and scan 
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sequences to be programmed by a user using macros. The PANDA 11 was retrofitted with an 

Optris PI 640 G7 IR camera with 33° x 25° lens/ f =18.7mm, capable of capturing thermal images 

over temperature ranges from −20oC to 1500oC at frame rates of up to 125 Hz. 

 

Fig. 12. (a) PANDA 11 open architecture LPBF machine; and (b) fixture used for positioning 

plates during scanning experiments. The plates sat on the four insulating washers within the 6.2 

cm × 6.2 cm opening of the frame. 

The experiments involved marking a 5 cm × 5 cm area on AISI 316L stainless steel (SS) 

plates of dimensions L × W × H = 6 cm × 6 cm × 1 mm. As shown in Fig. 12 (b), each SS plate 

was placed in the 6.2 cm × 6.2 cm interior of a 3D printed frame attached to the PANDA 11 

machine’s 27.9 cm ×  27.9 cm build plate, where the plate rested on four thermal-insulating 

washers (Misumi Part # DJW10-3-3 with thermal conductivity of 0.24 W/(mK)). The washers 

minimized conductive heat transfer between the SS plate and the build plate. This allowed the 

experimental setup to better match the simulation setup of Sec. 3, which did not include heat 

transfer to the build plate. The SS plates were not constrained in any way during the experiments, 

allowing them to deform freely under the thermal stresses induced by the laser marking process. 

The process parameters used to mark each plate are listed in Table 1, which are the exact same 
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parameters as used in the simulations. An additional parameter not included in Table 1 is the laser 

jump speed which was 6000 mm/s.  

Each plate was scanned twice using the sequence being evaluated to amplify the thermal 

deformations induced in the plate. After the first scan was performed, the plate was allowed to 

cool to the ambient temperature before it was re-scanned. Using the IR camera, the apparent 

temperature of the plates was recorded at 4 frames per second during each experiment and the 

results exported as CSV files for processing in MATLAB. The recorded temperatures are apparent 

because the emissivity of the SS plate was not experimentally calibrated. It was selected as 0.35, 

based on typical values for stainless steel. However, actual emissivity is highly dependent on a 

variety of factors hence it must be calibrated carefully to obtain accurate absolute temperatures. 

However, for the purposes of this paper, apparent temperatures are sufficient. This is because it is 

the relative, not the absolute, values of the temperatures that are important for evaluating 

temperature distribution.  

To measure their deformations, the marked plates were each laser scanned using a Romer 

Absolute Arm (Hexagon AB, Sweden) model # 7525SI with a scanning accuracy of 63 μm. The 

plates were placed on a flat table upside down and their bottom surfaces scanned to determine their 

deformed shapes. The resulting point clouds were exported to MATLAB for processing. 

4.2 Comparative Evaluation of Thermal Uniformity, Deformations and Scanning Time 

4.1.1 Case 1: Island Scan Pattern 

The same island scan sequences discussed in Sec. 3 were evaluated in experiments. Figure 

13 shows the R values of the tested sequences, calculated from the measured apparent temperatures, 

as a function of time. The time axis is normalized by the total number of islands scanned such that 

the end time corresponds to the completion of the 100th island and the intermediary time steps 

approximate the number of islands scanned at each time step. Similar to the simulations, the 
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Successive sequence showed the least uniform temperature distribution while the proposed 

SmartScan sequence exhibited the most uniform temperature distribution throughout the scanning 

process. The quantitative discrepancies between the R plots in simulations and experiments are 

attributable to various approximations made in simulation model (e.g., ignoring the jump time and 

latent heat effects), and the use of apparent instead of absolute temperatures. Nonetheless, the 

qualitative results are in general agreement between simulation and experiments. The mean R 

value for SmartScan was 1.7, 1.3 and 1.3 times (or 42%, 24% and 24%) lower than those of the 

Successive, Successive Chessboard and LHI sequences. This confirms the findings in the 

simulations that the proposed SmartScan sequence yields better thermal uniformity compared to 

the competing approaches. This fact is confirmed by Fig. 14 which shows the thermal distribution 

of the four approaches at four instances – after 25, 50, 75 and 100 islands were scanned.  

 

Fig. 13. Experimentally measured thermal uniformity metric (R) for different scan sequences 

as a function of the number of islands scanned (approximately). The numbers in parentheses 

show the mean value of R for each scan sequence. 
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Fig. 14. Experimentally measured temperature distribution of 6 cm × 6 cm AISI 316L stainless 

steel plate for the island scan pattern at four instances during the scanning process. The proposed 

SmartScan shows more uniform temperature distribution than the competing heuristic 

approaches 

Figure 15 shows a picture of the scanned plates while Fig. 16 shows the deformation 

profiles of each of the plates. The maximum deformations of the plate marked using SmartScan is 

1.8, 1.75 and 1.7 times (or 45%, 43% and 41%) lower than those of the plates marked using 

Successive, Successive Chessboard and LHI, respectively. Similarly, the mean deformations of 

the plate marked using SmartScan is 1.56, 1.55 and 1.53 times (or 36%, 35% and 35%) lower than 

those of the plates marked using Successive, Successive Chessboard and LHI, respectively. These 

clearly demonstrates that the proposed SmartScan generates significantly lower internal thermal 

stresses than the competing approaches. 
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The scanning (cycle) time for executing each sequence on the PANDA 11 machine is listed 

in Table 4. The proposed SmartScan took 2.7% longer than both the Successive and Successive 

Chessboard, and 1.9% longer than LHI, due to the fact that it required the laser to jump around 

more than the competing methods. This shows that the performance improvement of SmartScan 

did not come at the expense of significantly increased scanning time compared to the heuristic 

approaches. 

 

Fig. 15. Picture of 6 cm × 6 cm AISI 316L stainless steel plates after laser marking using the 

four island scan sequences under study. Observe that the plate marked using the proposed 

SmartScan scan sequence shows much less deformation than those marked using the competing 

heuristic approaches 

 

Fig. 16. Measured deformation profiles of 6 cm × 6 cm AISI 316L stainless steel plates using 

the four island scan sequences under study. The numbers in parentheses are respectively the 

maximum and mean deformations of each plate in mm. Notice that the proposed SmartScan 

shows significantly lower deformations than the competing heuristic approaches. The plates were 

each scanned upside down.  

Scan Sequence Scanning time (s) 

Successive 25.7 

Successive chessboard 25.7 

LHI 25.9 

SmartScan (proposed) 26.4 

Table 4: Scanning time for island scan sequences 

(a) Successive

(7.96, 5.40)

(b) Succ. Chessboard

(7.70, 5.35)

(c) LHI

(7.52, 5.30)

(d) SmartScan

(4.41, 3.46)
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4.1.2 Case 2: Stripe Scan Pattern 

The stripe scan sequences discussed in Sec. 3 were evaluated in experiments. Figure 17 

shows the R values of the tested sequences, calculated from the measured apparent temperatures, 

as a function of time. The time axis is normalized by the total number of islands scanned such that 

the end time corresponds to the completion of the 250th stripe, and the intermediary time steps 

approximate the number of stripes scanned at each time step. Similar to the simulations, the 

Sequential method shows the least uniform temperature distribution while the proposed SmartScan 

sequence generally exhibits the most uniform temperature distribution throughout the scanning 

process. The mean R value for SmartScan is 1.8, 1.5 and 1.6 times (or 43%, 35% and 38%) lower 

than those of the Sequential, Alternating and Out-to-in approaches, respectively. This confirms the 

findings in the simulations that the proposed SmartScan sequence yields better thermal uniformity 

compared to the competing approaches. This fact is confirmed by Fig. 18 which shows the thermal 

distribution of the four approaches at four instances – after 62, 124, 186 and 250 stripes were 

scanned. SmartScan generally shows better temperature distribution than the heuristic approaches 

at all instances.   

 

Fig. 17. Experimentally measured thermal uniformity metric (R) for different scan sequences 

as a function of the number of stripes scanned (approximately). The numbers in parenthesis show 

the mean of R for each scan sequence. 
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Fig. 18. Experimentally measured temperature distribution of 6 cm × 6 cm AISI 316L stainless 

steel plate for the stripe scan pattern at four instances during the scanning process. The proposed 

SmartScan shows more uniform temperature distribution than the competing heuristic 

approaches. 

Figure 19 shows a picture of the scanned plates while Fig. 20 shows the deformation 

profiles of each of the plates. The maximum deformation of the plate marked using SmartScan is 

1.4, 1.9 and 1.3 times (or 29%, 47% and 21%) lower than those of the plates marked using the 

Sequential, Alternating and Out-to-in approaches, respectively. Similarly, the mean deformation 

of the plate marked using SmartScan is 1.3, 1.8 and 1.2 times (or 21%, 46% and 16%) lower than 

those of the plates marked using the Sequential, Alternating and Out-to-in approaches, respectively. 

These clearly demonstrates that the proposed SmartScan generates significantly lower internal 

thermal stresses than the competing heuristic approaches. 
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Fig. 19. Picture of 6 cm × 6 cm AISI 316L stainless steel plates after laser marking using the 

four stripe scan sequences under study. Observe that the proposed SmartScan scan sequence 

shows less deformation than the competing heuristic approaches. 

 

Fig. 20. Measured deformation profiles of 6 cm × 6 cm AISI 316L stainless steel plates using 

the four stripe scan sequences under study. The numbers in parentheses are respectively the 

maximum and mean deformations for each plate. Notice that the proposed SmartScan shows 

significantly lower deformations than the competing heuristic approaches. 

The scanning (cycle) time for executing each sequence on the PANDA 11 machine is listed 

in Table 5. The proposed SmartScan takes 8.8% and 0.9% longer than the sequential and 

alternating methods, respectively, and saves 0.4% time compared to the out-to-in approach. This 

shows that the performance improvement of SmartScan does not necessarily come at the expense 

of significantly increased scanning time compared to heuristic approaches. In some cases, it could 

both reduce scanning time and improve thermal uniformity. 

Scan Sequence Scanning time (s) 

Sequential 21.7 

Alternating 23.4 

Out-to-in 23.7 

SmartScan (proposed) 23.6 

Table 5: Scanning time for stripe scan sequences. 
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5 CONCLUSIONS AND FUTURE WORK 

This paper has presented a new approach, called SmartScan, for optimally determining 

scan sequences in powder bed fusion (PBF) additive manufacturing in order to attain more uniform 

temperature distribution, reduced residual stresses and deformations. What makes SmartScan 

unique is that it is an intelligent approach that is model-based, optimization-driven and 

computationally-efficient enough to be executed online. It is paradigm shift away from existing 

approaches for determining scan sequences which depend on trial-and-error or geometry-based 

heuristics. Our first attempt at SmartScan, detailed in this paper, is achieved using a simplified 

finite difference model of PBF consisting of only heat conduction and convection. The model order 

is reduced using radial basis functions and the optimal sequences that minimize a thermal 

uniformity metric are determined efficiently using control theory. 

Simulations and experiments involving laser marking of AISI 316L stainless steel plates 

using stripe and island scan patterns show that SmartScan drastically improves thermal uniformity 

and thermal-stress induced deformations compared to well-known heuristic approaches. Moreover, 

it is computationally efficient enough to be run online and is reasonably robust to errors in model 

parameters. The use of a thermal model based on the finite difference method makes SmartScan 

amenable to a wide range of geometries and boundary conditions encountered in PBF. Moreover, 

even though SmartScan was discussed in the context of stripe and island scan patterns, which are 

very popular in practice, it is applicable to a variety of other scan patterns with repeating features, 

like fractals  [34] and varying-helix islands [35]. However, a key limitation is that the model used 

for SmartScan considers only one scanned layer and does not include the physics of the powder 

melting process. Hence, it is currently only applicable to the layer re-scanning process in PBF [27], 

or the plate marking process often used to evaluate the effects of heat accumulation and scanning 
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strategies in PBF, e.g., [5,28]. Future work will be focused on improving the SmartScan approach 

by incorporating more advanced models of PBF, e.g., powder melting related phenomena, using a 

combination of physics-based and data-driven approaches. Multiple scanned layers will also be 

considered. These improvements in the models used in SmartScan will likely necessitate new scan 

sequence optimization techniques to handle their increased complexities while maintaining high 

computational efficiency. 
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9 APPENDIX 

The full sequences for the LHI and SmartScan shown Fig. 6 (b) and (c) based on the island 

numbering template in Fig. 6(a) are as follows: 

LHI: 

1,91,10,100,45,52,86,5,41,23,27,63,31,67,97,3,7,21,25,43,47,61,65,71,88,12,15,17,19,33,35,37,39,55,57,

59,77,79,83,94,2,4,6,8,9,11,13,14,16,18,20,22,24,26,28,29,30,32,34,36,38,40,42,44,46,48,49,50,51,53,54,

56, 58,60,62,64,66,68,69,70,72,73,74,75,76,78,80,81,82,84,85,87,89,90,92,93,95,96,98 and 99. 

SmartScan: 

49,79,19,93,6,10,45,96,75,41,71,100,27,91,24,68,30,1,58,4,50,98,8,61,77,21,55,94,34,81,70,38,11,92,2,5,

7,25,97,60,74,31,53,57,40,95,90,99,9,20,80,78,51,3,28,46,65,37,15,88,42,67,85,48,69,12,22,82,17,62,89,

14,32,35,44,87,84,64,66,39,18,52,16,59,13,72,29,83,86,47,36,56,23,63,73,43,26,33,76 and 54. 

The full sequence for SmartScan shown Fig. 9, based on stripes numbered sequentially 

from 1 at the bottom edge to 250 at the top edge of the scanned area, is as follows: 

250,1,27,51,75,224,200,176,152,12,244,38,62,86,110,134,218,194,13,238,39,63,87,111,159,183,207,231,

6,26,50,74,98,122,245,219,195,171,7,33,57,81,239,212,188,164,140,116,8,32,56,236,213,189,165,141,93, 

9,45,69,237,201,177,153,129,105,21,44,225,249,2,182,206,158,135,99,15,230,68,248,117,170,146,3,25,9

2,243,221,128,147,14,36,80,104,242,220,123,20,42,202,233,4,60,24,215,247,191,43,226,19,72,167,246,2

14,37,5,232,18,190,61,209,84,227,30,10,166,48,240,208,73,31,11,184,228,49,203,161,131,241,22,66,46,

90,196,216,172,142,234,23,55,109,89,197,217,173,143,235,16,34,54,85,115,178,198,154,222,17,35,67,9

7,179,199,155,223,130,28,108,76,58,185,205,149,229,29,96,52,120,78,168,148,192,210,41,107,127,83,6

5,169,151,193,211,47,103,71,126,180,160,204,40,94,114,70,138,181,163,53,95,113,133,77,186,156,59,9

1,121,139,174,106,64,157,88,132,187,119,162,79,101,145,125,175,82,102,150,118,136,100,124,144,112 

and 137. 
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