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SmartScan: An Intelligent Online Scan Sequence Optimization Approach for Uniform
Thermal Distribution, Reduced Residual Stresses and Deformations in PBF Additive
Manufacturing
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HIGHLIGHTS

e Scan sequence is the order in which prescribed geometric patterns are scanned

o Existing scan sequences are selected by trial-and-error and heuristics

o Conversely, SmartScan is an intelligent approach (model-based and optimization-driven)
o It results in significantly more uniform temperature distribution and lower deformations
« Itis computationally-efficient and robust enough to be run online

ABSTRACT

Parts produced by laser or electron-beam powder bed fusion (PBF) additive manufacturing are
prone to residual stresses, deformations, and other defects linked to non-uniform temperature
distribution during the manufacturing process. Several researchers have highlighted the important
role scan sequence plays in achieving uniform temperature distribution in PBF. However, scan
sequence continues to be determined offline based on trial-and-error or heuristics, which are
neither optimal nor generalizable. To address these weaknesses, we have articulated a vision for
an intelligent online scan sequence optimization approach to achieve uniform temperature
distribution, hence reduced residual stresses and deformations, in PBF using physics-based and
data-driven thermal models. This paper proposes SmartScan, our first attempt towards achieving

our vision using a simplified physics-based thermal model. The conduction and convection
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dynamics of a single layer of the PBF process are modeled using the finite difference method and
radial basis functions. Using the model, the next best feature (e.qg., stripe or island) that minimizes
a thermal uniformity metric is found using control theory. Simulations and experiments involving
laser marking of a stainless steel plate are used to demonstrate the effectiveness of SmartScan in
comparison to existing heuristic scan sequences for stripe and island scan patterns. In experiments,
SmartScan yields up to 43% improvement in average thermal uniformity and 47% reduction in
deformations (i.e., warpage) compared to existing heuristic approaches. It is also shown to be

robust, and computationally efficient enough for online implementation.

Keywords: 3D printing; scanning strategy; finite difference method; radial basis functions;

optimal control.

1 INTRODUCTION

Powder bed fusion (PBF) is an increasingly popular approach for additive manufacturing
(AM) of metals (and other materials). It is used in various industries, ranging from aerospace, to
automotive, to biomedical. It builds 3D parts by using a high-power source of thermal energy,
typically a laser or an electron beam, to selectively fuse or melt powder layer by layer. Compared
with other AM techniques for metals, PBF is popular for fabricating parts with intricate features
and dense microstructure at relatively high tolerances and build rates [1,2]. However, parts
produced by PBF are prone to residual stresses, deformations, and other defects linked to non-
homogeneous temperature distribution during the process [1-5]. In order to mitigate these defects,
post-process heat treatment is often required, which takes several hours or even days and increases
the overall manufacturing costs [6]. Moreover, post-process heat treatment cannot rectify

deformations or cracking caused by residual stresses prior to being relieved. For this reason, it is
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preferable to avoid residual stresses and related defects as much as possible during the build

process, by minimizing temperature gradients.

Several works have revealed the importance of scanning strategy in achieving uniform
temperature distribution in PBF [3,4,6-9]. The term scanning strategy is often used in the literature
to refer to disparate aspects of scanning in PBF. Here, we use the term in its broadest sense which
includes all process parameters associated with scanning in PBF, e.g., laser or electron beam power,
scan speed, hatch spacing, scan pattern and scan sequence. Scanning strategy is often selected by
round-robin testing, trial and error, or heuristics [1,3]. However, given its importance in
determining temperature distribution, a growing body of research is focused on controlling various
elements of scanning strategy. Review articles [1,3,10] have presented comprehensive surveys on
process monitoring and control in PBF. They have identified that beam power and scan speed are
the elements of scanning strategy often controlled online or offline, e.g., [11-17]. However, Mani
et al. [1] noted that there are opportunities for different control loops beyond beam power and

speed.

One such opportunity that is of particular interest to the proposed work is scan sequence.
Scan sequence refers to the order in which a pre-specified geometric scan pattern is traced. For
example, two of the most commonly used scan patterns in practice are the stripe and island (see
Fig. 1). Scan sequence in these examples could mean the order in which each line in the stripe
pattern is scanned, or the order in which each island in the island pattern is scanned. Researchers
have shown that scan sequence significantly affects temperature distribution, residual stresses and

distortions in PBF [5,18-21].
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stripes

(b)

Fig. 1. Two common scan patterns for a layer in PBF: (a) island, (b) stripe. Scan sequence
refers to the order in which the features (i.e., islands or stripes) of each pattern are scanned.

Given the importance of scan sequence, researchers have proposed new approaches to
determine scan sequence offline using heuristics. For example, in the context of the island scan
pattern, Kruth et al. [21] presented the least heat influence (LHI) sequence which places the next
island to be scanned as far as possible from the previously scanned islands. Malekipour et al.
proposed a Genetic Algorithm Maximum Path (GAMP) sequence [22] which claimed to maximize
the path connecting the centers of all islands using a genetic algorithm, even though no details of
the algorithm were presented. Ramos et al. [20] proposed the intermittent strategy which avoids
scanning adjacent islands consecutively by using a geometry-based formula having weights and
radial thresholds. However, no systematic procedure was provided for selecting the weights and
thresholds in the formula, hence making it difficult to generalize. Taken together, a major
weakness of existing heuristic scan sequences is that they only rely on geometric relationships that
do not accurately represent the physics of temperature distribution, and they are non-generalizable.
For example, it is not necessarily true that scanning islands that are furthest away from the prior
scanned islands minimizes thermal gradients. It highly depends on the heat diffusion process,
which involves much more than geometry. Reiff et al. [23] presented a concept, without details,
where the hotter islands from a measured or simulated temperature map of a prior layer were

scanned later than the cooler islands to prevent layer-to-layer heat accumulation. However, this
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approach of selecting scan sequences is not necessarily optimal as it does not consider the transient

nature of thermal distribution during scanning of the current layer.

Our research envisions an intelligent approach, dubbed SmartScan, that uses physics-based
models, combined with data-driven models obtained from online thermal measurements, to
efficiently determine optimal scan sequence online that minimize thermal gradients layer-by-layer
[24] (see Fig. 2). Three key characteristics of SmartScan are that it is model-based, optimization-
driven, and computationally efficient enough to be run online within the interlayer time of PBF
processes, which is typically less than one minute. The vision of SmartScan will be achieved in

phases, with increasing complexity of the models and optimization techniques adopted.

based driven

Intelligent Online Scan Sequence Optimization IR camera
Thermal models Online optimization _—
Physics-  Data- minR(T(x,y,z,t))

Optimal
scan
sequence

Measured temperature of layer

Fig. 2. Flowchart of SmartScan vision for intelligent online scan sequence optimization [24].

As its original contribution, this paper (and its preliminary version [25]) proposes our first
attempt at achieving SmartScan using a simplified physics-based model of PBF, realized via the
finite difference method (FDM) combined with radial basis functions. Using the simplified model,
the next best feature (e.g., stripe or island) that minimizes a thermal uniformity metric is
determined using control theory. Simulations and experiments involving laser marking of a AlSI
316L stainless steel plate are used to demonstrate the effectiveness of SmartScan in comparison to

existing heuristic approaches for stripe and island scan patterns. In experiments, SmartScan yields
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up to 43% and 47% improvement in average thermal uniformity and deformations, respectively,
compared to existing heuristic approaches. It is also shown to be robust and computationally

efficient enough for online implementation.

The rest of this paper is organized as follows: Section 2 presents the simplified thermal
model used for SmartScan and the approach for determining optimal scan sequences using control
theory. Section 3 presents simulation case studies, while Section 4 presents experiments performed
on an open-architecture laser powder bed fusion (LPBF) machine to demonstrate the effectiveness

of the proposed SmartScan approach. Section 5 concludes the paper and discusses our future work.

2 PROPOSED SMARTSCAN APPROACH

This section discusses the simplified thermal modeling of the PBF process using the FDM
[13], reduction of the higher-order FDM model using radial basis functions [26], and an
optimization approach based on control theory to find the best scan sequence for a layer.

2.1 Simplified Finite Difference Thermal Model and State Space Representation

In the simplified model presented in this section, a single layer of PBF is assumed. Only
conductive and convective heat transfer are assumed to occur within the layer, and/or between the
layer and its surroundings. Radiative heat transfer, latent heat effects, Marangoni convection, and
other melt pool phenomena, are ignored. The simplified model is representative of the re-scanning
process in PBF [27], or the plate marking process often used to evaluate the effects of heat
accumulation and scanning strategies in PBF, e.g., [5,28]. Without loss of generality, LPBF is

assumed in the rest of this paper.

d0i:10.20944/preprints202110.0158.v1
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Fig. 3. Simplified finite difference model of PBF used in this paper.
Heat conduction in a medium with conductivity ki and diffusivity o is governed by the

equation

T 0T 0T u 10T
Tttt T T 1)
x> oy o' k adt

where T is the temperature, X, y and z are the spatial coordinates, t is time and u is the power per

unit volume. The FDM can be used to discretize Eq. (1) to obtain

T(i+L .k D)+T(i-1 ).k )-2T (i, j.kI)

AX?
TG +LKD)+T (1§ -Lk,D=2T (i, i k1)
Ay?
T (kL) 4T (i k1) 2T (i kD) @)
AZ®
Uik ) 1T (kD) =T (i i)
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where AXx, Ay and Az are the dimensions of each element (see Fig. 3), i, j and k are the spatial
indices of the elements, | is the temporal index (i.e., t = lIAt), At is the time step and T(i,j k1) is the

temperature of the element located at (i,j,k) at time |. Rearranging Eq. (2) gives the state equation

T(1+1)= AT(I)+Bu(l) 3)
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where T(1) is the state vector comprising the temperatures of all ne elements of the model at time
I, A is the state matrix, B is the input matrix and u(l) denotes the power input to the elements at
time I. The vector u(l) is sparse. Only elements experiencing the effect of the laser heat at any
given time | have non-zero values of u(l). In this paper, we assume that the laser heats one element
at a time. Hence only one member of the vector u(l) has a non-zero value at any given time. The

heat flux of the laser beam is described by a Gaussian profile [20] given by

22

- 2
7R,

where Q, 4, P, Ry and ry, are the heat flux, absorptance, laser power, laser beam spot radius and
distance to the beam center, respectively. Eq. (4) is integrated over the beam area and the

equivalent heat is applied uniformly over the area of the heated element.

The FDM is an excellent method for developing our simplified model for SmartScan
because it is versatile. It can accommodate arbitrary layer geometries and allow for a variety of
boundary conditions, e.g., convection, isothermal or adiabatic. For example, convection at the top
surface can be incorporated into the model using the heat sink solution [29] as shown in Fig. 3.

The power per unit volume term in Eq. (2) for the top-surface elements can be expressed as
u(i,j,l,l):us(i,j,l,l)—uconv(i,j,l,l) (5)

where us and Uconv respectively denote the contributions of the laser source and convection to the

total power for the element. The convection term can be expressed as
- h -
Ugony (1, j,1,|)=E(T(I, iL1)-T,) (6)

where h and Ta denote the convection coefficient and ambient temperature, respectively. The

8
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power due to convection can be easily embedded into the AT (l) term of the state equation (Eqg. (3))
by incorporating an additional state Ta that does not vary with time. A similar process can be

applied to any surface of the model.

Typical scan patterns, such as stripe or island, consist of simple constant velocity (vs) and
constant power (P) lines, and each line can be visualized as heating of a one-dimensional array of
FDM elements. Our simplified FDM model assumes that the laser heat on an element acts at the
center of the element (as shown in Fig. 4). The number of time steps spent on an element can be

approximated as

¢ VAL (7)

The corresponding state equation for heating of an element can then be written as

T(l.+1)=AT(.)+b,;

©®)
A, =A"; b, => A"Bu(m); I, =n

m=0

Note that, different from Eq. (3), the state-space model of Eq. (8) has a sampling interval of ncAt
(see Fig. 4). Similarly, this idea can be extended to any feature (e.g., stripe or island) of a scan
pattern to obtain a feature-level state-space representation given by

T(l,+1)=A_T(,)+b,;

. n,—1 . (9)
A, =A"; b, => A"Bu(m); I =n|

m=0

where np is the number of time steps required to trace a feature (e.g., stripe or island) of the pattern.

Note that the state equation given by Eq. (9) has a sampling time npAt.

Remark 1: Notice that the point-to-point positioning time of the laser is not included in the

d0i:10.20944/preprints202110.0158.v1
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formulation above because it is negligible compared to the time spent scanning, as observed by
Mugwagwa et al. [5]. This is because the point-to-point positioning speed (also known as jump
speed) is typically 5 to 10 times higher than the scanning speed. Also, it is assumed in Eq. (9) that
the number of time steps needed to scan each feature is constant. This is often the case with stripe

and island patterns of fixed dimension.

At
— >
1=0 =1 1=2 1=3
’_l Element 1 Element 2
AX
(a) Actual situation
2At
I.=0 I.=1
[ ] 1
Element 1 Element 2

(b) Simplified assumption

Fig. 4. Diagram depicting the assumption that the laser heat acts at the center of each element
(for a sample case where n¢ = 2): (a) actual situation, (b) simplified assumption.

2.2 Model Reduction using Radial Basis Functions

Computation and optimization using the FDM model can become cumbersome as the
number of elements/states grow (for example, due to an increase in the size of the layer or the
addition of a substrate to the model). This section describes the use of radial basis functions to
reduce the higher-order FDM model. Radial basis functions have been used for thermal modeling

of PBF in the literature, e.g., [30].
For any given time step, |, the temperature T at location (i,j,k) can be expressed using radial

10
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basis functions [26] as follows

T(i k) =2 we(r) o(r)=e" r=lj|-], (10)
p=1 k .
2
where ¢ is the shape parameter; ¢ is the radial basis function, [ip jp kp]" is the location of the
representation elements; s is the number of representation elements; and rp (p =1, 2, ..., s) is the
Euclidean distance between the element at (i, j, k) and the representation element (ip, jp, kp). In the

matrix form, Eq. (10) can be expressed as

Wl
T( k) =[om) o) . e)] " (12)
m
W,

If we consider the temperature of all elements in a layer, the state vector T (from Eq. (9)) can be

expressed as
T(Ip +1) =MW (12)

where W = [w1 W, ... ws]" and M is obtained by aggregating m for all elements in the model. The
coefficients wp are obtained by enforcing the interpolation conditions at the representation

elements and solving the system of linear equations

o(ry) o) o o) |[w] | T (i k)
() o) o o) (| Wy | | T (15 ik, )
: A : (13)
L (p(rsl) ¢(r52) ¢(rss) | Ws T(is7 js7ks)
M W T,

where rpq is the Euclidean distance between elements (ip, jp, kp) and (ig, jg, Kg). The solution to the

11
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linear equation is given by
W=M"'T (14)

Substituting Eq. (14) into Eq. (12) gives

T(Ip+1)=&£I\ETr(Ip+l)=):Tr(lp+1) (15)
Substituting Eq. (15) into Eq. (9) gives
IT.(I, +1)=A XT.(l,)+b, (16)
Pre-multiplying Eq. (16) by @ (where Q is the pseudoinverse of X ) gives
QYT (I, +1) =QA XT, (1)) +Qb,
0 T ; 7

I is the identity matrix. Hence, the transformed (reduced) state-space equation using radial basis

functions is given by
T.(,+)=AT,(,)+b, (18)

Remark 2: Equation (18) has reduced the FDM model from the total number of ne elements in the
original formulation in Eq. (9) to the s number of representation elements, where s << ne. This will

enable more efficient computation and optimization for larger models.

2.3 Scan Sequence Optimization using Control Theory

Based on the assumption that each layer in LPBF can be divided into similar features, such
as stripes or islands, for the purpose of scanning (see Fig. 1), the objective is to find an optimal

scan sequence such that at the end of scanning each feature the following temperature uniformity

12
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metric R(lp) is minimized

2

ST (k)= Trag (1))

R(l,) =4[ = (19)

where Travg(lp) is the average temperature of representation elements T(i,j,k,Ip) at time Ip and T
is the melting temperature of the material. Note that the definition of R(lp) is altered slightly from
that used in [19] by adopting the melting temperature of the material in the denominator, rather
than the average temperature. A smaller value of R(l,) implies a more uniform temperature

distribution. Notice that R(lp) is a function of the state vector Tr(lp) and can be expressed as

R(1,) =|CT. (1),
1 117 (20)
S

where 1 is the identity matrix, 1 is a row vector whose elements are all equal to 1, and 0 is a null
matrix used to account for any elements of T¢(lp) that are not needed to calculate R(ly) — e.g., Ta.

The optimization problem can be formulated as

(e, -

CeqTr(Ip +1)Hz)
st T3, +D)=A,T.(1,)+Bug(,)

(21)

where A,, = Ap, the columns of Beq represent corresponding vectors Bp (see Eq. (18)) for each

feature and ueq(lp) is a vector consisting of only one element equal to 1 and all other elements equal
to 0. The location of 1 in ueq(lp) represents the column of Beq and, hence, the feature to be scanned.

The objective of the optimization problem can be written as

13
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= Uy, (1,)B;,Ce,CeiBegUs (1,) (22)

€q Teq Teq eqeq

T T T
+2T7(1,)ALCLC, B U (1)

€q Teq Teq eqeq

+TT()ALCEC ALT.(1,)

eq~eq ~eq” Yeq 'r

r

C.T.d, +1)HZ

2
CoAu T, (1) + Ce By, (1,)]

eq ' r

The last term of the summation in Eq. (22) is independent of ueq(lp), thus it does not affect the
optimization. The vector ueq(lp) has one element equal to 1 and all others equal to 0 which results

in only the diagonal terms of B/,C; C,.B,, affecting the summation. Hence, the optimization

problem can be reformulated as

min 4,
_di 23
st. %=diag(BLCLC,B,,)+2BLCLC A, T.(I,) (23)
r A

where J; are the elements of A. Since I" and A are known a priori, they can be pre-computed offline.
Accordingly, the process for determining optimal scan sequence using the proposed SmartScan is

summarized in Fig. 5.

I,=0, T,(0)isknown, A, B, C,, I'and A are given
4 ] )
Determine A Setl, =1 +1
A =diag(B;,C;,C,B,,) + 2B, C;.C A, T.(l,)
\_ ' * J
( l )
Find the index i corresponding to the smallest
element of A
\\ J
p l < Calculate the thermal distribution using the state
. . ation
Set the i" element in u,, equal to 1 equ
. ) T.(,+D)=A,T.(1,)+B,u,(,)

Fig. 5. Flowchart of the proposed SmartScan approach.
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3 NUMERICAL EVALUATION OF SMARTSCAN
3.1 Comparative Evaluation of Thermal Uniformity

Here, we demonstrate the effectiveness of the proposed SmartScan approach in terms of
optimizing thermal distribution using two case studies: (1) an island scan pattern (see Fig. 1(a));
and (2) a stripe scan pattern (see Fig. 1(b)). In both cases, we assume that an area of 5 cm x 5 cm
is scanned in the middle of a solid AISI 316L stainless steel plate with a length of 6 cm, a width
of 6 cm and a thickness of 1 mm (a similar set up is used for experiments in Sec. 4). The FDM
model has two layers. The first layer has a thickness of Az = 200 um (representing the scanned
layer) and a second layer of thickness 800 x«m, representing the rest of the plate’s thickness. For
both layers, Ax = Ay = 200 um (resulting in 300x300 elements per layer; hence the total number
of elements in the model, ne = 180,000). The time step At is selected as 0.333 ms. The top and
bottom surfaces of the plate experience convection whereas the peripheral surfaces are assumed to
have adiabatic boundary conditions, due to their negligible surface areas. The RBF representation
elements are evenly distributed (60x60) across the top layer, with a shape parameter of ¢ = 0.8;
hence s = 3,600. The parameters for the thermal model are summarized in Tab. 1. Note that the
absorptance, conductivity, diffusivity and melting temperature are obtained from the references
cited in the table for AISI 316L stainless steel (under solidus conditions, where relevant). The
convection coefficient for a surface under still air is obtained from Ref. [31]. The other parameters

in the table correspond to those used in experiments in Sec. 4.

15
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Parameter, symbol (Units) Value
Laser power, P (W) 200
Laser spot diameter, 2R, (zm) 77
Absorptance, 1 [32] 0.37
Mark/scan speed, vs (mm/s) 600
Hatch spacing (um) 200
Conductivity, ki (W/(mK)) [33] 22.5
Diffusivity, o (m?/s) [33] 5.632 x 10°®
Melting temperature, T (K) [33] 1658
Convection coefficient, h (W/(m?K)) [31] | 25
Initial temperature, T(x,y,z,0) (K) 293
Ambient temperature, T, (K) 293

Table 1: Parameters used in simulations (and experiments).

3.1.1 Case 1: Island Scan Pattern

(a) Island Numbering Template (b) LHI
100/ 999897 |96 95|94 |93 |92 |91
81(82(83(84(85(86(87(88(89 |90
80(79|78|77|76|75|74|73| 72|71
61|62 (63|64 |65|66|67|68(69 |70
60 |59 |58 |57 |56 |55 |54 |53 (52 |51
41|42 (43|44 | 45|46 |47 | 484950
401393837 (36|35|34(33|32(31
21122123(24|25(26|27|28|29]|30
2011918 (17|16(15|14 (13|12 |11
112|3|4|5|6|7|8|9]|10

<100t

(c) SmartScan

<« 1t

Fig. 6. (a) Island numbering template; and color maps of island scan sequences for (b) LHI and
(c) Proposed SmartScan approaches.

For this case study, the 5 cm x 5 cm area to be scanned is divided into 100 (0.5 cm x 0.5
cm) islands numbered from 1 to 100 as shown in Fig. 6(a). As is typical [5,21], the direction of the
scan vectors within each island is rotated by 90° for the even numbered islands relative to the odd
numbered islands (see Fig. 1(a)). Three common heuristic sequences, namely: Successive (i.e., 1,
2,3, ..., 100), Successive Chessboard (i.e., 1, 3,5, ...,99,2, 4,6, ..., 100), and LHI, are used as

benchmarks to evaluate the proposed SmartScan approach. The LHI approach used in our
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numerical study is based on the tessellation algorithm proposed by Malekipour [19] because it
provided an unambiguous description of its working principle and input variables, thus making it
straightforward to be reproduced. The tessellation algorithm maximizes the pairwise Euclidean
distance between the next island to be scanned and each of the already scanned islands (as shown
in the color map of Fig. 6(b)). The first ten entries of the LHI sequence are: 1, 91, 10, 100, 45, 52,
86, 5, 41 and 23; the full LHI sequence is provided in the Appendix. Note that there is a large set
of solutions that meet the condition of the tessellation algorithm, but it has no mechanism to select
the optimal solution from the set of possible solutions. As a result, several islands were scanned in
close proximity to one another towards the end of the scanning process (see Fig. 6(b)). Figure 6(c)
shows a color map of the optimal sequence determined by the proposed SmartScan approach. Its
first ten entries are: 49, 79, 19, 93, 6, 10, 45, 96, 75, and 41; the full SmartScan sequence is
provided in the Appendix. Notice that it is difficult — if not impossible — to decipher the SmartScan
sequence via intuition or heuristics because it is model-based and optimization-driven.

Figure 7 shows the temperature uniformity metric, R, defined in Eq. (19) as a function of
the number of islands scanned. Observe that SmartScan performs much better than the Successive,
Successive Chessboard and LHI scan sequences. The value of R is calculated based on the 5 cm X
5 cm scanned area, not the area of the entire plate. The mean value of R is reported in Fig. 7.
SmartScan yields 2.19, 1.43 and 1.47 times (or 54.2%, 30.1% and 31.9%) lower mean R than the
Successive, Successive Chessboard and LHI approaches, respectively. This indicates that the
proposed SmartScan sequence yields better thermal uniformity compared to the competing
approaches. This fact is confirmed by Fig. 8 which shows the thermal distribution of the four

approaches at four instances — after 25, 50, 75 and 100 islands are scanned. SmartScan generally
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shows better temperature distribution than the heuristic approaches at all instances except at the

beginning and at the end of the scanning process where all methods show very similar uniformity.

0.15 I T T T
Successive _——_—Tm T mT TS mT TN
- LHI
0.1078) _>=-~- N
0.1 .
/ < i
= _ /‘ ----------------- —'-- :::'.'_':s.‘/
005 7, /':, ---------- ",_/—/
o Succ. Chessboard SmartScan
| (0.0705) | (0.0493)
0 | | | | |
10 20 30 40 50 60 70 80 90 100

Number of islands scanned

Fig. 7. Simulated thermal uniformity metric (R) for different scan sequences as a function of
the number of islands scanned. The numbers in parentheses show the mean value of R for each
scan sequence.

(a) Successive (b) Succ. Chessboard (c) LHI (d) SmartScan
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0 6cm O 6cm O 6cm O 6 cm

Fig. 8. Simulated temperature distribution of 6 cm x 6 cm AISI 316L stainless steel plate for
island scan pattern at four instances during the scanning process. The proposed SmartScan shows
more uniform temperature distribution than the competing heuristic approaches.
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3.1.2 Case 2: Stripe Scan Pattern
<250t

<~ 1St

Fig. 9. Color map of SmartScan sequence for the stripe pattern.

For this case study, the 5cm x 5 cm area to be scanned is divided into 250 stripes numbered
sequentially from 1 at the bottom edge to 250 at the top edge of the scanned area. The first ten
sequences of SmartScan are: 250, 1, 27, 51, 75, 224, 200, 176, 152 and 12; the full SmartScan
sequence is depicted using a color map in Fig. 9, and is listed in the Appendix. Notice that, as with
the island case, the stripe SmartScan sequence is difficult — if not impossible — to decipher via
intuition or heuristics because it is model-based and optimization-driven. It is compared with
common heuristic stripe sequences, namely, the Sequential (1, 2, 3, ..., 250), Alternating (1, 3, ...,
249, 2, 4, ..., 250) and Out-to-in (1, 250, 2, 249, ...125,126) approaches. Figure 10 shows the
temperature uniformity metric as a function of number of stripes scanned. The mean value of R is
reported in Fig. 10. The proposed optimal approach yields 2.59, 1.76 and 1.67 times (or 61.4%,
43.2% and 40.0%) lower mean R value than the Sequential, Alternating and Out-to-in approaches,
respectively. This fact is confirmed by Fig. 11 which shows the thermal distribution of the four
approaches at four instances — after 62, 124, 186 and 250 stripes are scanned. SmartScan generally

shows better temperature distribution than the heuristic approaches at all instances.
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Fig. 10. Simulated thermal uniformity metric (R) for different scan sequences as a function of
number of stripes scanned. The numbers in parentheses show the mean value of R for each scan

sequence. The proposed SmartScan shows more uniform temperature distribution than the
competing heuristic approaches.

0 (a) Sequential (b) Alternating (c) Out-to-in (d) SmartScan
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6 cm

0
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6 cm

0
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Fig. 11. Simulated temperature distribution of 6 cm x 6 cm AISI 316L stainless steel plate for
stripe scan pattern at four instances during the scanning process. The proposed SmartScan shows
more uniform temperature distribution than the competing heuristic approaches.
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3.2 Evaluation of Computational Efficiency and Robustness of SmartScan

Firstly, in this section we seek to elucidate the tradeoff between temperature uniformity
and computational efficiency as the number of radial basis functions used in the proposed
SmartScan approach are varied. Table 2 shows the online computation time and mean R values as
the number of representation elements are varied for both the island and stripe cases. The
computations are performed on a computer with a Xeon E-2136 6C 3.30 GHz processor, Z Turbo
Drive 512 GB SSD drive and 32GB RAM. It is observed that increasing the number of
representation elements from 40x40 to 60x60 improves the temperature uniformity by more than
30% at the expense of about 3 times increase in the online computation time. Increasing the
representation elements to 80x80 from 60x60 results over 2 times increase in the computational
time but the resultant improvement in temperature uniformity is less than 8%. This fact
demonstrates that 60x60 representation elements achieve a good tradeoff between accuracy and
computation time. Therefore, 60x60 representation elements were used for the simulations in Sec.

3.1 and the experiments Sec. 4.2.

Number of Island Stripe
representation | Online computation | Mean R value | Online computation | Mean R value
elements time [s] time [s]
40x40 2 0.0692 3 0.0721
60x60 6 0.0493 8 0.0490
80x80 13 0.0485 15 0.0452

Table 2: Online computation time and mean R values as the number of representation
elements are varied for island and stripe cases.

Remark 3: For Cases 1 and 2, described in Sec. 3.1, it takes only 6 and 8 seconds, respectively,
for the online computation of the optimal scan sequences following the process outlined in Fig. 5,
after the constant matrices (e.g., I' and A) have been pre-computed offline. This implies that the
proposed SmartScan approach is computationally efficient enough to be computed within the
interlayer time of PBF.
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Secondly, in this section, we seek to explore the robustness of SmartScan with respect to
simulation parameters like conductivity, convection coefficient and absorptivity, which were
obtained from generic references, hence are subject to uncertainty. Note that since diffusivity is
proportional to conductivity, its uncertainty considered along with that of conductivity. Table 3
shows the mean R values for different percentage errors in conductivity, convection coefficient
and absorptivity for both the island and stripe cases. The maximum variations in thermal
uniformity with respect a maximum of +10% error in conductivity, convection coefficient and
absorptivity are 3.7%, 1.2% and 1.4%, respectively. This example shows that SmartScan is
reasonably robust with respect to parametric errors. The implication is that very precise calibration

of model parameters may not be needed for the proposed SmartScan.

Mean R value
% Error Conductivity Convection Coefficient Absorptivity

Island Stripe Island Stripe Island Stripe

-10% 0.0511 0.0503 0.0492 0.0491 0.0493 0.0488
-5% 0.0503 0.0495 0.0492 0.0490 0.0489 0.0497
0% 0.0493 0.0490 0.0493 0.0490 0.0493 0.0490
5% 0.0488 0.0478 0.0493 0.0490 0.0490 0.0492
10% 0.0487 0.0476 0.0499 0.0492 0.0490 0.0486

Table 3: Mean R values as functions of errors in conductivity, convection coefficient and
absorptivity for island and stripe cases.

4 EXPERIMENTAL EVALUATION OF SMARTSCAN
4.1 Experimental Setup and Procedure

To evaluate the effectiveness of SmartScan in experiments, a similar setup and case studies
as used in the simulations reported in Sec. 3 were adopted. The experiments were conducted using
the open-architecture PANDA 11 LPBF machine (from OpenAdditive, LLC, Beavercreek, OH)
shown in Fig. 12 (a). The machine is equipped with a 500 W IPG Photonics 1070 nm fiber laser
combined with a SCANLAB hurrySCAN galvo scanner with an F-theta lens on its z-stage. It is

controlled using the Open Machine Control software that allows custom scan patterns and scan
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sequences to be programmed by a user using macros. The PANDA 11 was retrofitted with an
Optris P1 640 G7 IR camera with 33° x 25° lens/ f =18.7mm, capable of capturing thermal images

over temperature ranges from —20°C to 1500°C at frame rates of up to 125 Hz.

(b)

Fig. 12. (a) PANDA 11 open architecture LPBF machine; and (b) fixture used for positioning
plates during scanning experiments. The plates sat on the four insulating washers within the 6.2
cm X 6.2 cm opening of the frame.

The experiments involved marking a 5 cm x 5 cm area on AISI 316L stainless steel (SS)
plates of dimensions L x W x H=6 cm x 6 cm x 1 mm. As shown in Fig. 12 (b), each SS plate
was placed in the 6.2 cm x 6.2 cm interior of a 3D printed frame attached to the PANDA 11
machine’s 27.9 cm X 27.9 ¢cm build plate, where the plate rested on four thermal-insulating
washers (Misumi Part # DJW10-3-3 with thermal conductivity of 0.24 W/(mK)). The washers
minimized conductive heat transfer between the SS plate and the build plate. This allowed the
experimental setup to better match the simulation setup of Sec. 3, which did not include heat
transfer to the build plate. The SS plates were not constrained in any way during the experiments,
allowing them to deform freely under the thermal stresses induced by the laser marking process.

The process parameters used to mark each plate are listed in Table 1, which are the exact same
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parameters as used in the simulations. An additional parameter not included in Table 1 is the laser
jump speed which was 6000 mm/s.

Each plate was scanned twice using the sequence being evaluated to amplify the thermal
deformations induced in the plate. After the first scan was performed, the plate was allowed to
cool to the ambient temperature before it was re-scanned. Using the IR camera, the apparent
temperature of the plates was recorded at 4 frames per second during each experiment and the
results exported as CSV files for processing in MATLAB. The recorded temperatures are apparent
because the emissivity of the SS plate was not experimentally calibrated. It was selected as 0.35,
based on typical values for stainless steel. However, actual emissivity is highly dependent on a
variety of factors hence it must be calibrated carefully to obtain accurate absolute temperatures.
However, for the purposes of this paper, apparent temperatures are sufficient. This is because it is
the relative, not the absolute, values of the temperatures that are important for evaluating
temperature distribution.

To measure their deformations, the marked plates were each laser scanned using a Romer
Absolute Arm (Hexagon AB, Sweden) model # 7525SI with a scanning accuracy of 63 um. The
plates were placed on a flat table upside down and their bottom surfaces scanned to determine their
deformed shapes. The resulting point clouds were exported to MATLAB for processing.

4.2 Comparative Evaluation of Thermal Uniformity, Deformations and Scanning Time

4.1.1 Case 1: Island Scan Pattern

The same island scan sequences discussed in Sec. 3 were evaluated in experiments. Figure
13 shows the R values of the tested sequences, calculated from the measured apparent temperatures,
as a function of time. The time axis is normalized by the total number of islands scanned such that
the end time corresponds to the completion of the 100" island and the intermediary time steps
approximate the number of islands scanned at each time step. Similar to the simulations, the
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Successive sequence showed the least uniform temperature distribution while the proposed
SmartScan sequence exhibited the most uniform temperature distribution throughout the scanning
process. The gquantitative discrepancies between the R plots in simulations and experiments are
attributable to various approximations made in simulation model (e.g., ignoring the jump time and
latent heat effects), and the use of apparent instead of absolute temperatures. Nonetheless, the
qualitative results are in general agreement between simulation and experiments. The mean R
value for SmartScan was 1.7, 1.3 and 1.3 times (or 42%, 24% and 24%) lower than those of the
Successive, Successive Chessboard and LHI sequences. This confirms the findings in the
simulations that the proposed SmartScan sequence yields better thermal uniformity compared to
the competing approaches. This fact is confirmed by Fig. 14 which shows the thermal distribution

of the four approaches at four instances — after 25, 50, 75 and 100 islands were scanned.
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Fig. 13. Experimentally measured thermal uniformity metric (R) for different scan sequences
as a function of the number of islands scanned (approximately). The numbers in parentheses
show the mean value of R for each scan sequence.
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Fig. 14. Experimentally measured temperature distribution of 6 cm x 6 cm AISI 316L stainless
steel plate for the island scan pattern at four instances during the scanning process. The proposed
SmartScan shows more uniform temperature distribution than the competing heuristic
approaches

Figure 15 shows a picture of the scanned plates while Fig. 16 shows the deformation
profiles of each of the plates. The maximum deformations of the plate marked using SmartScan is
1.8, 1.75 and 1.7 times (or 45%, 43% and 41%) lower than those of the plates marked using
Successive, Successive Chessboard and LHI, respectively. Similarly, the mean deformations of
the plate marked using SmartScan is 1.56, 1.55 and 1.53 times (or 36%, 35% and 35%) lower than
those of the plates marked using Successive, Successive Chessboard and LHI, respectively. These
clearly demonstrates that the proposed SmartScan generates significantly lower internal thermal

stresses than the competing approaches.
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The scanning (cycle) time for executing each sequence on the PANDA 11 machine is listed
in Table 4. The proposed SmartScan took 2.7% longer than both the Successive and Successive
Chessboard, and 1.9% longer than LHI, due to the fact that it required the laser to jump around
more than the competing methods. This shows that the performance improvement of SmartScan
did not come at the expense of significantly increased scanning time compared to the heuristic

approaches.

Fig. 15. Picture of 6 cm x 6 cm AISI 316L stainless steel plates after laser marking using the
four island scan sequences under study. Observe that the plate marked using the proposed
SmartScan scan sequence shows much less deformation than those marked using the competing
heuristic approaches

(@) Successive (b) Succ. Chesshoard (c) LHI (d) SmartScan
(7.96, 5.40) (7.70, 5.35) (7.52, 5.30) (4.41, 3.46)

— —

/. 4

Fig. 16. Measured deformation profiles of 6 cm x 6 cm AISI 316L stainless steel plates using
the four island scan sequences under study. The numbers in parentheses are respectively the
maximum and mean deformations of each plate in mm. Notice that the proposed SmartScan

shows significantly lower deformations than the competing heuristic approaches. The plates were
each scanned upside down.

Scan Sequence Scanning time (s)
Successive 25.7
Successive chessboard 25.7
LHI 25.9
SmartScan (proposed) 26.4

Table 4: Scanning time for island scan sequences
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4.1.2 Case 2: Stripe Scan Pattern

The stripe scan sequences discussed in Sec. 3 were evaluated in experiments. Figure 17
shows the R values of the tested sequences, calculated from the measured apparent temperatures,
as a function of time. The time axis is normalized by the total number of islands scanned such that
the end time corresponds to the completion of the 250" stripe, and the intermediary time steps
approximate the number of stripes scanned at each time step. Similar to the simulations, the
Sequential method shows the least uniform temperature distribution while the proposed SmartScan
sequence generally exhibits the most uniform temperature distribution throughout the scanning
process. The mean R value for SmartScan is 1.8, 1.5 and 1.6 times (or 43%, 35% and 38%) lower
than those of the Sequential, Alternating and Out-to-in approaches, respectively. This confirms the
findings in the simulations that the proposed SmartScan sequence yields better thermal uniformity
compared to the competing approaches. This fact is confirmed by Fig. 18 which shows the thermal
distribution of the four approaches at four instances — after 62, 124, 186 and 250 stripes were
scanned. SmartScan generally shows better temperature distribution than the heuristic approaches

at all instances.
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Fig. 17. Experimentally measured thermal uniformity metric (R) for different scan sequences

as a function of the number of stripes scanned (approximately). The numbers in parenthesis show
the mean of R for each scan sequence.
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Fig. 18. Experimentally measured temperature distribution of 6 cm x 6 cm AISI 316L stainless
steel plate for the stripe scan pattern at four instances during the scanning process. The proposed
SmartScan shows more uniform temperature distribution than the competing heuristic
approaches.

Figure 19 shows a picture of the scanned plates while Fig. 20 shows the deformation
profiles of each of the plates. The maximum deformation of the plate marked using SmartScan is
1.4, 1.9 and 1.3 times (or 29%, 47% and 21%) lower than those of the plates marked using the
Sequential, Alternating and Out-to-in approaches, respectively. Similarly, the mean deformation
of the plate marked using SmartScan is 1.3, 1.8 and 1.2 times (or 21%, 46% and 16%) lower than
those of the plates marked using the Sequential, Alternating and Out-to-in approaches, respectively.
These clearly demonstrates that the proposed SmartScan generates significantly lower internal

thermal stresses than the competing heuristic approaches.
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Alternating Out-to-in SmartScan

Fig. 19. Picture of 6 cm x 6 cm AISI 316L stainless steel plates after laser marking using the
four stripe scan sequences under study. Observe that the proposed SmartScan scan sequence
shows less deformation than the competing heuristic approaches.

(a) Sequential (b) Alternating (c) Out-to-in (d) SmartScan

(mml js 20, 3. 51)l ' |6.97, 5.073 I (4. i 30)| I (3.70, 2.76) |

Fig. 20. Measured deformation profiles of 6 cm x 6 cm AISI 316L stainless steel plates using

the four stripe scan sequences under study. The numbers in parentheses are respectively the

maximum and mean deformations for each plate. Notice that the proposed SmartScan shows
significantly lower deformations than the competing heuristic approaches.

The scanning (cycle) time for executing each sequence on the PANDA 11 machine is listed
in Table 5. The proposed SmartScan takes 8.8% and 0.9% longer than the sequential and
alternating methods, respectively, and saves 0.4% time compared to the out-to-in approach. This
shows that the performance improvement of SmartScan does not necessarily come at the expense
of significantly increased scanning time compared to heuristic approaches. In some cases, it could

both reduce scanning time and improve thermal uniformity.

Scan Sequence Scanning time (s)
Sequential 21.7
Alternating 23.4
Out-to-in 23.7
SmartScan (proposed) 23.6

Table 5: Scanning time for stripe scan sequences.
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5 CONCLUSIONS AND FUTURE WORK

This paper has presented a new approach, called SmartScan, for optimally determining
scan sequences in powder bed fusion (PBF) additive manufacturing in order to attain more uniform
temperature distribution, reduced residual stresses and deformations. What makes SmartScan
unique is that it is an intelligent approach that is model-based, optimization-driven and
computationally-efficient enough to be executed online. It is paradigm shift away from existing
approaches for determining scan sequences which depend on trial-and-error or geometry-based
heuristics. Our first attempt at SmartScan, detailed in this paper, is achieved using a simplified
finite difference model of PBF consisting of only heat conduction and convection. The model order
is reduced using radial basis functions and the optimal sequences that minimize a thermal
uniformity metric are determined efficiently using control theory.

Simulations and experiments involving laser marking of AISI 316L stainless steel plates
using stripe and island scan patterns show that SmartScan drastically improves thermal uniformity
and thermal-stress induced deformations compared to well-known heuristic approaches. Moreover,
it is computationally efficient enough to be run online and is reasonably robust to errors in model
parameters. The use of a thermal model based on the finite difference method makes SmartScan
amenable to a wide range of geometries and boundary conditions encountered in PBF. Moreover,
even though SmartScan was discussed in the context of stripe and island scan patterns, which are
very popular in practice, it is applicable to a variety of other scan patterns with repeating features,
like fractals [34] and varying-helix islands [35]. However, a key limitation is that the model used
for SmartScan considers only one scanned layer and does not include the physics of the powder
melting process. Hence, it is currently only applicable to the layer re-scanning process in PBF [27],

or the plate marking process often used to evaluate the effects of heat accumulation and scanning
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strategies in PBF, e.g., [5,28]. Future work will be focused on improving the SmartScan approach
by incorporating more advanced models of PBF, e.g., powder melting related phenomena, using a
combination of physics-based and data-driven approaches. Multiple scanned layers will also be
considered. These improvements in the models used in SmartScan will likely necessitate new scan
sequence optimization techniques to handle their increased complexities while maintaining high

computational efficiency.
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9 APPENDIX

The full sequences for the LHI and SmartScan shown Fig. 6 (b) and (c) based on the island
numbering template in Fig. 6(a) are as follows:

LHI:
1,91,10,100,45,52,86,5,41,23,27,63,31,67,97,3,7,21,25,43,47,61,65,71,88,12,15,17,19,33,35,37,39,55,57,
59,77,79,83,94,2,4,6,8,9,11,13,14,16,18,20,22,24,26,28,29,30,32,34,36,38,40,42,44,46,48,49,50,51,53,54,
56, 58,60,62,64,66,68,69,70,72,73,74,75,76,78,80,81,82,84,85,87,89,90,92,93,95,96,98 and 99.

SmartScan:
49,79,19,93,6,10,45,96,75,41,71,100,27,91,24,68,30,1,58,4,50,98,8,61,77,21,55,94,34,81,70,38,11,92,2,5,
7,25,97,60,74,31,53,57,40,95,90,99,9,20,80,78,51,3,28,46,65,37,15,88,42,67,85,48,69,12,22,82,17,62,89,
14,32,35,44,87,84,64,66,39,18,52,16,59,13,72,29,83,86,47,36,56,23,63,73,43,26,33,76 and 54.

The full sequence for SmartScan shown Fig. 9, based on stripes numbered sequentially
from 1 at the bottom edge to 250 at the top edge of the scanned area, is as follows:

250,1,27,51,75,224,200,176,152,12,244,38,62,86,110,134,218,194,13,238,39,63,87,111,159,183,207,231,
6,26,50,74,98,122,245,219,195,171,7,33,57,81,239,212,188,164,140,116,8,32,56,236,213,189,165,141,93,
9,45,69,237,201,177,153,129,105,21,44,225,249,2,182,206,158,135,99,15,230,68,248,117,170,146,3,25,9
2,243,221,128,147,14,36,80,104,242,220,123,20,42,202,233,4,60,24,215,247,191,43,226,19,72,167,246,2
14,37,5,232,18,190,61,209,84,227,30,10,166,48,240,208,73,31,11,184,228,49,203,161,131,241,22,66,46,

90,196,216,172,142,234,23,55,109,89,197,217,173,143,235,16,34,54,85,115,178,198,154,222,17,35,67,9

7,179,199,155,223,130,28,108,76,58,185,205,149,229,29,96,52,120,78,168,148,192,210,41,107,127,83,6

5,169,151,193,211,47,103,71,126,180,160,204,40,94,114,70,138,181,163,53,95,113,133,77,186,156,59,9

1,121,139,174,106,64,157,88,132,187,119,162,79,101,145,125,175,82,102,150,118,136,100,124,144,112

and 137.
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