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Abstract: This study investigates the tanker freight market and its complex transformation from 1998
to 2024, uncovering a high degree of multifractality and a complex market structure shaped by
temporal correlations and inherent volatility. Using multifractal dynamics analyzed through
multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrending moving average
(ME-DMA), we explore how key external factors drive market complexity, including economic
disturbances (the 2008 Financial Crisis), technological innovations (the 2014 Shale Oil Revolution),
supply chain disruptions (the COVID-19 pandemic), and geopolitical uncertainties (the Russia-
Ukraine conflict). Building on this, a predictive framework is introduced, leveraging the Baltic Dirty
Tanker Index (BDTI) to forecast Brent oil prices. By integrating multifractal analysis with machine
learning models, such as XGBoost, LightGBM, and CatBoost, the framework captures complexity
transformation across these four major global events. Results demonstrate the potential of combining
multifractal analysis with advanced machine learning models to improve forecasting accuracy and
provide actionable insights during periods of heightened market volatility.

Keywords: Tanker freight market; Multifractal dynamics; Brent oil prices; Temporal correlations;
Complexity Transformation; Machine learning models

Introduction

The intricate dynamics of the global tanker freight market have long been a subject of interest
for both academicians and industry practitioners due to its critical role in the shipping market, i.e.
Adland and Cullinane 1, Zhang and Zeng 2, and Sun et al 3. This market exhibits complex behaviors
that are influenced by a multitude of factors, including geopolitical events 4-6, economic conditions
7, technological innovations, and environmental policies 8. The study of these dynamics is further
complicated by the market's inherent volatility and the interplay of various scales of temporal
correlations 9-10. Examination of market trends assists stakeholders in harnessing shifts to their
advantage, while the progressive integration of technology reshapes market operations 11-18.
Despite the growing interest in this field, there remain several gaps and challenges that warrant
further investigation. A need for a more nuanced understanding of the causal relationships between
the multifractal dynamics of the tanker freight market and the various external factors that influence
it, such as geopolitical tensions, economic cycles, and environmental policies, see Gao and Zhang 4,
and Chen et al. 9. There is also a need for more interdisciplinary research that integrates insights from
complexity economics, financial engineering, and operations research to develop more sophisticated
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methodologies for analyzing and managing the risks associated with changing dynamics in the
tanker freight market 19-21.

Complexity economics provides a framework for interdisciplinary research of economics,
information, physics and operations 22-24. It acknowledges the differences among agents, their
imperfect information, and the dynamic nature of economic systems, providing significant insights
applicable to both the fields of information and economics 25-28, including the energy and tanker
freight market 4,12. A series of models for fractals are developed as an effective tool for complexity
economics studies. Fractals, known for their fragmented and rough geometric shapes, have the
fascinating property of self-similarity, allowing them to be broken down into smaller parts that
closely resemble the whole29,30. A variety of methodologies have been devised to analyze fractal
attributes. One of the first was the rescaled range analysis by Hurst, which, however, faces challenges
in assessing long-range dependencies in nonstationary series 31. To tackle multi-affine fractal
exponents and correlation coefficients, Castro et al. introduced a novel approach 32. Around the same
time, Peng et al. firstly constructed a different method called detrended fluctuation analysis (DFA) to
discern long-term correlations within data 33. While DFA provided a valuable tool, it fell short when
it came to multi-scale and fractal elements in time series that demonstrated more complex, non-
monofractal scaling. To bridge this gap, multifractal detrended fluctuation analysis (MF-DFA) came
into play, advanced by Kantelhardt et al. as a multifaceted extension of the DFA method 34. MF-DFA
has proven to be a robust tool for multifractal characterization and has been used across various
stochastic analysis contexts 35-36. In parallel, the detrending moving average (DMA) technique
gained traction for its effectiveness in evaluating long memory in nonstationary time series,
applicable to both real and theoretical data samples 37-39. By focusing on the moving average
function of a series and building on the moving average methodology, DMA excels in discerning
scaling properties within time series data 40. MF-DMA extended DMA to higher-dimensional
versions. It is a quantitative analysis delving into the spurious multifractality induced by fat-tailed
probability distributions in time series, providing critical insights into distinguishing true
multifractality arising from nonlinear correlations from spurious effects generated by distribution
shapes 41-42. Kwapien et al. use analytical arguments as well as numerical illustrations on the
interesting question of the origin of the multifractality in time series 43. They get the conclusion that
true multifractality in time series comes from temporal correlations.

The array of studies on tanker freight rate volatility represents a vital component of maritime
economics, with ramifications extending into the broader global economy, delve into the interplay
between numerous variables affecting freight rates, such as crude oil prices, charter rates, fleet size,
and policy changes 13-19,44. Multifractal analysis has emerged as a new trend in these studies,
gaining traction due to its ability to capture the asymmetric nature of market risks, demonstrating
different magnitudes of response to upward and downward trends and uncovers various scaling
behaviors within the data45-46. Multifractality helps to recognize the freight rates which exhibit a
spectrum of fractal characteristics, not just a single pattern of fluctuations 47-50. It accounts for both
small and large movements, providing a nuanced perspective on data correlations, especially under
turbulent market conditions like those experienced during the 2008 world finance risk and the
COVID-19 pandemic [4,12,46]. This study tries to comprehend the intricate, multifaceted nature of
the market to design strategies that buffer the fallout from unpredictable market shifts or crises,
provide a comprehensive understanding of the market's complexity and its evolution over time.

The research is driven by the following key questions: (a) How has the multifractal nature of the
tanker freight market evolved across the two distinct periods, and what does this evolution signify
in terms of market behavior and systemic risks? (b) What role do temporal correlations and inherent
volatility play in shaping the complex structure of the market, and how do these factors contribute
to the observed multifractal dynamics? (c) How do external factors such as regulatory changes,
economic disturbances, technological innovation, and environmental concerns influence the
complexity and multifractal characteristics of the tanker freight market? (d) Can tanker freight rates,
specifically the Baltic Dirty Tanker Index (BDTI), be used to predict Brent oil prices during periods
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of heightened market complexity, and how do multifractal features enhance the predictive power of
such models?

The research presented in this manuscript is motivated by the need to delve into the complex
transformation of the Baltic Clean and Dirty Tankers markets from 1998 to 2023, with a particular
focus on the multifractal characteristics that define the market's structure and behavior. Here, we
apply the MF-DFA method to characterize the observations of clean and dirty tanker freight rates
and the most concerned routes of TC2 and TD7 from Jan. 28, 1998, to Jan. 12, 2024. To describe the
market pattern after larger fluctuations, we analyze Period I (1998-2010) and Period II (2010-2024).
To better explain the multifractality in the BCTI and BDTI series, we apply the MF-DMA method to
quantify the three components, including linear correlation, nonlinear correlation, and fat-tailed
probability distribution.

Building on this foundational analysis, we further extend the scope of our research to explore
the predictive potential of freight rates in forecasting Brent oil prices, particularly during periods of
heightened market volatility and complexity. Traditionally, most studies have focused on forecasting
freight rates based on oil price movements, reflecting the conventional economic logic that oil prices
drive downstream costs, including shipping. However, freight rates, due to their responsiveness to
supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, may serve as valuable
leading indicators for oil prices. This study, therefore, adopts an innovative perspective by
investigating whether BDTI can predict Brent oil prices and how multifractal features contribute to
the accuracy of such predictions.

To address this question, we examine four distinct periods characterized by major global events
that significantly influenced market dynamics:(1) 2006—2010: Marked by the 2008 Global Financial
Crisis, which caused widespread disruptions in financial and commodity markets. (2)2013-2016:
Defined by the 2014 Shale Oil Revolution, which reshaped global energy supply dynamics. (3) 2019-
2021: Dominated by the COVID-19 pandemic, leading to unprecedented supply chain disruptions.
(4) 2021-2024: Influenced by the Russia-Ukraine conflict, introducing severe geopolitical
uncertainties and energy market volatility.

For each period, we develop predictive models using BDTI data as a primary feature, integrating
multifractal characteristics extracted via MF-DFA, such as the Hurst exponent and multifractal
spectrum. These models are enhanced with crisis period indicators to capture the unique market
dynamics during each global event. Furthermore, in order to enhance the robustness of predictions,
advanced machine learning techniques are leveraged within this study. Specifically, we employ
stacking regression models, which incorporate XGBoost, LightGBM, and CatBoost as the
foundational base learners51-53. Among these technologies, XGBoost is designed to be scalable and
efficient, allowing data scientists to achieve state-of-the-art results on a variety of machine learning
challenges54.Additionally, Ridge Regression serves as the meta-learner in this stacking framework.
By integrating these powerful algorithms in a structured and systematic manner, we aim to improve
the overall accuracy and stability of our predictive models, thereby ensuring more reliable and
insightful outcomes55-57.

At the same time, most studies have traditionally focused on forecasting freight rates based on
oil price movements, which aligns with the conventional economic logic that oil prices drive
downstream costs, including shipping. However, freight rates can be highly responsive to immediate
changes in supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, making
them potentially valuable indicators for predicting oil prices as well. Thus, in this study, we take an
innovative stance by attempting to predict oil prices from freight rates, with the intention of
providing additional insights and decision-making tools for governments, businesses, and individual
investors, especially during periods of significant market volatility and complexity.

The major contribution of this study is summarized as follows. The methodology evaluates the
individual and combined effects of multifractal features and crisis indicators on predictive accuracy.
This comprehensive framework not only tests the predictive capacity of freight rates for oil prices but
also deepens our understanding of how market complexity evolves during times of significant
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economic and geopolitical turbulence. In addition to providing theoretical insights, this study offers
practical implications for market participants, including energy companies, policymakers, and
investors, by highlighting the utility of freight rates as a decision-making tool. The integration of
multifractal analysis with predictive modeling demonstrates the potential for advanced analytics to
navigate the complexities of modern financial markets effectively.

The paper structure is as follows: Section 2 introduces the MF-DFA and MF-DMA methods;
Section 3 describes the Baltic Clean and Dirty Tanker Indexes and the data used in the analysis.
Section 4 presents the empirical results, including the multifractal characteristics of freight rate
returns, the impact of structural breaks across different periods, and the predictive performance of
the proposed framework under varying market conditions. Section 5 discusses the findings and their
implications, and Section 6 concludes the study with key insights and future research directions.

1. Methods

1.1. The Multifractal Detrended Fluctuation Analysis Method

The following introduction of MF-DFA method is based on the work from Kantelhardt, et.al.
(2002)34.

Here are the general steps of MF-DFA method on the seriesx(i), where i = 1,2,...,Nand N is
the length of the series. X stands for the average value of series x(i).

Assuming that x(i) are increments of a random walk process around the mean %, then by the
signal integration, the "trajectory" or "profile" could be expressed as

y(i)=Ti, XK, =12, N (1)

Next, we divide the integrated series into Ny = int(N/s), non-overlapping segments of equal
length s. Generally, thelength N of the series is not a multiple of the considered time scale s, a short
part may remain at the end of the profile y(i). Not to disregard this remaining part, this procedure
is repeated oppositely starting from the end. So 2N; segments are obtained. Next, the local trend for
each of the 2N; segments could be calculated by a least-square fit of the series. Then the variance is

determined by
F(s,v)=1/5* Tt (yl(v-D)stil-y, ()} )
for each segment v, v = 1,...,Ns and

F2(s,v)=1/s" 21 [y[(N-(v-Ns+il-y, ) (3)

For v = Ns + 1,...,2Ns. Here, y,(i) is the fitting line in segment v. Next, over all segments
are averaged to obtain the g-th order fluctuation function by

Fq(s)={1/2*N525§f[Pz(s,v)qu]}” d 4)

where, the index variable g can generally take any real value except zero. Repeating the above
steps for several time scaless, F;(s) will increase as s increases. The scaling behavior of the
fluctuation functions could be analyzed by log-log plots F,(s) versus s for each value of q. A
power-law between F,(s) and s exists as the Eq. (5) when the series x(i) is long-range power-law
correlated.

Fy(s)=sM (5)

However, because of the diverging exponent, the averaging procedure of Eq. (4) could not be
applied directly to calculate the value h, corresponds to the limit h, as g — 0. Instead, we must
employ a logarithmic averaging procedure by Eq. (6).

Fo(s)=exp{1/4*N, Y22 In[F?(s,v)] }=sho (6)

The exponent h, generally depends on g. For stationary series, h, is the well-defined Hurst
exponent H. So h, is called the generalized Hurst exponent. In a special case, when h, is
independent from g, it is defined as monofractal series. The distinct scaling patterns exhibited by
small and large fluctuations have a substantial impact on the relationship between the g-th order
Hurst exponent h, and the scaling parameter q. In the case of positive q, segments v characterized
by a significant deviation from the expected trend, i.e., those with large variances, will exert a
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dominant influence on the average g-order Hurst exponent Fq(s). Consequently, a positive g
captures the scaling behavior of these segments v with notable fluctuations, which typically
correspond to smaller scaling exponents in multifractal time series. Conversely, for negative g
values, segments v with smaller variances take precedence in determining the average q-order
Hurst exponent Fq(s). Hence, a negative q describes the scaling behavior of segments v with
minor fluctuations, which generally exhibit larger scaling exponents in multifractal time series. This
intricate interplay between g, the scaling behavior of different segments v, and the corresponding
fluctuations provides valuable insights into the multifractal nature of the time series, shedding light
on how various levels of variance impact the overall scaling exponents.

The multifractal spectrum f(a) is another tool to characterize multifractality in a series. f(a)
can be obtained by the Eq. (7)

©(q)=qh(q)-1 7)

and then the Legendre transform
a=dt/dq (8)

f(q)=qa-t(q) 9

where «a is the Holder exponent value which indicates the strength of singularity. When the
f(a) is broader, it indicates a stronger multifractality or complexity.

The width of the spectrum could be

A0(=0‘ma><'o‘min (10)

where ap,4and a,;, indicate the maximum and minimum values respectively.

We name MF-DFA1, MFDFA2 and MFDFAS3 separately with polynomial order m = 1,2,3. Here
we apply ME-DFA1 and MF-DFA2 to investigate the BCTI, BDTI and specific routes of TC2 and TD?.

1.2. The Multifractal Detrending Moving Average Method

Following brief introduction of MF-DMA method is based on works of Gu and Zhou (2010) 41.

Assuming time series x(t) , t = 1,2,--,N. and N is the length of the series. We construct a new
series

yO=3Lx(), £12N (1)

Next step, 7(t) indicates the moving average function. To calculate the sequence of cumulative
totals, we slide a window of fixed size across the sequence.

F(t=1/n* TP y(t-k) (12)

where n is the size of window, [x] is the largest integer but not greater than x, [x] is the
smallest integer but not smaller than x, and 6 is the position parameter, varying from 0 to 1. Here
y(t) is calculated over [(n —1)(1 —0)]| data points from the preceding period while |(n —1)6]
data points from the subsequent period. We have to notice three special cases with different 6
values. The backward moving average, where 6 = 0 and J(t) is calculated by all the past data
points. 6§ = 0.5refers to the centered moving average, where j(t) is calculated over half past and
half future data points. 8 = 1 means the forward moving average, where J(t) is based on the trend
of future data points. In this context, we utilize the selected case 6 = 0, as it has demonstrated
superior performance compared to the other two alternatives, based on evidence presented in
references 37,41,43.

Subsequently, we eliminate the moving average component ¥(i) from the series y(i) to
eliminate any underlying trend, resulting in a residual sequence &(i).

e(i)=y ()-5() (13)

where n— |[(n—1)8] <i<N-[(n—1)8].

Then, the residual series (i) is divided into N,, (N,, = |[N/n — 1]) non-overlapping segments,
each of equal length n. These segments can be represented as ¢,(i) = e(l + i) forl <i < n, where
[ = (v — 1)n. We can get the root-mean-square function F,(n) by Eq. (14).

Fi(n)=1/n*TL; €3(), (14)

Additionally, the g -th order overall fluctuation function F,(n) is expressed as

F o ()={1/N,* 235 Fin)} ", g0 (15)
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In[Fo(n)] =1/N,* Y0 In[F, ()], q=0 (16)

Next step, when the values of n varies, we can get the power-law relation between F;(n) and
n in Eq. (17)

F,(n)~n"@ (17)

Finally, the multifractal scaling exponent 7(q) and multifractal spectrum f(q) could be
defined similarly with that of above MF-DFA.

1.3. The Effective Multifractality

According to the references 58,61, the total multifractal spectrum could be intricately divided
into three parts: the non-linear and linear correlation, and the PDF. This decomposition is captured
by the Eq. (18).

Ao=Aang+Aay ptAoppr (18)

It is important to emphasize that both the linear correlation component Aa;,, and the nonlinear
correlation component Aay; represent temporal correlations 2, 5. Specifically, the linear correlation
component is attributed to finite-size effects [54,63. Furthermore, it is noteworthy that Adayy
indicating the linear correlation component, can be computed by semi-analytical formulas of an
explicit form, offering a comprehensive quantitative characterization of this phenomenon 39. A type
of computational deviation stemming from the sample number constraints is defined as the finite-
size effect in reference 26. In essence, smaller time series sizes lead to greater computation deviations.
To mitigate the impact of sample size limitations, especially for small sample sizes (<10000), it is
necessary to calculate and exclude the linear correlation component from the true multifractality.
Consequently, the true multifractality, denoted as 4a.rr, which encompasses the nonlinearity
component Aay;, and the PDF component Aappg, is determined40,59,61.

To depict the spectrum of multifractality, it is important to conduct an analysis that involves
both the elimination of the linear correlation component stemming from the sample size limitations
(sample size < 10000 points) and the decomposition of the remaining two effective parts 59,61,62. This
quantitative analysis can be achieved through the creation of two new series: the shuffled and the
surrogated time series. The shuffled time series is generated through the shuffled original series.
During the process, the temporal correlations are disrupted, while the probability distribution
remains unaltered 43,61.

The creation of surrogate data is accomplished through a two-stage procedure. Initially, the
process ensures that the surrogate data matches the original volatility time series in terms of
probability distribution, which is executed through a transformation technique as described in
reference 49. Subsequently, the surrogate time series is manipulated to include linear correlations by
applying an improved version of the amplitude-adjusted Fourier transform (IAAFT), as detailed in
reference 59. To gain a thorough grasp of the surrogate time series construction process, it is
recommended that readers refer to the comprehensive explanation in the reference 26.

1.4. Machine Learning-Three Learners

Overall, we selected and combined three learners(XGBoost, LightBGM and CatBoost) from
machine learning to form our stacking regression model. Therefore, the introduction of machine
learning is based on three researches which are respectively done by Chen T, Guestrin C54; Ke G,
Meng Q, Finley T64; Prokhorenkova L, Gusev G, Vorobev A65.

XGBoost is a scalable tree boosting system, which firstly use tree boosting in a nutsheel to
regularize learning objective:

L()= 2 17,y )+ L C(f) (19)

where Q(f) =YT + %Allwllz, (., y;) is the loss function, y' is the predicted value, y; is the
target value, ¥ and A are regularization parameters, T is the number of trees, and [lw||? represents
the square of the output score on each tree's leaf nodes (equivalent to L2 regularization) .

Then, the system add ft to minimize objective and use second-order approximation to quickly
optimize the objective in the general setting, the corresponding optimal is:
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2
=(®f T (Ziel»gi)
L (a)=1/2 5 zieljljhﬁfﬂ (20)

In the final stage, it is necessary to scale the newly added weights and perform column sampling
to prevent overfitting (similar to random forests). XGBoost also includes a split finding algorithm,
where the basic greedy algorithm enumerates all possible splits, calculates the gain for each split, and
then selects the split with the maximum gain. The approximate algorithm, on the other hand,
proposes candidate split points by mapping continuous features into bins and then aggregating
statistics to find the optimal solution. In summary, XGBoost introduces a new sparse-aware algorithm
and weighted quantile sketch, where caching access patterns, data compression, and partitioning are
key, thus enabling the solution of real-world scale problems with minimal resources.

LightGBM is an efficient Gradient Boosting Decision Tree (GBDT) algorithm proposed by Ke et
al. at the NIPS conference in 2017. It addresses the efficiency and scalability issues associated with
high-dimensional features and large datasets by introducing two innovative techniques: Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). The GOSS technique
excludes data instances with small gradients, using only the remaining instances to estimate the
information gain, thereby significantly reducing the amount of data processed while maintaining the
accuracy of information gain estimation. The EFB technique reduces the number of features by
bundling mutually exclusive features that rarely take non-zero values simultaneously, such as one-
hot encoded features in text mining. LightGBM safely bundles these exclusive features together,
constructing the same feature histograms from feature bundles as from individual features through
a carefully designed feature scanning algorithm, thus reducing the complexity of histogram
construction from O(#datax#feature) to O(#datax#bundle), where #bundle is much smaller than
#feature, significantly accelerating the training of GBDT. Experimental results show that LightGBM
is over 20 times faster in training on multiple public datasets while achieving nearly the same
accuracy as traditional GBDT. These achievements not only demonstrate the superior performance
of LightGBM in handling large-scale datasets but also provide new directions for the optimization of
GBDT algorithms.

CatBoost introduced two algorithmic improvements: ordered boosting and an innovative
algorithm for handling categorical features, corresponding to the Ordered mode and Plain mode
(built-in ordered TS standard GBDT algorithm). For the Plain mode, multiple random permutations
are first used to calculate gradients and TS, evaluate candidate splits, update the support model to
construct decision trees, and then a complexity comparison and analysis with the standard GBDT
algorithm is performed, culminating in the greedy construction of high-order feature combinations.
CatBoost identified and analyzed the problem of prediction shift, proposing ordered boosting and
ordered TS as solutions, and demonstrated superior performance in multiple benchmark tests.

1.5. Predictive Methodology Overview

To investigate how freight rates can help predict Brent oil prices in different periods, we
employed the following methodology across four distinct periods (Period I-IV). In Table 1, each of
these periods corresponds to a significant global event that profoundly affected both freight rates and

oil prices.
Table 1. Distinct Historical Phases and Global Market Shifts.
Period Date Range Global Event
2 lobal Fi ial Crisis, which \
Period 1 2006-01-01 - 2010-12-31 008 Global Financial Crisis, which severely

impacted financial markets worldwide.

2014 Shale Oil Revolution, which altered the

Period II 2013-06-30 - 2016-06-30
global energy supply.
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COVID-19 pandemic, which led to
Period III 2019-01-01 - 2021-01-01 unprecedented disruptions in global supply
chains.

2022 Russia-Ukraine conflict, which introduced
Period IV 2021-01-01 - 2024-01-12 geopolitical uncertainty and significant energy
price fluctuations.

The table summarizes the four distinct periods analyzed, each characterized by major global events that
significantly influenced financial markets. This table is used to provide context for understanding the

complexities involved in the predictive modeling of Brent oil prices during these turbulent times.

For each of these periods, we employed the same predictive approach to understand the effect
of multifractal features on forecasting oil prices. Specifically, the freight rates (BDTI) were utilized
alongside different feature sets to predict Brent oil prices, with the following steps:

Direct Prediction Using BDTI: As a baseline, we predicted Brent prices using only BDTI data.

Addition of Crisis Period Indicator: We added an indicator for the crisis period to account for
the impact of significant events (e.g., the financial crisis or the pandemic) on market dynamics.

Addition of Multifractal Features: Multifractal features extracted using the Multifractal
Detrended Fluctuation Analysis (MFDFA) method were included to capture complex market
behaviors.

Combination of Crisis Indicators and Multifractal Features: Both crisis indicators and
multifractal features were included to examine their combined effect on prediction accuracy.

To provide a clear visual representation of the methodology, the following flowchart outlines
the framework for multifractal analysis and predictive modeling using the Baltic Dirty Tanker Index
(BDTI) and its application to Brent crude oil price prediction. This framework includes three key
components: data processing, multifractal analysis, and predictive modeling and validation.

Framework for Multifractal Analysis and Predicting Brent Crude Qil Prices Using BDTI

1.Date Processing 2.Multifractal Analysis 3.Predictive Modeling & Validation
i
. MF-DFA: I i . .
Collect Data: s o ! Input Variable: IargeWar\a_ble._ Split by 4 Key Periods:
BDTIBCTI.TC2,TD7 - Segment time series | |__BDTiiBeltc Index) Brent Grude Oil Price 2006-2010:Financial Grisis
TimeSpan:1898.2024 2. Compute local trends i anc s
3. Analyze scaling properties } 2013-2016:Shale Oil Revolution
i 2019-2021:COVID-189 Impact
I i Feature Engineering: 2021-2024:GeapolticalEffects
i -Multifractal indicators l !
l l i (e.g,Hurst Exponent) ]
¥ 1 -Time series features i
i Evaluation Metrics:
v | [oacspren | | |
Handle missing values d”“ :3‘ ban v Tactal dimenci 4 | Model Selection: -R? (Cosfficient of Determination)
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Figure 1. Framework for Multifractal Analysis and Predictive Brent Crude Oil Prices Using BDTI. This visual
representation complements the detailed methodology described above, offering readers an intuitive
understanding of the step-by-step process adopted in this study, particularly how multifractal indicators and

machine learning models are integrated for predictive modeling across the four structural break periods.

2. Data Description

The Baltic Clean Tanker Index (BCTI) is a widely tracked benchmark that measures the cost of
shipping clean petroleum products, such as refined oil, on specific routes within the Baltic region
[2,7,10,14]. It serves as a vital indicator for gauging freight rates and understanding the supply and
demand dynamics within the clean tanker market. The BCTI's fluctuations influence various
economic sectors, making it an essential tool for industry stakeholders, analysts, and investors
seeking insights into energy market trends and shipping conditions. Therefore, we pay great
attention to the BCTI and specific route of TC2 from Continent to USAC with clean tanker size of
37,000mt.
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Similarly, The Baltic Dirty Tanker Index (BDTI) is a vital benchmark that assesses the cost of
shipping dirty petroleum products, including crude oil, on selected routes within the Baltic region. It
serves as a key indicator for understanding freight rates and evaluating the supply and demand
dynamics within the dirty tanker market. A specific route of TD7 from North Sea to Continent with
dirty tanker size of 80,000mt is selected to analyze.

The sample for daily BCTI and BDTI covers the period from Jan 28, 1998 to Jan 12, 2024. The
sample size includes 6413 and 6358 points separately, which is enough for multifractal models [36-
41]. However, the data for BCTI TC2 is 5014 points as the data begins from March 4, 2004. The data
of BDTI TD? includes 6234 points as we could not get the records for year 2023. The statistics results
of sample time series are listed in Table 2. Figure 2 describes the BCTI and BDTI of the sample
observations. There are big volatilities in the year 2008 under global financial crisis, in the year 2020
when the COVID-19 break out and in the year 2022 when geographic conflict happened. Figure 3
records the BCTI and BDTI logarithmic changes (that is InP(t)/InP(t — 1)), which is widely applied
to calculate daily volatilities and the returns often help to decrease non-stationarities though it is not
required in multifractal methods [12,39].

Freight Rate Index Baltic Tanker Freight Rate Index WS
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Figure 2. Baltic Clean and Dirty Tanker Freight Rate Index.

03

0.6

02r 05

01t 0.4

03
0

0.2
=011

0.1r

021
0

-03F
-0.1

-04 -0.2

05 03 L

-OA‘

06 . . . . A n .
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000

(a) BCTI (b) BCTI TC2


https://doi.org/10.20944/preprints202502.0967.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 February 2025 d0i:10.20944/preprints202502.0967.v1

10 of 26

-0.2

03|
-0.3
04

-04

2 : 05 - . .
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

(c) BDTI (d) BDTI TD?
Figure 3. Logarithmic Return of BCTI and BDTI.

Table 2. Statistics of Tanker Freight Rate Returns.

Series\Statistics size mean Std. Min. Max.
BCTI 6413 2.28e-05 0.02 -0.57 0.29
BCTITC2 5014 -2.37e-04 0.04 -0.37 0.58
BDTI 6358 6.44e-05 0.02 -0.38 0.24
BDTI TD?7 6234 8.27e-05 0.05 -0.50 0.46
3. Analysis of Results

3.1. Multifractality in Dirty and Clean Tanker Freight Rate Returns

The Hurst exponent is a measure that characterizes the rate at which the root-mean-square
(RMS) deviation of a time series expands as the size of the observational window (i.e., the scale)
grows, revealing the monofractal nature of the data [11,28,33-35]. In the context of a multifractal time
series, the localized variations, or the RMS deviations, exhibit significantly large values for segments
coinciding with periods of high fluctuation, and similarly, they show significantly small values for
segments during periods of low fluctuation [32-34]. The g-order Hurst exponent is calculated by
examining the slopes of the regression lines that relate the g-order RMS to the scale of the observation
[36—41]. Figures 4(a) to (d) on the left illustrate that for multifractal time series, these slopes Hq vary
depending on the value of q. The distinction between the g-order RMS for positive and negative
fluctuations is more pronounced at smaller segment widths than at larger ones. This is because
smaller segments are more sensitive to the local variability within a specific period, whereas larger
segments encompass multiple periods and tend to average out the differences in fluctuation
magnitude. As q increases, the q-order RMS for a multifractal time series generally decreases, as
shown on the right side of Figures 4(a) to (d). Both BCTI and BDTI returns exhibit multifractal
characteristics, indicating that their fluctuation patterns are not uniform across different scales and
require a more nuanced analysis to understand their underlying dynamics [12,43].
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Figure 4. Scaling function and Hurst exponent for BCTI return and BDTI return.

3.2. Multifractal Characteristics of Tanker Freight Fluctuation Under Structural Breaks

The logarithmic return of BCTI and BDTI and the specific routes in Figure 2 suggests that there
exist big fluctuations in year 2008, year 2020 and year 2022 with events of financial crisis, COVID-19
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and geographic conflict, which is in accordance with the references [7,9,12,46]. According to
references, big events such as global financial crisis can lead to structural breaks in time series
[45,47,48], we divide the sample data BDTI into two parts: period I from Jan 28, 1998 to Dec 01, 2010
and period II from Dec 02, 2010 to Jan 12, 2024 to delve into the changing external factors” effects on
the multifractalities.

The study of multifractal time series often involves various scaling exponents, among which the
g-order Hurst exponent Hq is prominent. However, the local Hurst exponent Ht has proven
advantageous in detecting specific time points of structural change within a time series [45,48-50],
58-59. This local perspective aligns with g-order Hurst values Hq for extreme fluctuations,
correlating positively or negatively depending on the q value's sign. The utility of the local Hurst
exponent Ht is particularly evident when financial time series experience sudden disturbances. It
pinpoints how these shocks modify the series' inherent scale-invariant features on a localized level
[23-27]. Visualized through histograms, the temporal variations of the local Hurst exponent Ht offer
a probability distribution Ph of these changes (illustrated in Figure 5 (e) for the first period and (f)
for the second period). Complementing this, the multifractal spectrum — delineated by the parameters
f(a) and a captures the breadth of multifractality within the series (depicted in Figure 5 (e) for the
first period and (f) for the second period). An increasing spectrum breadth denotes growing
structural disparities between periods marked by minor and major fluctuations [25-28]. The research
employs multifractal spectrum width Aa as a measure of multifractality level, which, according to
results presented in Figure 4 (e) and (f), confirms strong multifractality in both examined periods of
the Baltic Dry Index (BDTI) returns. These findings align with previous research outlined in
references [17,18], solidifying the observed characteristics of the market across different analytic
methodologies. From Figure 5 (a) and (c), both the BCTI and BDTI markets are with multifractal
characteristics though they are different from the specific routes of TC2 and TD7 in Figure 5 (b) and

(d).
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Figure 5. Multifractal analysis of BCTI and BDTI return by MF-DFA2.

3.3. Temporal Dynamics of Tanker Freight Market Complexity with MF-DMA Method

In Figure 6 (a), the multifractality from PDF is Aappr = 0.48, while the total multifractality from
the three parts is 4a = 0.90. The multifractality from linear correlation and PDF are Aa;y + Aappr =
0.61 , so the multifractality from the non-linear correlation Aay, =0.29 . The true
multifractalityda,rr = Aappr + Aay, = 0.77. The results in Figure 6 (a)-(f) are listed in Table 3.
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Figure 6. The tanker freight rate’s multifractal sources by ME-DMA.
Table 3. MF-DMA results for tanker freight rates.
Tltle 1 Aa AaPDF AaLM +AaPDF AaNL Aaeff

BCTI 0.90 0.48 0.61 0.29 0.77

BCTI TC2 0.86 0.23 0.39 0.47 0.70

BDTI 0.58 0.28 0.52 0.06 0.34

BDTI TD7 1.03 0.28 0.50 0.53 0.81
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BDTI 1998-2010 0.60 0.29 0.54 0.06 0.35

BDTI 2010-2023 0.72 0.35 0.62 0.10 0.45

The multifractality analysis of the Baltic Clean Tankers market in Figure 6 (a) reveals significant
insights into its dynamics. A multifractality value of 0.90 for the original data points to a highly
complex market with pronounced multifractal behavior due to strong correlations at various time
scales. A lesser, but still substantial, multifractality value of 0.61 in the surrogated data indicates that
multifractality persists without temporal correlations, suggesting that price change distributions
inherently contribute to market complexity. The shuffled data's multifractality value at 0.48, the
lowest observed, illustrates the crucial role of temporal ordering in market behavior. These values
collectively attest to the market's intricate and nonlinear interaction across scales [43].

The multifractality analysis for the Baltic Clean Tankers in Figure 6 (a) and (b), inclusive of the
specific 37000 tonnage route, elucidates distinct market dynamics. The original data for the entire
market and the targeted route yield high multifractality values of 0.9 and 0.86 respectively,
underscoring considerable multifractal behavior. However, subsequent surrogated and shuffled data
yield diminished multifractality values of 0.61 and 0.48 for the broader market, and 0.39 and 0.23 for
the specific route, respectively. These reductions upon data modification suggest inherent temporal
organization as a key contributor to multifractality [26-28,43]. The analysis underscores the influence
of data structure on the assessment of market complexity and multifractal characteristics.

The multifractal analysis of the Baltic Dirty Tankers market data in Figure 6 (c) reveals varying
degrees of market complexity. An original multifractality value of 0.58 indicates a moderate complex
market structure with self-similarity across time scales. The surrogated data's 0.52 multifractality
value suggests that nontrivial scaling behavior persists even after the removal of some structural
correlations. This denotes inherent complexity within the price change distribution itself [14,26-28].
A notably lower multifractality value of 0.28 in the shuffled data emphasizes the importance of
chronological order, indicating that temporal organization significantly contributes to the market’s
multifractal nature [43].

The multifractal analysis for the Baltic Dirty Tankers market in a specific route TD7 at the 80000-
tonnage level in Figure6 (d) exhibits a high degree of market complexity, with original data yielding
a multifractality value of 1.03. This denotes a rich multifractal structure and extensive self-similarity
across temporal scales. Upon surrogate treatment, multifractality is markedly reduced to 0.5,
indicating a diminished multifractal behavior upon the exclusion of certain structural and temporal
correlations. Further declines to a multifractality value of 0.28 in the shuffled data underscore the
pivotal role of temporal sequencing in fostering multifractal properties.

3.4. Predictive Applications: Using BDTI to Predict Brent Oil Prices

3.4.1. Understanding a Complexity for the Specific Periods and Motivation for Predictive Modeling

The comparative assessment of the Baltic Dirty Tankers from the specified periods of 1998 to
2010 and 2010 to 2023 in Figure 6 (e) and (f) may provide valuable insights into the temporal changes
in multifractal nature and complexity within the market dynamics. The original multifractality value
of 0.72 in the first period decreases to 0.60, suggesting a potential reduction in complexity and
multifractal behavior. For the period of 1998 to 2010, the surrogated data yields a multifractality value
of 0.62, indicating a decrease in complexity compared to the original data; similar for the period from
2010 to 2023. The shuffled data provides additional insights into the temporal changes in
multifractality [26,43]. For the period of 1998 to 2010, the shuffled data yields a multifractality value
of 0.35, reflecting a notable reduction in complexity compared to the original and surrogated data.
Likewise, for the period from 2010 to 2023, the value further decreases to 0.29, signaling a continued
decrease in complexity during the later period. Overall, the period from 2010 to 2023 exhibits higher
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multifractality values across all data types, indicating stronger multifractal nature and greater
complexity [16,26-28].

These findings prompted our interest in understanding the underlying driving factors behind
this marked increase in market complexity post-2010. To gain deeper insights, we apply a novel
predictive approach using freight rates (BDTI) to predict Brent oil prices during distinct periods,
aiming to explore the predictive power of freight rates in different market phases.

Traditionally, most studies have focused on forecasting freight rates based on oil price
movements, which aligns with the conventional economic logic that oil prices drive downstream
costs, including shipping. However, freight rates can be highly responsive to immediate changes in
supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, making them
potentially valuable indicators for predicting oil prices as well. Thus, in this study, we take an
innovative stance by attempting to predict oil prices from freight rates, with the intention of
providing additional insights and decision-making tools for governments, businesses, and individual
investors, especially during periods of significant market volatility and complexity.

3.4.2. Case Study: Prediction for Period III (2019-01-01 - 2021-01-01)

The choice of Period III (2019-01-01 to 2021-01-01) as the initial focus for analysis does not carry
any special significance. In this study, we consider all four structural break periods to be equally
important. Thus, selecting any of them as the starting point for analysis would have been equally
valid. Period IIl was simply chosen at random as the first period to examine.

The predictive process was performed using Baltic Dirty Tanker Index (BDTI) as the main
feature, and the following additional features were systematically introduced to improve prediction
performance:

Crisis Period Indicator: An indicator variable was introduced to capture the effect of the 2020
COVID-19 pandemic, particularly between December 2019 and June 2020. This indicator took the
value of 1 during the crisis and 0 otherwise, to help the model account for the dramatic market shifts.

Multifractal Features: Multifractal characteristics of the BDTI time series were extracted using
the MFDFA method. We computed the Hurst exponent for various g-values (ranging from -5 to 5) to
quantify the complexity and self-similarity within the time series.

To combine these features for predicting Brent oil prices, we employed a stacking regression
model, consisting of the following base learners:

XGBoost: Capable of handling high-dimensional feature spaces and mitigating overfitting,
XGBoost was used with 300 estimators, a learning rate of 0.01, and a maximum depth of 3.

LightGBM: Known for its efficient handling of large datasets, LightGBM was configured
similarly to XGBoost, to provide complementary strengths in feature learning.

CatBoost: Particularly effective in dealing with categorical features and reducing preprocessing
requirements, CatBoost was employed with 300 iterations and a learning rate of 0.01.

The predictions from these base learners were then integrated using a Ridge Regression model
as the meta-learner. This stacking approach allows the model to capture a diverse range of data
patterns and interactions, improving the robustness of predictions.

The resulting predictions for Period III are illustrated in Figure 7, where multiple models are
compared against the actual Brent oil prices. The models include:

Predicted_Direct: Predictions made using only the BDTI data.

Predicted_Time_Indicator: Incorporating the crisis time indicator to assess the effect of the
COVID-19 pandemic.

Predicted_Multifractal: Including multifractal features derived from the BDTI to understand the
impact of market complexity.

Predicted_Multifractal_Indicator: Utilizing both the crisis indicator and multifractal features to
determine their combined influence.
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Figure 7. Predictive Results for Brent Oil Prices during Period III (2019-01-01 to 2021-01-01) Using Various
Models. It is evident that incorporating the crisis period indicator and multifractal features significantly

enhances the model's prediction accuracy for Period III.

While the Predicted_Direct model shows some deviations, particularly during major
disruptions, the inclusion of multifractal features (Predicted_Multifractal) allows the model to better
capture the intricate market dynamics, resulting in predictions that align more closely with the actual
price trends. The Predicted_Multifractal Indicator model demonstrates the best performance,
especially during the high-volatility period in early 2020 when the COVID-19 pandemic caused a
sharp drop in oil prices.

3.4.3. Predictive Results and Analysis for Period I - IV

Following the same methodology as applied in Period III, we conducted predictive modeling
for Periods I, II, and IV, with the results summarized as follows:

Period I (2006-01-01 - 2010-12-31): The 2008 Global Financial Crisis had a profound effect on both
freight rates and oil prices. Figure 8 shows the predictive results, indicating that the inclusion of
multifractal features and crisis indicators significantly improved prediction accuracy compared to
the direct approach.

Period II (2013-06-30 - 2016-06-30): During the 2014 Shale Oil Revolution, the predictive model
that included multifractal features outperformed the direct prediction, as shown in Figure 9. The
Predicted_Multifractal_Indicator model captured the complex fluctuations caused by shifts in the
energy supply landscape more effectively.

Period IV (2021-01-01 - 2024-01-12): The 2022 Russia-Ukraine conflict introduced significant
geopolitical uncertainty. Figure 10 illustrates that the Predicted_Multifractal_Indicator model again
provided the best fit, with reduced error margins and greater alignment with actual price
movements, highlighting the value of multifractal features during periods of high volatility.
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Figure 8. Predictive Results for Brent Oil Prices during Period I.
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Figure 9. Predictive Results for Brent Oil Prices during Period II.
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Figure 10. Predictive Results for Brent Oil Prices during Period IV.

3.4.4. Robustness Analysis of Prediction Methods

Above, we presented several intuitive figures that provide a visual comparison of the predictive
performance of different models across the four periods. Now, we proceed to a more detailed
quantitative analysis to corroborate these visual observations with empirical metrics. Specifically, we
focus on the predictive accuracy as measured by the Mean Squared Error (MSE) and R? values, which
offer critical insights into the effectiveness of incorporating multifractal features and crisis indicators
into the forecasting models.

Figure 11 presents the Mean Squared Error (MSE) values for both the training and test sets across
all periods, demonstrating the improvement in predictive accuracy after incorporating multifractal
features. As shown in the figure, the inclusion of these features significantly reduces the MSE values
across all four periods, with the greatest improvements observed in Periods II, III, and IV. This
suggests that the predictive models benefited substantially from the added complexity of multifractal
characteristics, especially in the post-2010 periods where market dynamics became increasingly

intricate.
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Figure 11. MSE values for training and test sets across Period I-IV.
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Figure 12 displays the R? scores for both the training and test sets, providing insights into the
proportion of variance explained by the models. The predictive models with multifractal features
exhibit substantially higher R? values compared to the direct prediction models. Specifically, for
Periods II, III, and IV, the Predicted_Multifractal_Indicator model achieves R2 values close to or
exceeding 0.9, indicating a strong fit to the actual data. Interestingly, the enhancement in predictive
performance is less pronounced for Period I, suggesting that the multifractal characteristics during
this earlier period were less influential compared to the more recent periods. This aligns with our
previous observations that post-2010 periods exhibited greater multifractality and complexity,
thereby benefiting more from the incorporation of multifractal features.

®period I ®WPeriod I ®Period II = Period IV
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Figure 12. R? scores for training and test sets across Period I-IV.

To provide a more comprehensive understanding, Figure 13 illustrates the substantial
percentage improvements in MSE and R? when multifractal features are incorporated into the
predictive models for each period. For instance, during Period II, the R? for training improves by
approximately 182.54%, and the R? for testing by 167.62%, highlighting a dramatic enhancement in
model performance when multifractal features are added. Similarly, Period III shows an 88.60%
improvement in training R? and a 117.14% increase in testing R?, emphasizing the importance of
capturing complex dynamics during high volatility phases, such as those triggered by the COVID-19
pandemic. Notably, the improvements in Periods II, III, and IV are significantly greater compared to
Period I, which only shows modest gains, reinforcing the notion that market dynamics after 2010
became more intricate and multifaceted. This distinct difference in performance can be attributed to
increased globalization, advancements in technology, and heightened geopolitical sensitivity after
2010, all contributing to more complex and unpredictable market interactions. These findings
underscore that the multifractal characteristics are especially relevant for capturing the nuances of
post-2010 market behavior, making the predictive models significantly more effective for later
periods.
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Figure 13. Improvements in Mean Squared Error (MSE) and R? for Training and Testing Sets Across Four Periods

After Incorporating Multifractal Features.

Such findings are critical, as they highlight the evolving nature of the oil market and underscore
the importance of adapting predictive methodologies to account for changes in market structure and
dynamics. The superior performance of models incorporating multifractal features during periods of
heightened market complexity suggests that traditional linear models may be insufficient for
capturing the nuanced behaviors of modern financial markets. By utilizing multifractal analysis,
stakeholders can achieve a deeper understanding of market dynamics and enhance their decision-
making processes, particularly during times of instability.

4. Discussion of Results

From the discussion, one may conclude that this study successfully unravels the multifaceted
complexity of the Baltic Tanker Freight market using multifractal analysis techniques and advanced
machine learning models. By integrating the Baltic Dirty Tanker Index (BDTI) as a leading indicator,
we demonstrate that freight rates can effectively predict Brent oil prices, particularly during
heightened market volatility caused by global crises such as the 2008 Financial Crisis, the 2014 Shale
Oil Revolution, the COVID-19 pandemic, and the Russia-Ukraine conflict. The findings reveal that
multifractal characteristics, such as the generalized Hurst exponent and multifractal spectrum,
significantly enhance the predictive accuracy of the models, outperforming traditional approaches
that rely solely on linear or unidirectional relationships [7,9]. Moreover, the stacking regression
framework combining XGBoost, Light GBM, CatBoost, and Ridge Regression validates the robustness
of the proposed methodology, aligning closely with contemporary machine learning advancements
[26,62-64]. These results provide actionable insights for policymakers, energy companies, and
investors, emphasizing the utility of multifractal analysis in managing systemic risks and navigating
energy market volatility [4,6].

Comparison of the findings with those of other studies confirms the progressive advantage of
integrating multifractal analysis with predictive modeling. Previous research has largely focused on
forecasting freight rates based on oil prices, reflecting a conventional perspective of oil price-driven
costs in shipping [17,18]. However, this study advances the discussion by demonstrating that BDTI
provides valuable information for predicting Brent oil prices. This finding aligns with recent studies
that highlight the sensitivity of freight rates to immediate supply-demand imbalances and
macroeconomic shocks [74]. Unlike earlier studies that overlooked nonlinear dynamics, the inclusion
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of multifractal features offers a substantial improvement in capturing complex market behaviors.
Thus, the predictive performance achieved in this study reflects methodological progress compared
to traditional econometric models or linear approaches, which often fail under volatile conditions
[12,18].

Nevertheless, there are limitations to the current study that warrant consideration. First, while
the study leverages BDTI and multifractal features, it does not account for other exogenous factors
such as regional economic policies, environmental regulations, or vessel fleet dynamics, which may
further influence oil and freight markets [8]. Second, the analysis is constrained to the Baltic indices
(BDTI and BCTI), which, although significant, may not fully represent global tanker market
dynamics. Third, the use of historical data assumes that past patterns remain valid predictors for
future trends, which may not hold during unprecedented disruptions or structural market changes
[19,33]. Finally, the reliance on machine learning models, though effective, introduces the risk of
overfitting, particularly when applied to smaller or less volatile datasets [51,52].

To address these limitations, several potential solutions can be proposed. Expanding the dataset
to include additional variables such as global trade volumes, bunker fuel prices, or geopolitical risk
indices may enhance the robustness of the models [19,21]. Incorporating real-time data streams or
satellite-based tracking of vessel movements could also improve predictive accuracy [52,53].
Furthermore, the application of hybrid methods, combining deep learning approaches like Long
Short-Term Memory (LSTM) networks with multifractal analysis, could address the limitations of
traditional machine learning models.

Research questions that could be asked include whether integrating additional market
indicators, such as energy derivatives or macroeconomic indicators, could further refine predictive
outcomes [14]. One important future direction of this research is to explore the interplay between
multifractality and emerging market phenomena, such as carbon emissions trading and the adoption
of alternative fuels in shipping. Moreover, investigating the applicability of multifractal analysis in
other energy markets, such as natural gas or LNG freight rates, may provide deeper insights into the
broader dynamics of energy transportation [16,19]. These experimental research results will
hopefully serve as useful feedback information for future iterations of predictive frameworks.

In conclusion, this study demonstrates the significant potential of multifractal analysis and
machine learning in accurately forecasting energy prices during periods of high volatility. The
findings not only advance the theoretical understanding of tanker freight markets but also provide
practical tools for stakeholders to manage uncertainty and enhance decision-making. By successfully
integrating multifractal features and advanced predictive models, this study offers a robust
framework that can serve as a foundation for future research. Moving forward, further refinements
and broader applications of the proposed methodology may uncover additional insights into the
intricate relationships shaping global energy markets, paving the way for more resilient and adaptive
forecasting strategies.

5. Conclusions

This study utilizes MF-DMA methodology to unravel the multifaceted nature of the Baltic
Tanker freight market. Initial findings suggest an overarching multifractal nature within the market,
with total multifractality reaching up to 0.90 in the Clean Tankers market. This complexity arises
partly from a fat-tailed probability distribution (0.48) and non-linear correlations (0.29), indicating
sophisticated temporal organization and inherent volatility as core components of market behavior.
A closer examination of a specific route (TC2, 37,000-tonnage) shows that the market retains its
multifractal attributes, albeit with reduced magnitudes upon data manipulation. This consistent
reduction in multifractality values—evident upon shuffling and surrogating—reinforces the
significant contribution of temporal arrangement to the market's complex structure. The world clean
tanker market reflects a tight supply-demand balance, with freight rates fluctuating significantly in
response to external changes.
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In the case of the Dirty Tankers market, the study highlights moderate complexity, with an
original multifractality value of 0.58, diminishing under surrogate and shuffled scenarios. This
suggests that chronological sequencing is crucial for preserving multifractal properties in this
segment. This assertion is further substantiated by focusing on specific routes like TD7 (80,000-
tonnage), where multifractality peaks at 1.03 but declines markedly when temporal and structural
correlations are disrupted.

The transition in multifractal dynamics between 1998-2010 and 2010-2024 reflects a shift from
crisis-induced market behaviors to diversified and complex dynamics influenced by technological
advancements, regulatory changes, and environmental policies.

Building on these findings, the study proposes a novel predictive framework that integrates the
Baltic Dirty Tanker Index (BDTI), multifractal features, and crisis period indicators to forecast Brent
oil prices during periods of heightened volatility. An analysis of four major global events—the 2008
Financial Crisis, the 2014 Shale Oil Revolution, the COVID-19 pandemic, and the Russia-Ukraine
conflict—illustrates how external factors influence market dynamics and energy prices. The
advanced machine learning models employed, including stacking regression with XGBoost,
LightGBM, CatBoost, and Ridge Regression, enhance the robustness and reliability of predictions.
These methods highlight the potential of freight rates as leading indicators for energy markets,
providing actionable insights for policymakers and market participants.

In conclusion, this study combines multifractal analysis and predictive modeling to provide a
comprehensive framework for understanding and navigating the complexities of the Baltic Tanker
freight market. By revealing the evolving multifractal dynamics and demonstrating the predictive
power of freight rates, the research underscores the importance of integrating multifractal
characteristics into forecasting models. The findings offer practical implications for strategic decision-
making, operational resilience, and risk management in the shipping and energy industries. Future
studies should build on this framework by incorporating additional datasets, refining predictive
algorithms, and exploring the interplay between multifractality and other market indicators to
further enhance prediction accuracy and application scope.
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