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Abstract: This study investigates the tanker freight market and its complex transformation from 1998 

to 2024, uncovering a high degree of multifractality and a complex market structure shaped by 

temporal correlations and inherent volatility. Using multifractal dynamics analyzed through 

multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrending moving average 

(MF-DMA), we explore how key external factors drive market complexity, including economic 

disturbances (the 2008 Financial Crisis), technological innovations (the 2014 Shale Oil Revolution), 

supply chain disruptions (the COVID-19 pandemic), and geopolitical uncertainties (the Russia-

Ukraine conflict). Building on this, a predictive framework is introduced, leveraging the Baltic Dirty 

Tanker Index (BDTI) to forecast Brent oil prices. By integrating multifractal analysis with machine 

learning models, such as XGBoost, LightGBM, and CatBoost, the framework captures complexity 

transformation across these four major global events. Results demonstrate the potential of combining 

multifractal analysis with advanced machine learning models to improve forecasting accuracy and 

provide actionable insights during periods of heightened market volatility. 

Keywords: Tanker freight market; Multifractal dynamics; Brent oil prices; Temporal correlations; 

Complexity Transformation; Machine learning models 

 

Introduction 

The intricate dynamics of the global tanker freight market have long been a subject of interest 

for both academicians and industry practitioners due to its critical role in the shipping market, i.e. 

Adland and Cullinane 1, Zhang and Zeng 2, and Sun et al 3. This market exhibits complex behaviors 

that are influenced by a multitude of factors, including geopolitical events 4–6, economic conditions 

7, technological innovations, and environmental policies 8. The study of these dynamics is further 

complicated by the market's inherent volatility and the interplay of various scales of temporal 

correlations 9–10. Examination of market trends assists stakeholders in harnessing shifts to their 

advantage, while the progressive integration of technology reshapes market operations 11–18. 

Despite the growing interest in this field, there remain several gaps and challenges that warrant 

further investigation. A need for a more nuanced understanding of the causal relationships between 

the multifractal dynamics of the tanker freight market and the various external factors that influence 

it, such as geopolitical tensions, economic cycles, and environmental policies, see Gao and Zhang 4, 

and Chen et al. 9. There is also a need for more interdisciplinary research that integrates insights from 

complexity economics, financial engineering, and operations research to develop more sophisticated 
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methodologies for analyzing and managing the risks associated with changing dynamics in the 

tanker freight market 19–21. 

Complexity economics provides a framework for interdisciplinary research of economics, 

information, physics and operations 22–24. It acknowledges the differences among agents, their 

imperfect information, and the dynamic nature of economic systems, providing significant insights 

applicable to both the fields of information and economics 25–28, including the energy and tanker 

freight market 4,12. A series of models for fractals are developed as an effective tool for complexity 

economics studies. Fractals, known for their fragmented and rough geometric shapes, have the 

fascinating property of self-similarity, allowing them to be broken down into smaller parts that 

closely resemble the whole29,30. A variety of methodologies have been devised to analyze fractal 

attributes. One of the first was the rescaled range analysis by Hurst, which, however, faces challenges 

in assessing long-range dependencies in nonstationary series 31. To tackle multi-affine fractal 

exponents and correlation coefficients, Castro et al. introduced a novel approach 32. Around the same 

time, Peng et al. firstly constructed a different method called detrended fluctuation analysis (DFA) to 

discern long-term correlations within data 33. While DFA provided a valuable tool, it fell short when 

it came to multi-scale and fractal elements in time series that demonstrated more complex, non-

monofractal scaling. To bridge this gap, multifractal detrended fluctuation analysis (MF-DFA) came 

into play, advanced by Kantelhardt et al. as a multifaceted extension of the DFA method 34. MF-DFA 

has proven to be a robust tool for multifractal characterization and has been used across various 

stochastic analysis contexts 35–36. In parallel, the detrending moving average (DMA) technique 

gained traction for its effectiveness in evaluating long memory in nonstationary time series, 

applicable to both real and theoretical data samples 37–39. By focusing on the moving average 

function of a series and building on the moving average methodology, DMA excels in discerning 

scaling properties within time series data 40. MF-DMA extended DMA to higher-dimensional 

versions. It is a quantitative analysis delving into the spurious multifractality induced by fat-tailed 

probability distributions in time series, providing critical insights into distinguishing true 

multifractality arising from nonlinear correlations from spurious effects generated by distribution 

shapes 41–42. Kwapien et al. use analytical arguments as well as numerical illustrations on the 

interesting question of the origin of the multifractality in time series 43. They get the conclusion that 

true multifractality in time series comes from temporal correlations. 

The array of studies on tanker freight rate volatility represents a vital component of maritime 

economics, with ramifications extending into the broader global economy, delve into the interplay 

between numerous variables affecting freight rates, such as crude oil prices, charter rates, fleet size, 

and policy changes 13–19,44. Multifractal analysis has emerged as a new trend in these studies, 

gaining traction due to its ability to capture the asymmetric nature of market risks, demonstrating 

different magnitudes of response to upward and downward trends and uncovers various scaling 

behaviors within the data45–46. Multifractality helps to recognize the freight rates which exhibit a 

spectrum of fractal characteristics, not just a single pattern of fluctuations 47–50. It accounts for both 

small and large movements, providing a nuanced perspective on data correlations, especially under 

turbulent market conditions like those experienced during the 2008 world finance risk and the 

COVID-19 pandemic [4,12,46]. This study tries to comprehend the intricate, multifaceted nature of 

the market to design strategies that buffer the fallout from unpredictable market shifts or crises, 

provide a comprehensive understanding of the market's complexity and its evolution over time. 

The research is driven by the following key questions: (a) How has the multifractal nature of the 

tanker freight market evolved across the two distinct periods, and what does this evolution signify 

in terms of market behavior and systemic risks? (b) What role do temporal correlations and inherent 

volatility play in shaping the complex structure of the market, and how do these factors contribute 

to the observed multifractal dynamics? (c) How do external factors such as regulatory changes, 

economic disturbances, technological innovation, and environmental concerns influence the 

complexity and multifractal characteristics of the tanker freight market? (d) Can tanker freight rates, 

specifically the Baltic Dirty Tanker Index (BDTI), be used to predict Brent oil prices during periods 
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of heightened market complexity, and how do multifractal features enhance the predictive power of 

such models? 

The research presented in this manuscript is motivated by the need to delve into the complex 

transformation of the Baltic Clean and Dirty Tankers markets from 1998 to 2023, with a particular 

focus on the multifractal characteristics that define the market's structure and behavior. Here, we 

apply the MF-DFA method to characterize the observations of clean and dirty tanker freight rates 

and the most concerned routes of TC2 and TD7 from Jan. 28, 1998, to Jan. 12, 2024. To describe the 

market pattern after larger fluctuations, we analyze Period I (1998–2010) and Period II (2010–2024). 

To better explain the multifractality in the BCTI and BDTI series, we apply the MF-DMA method to 

quantify the three components, including linear correlation, nonlinear correlation, and fat-tailed 

probability distribution. 

Building on this foundational analysis, we further extend the scope of our research to explore 

the predictive potential of freight rates in forecasting Brent oil prices, particularly during periods of 

heightened market volatility and complexity. Traditionally, most studies have focused on forecasting 

freight rates based on oil price movements, reflecting the conventional economic logic that oil prices 

drive downstream costs, including shipping. However, freight rates, due to their responsiveness to 

supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, may serve as valuable 

leading indicators for oil prices. This study, therefore, adopts an innovative perspective by 

investigating whether BDTI can predict Brent oil prices and how multifractal features contribute to 

the accuracy of such predictions. 

To address this question, we examine four distinct periods characterized by major global events 

that significantly influenced market dynamics:(1) 2006–2010: Marked by the 2008 Global Financial 

Crisis, which caused widespread disruptions in financial and commodity markets. (2)2013–2016: 

Defined by the 2014 Shale Oil Revolution, which reshaped global energy supply dynamics. (3) 2019–

2021: Dominated by the COVID-19 pandemic, leading to unprecedented supply chain disruptions. 

(4) 2021–2024: Influenced by the Russia-Ukraine conflict, introducing severe geopolitical 

uncertainties and energy market volatility. 

For each period, we develop predictive models using BDTI data as a primary feature, integrating 

multifractal characteristics extracted via MF-DFA, such as the Hurst exponent and multifractal 

spectrum. These models are enhanced with crisis period indicators to capture the unique market 

dynamics during each global event. Furthermore, in order to enhance the robustness of predictions, 

advanced machine learning techniques are leveraged within this study. Specifically, we employ 

stacking regression models, which incorporate XGBoost, LightGBM, and CatBoost as the 

foundational base learners51–53. Among these technologies, XGBoost is designed to be scalable and 

efficient, allowing data scientists to achieve state-of-the-art results on a variety of machine learning 

challenges54.Additionally, Ridge Regression serves as the meta-learner in this stacking framework. 

By integrating these powerful algorithms in a structured and systematic manner, we aim to improve 

the overall accuracy and stability of our predictive models, thereby ensuring more reliable and 

insightful outcomes55–57. 

At the same time, most studies have traditionally focused on forecasting freight rates based on 

oil price movements, which aligns with the conventional economic logic that oil prices drive 

downstream costs, including shipping. However, freight rates can be highly responsive to immediate 

changes in supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, making 

them potentially valuable indicators for predicting oil prices as well. Thus, in this study, we take an 

innovative stance by attempting to predict oil prices from freight rates, with the intention of 

providing additional insights and decision-making tools for governments, businesses, and individual 

investors, especially during periods of significant market volatility and complexity. 

The major contribution of this study is summarized as follows. The methodology evaluates the 

individual and combined effects of multifractal features and crisis indicators on predictive accuracy. 

This comprehensive framework not only tests the predictive capacity of freight rates for oil prices but 

also deepens our understanding of how market complexity evolves during times of significant 
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economic and geopolitical turbulence. In addition to providing theoretical insights, this study offers 

practical implications for market participants, including energy companies, policymakers, and 

investors, by highlighting the utility of freight rates as a decision-making tool. The integration of 

multifractal analysis with predictive modeling demonstrates the potential for advanced analytics to 

navigate the complexities of modern financial markets effectively. 

The paper structure is as follows: Section 2 introduces the MF-DFA and MF-DMA methods; 

Section 3 describes the Baltic Clean and Dirty Tanker Indexes and the data used in the analysis. 

Section 4 presents the empirical results, including the multifractal characteristics of freight rate 

returns, the impact of structural breaks across different periods, and the predictive performance of 

the proposed framework under varying market conditions. Section 5 discusses the findings and their 

implications, and Section 6 concludes the study with key insights and future research directions. 

1. Methods 

1.1. The Multifractal Detrended Fluctuation Analysis Method 

The following introduction of MF-DFA method is based on the work from Kantelhardt, et.al. 

(2002)34. 

Here are the general steps of MF-DFA method on the seriesx(i), where 𝑖 = 1,2, . . . , 𝑁 and 𝑁 is 

the length of the series. 𝑥̄ stands for the average value of series 𝑥(𝑖). 

Assuming that x(i) are increments of a random walk process around the mean 𝑥̄, then by the 

signal integration, the "trajectory" or "profile" could be expressed as 

y(i)= ∑ [x(k)-x̄]i
k=1 , i=1,2,...,N   (1) 

Next, we divide the integrated series into 𝑁𝑠  =  int(𝑁/𝑠), non-overlapping segments of equal 

length 𝑠. Generally, the length 𝑁 of the series is not a multiple of the considered time scale 𝑠, a short 

part may remain at the end of the profile 𝑦(𝑖). Not to disregard this remaining part, this procedure 

is repeated oppositely starting from the end. So 2𝑁𝑠 segments are obtained. Next, the local trend for 

each of the 2𝑁𝑠 segments could be calculated by a least-square fit of the series. Then the variance is 

determined by 

F2(s,v)=1/s* ∑ {y[(v-1)s+i]-y
v

s
i=1 (i)}2   (2) 

for each segment 𝑣, 𝑣 =  1 , . . . , 𝑁𝑠 and 

F2(s,v)=1/s* ∑ {y[(N-(v-Ns)s+i]-y
v

s
i=1 (i)}2 (3) 

For v =  Ns +  1, . . . , 2Ns. Here, 𝑦𝑣(𝑖) is the fitting line in segment 𝑣. Next, over all segments 

are averaged to obtain the 𝑞-th order fluctuation function by 

Fq(s)={1/2*Ns∑ [F2(s,v)q/2]
2Ns
v=1 }

1/q
   (4) 

where, the index variable 𝑞 can generally take any real value except zero. Repeating the above 

steps for several time scales s , 𝐹𝑞(𝑠)  will increase as 𝑠  increases. The scaling behavior of the 

fluctuation functions could be analyzed by log-log plots 𝐹𝑞(𝑠)  versus 𝑠  for each value of 𝑞 . A 

power-law between 𝐹𝑞(𝑠) and 𝑠 exists as the Eq. (5) when the series 𝑥(𝑖) is long-range power-law 

correlated. 

Fq(s)≈shq   (5) 

However, because of the diverging exponent, the averaging procedure of Eq. (4) could not be 

applied directly to calculate the value ℎ0 corresponds to the limit ℎ𝑞 as 𝑞 → 0. Instead, we must 

employ a logarithmic averaging procedure by Eq. (6). 

F0(s)= exp{1/4*Ns ∑ ln[F2(s,v)]
2Ns
v=1 }≈sh0    (6) 

The exponent ℎ𝑞 generally depends on 𝑞. For stationary series, ℎ2 is the well-defined Hurst 

exponent 𝐻 . So ℎ𝑞  is called the generalized Hurst exponent. In a special case, when ℎ𝑞  is 

independent from 𝑞, it is defined as monofractal series. The distinct scaling patterns exhibited by 

small and large fluctuations have a substantial impact on the relationship between the 𝑞-th order 

Hurst exponent ℎ𝑞 and the scaling parameter 𝑞. In the case of positive 𝑞, segments 𝑣 characterized 

by a significant deviation from the expected trend, i.e., those with large variances, will exert a 
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dominant influence on the average 𝑞 -order Hurst exponent 𝐹𝑞(𝑠) . Consequently, a positive 𝑞 

captures the scaling behavior of these segments 𝑣  with notable fluctuations, which typically 

correspond to smaller scaling exponents in multifractal time series. Conversely, for negative 𝑞 

values, segments 𝑣  with smaller variances take precedence in determining the average 𝑞 -order 

Hurst exponent 𝐹𝑞(𝑠) . Hence, a negative 𝑞  describes the scaling behavior of segments 𝑣  with 

minor fluctuations, which generally exhibit larger scaling exponents in multifractal time series. This 

intricate interplay between 𝑞, the scaling behavior of different segments 𝑣, and the corresponding 

fluctuations provides valuable insights into the multifractal nature of the time series, shedding light 

on how various levels of variance impact the overall scaling exponents. 

The multifractal spectrum 𝑓(𝛼) is another tool to characterize multifractality in a series. 𝑓(𝛼) 

can be obtained by the Eq. (7) 

τ(q)=qh(q)-1   (7) 

and then the Legendre transform 

α=dτ/dq   (8) 

f(q)=qα-τ(q)   (9) 

where 𝛼 is the Holder exponent value which indicates the strength of singularity. When the 

𝑓(𝛼) is broader, it indicates a stronger multifractality or complexity. 

The width of the spectrum could be 

Δα=αmax-αmin  (10) 

where 𝛼𝑚𝑎𝑥and 𝛼𝑚𝑖𝑛 indicate the maximum and minimum values respectively. 

We name MF-DFA1, MFDFA2 and MFDFA3 separately with polynomial order 𝑚 = 1,2,3. Here 

we apply MF-DFA1 and MF-DFA2 to investigate the BCTI, BDTI and specific routes of TC2 and TD7. 

1.2. The Multifractal Detrending Moving Average Method 

Following brief introduction of MF-DMA method is based on works of Gu and Zhou (2010) 41. 

Assuming time series 𝑥(𝑡) , 𝑡 = 1,2, ⋯ , 𝑁. and 𝑁 is the length of the series. We construct a new 

series 

y(t)= ∑ x(i),t
i=1  t=1,2,⋯,N  (11) 

Next step, 𝑦̃(𝑡) indicates the moving average function. To calculate the sequence of cumulative 

totals, we slide a window of fixed size across the sequence. 

ỹ(t)=1/n* ∑ y(t-k)
⌈(n-1)(1-θ)⌉
k=-⌊(n-1)θ⌋    (12) 

where 𝑛 is the size of window, ⌊𝑥⌋ is the largest integer but not greater than 𝑥 , ⌈𝑥⌉ is the 

smallest integer but not smaller than 𝑥, and 𝜃 is the position parameter, varying from 0 to 1. Here 

𝑦̃(𝑡)  is calculated over ⌈(𝑛 − 1)(1 − 𝜃)⌉  data points from the preceding period while ⌊(𝑛 − 1)𝜃⌋ 

data points from the subsequent period. We have to notice three special cases with different 𝜃 

values. The backward moving average, where 𝜃 = 0 and 𝑦̃(𝑡) is calculated by all the past data 

points. 𝜃 = 0.5refers to the centered moving average, where 𝑦̃(𝑡) is calculated over half past and 

half future data points. 𝜃 = 1 means the forward moving average, where 𝑦̃(𝑡) is based on the trend 

of future data points. In this context, we utilize the selected case 𝜃 = 0, as it has demonstrated 

superior performance compared to the other two alternatives, based on evidence presented in 

references 37,41,43. 

Subsequently, we eliminate the moving average component 𝑦̃(𝑖)  from the series 𝑦(𝑖)  to 

eliminate any underlying trend, resulting in a residual sequence 𝜀(𝑖). 

ε(i)=y(i)-ỹ(i)    (13) 

where n − ⌊(n − 1)θ⌋ ≤ i ≤ N − ⌊(n − 1)θ⌋. 

Then, the residual series 𝜀(𝑖) is divided into 𝑁𝑛 (𝑁𝑛 = ⌊𝑁/𝑛 − 1⌋) non-overlapping segments, 

each of equal length 𝑛. These segments can be represented as 𝜀𝑣(𝑖) = 𝜀(𝑙 + 𝑖) for1 ≤ 𝑖 ≤ 𝑛, where 

𝑙 = (𝑣 − 1)𝑛. We can get the root-mean-square function 𝐹𝑣(𝑛) by Eq. (14). 

Fv
2(n)=1/n* ∑ εv

2(i), n
i=1    (14) 

Additionally, the 𝑞 -th order overall fluctuation function 𝐹𝑞(𝑛) is expressed as 

Fq(n)={1/Nn* ∑ Fv
q(n)

Nn
v=1 }

1/q
, q≠0   (15) 
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ln[F0(n)] =1/Nn* ∑ ln[Fv(n)] , q=0
Nn
v=1  (16) 

Next step, when the values of 𝑛 varies, we can get the power-law relation between 𝐹𝑞(𝑛) and 

𝑛 in Eq. (17) 

Fq(n)~nh(q)   (17) 

Finally, the multifractal scaling exponent 𝜏(𝑞)  and multifractal spectrum 𝑓(𝑞)  could be 

defined similarly with that of above MF-DFA. 

1.3. The Effective Multifractality 

According to the references 58,61, the total multifractal spectrum could be intricately divided 

into three parts: the non-linear and linear correlation, and the PDF. This decomposition is captured 

by the Eq. (18). 

Δα=ΔαNL+ΔαLM+ΔαPDF   (18) 

It is important to emphasize that both the linear correlation component 𝛥𝛼𝐿𝑀 and the nonlinear 

correlation component 𝛥𝛼𝑁𝐿 represent temporal correlations 2, 5. Specifically, the linear correlation 

component is attributed to finite-size effects [54,63. Furthermore, it is noteworthy that 𝛥𝛼𝐿𝑀 

indicating the linear correlation component, can be computed by semi-analytical formulas of an 

explicit form, offering a comprehensive quantitative characterization of this phenomenon 39. A type 

of computational deviation stemming from the sample number constraints is defined as the finite-

size effect in reference 26. In essence, smaller time series sizes lead to greater computation deviations. 

To mitigate the impact of sample size limitations, especially for small sample sizes (<10000), it is 

necessary to calculate and exclude the linear correlation component from the true multifractality. 

Consequently, the true multifractality, denoted as 𝛥𝛼𝑒𝑓𝑓 , which encompasses the nonlinearity 

component 𝛥𝛼𝑁𝐿, and the PDF component 𝛥𝛼𝑃𝐷𝐹, is determined40,59,61. 

To depict the spectrum of multifractality, it is important to conduct an analysis that involves 

both the elimination of the linear correlation component stemming from the sample size limitations 

(sample size < 10000 points) and the decomposition of the remaining two effective parts 59,61,62. This 

quantitative analysis can be achieved through the creation of two new series: the shuffled and the 

surrogated time series. The shuffled time series is generated through the shuffled original series. 

During the process, the temporal correlations are disrupted, while the probability distribution 

remains unaltered 43,61. 

The creation of surrogate data is accomplished through a two-stage procedure. Initially, the 

process ensures that the surrogate data matches the original volatility time series in terms of 

probability distribution, which is executed through a transformation technique as described in 

reference 49. Subsequently, the surrogate time series is manipulated to include linear correlations by 

applying an improved version of the amplitude-adjusted Fourier transform (IAAFT), as detailed in 

reference 59. To gain a thorough grasp of the surrogate time series construction process, it is 

recommended that readers refer to the comprehensive explanation in the reference 26. 

1.4. Machine Learning-Three Learners 

Overall, we selected and combined three learners(XGBoost, LightBGM and CatBoost) from 

machine learning to form our stacking regression model. Therefore, the introduction of machine 

learning is based on three researches which are respectively done by Chen T , Guestrin C54; Ke G, 

Meng Q, Finley T64; Prokhorenkova L, Gusev G, Vorobev A65. 

XGBoost is a scalable tree boosting system, which firstly use tree boosting in a nutsheel to 

regularize learning objective: 

L(ϕ)= ∑ l(y
î
,y

i
)+ ∑ Ω(fk)ki     (19) 

where 𝛺(𝑓) = 𝛶𝛵 +
1

2
𝜆‖𝜔‖2, 𝑙(𝑦𝑖̂, 𝑦𝑖) is the loss function, 𝑦𝑖  is the predicted value, 𝑦𝑖  is the 

target value, 𝛶 and 𝜆 are regularization parameters, 𝛵 is the number of trees, and ‖𝜔‖2 represents 

the square of the output score on each tree's leaf nodes (equivalent to L2 regularization) . 

Then, the system add ft to minimize objective and use second-order approximation to quickly 

optimize the objective in the general setting, the corresponding optimal is: 
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L̃
(t)

(q)=-1/2* ∑
(∑ g

ii∈Ij
)

2

∑ hii∈Ij|
+λ

T
j=1 +ΥΤ   (20) 

In the final stage, it is necessary to scale the newly added weights and perform column sampling 

to prevent overfitting (similar to random forests). XGBoost also includes a split finding algorithm, 

where the basic greedy algorithm enumerates all possible splits, calculates the gain for each split, and 

then selects the split with the maximum gain. The approximate algorithm, on the other hand, 

proposes candidate split points by mapping continuous features into bins and then aggregating 

statistics to find the optimal solution. In summary, XGBoost introduces a new sparse-aware algorithm 

and weighted quantile sketch, where caching access patterns, data compression, and partitioning are 

key, thus enabling the solution of real-world scale problems with minimal resources. 

LightGBM is an efficient Gradient Boosting Decision Tree (GBDT) algorithm proposed by Ke et 

al. at the NIPS conference in 2017. It addresses the efficiency and scalability issues associated with 

high-dimensional features and large datasets by introducing two innovative techniques: Gradient-

based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). The GOSS technique 

excludes data instances with small gradients, using only the remaining instances to estimate the 

information gain, thereby significantly reducing the amount of data processed while maintaining the 

accuracy of information gain estimation. The EFB technique reduces the number of features by 

bundling mutually exclusive features that rarely take non-zero values simultaneously, such as one-

hot encoded features in text mining. LightGBM safely bundles these exclusive features together, 

constructing the same feature histograms from feature bundles as from individual features through 

a carefully designed feature scanning algorithm, thus reducing the complexity of histogram 

construction from O(#data×#feature) to O(#data×#bundle), where #bundle is much smaller than 

#feature, significantly accelerating the training of GBDT. Experimental results show that LightGBM 

is over 20 times faster in training on multiple public datasets while achieving nearly the same 

accuracy as traditional GBDT. These achievements not only demonstrate the superior performance 

of LightGBM in handling large-scale datasets but also provide new directions for the optimization of 

GBDT algorithms. 

CatBoost introduced two algorithmic improvements: ordered boosting and an innovative 

algorithm for handling categorical features, corresponding to the Ordered mode and Plain mode 

(built-in ordered TS standard GBDT algorithm). For the Plain mode, multiple random permutations 

are first used to calculate gradients and TS, evaluate candidate splits, update the support model to 

construct decision trees, and then a complexity comparison and analysis with the standard GBDT 

algorithm is performed, culminating in the greedy construction of high-order feature combinations. 

CatBoost identified and analyzed the problem of prediction shift, proposing ordered boosting and 

ordered TS as solutions, and demonstrated superior performance in multiple benchmark tests. 

1.5. Predictive Methodology Overview 

To investigate how freight rates can help predict Brent oil prices in different periods, we 

employed the following methodology across four distinct periods (Period I-IV). In Table 1, each of 

these periods corresponds to a significant global event that profoundly affected both freight rates and 

oil prices. 

Table 1. Distinct Historical Phases and Global Market Shifts. 

Period Date Range Global Event 

Period Ⅰ 2006-01-01 - 2010-12-31 
2008 Global Financial Crisis, which severely 

impacted financial markets worldwide. 

Period Ⅱ 2013-06-30 - 2016-06-30 
2014 Shale Oil Revolution, which altered the 

global energy supply. 
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Period Ⅲ 2019-01-01 - 2021-01-01 

COVID-19 pandemic, which led to 

unprecedented disruptions in global supply 

chains. 

Period Ⅳ 2021-01-01 - 2024-01-12 

2022 Russia-Ukraine conflict, which introduced 

geopolitical uncertainty and significant energy 

price fluctuations. 

The table summarizes the four distinct periods analyzed, each characterized by major global events that 

significantly influenced financial markets. This table is used to provide context for understanding the 

complexities involved in the predictive modeling of Brent oil prices during these turbulent times. 

For each of these periods, we employed the same predictive approach to understand the effect 

of multifractal features on forecasting oil prices. Specifically, the freight rates (BDTI) were utilized 

alongside different feature sets to predict Brent oil prices, with the following steps: 

Direct Prediction Using BDTI: As a baseline, we predicted Brent prices using only BDTI data. 

Addition of Crisis Period Indicator: We added an indicator for the crisis period to account for 

the impact of significant events (e.g., the financial crisis or the pandemic) on market dynamics. 

Addition of Multifractal Features: Multifractal features extracted using the Multifractal 

Detrended Fluctuation Analysis (MFDFA) method were included to capture complex market 

behaviors. 

Combination of Crisis Indicators and Multifractal Features: Both crisis indicators and 

multifractal features were included to examine their combined effect on prediction accuracy. 

To provide a clear visual representation of the methodology, the following flowchart outlines 

the framework for multifractal analysis and predictive modeling using the Baltic Dirty Tanker Index 

(BDTI) and its application to Brent crude oil price prediction. This framework includes three key 

components: data processing, multifractal analysis, and predictive modeling and validation. 

 

Figure 1. Framework for Multifractal Analysis and Predictive Brent Crude Oil Prices Using BDTI. This visual 

representation complements the detailed methodology described above, offering readers an intuitive 

understanding of the step-by-step process adopted in this study, particularly how multifractal indicators and 

machine learning models are integrated for predictive modeling across the four structural break periods. 

2. Data Description 

The Baltic Clean Tanker Index (BCTI) is a widely tracked benchmark that measures the cost of 

shipping clean petroleum products, such as refined oil, on specific routes within the Baltic region 

[2,7,10,14]. It serves as a vital indicator for gauging freight rates and understanding the supply and 

demand dynamics within the clean tanker market. The BCTI's fluctuations influence various 

economic sectors, making it an essential tool for industry stakeholders, analysts, and investors 

seeking insights into energy market trends and shipping conditions. Therefore, we pay great 

attention to the BCTI and specific route of TC2 from Continent to USAC with clean tanker size of 

37,000mt. 
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Similarly, The Baltic Dirty Tanker Index (BDTI) is a vital benchmark that assesses the cost of 

shipping dirty petroleum products, including crude oil, on selected routes within the Baltic region. It 

serves as a key indicator for understanding freight rates and evaluating the supply and demand 

dynamics within the dirty tanker market. A specific route of TD7 from North Sea to Continent with 

dirty tanker size of 80,000mt is selected to analyze. 

The sample for daily BCTI and BDTI covers the period from Jan 28, 1998 to Jan 12, 2024. The 

sample size includes 6413 and 6358 points separately, which is enough for multifractal models [36–

41]. However, the data for BCTI TC2 is 5014 points as the data begins from March 4, 2004. The data 

of BDTI TD7 includes 6234 points as we could not get the records for year 2023. The statistics results 

of sample time series are listed in Table 2. Figure 2 describes the BCTI and BDTI of the sample 

observations. There are big volatilities in the year 2008 under global financial crisis, in the year 2020 

when the COVID-19 break out and in the year 2022 when geographic conflict happened. Figure 3 

records the BCTI and BDTI logarithmic changes (that is 𝑙𝑛𝑃(𝑡)/𝑙𝑛𝑃(𝑡 − 1)), which is widely applied 

to calculate daily volatilities and the returns often help to decrease non-stationarities though it is not 

required in multifractal methods [12,39]. 

 

Figure 2. Baltic Clean and Dirty Tanker Freight Rate Index. 

 

(a) BCTI (b) BCTI TC2 
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(c) BDTI (d) BDTI TD7 

Figure 3. Logarithmic Return of BCTI and BDTI. 

Table 2. Statistics of Tanker Freight Rate Returns. 

Series\Statistics size mean Std. Min. Max. 

BCTI 6413 2.28e-05 0.02 -0.57 0.29 

BCTI TC2 5014 -2.37e-04 0.04 -0.37 0.58 

BDTI 6358 6.44e-05 0.02 -0.38 0.24 

BDTI TD7 6234 8.27e-05 0.05 -0.50 0.46 

3. Analysis of Results 

3.1. Multifractality in Dirty and Clean Tanker Freight Rate Returns 

The Hurst exponent is a measure that characterizes the rate at which the root-mean-square 

(RMS) deviation of a time series expands as the size of the observational window (i.e., the scale) 

grows, revealing the monofractal nature of the data [11,28,33–35]. In the context of a multifractal time 

series, the localized variations, or the RMS deviations, exhibit significantly large values for segments 

coinciding with periods of high fluctuation, and similarly, they show significantly small values for 

segments during periods of low fluctuation [32–34]. The q-order Hurst exponent is calculated by 

examining the slopes of the regression lines that relate the q-order RMS to the scale of the observation 

[36–41]. Figures 4(a) to (d) on the left illustrate that for multifractal time series, these slopes 𝐻𝑞 vary 

depending on the value of q. The distinction between the q-order RMS for positive and negative 

fluctuations is more pronounced at smaller segment widths than at larger ones. This is because 

smaller segments are more sensitive to the local variability within a specific period, whereas larger 

segments encompass multiple periods and tend to average out the differences in fluctuation 

magnitude. As q increases, the q-order RMS for a multifractal time series generally decreases, as 

shown on the right side of Figures 4(a) to (d). Both BCTI and BDTI returns exhibit multifractal 

characteristics, indicating that their fluctuation patterns are not uniform across different scales and 

require a more nuanced analysis to understand their underlying dynamics [12,43]. 
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BCTI 

 

BCTI TC2 

 

BDTI 

 

BDTI TD7 

Figure 4. Scaling function and Hurst exponent for BCTI return and BDTI return. 

3.2. Multifractal Characteristics of Tanker Freight Fluctuation Under Structural Breaks 

The logarithmic return of BCTI and BDTI and the specific routes in Figure 2 suggests that there 

exist big fluctuations in year 2008, year 2020 and year 2022 with events of financial crisis, COVID-19 
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and geographic conflict, which is in accordance with the references [7,9,12,46]. According to 

references, big events such as global financial crisis can lead to structural breaks in time series 

[45,47,48], we divide the sample data BDTI into two parts: period I from Jan 28, 1998 to Dec 01, 2010 

and period II from Dec 02, 2010 to Jan 12, 2024 to delve into the changing external factors’ effects on 

the multifractalities. 

The study of multifractal time series often involves various scaling exponents, among which the 

q-order Hurst exponent 𝐻𝑞  is prominent. However, the local Hurst exponent 𝐻𝑡  has proven 

advantageous in detecting specific time points of structural change within a time series [45,48–50], 

58–59. This local perspective aligns with q-order Hurst values 𝐻𝑞  for extreme fluctuations, 

correlating positively or negatively depending on the q value's sign. The utility of the local Hurst 

exponent 𝐻𝑡 is particularly evident when financial time series experience sudden disturbances. It 

pinpoints how these shocks modify the series' inherent scale-invariant features on a localized level 

[23–27]. Visualized through histograms, the temporal variations of the local Hurst exponent 𝐻𝑡 offer 

a probability distribution 𝑃ℎ of these changes (illustrated in Figure 5 (e) for the first period and (f) 

for the second period). Complementing this, the multifractal spectrum – delineated by the parameters 

𝑓(𝛼) and 𝛼 captures the breadth of multifractality within the series (depicted in Figure 5 (e) for the 

first period and (f) for the second period). An increasing spectrum breadth denotes growing 

structural disparities between periods marked by minor and major fluctuations [25–28]. The research 

employs multifractal spectrum width 𝛥𝛼 as a measure of multifractality level, which, according to 

results presented in Figure 4 (e) and (f), confirms strong multifractality in both examined periods of 

the Baltic Dry Index (BDTI) returns. These findings align with previous research outlined in 

references [17,18], solidifying the observed characteristics of the market across different analytic 

methodologies. From Figure 5 (a) and (c), both the BCTI and BDTI markets are with multifractal 

characteristics though they are different from the specific routes of TC2 and TD7 in Figure 5 (b) and 

(d). 

 

BCTI from year1998 to 2023 

 

BCTI TC2 from year 2004 to 2023 
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BDTI from year1998 to 2023 

 

BDTI TD7 from year1998 to 2022 

 

BDTI from year 1998 to 2010 

 

BDTI from year 2010 to 2023 

Figure 5. Multifractal analysis of BCTI and BDTI return by MF-DFA2. 

3.3. Temporal Dynamics of Tanker Freight Market Complexity with MF-DMA Method 

In Figure 6 (a), the multifractality from PDF is 𝛥𝛼𝑃𝐷𝐹 = 0.48, while the total multifractality from 

the three parts is 𝛥𝛼 = 0.90. The multifractality from linear correlation and PDF are 𝛥𝛼𝐿𝑀 + 𝛥𝛼𝑃𝐷𝐹 =

0.61 , so the multifractality from the non-linear correlation 𝛥𝛼𝑁𝐿 = 0.29 . The true 

multifractality𝛥𝛼𝑒𝑓𝑓 = 𝛥𝛼𝑃𝐷𝐹 + 𝛥𝛼𝑁𝐿 = 0.77. The results in Figure 6 (a)-(f) are listed in Table 3. 
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(a)BCTI 1998-2023 (b) BCTI TC2 2004-2023 

 

(c)BDTI 1998-2023 (d) BDTI TD7 1998-2022 

 

(e) BDTI 1998-2010 (f) BDTI 2010-2023 

Figure 6. The tanker freight rate’s multifractal sources by MF-DMA. 

Table 3. MF-DMA results for tanker freight rates. 

Title 1 𝜟𝜶 𝜟𝜶𝑷𝑫𝑭 𝜟𝜶𝑳𝑴 + 𝜟𝜶𝑷𝑫𝑭 𝜟𝜶𝑵𝑳 𝜟𝜶𝒆𝒇𝒇 

BCTI 0.90 0.48 0.61 0.29 0.77 

BCTI TC2 0.86 0.23 0.39 0.47 0.70 

BDTI 0.58 0.28 0.52 0.06 0.34 

BDTI TD7 1.03 0.28 0.50 0.53 0.81 
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BDTI 1998-2010 0.60 0.29 0.54 0.06 0.35 

BDTI 2010-2023 0.72 0.35 0.62 0.10 0.45 

The multifractality analysis of the Baltic Clean Tankers market in Figure 6 (a) reveals significant 

insights into its dynamics. A multifractality value of 0.90 for the original data points to a highly 

complex market with pronounced multifractal behavior due to strong correlations at various time 

scales. A lesser, but still substantial, multifractality value of 0.61 in the surrogated data indicates that 

multifractality persists without temporal correlations, suggesting that price change distributions 

inherently contribute to market complexity. The shuffled data's multifractality value at 0.48, the 

lowest observed, illustrates the crucial role of temporal ordering in market behavior. These values 

collectively attest to the market's intricate and nonlinear interaction across scales [43]. 

The multifractality analysis for the Baltic Clean Tankers in Figure 6 (a) and (b), inclusive of the 

specific 37000 tonnage route, elucidates distinct market dynamics. The original data for the entire 

market and the targeted route yield high multifractality values of 0.9 and 0.86 respectively, 

underscoring considerable multifractal behavior. However, subsequent surrogated and shuffled data 

yield diminished multifractality values of 0.61 and 0.48 for the broader market, and 0.39 and 0.23 for 

the specific route, respectively. These reductions upon data modification suggest inherent temporal 

organization as a key contributor to multifractality [26–28,43]. The analysis underscores the influence 

of data structure on the assessment of market complexity and multifractal characteristics. 

The multifractal analysis of the Baltic Dirty Tankers market data in Figure 6 (c) reveals varying 

degrees of market complexity. An original multifractality value of 0.58 indicates a moderate complex 

market structure with self-similarity across time scales. The surrogated data's 0.52 multifractality 

value suggests that nontrivial scaling behavior persists even after the removal of some structural 

correlations. This denotes inherent complexity within the price change distribution itself [14,26–28]. 

A notably lower multifractality value of 0.28 in the shuffled data emphasizes the importance of 

chronological order, indicating that temporal organization significantly contributes to the market’s 

multifractal nature [43]. 

The multifractal analysis for the Baltic Dirty Tankers market in a specific route TD7 at the 80000-

tonnage level in Figure6 (d) exhibits a high degree of market complexity, with original data yielding 

a multifractality value of 1.03. This denotes a rich multifractal structure and extensive self-similarity 

across temporal scales. Upon surrogate treatment, multifractality is markedly reduced to 0.5, 

indicating a diminished multifractal behavior upon the exclusion of certain structural and temporal 

correlations. Further declines to a multifractality value of 0.28 in the shuffled data underscore the 

pivotal role of temporal sequencing in fostering multifractal properties. 

3.4. Predictive Applications: Using BDTI to Predict Brent Oil Prices 

3.4.1. Understanding a Complexity for the Specific Periods and Motivation for Predictive Modeling 

The comparative assessment of the Baltic Dirty Tankers from the specified periods of 1998 to 

2010 and 2010 to 2023 in Figure 6 (e) and (f) may provide valuable insights into the temporal changes 

in multifractal nature and complexity within the market dynamics. The original multifractality value 

of 0.72 in the first period decreases to 0.60, suggesting a potential reduction in complexity and 

multifractal behavior. For the period of 1998 to 2010, the surrogated data yields a multifractality value 

of 0.62, indicating a decrease in complexity compared to the original data; similar for the period from 

2010 to 2023. The shuffled data provides additional insights into the temporal changes in 

multifractality [26,43]. For the period of 1998 to 2010, the shuffled data yields a multifractality value 

of 0.35, reflecting a notable reduction in complexity compared to the original and surrogated data. 

Likewise, for the period from 2010 to 2023, the value further decreases to 0.29, signaling a continued 

decrease in complexity during the later period. Overall, the period from 2010 to 2023 exhibits higher 
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multifractality values across all data types, indicating stronger multifractal nature and greater 

complexity [16,26–28]. 

These findings prompted our interest in understanding the underlying driving factors behind 

this marked increase in market complexity post-2010. To gain deeper insights, we apply a novel 

predictive approach using freight rates (BDTI) to predict Brent oil prices during distinct periods, 

aiming to explore the predictive power of freight rates in different market phases. 

Traditionally, most studies have focused on forecasting freight rates based on oil price 

movements, which aligns with the conventional economic logic that oil prices drive downstream 

costs, including shipping. However, freight rates can be highly responsive to immediate changes in 

supply-demand dynamics, vessel utilization rates, and macroeconomic shifts, making them 

potentially valuable indicators for predicting oil prices as well. Thus, in this study, we take an 

innovative stance by attempting to predict oil prices from freight rates, with the intention of 

providing additional insights and decision-making tools for governments, businesses, and individual 

investors, especially during periods of significant market volatility and complexity. 

3.4.2. Case Study: Prediction for Period III (2019-01-01 - 2021-01-01) 

The choice of Period III (2019-01-01 to 2021-01-01) as the initial focus for analysis does not carry 

any special significance. In this study, we consider all four structural break periods to be equally 

important. Thus, selecting any of them as the starting point for analysis would have been equally 

valid. Period III was simply chosen at random as the first period to examine. 

The predictive process was performed using Baltic Dirty Tanker Index (BDTI) as the main 

feature, and the following additional features were systematically introduced to improve prediction 

performance: 

Crisis Period Indicator: An indicator variable was introduced to capture the effect of the 2020 

COVID-19 pandemic, particularly between December 2019 and June 2020. This indicator took the 

value of 1 during the crisis and 0 otherwise, to help the model account for the dramatic market shifts. 

Multifractal Features: Multifractal characteristics of the BDTI time series were extracted using 

the MFDFA method. We computed the Hurst exponent for various q-values (ranging from -5 to 5) to 

quantify the complexity and self-similarity within the time series. 

To combine these features for predicting Brent oil prices, we employed a stacking regression 

model, consisting of the following base learners: 

XGBoost: Capable of handling high-dimensional feature spaces and mitigating overfitting, 

XGBoost was used with 300 estimators, a learning rate of 0.01, and a maximum depth of 3. 

LightGBM: Known for its efficient handling of large datasets, LightGBM was configured 

similarly to XGBoost, to provide complementary strengths in  feature learning. 

CatBoost: Particularly effective in dealing with categorical features and reducing preprocessing 

requirements, CatBoost was employed with 300 iterations and a learning rate of 0.01. 

The predictions from these base learners were then integrated using a Ridge Regression model 

as the meta-learner. This stacking approach allows the model to capture a diverse range of data 

patterns and interactions, improving the robustness of predictions. 

The resulting predictions for Period III are illustrated in Figure 7, where multiple models are 

compared against the actual Brent oil prices. The models include: 

Predicted_Direct: Predictions made using only the BDTI data. 

Predicted_Time_Indicator: Incorporating the crisis time indicator to assess the effect of the 

COVID-19 pandemic. 

Predicted_Multifractal: Including multifractal features derived from the BDTI to understand the 

impact of market complexity. 

Predicted_Multifractal_Indicator: Utilizing both the crisis indicator and multifractal features to 

determine their combined influence. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2025 doi:10.20944/preprints202502.0967.v1

https://doi.org/10.20944/preprints202502.0967.v1


 17 of 26 

 

 

Figure 7. Predictive Results for Brent Oil Prices during Period III (2019-01-01 to 2021-01-01) Using Various 

Models. It is evident that incorporating the crisis period indicator and multifractal features significantly 

enhances the model's prediction accuracy for Period III. 

While the Predicted_Direct model shows some deviations, particularly during major 

disruptions, the inclusion of multifractal features (Predicted_Multifractal) allows the model to better 

capture the intricate market dynamics, resulting in predictions that align more closely with the actual 

price trends. The Predicted_Multifractal_Indicator model demonstrates the best performance, 

especially during the high-volatility period in early 2020 when the COVID-19 pandemic caused a 

sharp drop in oil prices. 

3.4.3. Predictive Results and Analysis for Period I - IV 

Following the same methodology as applied in Period III, we conducted predictive modeling 

for Periods I, II, and IV, with the results summarized as follows: 

Period I (2006-01-01 - 2010-12-31): The 2008 Global Financial Crisis had a profound effect on both 

freight rates and oil prices. Figure 8 shows the predictive results, indicating that the inclusion of 

multifractal features and crisis indicators significantly improved prediction accuracy compared to 

the direct approach. 

Period II (2013-06-30 - 2016-06-30): During the 2014 Shale Oil Revolution, the predictive model 

that included multifractal features outperformed the direct prediction, as shown in Figure 9. The 

Predicted_Multifractal_Indicator model captured the complex fluctuations caused by shifts in the 

energy supply landscape more effectively. 

Period IV (2021-01-01 - 2024-01-12): The 2022 Russia-Ukraine conflict introduced significant 

geopolitical uncertainty. Figure 10 illustrates that the Predicted_Multifractal_Indicator model again 

provided the best fit, with reduced error margins and greater alignment with actual price 

movements, highlighting the value of multifractal features during periods of high volatility. 
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Figure 8. Predictive Results for Brent Oil Prices during Period I. 

 

Figure 9. Predictive Results for Brent Oil Prices during Period II. 
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Figure 10. Predictive Results for Brent Oil Prices during Period IV. 

3.4.4. Robustness Analysis of Prediction Methods 

Above, we presented several intuitive figures that provide a visual comparison of the predictive 

performance of different models across the four periods. Now, we proceed to a more detailed 

quantitative analysis to corroborate these visual observations with empirical metrics. Specifically, we 

focus on the predictive accuracy as measured by the Mean Squared Error (MSE) and R² values, which 

offer critical insights into the effectiveness of incorporating multifractal features and crisis indicators 

into the forecasting models. 

Figure 11 presents the Mean Squared Error (MSE) values for both the training and test sets across 

all periods, demonstrating the improvement in predictive accuracy after incorporating multifractal 

features. As shown in the figure, the inclusion of these features significantly reduces the MSE values 

across all four periods, with the greatest improvements observed in Periods II, III, and IV. This 

suggests that the predictive models benefited substantially from the added complexity of multifractal 

characteristics, especially in the post-2010 periods where market dynamics became increasingly 

intricate. 

 

Figure 11. MSE values for training and test sets across Period I-IV. 
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Figure 12 displays the R² scores for both the training and test sets, providing insights into the 

proportion of variance explained by the models. The predictive models with multifractal features 

exhibit substantially higher R² values compared to the direct prediction models. Specifically, for 

Periods II, III, and IV, the Predicted_Multifractal_Indicator model achieves R² values close to or 

exceeding 0.9, indicating a strong fit to the actual data. Interestingly, the enhancement in predictive 

performance is less pronounced for Period I, suggesting that the multifractal characteristics during 

this earlier period were less influential compared to the more recent periods. This aligns with our 

previous observations that post-2010 periods exhibited greater multifractality and complexity, 

thereby benefiting more from the incorporation of multifractal features. 

 

Figure 12. R² scores for training and test sets across Period I-IV. 

To provide a more comprehensive understanding, Figure 13 illustrates the substantial 

percentage improvements in MSE and R² when multifractal features are incorporated into the 

predictive models for each period. For instance, during Period II, the R² for training improves by 

approximately 182.54%, and the R² for testing by 167.62%, highlighting a dramatic enhancement in 

model performance when multifractal features are added. Similarly, Period III shows an 88.60% 

improvement in training R² and a 117.14% increase in testing R², emphasizing the importance of 

capturing complex dynamics during high volatility phases, such as those triggered by the COVID-19 

pandemic. Notably, the improvements in Periods II, III, and IV are significantly greater compared to 

Period I, which only shows modest gains, reinforcing the notion that market dynamics after 2010 

became more intricate and multifaceted. This distinct difference in performance can be attributed to 

increased globalization, advancements in technology, and heightened geopolitical sensitivity after 

2010, all contributing to more complex and unpredictable market interactions. These findings 

underscore that the multifractal characteristics are especially relevant for capturing the nuances of 

post-2010 market behavior, making the predictive models significantly more effective for later 

periods. 
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Figure 13. Improvements in Mean Squared Error (MSE) and R² for Training and Testing Sets Across Four Periods 

After Incorporating Multifractal Features. 

Such findings are critical, as they highlight the evolving nature of the oil market and underscore 

the importance of adapting predictive methodologies to account for changes in market structure and 

dynamics. The superior performance of models incorporating multifractal features during periods of 

heightened market complexity suggests that traditional linear models may be insufficient for 

capturing the nuanced behaviors of modern financial markets. By utilizing multifractal analysis, 

stakeholders can achieve a deeper understanding of market dynamics and enhance their decision-

making processes, particularly during times of instability. 

4. Discussion of Results 

From the discussion, one may conclude that this study successfully unravels the multifaceted 

complexity of the Baltic Tanker Freight market using multifractal analysis techniques and advanced 

machine learning models. By integrating the Baltic Dirty Tanker Index (BDTI) as a leading indicator, 

we demonstrate that freight rates can effectively predict Brent oil prices, particularly during 

heightened market volatility caused by global crises such as the 2008 Financial Crisis, the 2014 Shale 

Oil Revolution, the COVID-19 pandemic, and the Russia-Ukraine conflict. The findings reveal that 

multifractal characteristics, such as the generalized Hurst exponent and multifractal spectrum, 

significantly enhance the predictive accuracy of the models, outperforming traditional approaches 

that rely solely on linear or unidirectional relationships [7,9]. Moreover, the stacking regression 

framework combining XGBoost, LightGBM, CatBoost, and Ridge Regression validates the robustness 

of the proposed methodology, aligning closely with contemporary machine learning advancements 

[26,62–64]. These results provide actionable insights for policymakers, energy companies, and 

investors, emphasizing the utility of multifractal analysis in managing systemic risks and navigating 

energy market volatility [4,6]. 

Comparison of the findings with those of other studies confirms the progressive advantage of 

integrating multifractal analysis with predictive modeling. Previous research has largely focused on 

forecasting freight rates based on oil prices, reflecting a conventional perspective of oil price-driven 

costs in shipping [17,18]. However, this study advances the discussion by demonstrating that BDTI 

provides valuable information for predicting Brent oil prices. This finding aligns with recent studies 

that highlight the sensitivity of freight rates to immediate supply-demand imbalances and 

macroeconomic shocks [74]. Unlike earlier studies that overlooked nonlinear dynamics, the inclusion 
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of multifractal features offers a substantial improvement in capturing complex market behaviors. 

Thus, the predictive performance achieved in this study reflects methodological progress compared 

to traditional econometric models or linear approaches, which often fail under volatile conditions 

[12,18]. 

Nevertheless, there are limitations to the current study that warrant consideration. First, while 

the study leverages BDTI and multifractal features, it does not account for other exogenous factors 

such as regional economic policies, environmental regulations, or vessel fleet dynamics, which may 

further influence oil and freight markets [8]. Second, the analysis is constrained to the Baltic indices 

(BDTI and BCTI), which, although significant, may not fully represent global tanker market 

dynamics. Third, the use of historical data assumes that past patterns remain valid predictors for 

future trends, which may not hold during unprecedented disruptions or structural market changes 

[19,33]. Finally, the reliance on machine learning models, though effective, introduces the risk of 

overfitting, particularly when applied to smaller or less volatile datasets [51,52]. 

To address these limitations, several potential solutions can be proposed. Expanding the dataset 

to include additional variables such as global trade volumes, bunker fuel prices, or geopolitical risk 

indices may enhance the robustness of the models [19,21]. Incorporating real-time data streams or 

satellite-based tracking of vessel movements could also improve predictive accuracy [52,53]. 

Furthermore, the application of hybrid methods, combining deep learning approaches like Long 

Short-Term Memory (LSTM) networks with multifractal analysis, could address the limitations of 

traditional machine learning models. 

Research questions that could be asked include whether integrating additional market 

indicators, such as energy derivatives or macroeconomic indicators, could further refine predictive 

outcomes [14]. One important future direction of this research is to explore the interplay between 

multifractality and emerging market phenomena, such as carbon emissions trading and the adoption 

of alternative fuels in shipping. Moreover, investigating the applicability of multifractal analysis in 

other energy markets, such as natural gas or LNG freight rates, may provide deeper insights into the 

broader dynamics of energy transportation [16,19]. These experimental research results will 

hopefully serve as useful feedback information for future iterations of predictive frameworks. 

In conclusion, this study demonstrates the significant potential of multifractal analysis and 

machine learning in accurately forecasting energy prices during periods of high volatility. The 

findings not only advance the theoretical understanding of tanker freight markets but also provide 

practical tools for stakeholders to manage uncertainty and enhance decision-making. By successfully 

integrating multifractal features and advanced predictive models, this study offers a robust 

framework that can serve as a foundation for future research. Moving forward, further refinements 

and broader applications of the proposed methodology may uncover additional insights into the 

intricate relationships shaping global energy markets, paving the way for more resilient and adaptive 

forecasting strategies. 

5. Conclusions 

This study utilizes MF-DMA methodology to unravel the multifaceted nature of the Baltic 

Tanker freight market. Initial findings suggest an overarching multifractal nature within the market, 

with total multifractality reaching up to 0.90 in the Clean Tankers market. This complexity arises 

partly from a fat-tailed probability distribution (0.48) and non-linear correlations (0.29), indicating 

sophisticated temporal organization and inherent volatility as core components of market behavior. 

A closer examination of a specific route (TC2, 37,000-tonnage) shows that the market retains its 

multifractal attributes, albeit with reduced magnitudes upon data manipulation. This consistent 

reduction in multifractality values—evident upon shuffling and surrogating—reinforces the 

significant contribution of temporal arrangement to the market's complex structure. The world clean 

tanker market reflects a tight supply-demand balance, with freight rates fluctuating significantly in 

response to external changes. 
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In the case of the Dirty Tankers market, the study highlights moderate complexity, with an 

original multifractality value of 0.58, diminishing under surrogate and shuffled scenarios. This 

suggests that chronological sequencing is crucial for preserving multifractal properties in this 

segment. This assertion is further substantiated by focusing on specific routes like TD7 (80,000-

tonnage), where multifractality peaks at 1.03 but declines markedly when temporal and structural 

correlations are disrupted. 

The transition in multifractal dynamics between 1998–2010 and 2010–2024 reflects a shift from 

crisis-induced market behaviors to diversified and complex dynamics influenced by technological 

advancements, regulatory changes, and environmental policies. 

Building on these findings, the study proposes a novel predictive framework that integrates the 

Baltic Dirty Tanker Index (BDTI), multifractal features, and crisis period indicators to forecast Brent 

oil prices during periods of heightened volatility. An analysis of four major global events—the 2008 

Financial Crisis, the 2014 Shale Oil Revolution, the COVID-19 pandemic, and the Russia-Ukraine 

conflict—illustrates how external factors influence market dynamics and energy prices. The 

advanced machine learning models employed, including stacking regression with XGBoost, 

LightGBM, CatBoost, and Ridge Regression, enhance the robustness and reliability of predictions. 

These methods highlight the potential of freight rates as leading indicators for energy markets, 

providing actionable insights for policymakers and market participants. 

In conclusion, this study combines multifractal analysis and predictive modeling to provide a 

comprehensive framework for understanding and navigating the complexities of the Baltic Tanker 

freight market. By revealing the evolving multifractal dynamics and demonstrating the predictive 

power of freight rates, the research underscores the importance of integrating multifractal 

characteristics into forecasting models. The findings offer practical implications for strategic decision-

making, operational resilience, and risk management in the shipping and energy industries. Future 

studies should build on this framework by incorporating additional datasets, refining predictive 

algorithms, and exploring the interplay between multifractality and other market indicators to 

further enhance prediction accuracy and application scope. 
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