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Simple Summary: The vision transformer has been recently spread out to enhance segmentation accuracy, an 
active area of research and developments in radiotherapy treatment planning. We found that the new network 
architecture only did not guarantee improvement. Conventional CNN-based networks struggled with 
expanding to tumors from normal organs due to local geometric dependence and difficulty in the hyper-
parameter selection. As seen in the development and success of nnU-Net, we emphasized the importance of 
hyper-parameter tuning and optimization for the vision transformer. We applied our proposed framework 
based on VT U-Net v.2 to the prostate target volume segmentation, followed by extensively comparing its 
performance in segmentation accuracy against the other five competing deep neural networks through 4-fold 
cross-validation using CT images. 

Abstract: U-Net, based on a deep convolutional neural network (CNN), has been clinically used to au-to-
segment normal organs and potentially target volumes. However, CNNs with local geometric dependencies 
may limit the accuracy of segmentation. Additionally, the performance of CNNs can vary depending on the 
selection of network hyper-parameters, which was mitigated by the proposition of nnU-Net. We chose a vision 
transformer architecture called VT U-Net, which features a self-attention excluding the convolution layer, to 
overcome the limitations of CNNs by utilizing global geometric information of images. The VT U-Net v.2 
became more powerful thanks to the adaptive hyper-parameter optimizer embedded in nnU-Net. However, 
despite leveraging the benefits of nnU-Net, VT U-Net v.2 still had additional network hyper-parameters that 
needed to be optimally chosen. Accordingly, among various hyper-parameters, this study attempted to find 
the optimal combination of the patch size and the embedded dimension regarding the transformer. From the 
4-fold cross-validation, the modified VT U-Net v.2 showed the highest average performance for planning target 
volume (PTV) segmentation among the investigated networks. Though nnU-Net was based on convolution 
layers, the adaptive hyper-parameter optimizers turned out to enhance the performance. It was also confirmed 
that network hyper-parameters affected the segmentation accuracy of vision transformers. 

Keywords: transformer; hyper-parameter selection; planning target volume; auto-segmentation; 
prostate cancer; VT U-Net v.2 

 

1. Introduction 

Segmentation of tumors and normal organs is a crucial procedure in radiotherapy (RT) treatment 
planning because it shows the amount of radiation delivered to the target volume and the organs 
delineated in the optimized plan. However, this segmentation is often time-consuming and labor-
intensive, requiring a steep learning curve. Furthermore, despite several automated methods 
proposed over the past few decades, their segmentation accuracy has been inconsistent, primarily 
due to their reliance on a limited number of patient cases [1–4]. Fortunately, the advent of deep neural 
networks empowered by advanced computing technology, particularly graphical processing units 
(GPUs), has opened up new possibilities for medical image segmentation [5,6]. This utilization of 
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deep neural networks has led to a learning-based approach, with algorithmic development and 
assessment carried out using a significant amount of data divided into training and testing phases. 
Additionally, convolutional neural networks (CNNs) have been created by incorporating 
convolution operators into deep neural networks, enabling the training of networks using 2D or 3D 
images [7,8]. 

U-Net has succeeded in various CNN applications, particularly in medical image processing, 
using the convolutional layers and the skip connections between the encoder and decoder [9]. Among 
these applications, the normal organ segmentations in RT have been the most active area of research 
and development [10,11], resulting in the current availability of several software options for auto-
segmentation. However, CNN-based frameworks have yet to be widely expanded to tumor 
segmentation while mainly focusing on segmenting normal organs in most cases [12]. One of the 
reasons for this limitation is the inherent challenges and variations in tumor segmentation. For 
example, unlike normal organs, tumors in medical images lack clear gradients or typical 
characteristics regarding shape, size, or location. Another reason is the shortcomings of CNN-based 
architectures, including the difficulty in optimizing network hyper-parameters and the excessive 
dependence on local imaging information. For example, there are hyper-parameters such as image 
size, learning rate, the depth of the network, and the kernel size of CNN that need to be determined 
by users, which can affect the segmentation accuracy. Additionally, the convolutional layers of CNN 
in the encoders and decoders extract and propagate the image features using a small kernel matrix, 
typically 3×3, which limits the exploration of the global spatial information of the images.  

Several studies have addressed the drawbacks of CNN-based models for medical image 
segmentation. Although various U-Net variants have been developed to enhance segmentation 
accuracy, several studies by Isensee et al. in 2018 and 2021 showed that a well-trained U-Net was still 
the most effective approach for achieving better segmentation accuracy [13,14]. Furthermore, their 
studies have confirmed that it was true by completing the well-trained U-Net by the hyper-parameter 
optimization on nnU-Net. Meanwhile, a new type of network architecture, the transformer, has been 
introduced and actively developed in the context of deep learning. Transformers extract global and 
remote semantic information, crucial for dense prediction tasks, especially for 3D medical image 
segmentation [15,16]. Unlike CNNs, transformers suppress irrelevant areas of the input image and 
highlight salient features useful for a specific task [17]. The combination of CNN and transformer has 
been studied in the encoders of 2D and 3D networks, such as TransUNet and Unetr [18,19]. In 
TransUNet, CNN feature maps feed into the encoder of the transformer, while in Unetr, the features 
extracted from the transformer enter CNN layers. Recently, fully transformers with U-Net shapes 
have been introduced in one 2D and two 3D networks: Swin-Unet [16], nnFormer (almost fully) [20], 
and VT U-Net [21,22]. These fully transformers have the characteristics of a hierarchical shifted 
window in the U-shaped networks. 

This study aims to enhance the precision of auto-segmentation for training networks using the 
whole pelvis target volume for prostate cancer patients, which contains extensive lymph nodes and 
lacks a clear gradient in image intensity. To achieve this goal, the study focused on using a new 
network architecture called a vision transformer, which can overcome the defects of CNN-based 
networks. Furthermore, the study aims to identify the optimal network hyper-parameters that may 
impact segmentation accuracy. The VT U-Net v.2 was selected for the whole pelvis planning target 
volume (PTV) segmentation for prostate cancer patients as featured in 1) a U-shaped transformer 
network architecture consisting of fully self-attention blocks and 2) a function of semi-hyper-
parameter optimization for transformer, based on nnU-Net. Since the VT U-Net v.2 only partially 
accounted for some network hyper-parameters necessary for the vision transformer, the proposed 
study exploited additional hyper-parameter tuning and a newly defined loss function to address this 
limitation. It was demonstrated that the fully vision transformer network architecture integrating 
optimally chosen network hyper-parameters helps improve the performance in the whole pelvis PTV 
auto-segmentation for prostate cancer patients relative to CNN-based. 
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2. Materials and Methods 

2.1. Transformer VT U-Net 

This work adopted the fully vision transformer for prostate target volume auto-segmentation, 
specifically the VT U-Net featuring self-attentions without convolution layers in a U-shaped encoder 
and decoder. Self-attention is a crucial component of the transformer, enabling the representation of 
the degree of impact as a correlation by shifting a single sequence to different sequences, thus 
handling the global receptive field intrinsically [23–26]. Furthermore, instead of updating the 
convolution filters as typically done in a CNN [27], the self-attention mechanism updates three 
matrices in parallel, namely query (Q), key (K), and value (V) vectors. 

Among hyper-parameters required for the vision transformer, the embedded dimension was the 
number of channel dimensions for linearly projecting input data into the first feature map. The patch 
size represented the size of volumetric data for partitioning during training. The batch size was an 
additional dimension fixed across the epoch, representing the number of input data. The window 
size meant the size of the data operated in self-attention, while the head number referred to the 
number of self-attention units. As shown with a blue line in Figure 1b, the embedded dimension was 
uniformly split by the head number, thus determining the sizes of Q, K, and V vectors feeding into 
the self-attention mechanism. The attention map (ℝே×ே) showed how much attention was given to 
the entire image area to identify which features contributed the most, with N representing the cube 
of the window size. To set the head numbers, we based it on the embedded dimension of the pre-
trained Swin-transformer model [28,29], with (3, 6, 12, 24) set to 96, (4, 8, 16, 32) set to 128, and (6, 12, 
24, 48) set to 192. 

 

Figure 1. (a) VT U-Net architecture, (b) primary hyper-parameters (patch size, embedded dimension, 
and head numbers) in VT U-Net v.2. 

2.2. Optimal Hyper-Parameters Selections for Network Architecture of VT U-Net 

The new vision transformer network architecture with self-attention can help address the issue 
of relying on local geometric imaging information during network training. However, optimal 
network performance can only be guaranteed by carefully selecting network hyper-parameters and 
properly considering architectural details. nnU-Net demonstrated the importance of hyper-
parameter optimization despite being based on convolution layers. The basic concept of nnU-Net 
was to ensure computational efficiency by reflecting the GPU memory budget through their statistics, 
which helped determine essential network hyper-parameters such as patch size of input images and 
batch size, and the number of convolution layers. Additionally, nnU-Net applied the post-processing 
to mainly remove noisy elements and a novel concept of defining the loss function, called deep 
supervision, serving as an overall objective function across the output layers of different resolutions. 

While VT U-Net v.1 did not prioritize hyper-parameter optimizations, it emphasized the new 
network architecture. VT U-Net v.2 was an upgraded version incorporating an adaptive hyper-
parameter optimizer embedded in nnU-Net, rather than revising the network architectures. Table 1 
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summarizes the features of VT U-Net v.1 and VT U-Net v.2, compared to nnU-Net. VT U-Net v.2 
adopted useful features from nnU-Net to improve the performance, mainly oriented to GPU memory 
efficiency, which did not pay much attention to optimizing the hyper-parameters affecting the 
network architecture. It is worth noting that nnU-Net was based on convolution layers and did not 
cover the hyper-parameters needed for vision transformers. Likewise, VT U-Net v.2, referring to 
nnU-Net, did not fully encompass the necessary network hyper-parameters for vision transformers, 
such as embedded dimension, head numbers, and window size, as outlined in Table 1. Additionally, 
it did not provide specific guidelines for the patch size and the number of layers. 

Table 1. Functions regarding optimal network hyper-parameter selection. 

 nnU-Net 
VT U-

Net v.1 
VT U-

Net v.2 

Modified VT 
U-Net v.2  

(Proposed) 

Pre- & post-processing & loss 

AMP 1 o × o o 

Oversampling o × o o 

Post-processing o × o o 

Loss (CE + dice + DS) 2 o × △ o 

Hyper-parameter & architecture 

Batch size o × o o 

Patch size o × × o 

Embedded dimension — × × o 

Head number — × × 

△ 
(adaptive to 
embedded 
dimension) 

Window size — × × × 

Architecture o × △ 
O 

(same as nnU-
Net) 

1 Automatic mixed precision. 2 Cross entropy and deep supervision. 

The same approach as nnU-Net was employed in this study to determine the number of layers 
based on the depth of the network, and a window size of 7, consistent with previous transformer-
based networks, was set. Based on the pre-trained models, the embedded dimension and head 
numbers were adjusted accordingly. The embedded dimension and patch size played a vital role in 
determining the dimensional specifications of the first feature input into the network. Of the two, the 
patch size was crucial since it directly influenced the trade-off between global and local information 
processing in the network. Larger patch sizes captured more global context for recognizing larger-
scale patterns and structures in the image, while smaller ones caught more local fine-grained details. 
Therefore, the first feature extracted from various patch sizes included other contextual information 
that may affect the performance of the transformer. Also, the VT U-Net v.2 did not have deep 
supervision in defining the loss function. To address this, the modified VT U-Net v.2 added an 
auxiliary segmentation output to depthwise layers by applying a 1x1x1 convolution to enable this 
deep supervision to alleviate the vanishing gradient issue by effectively utilizing the multi-level loss 
fusion [30–33]. Figure 2 illustrates the proposed network architecture, including pre-processing the 
given input images, post-processing the generated output, the structure of the deep supervision, and 
the hyper-parameter selection. Table 1 outlines the differences between VT U-Net v.2 and our 
proposed framework, mainly regarding hyper-parameter optimizations. 
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Figure 2. The main framework of the proposed network based on VT U-Net v.2 for auto-segmentation 
of the whole pelvis prostate planning target volume (PTV): (a) adaptive optimizing workflow in pre-
processing, (b) deep supervision and post-processing. (c) hyper-parameters and architecture 
optimization considering graphical processing units (GPU) memory efficiency. 

Figure 3 expands on the competence of the proposed framework against several other 
transformer-based networks, such as Swin-Unetr, nnFormer, VT U-Net v.1, and VT U-Net v.2, while 
also illustrating specific features of nnU-Net. The proposed network that modified VT U-Net v.2 had 
the most similarities to VT U-Net v.2, except for including deep supervision and the degree of care 
for hyper-parameters. Additionally, the proposed network differed from nnFormer and Swin-Unetr 
regarding the network architecture (fully transformer vs. a combination of transformer and 
convolution layers) and usage of the pre-trained model. Furthermore, the proposed network 
optimized the embedded dimension higher than the values suggested for tumor segmentation in 
other networks. Finally, while VT U-Net v.2 only partially used an adaptive optimizer oriented from 
nnU-Net, the proposed network handled it more comprehensively, as shown in Table 1. 

 

Figure 3. Diagram of comparison with transformer-based networks (b) and the proposed network (a). 
All diagram components were classified into binary (yes or no). 
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2.3. Patient Cohorts and Data Pre-processing 

This study protocol was approved by the ethics committee/ institutional review board (IRB) of 
the Yonsei University Severance Hospital, Korea (2022-2205-001), which waived the need for 
informed patient consent to the use of patient images. The patient cohort consisted of 160 cancer 
patients who received RT from 2019 to 2020 after being diagnosed with prostate cancer spread in the 
whole pelvis [34,35], which one radiation oncologist retrospectively observed. All data used in this 
work were acquired from a single institution, and the target volume was delineated by an 
experienced radiation oncologist from Yonsei Cancer Center. All patients were treated by intensity-
modulated radiation therapy (IMRT) with a conventional linear accelerator (LINAC) and 
TomoTherapy. Of the 160 patient scans, 20 scans containing barium-contrast bladder and metal-
inserted spine were excluded from training and testing. The remaining 140 scans were divided into 
four sets for 4-fold cross-validation. Each fold consisted of 105 cases for training and 35 for validating 
and testing (10 for validating and 25 for testing the trained network).  

All PTV CT patients were volumetric datasets in three dimensions, with a median shape of 
512×512×250 and median spacing (0.9766, 0.9766, 2). These datasets were resampled to the same target 
spacing (2, 2, 2) and embedded into a 256×256×256 3D volumetric space [36]. After normalizing and 
window leveling [-200, 250] [37–40], to enhance the contrast and texture of soft tissue, the foreground 
of input voxels was selected from the background by intersection with mask voxels images using 
MATLAB R2022a. To increase the number of data for training the network, we augmented the CT 
images (used for training phases) by rotating them randomly from -0.5 to 0.5 in horizontal, vertical, 
and axial directions, contrast transforming them randomly from 0.75 to 1.25, and adding noise 
randomly with a variance ranged from 0 to 0.1. These data augmentations used BatchGenerators 
Library provided by the Division of Medical Image Computing of the German Cancer Research 
Center (DKFZ). 

2.4. Implementation and Evaluation   

The modified VT U-Net v.2 networks were implemented on a personal workstation with dual 
accelerated GPU (NVIDIA 3090, A6000), using Python 3.8 (http://www.python.org) and PyTorch 
1.11.1 (http://www.pytorch.org). The original CT images of 512×512×N voxels had an intensity 
corresponding to the Hounsfield unit (HU), where N ranged from 61 to 375. During training in the 
transformer network, the input images were normalized to a range from 0 to 1 [41]. The network was 
trained using the AdamW optimizer and a modified loss function that combined cross entropy and 
dice loss under deep supervision. The training ran 1300 epochs, each containing 250 iterations and 
early stopping. The learning scheduler used PolyLR with a learning rate of 1×10-4, determined 
empirically. Table 2 specifies the network hyper-parameters used in common for both CNN-based 
and transformer-based networks. 

Table 2. Hyper-parameters of convolutional neural network (CNN), hybrid and transformer-based 
networks. 

Network Learning rate Optimizer  Loss function Epoch 

3D U-Net 1E-04 Adam Dice + BCE 300 

nnU-Net 1E-02 SGD Dice + CE + DS 150 ( ×250) 

Swin-Unetr 1E-04 AdamW Dice + CE 400 - 1000 

nnFormer 1E-02 SGD Dice + CE + DS 1300 ( ×250) 

VT U-Net v.1 1E-04 Adam Dice + BCE 400 - 500 

VT U-Net v.2 1E-04 AdamW Dice + CE 1300 ( ×250) 

Proposed 1E-04 AdamW Dice + CE + DS 1300 ( ×250) 
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The fully transformer and hybrid networks required the determination of additional hyper-
parameters, including the patch size, network architecture, and hyper-parameters, as detailed in 
Table 3. The hyper-parameters for the existing networks were selected as the values recommended 
in the published manuscripts. However, the process of hyper-parameters tuning explained in the 
subsequent section led to the selection of the embedded dimension (128) and patch size (128×128×128) 
for the modified VT U-Net v.2. The number of heads was adaptively chosen for considering the 
embedded dimension and the pre-trained model. Meanwhile, the window size followed the Swin-
Unetr and VT U-Nets settings and was not optimized. 

Table 3. Transformer hyper-parameters of hybrid (CNN and transformer) and transformer-based 
methods. 

Network 
Embedded 

dimension 
Patch size 

Number 

of blocks 

Window 

size 

Number of 

heads 
Parameters 

Swin-

Unetr 
48 96×96×96 [2,2,2,2] [7,7,7,7] [3,6,12,24] 62.8M 

nnFormer 96 128×128×128 [2,2,2,2] [4,4,8,4] [3,6,12,24] 37.7M 

VT U-Net 

v.1 
96 128×128×128 [2,2,2,1] [7,7,7,7] [3,6,12,24] 20.8M 

VT U-Net 

v.2 
96 128×128×128 [2,2,2,1] [7,7,7,7] [3,6,12,24] 30.6M 

Proposed 128 128×128×128 [2,2,2,1] [7,7,7,7] [4,8,16,32] 36.7M 

The proposed transformer architecture, which underwent additional hyper-parameter 
optimization on the VT U-Net v.2, was compared to several other networks, including the 
conventional 3D U-Net [42], nnU-Net, Swin-Unetr, nnFormer, VT U-Net v.1, and VT U-Net v.2. The 
segmentation accuracy of the proposed network was assessed using the dice similarity coefficient 
(DSC) and 95% Hausdorff distance (HD95) compared to the other networks. The HD95 was 
calculated using the 95th percentile of the lengths to minimize a small subset of outliers [19,43]. 

3. Results 

3.1. Quantitative Analysis for PTV Auto-Segmentation 

Table 4 shows the quantitative analysis of the segmentation accuracy of the networks used for 
the whole pelvis PTV segmentation for prostate cancer patients. On average, the modified VT U-Net 
v.2 outperformed the other networks in terms of DSC and HD95 across the 4-fold cross-validation. 
The unmodified VT U-Net v.2 was expected to perform similarly to its modification in each fold. 
However, some slight differences arose due to additional hyper-parameter optimization (patch size 
and embedded dimension) and the adoption of deep supervision in the loss function. Swin-Unetr, 
which combined CNN and transformer, showed competitive performance against the proposed 
network. It is worth noting that VT U-Net v.1, which consisted of the fully transformer network 
architecture, resulted in poor segmentation accuracy. Meanwhile, nnU-Net occasionally displayed 
comparable performance to the proposed network, despite being based on convolutional blocks. 
Consequentially, it implied that the hyper-parameter optimization for the specific network 
architecture would be important, as did the type of network architecture for auto-segmentation. 
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Table 4. Segmentation results of CNN, hybrid, and transformer architectures on PTV dataset. ↑ means 
higher is better. The best results are bolded while the second best are underlined, and experimental 
results of baselines were acquired from 3D U-Net. All experiments were run as 4-fold cross-validation. 

Method 
Dice similarity coefficient (DSC) ↑ 95% Hausdorff distance (HD95) ↓ 

Fold1 Fold2 Fold3 Fold4 Mean Fold1 Fold2 Fold3 Fold4 Mean 

3D U-Net 80.96 77.98 76.46 76.75 
78.0**

* 
3.23 4.19 5.55 4.45 4.4*** 

nnU-Net 83.95 82.02 79.25 82.44 81.9* 2.70 3.60 5.14 2.94 3.6* 

Swin-Unetr 82.68 81.87 79.47 83.06 81.8* 3.00 3.65 4.97 2.75 3.6 

nnFormer 83.31 81.31 79.85 82.39 81.7** 2.80 3.78 5.13 3.12 3.7* 

VT U-Net 

v.1 
80.21 76.65 75.08 76.25 

77.0**

* 
3.35 4.34 5.44 3.93 4.3*** 

VT U-Net 

v.2 
84.12 82.30 79.82 82.61 82.2** 2.72 3.60 5.04 3.01 3.6* 

Proposed 84.20 82.65 80.13 82.82 82.5 2.49 3.52 4.98 3.01 3.5 

Table 5 presents the statistical analysis of the proposed network compared to other networks for 
the 25 testing cases in each fold and the 100 cases in the combined fold 1 to 4, represented by the p-
value. In all folds combined, the differences between the proposed network and other networks were 
statistically significant (p<0.05) in most cases for DSC and HD95, except for HD95 against Swin-Unetr. 
In the fold-specific comparison, the nnU-Net and VT U-Net v.2 were highly competitive with the 
proposed network. VT U-Net v.2, the origin of the proposed network, showed comparable results, 
possibly due to the relatively small sample size. Meanwhile, the nnU-Net demonstrated the 
effectiveness of the hyper-parameter optimization in statistical analysis and the averaged outcomes. 
In a single testing case, Figure 4 illustrates the segmented contours of the whole pelvis prostate PTV 
from the modified VT U-Net v.2 and nnU-Net, along with the ground truth. It turned out that the 
two networks performed similarly, while the difference was found in the transition area from the 
lymphatic nodes to the prostate tumor bed, as highlighted by the dotted yellow. 

Table 5. Statistical analysis of CNN, hybrid, and transformer architectures. The P-value of the models 
< 0.05 indicates that the performance difference is statistically significant. 

Method 

DSC HD95 

Fold

1 

Fold

2 

Fold

3 

Fold

4 

All 

folds 

Fold

1 

Fold

2 

Fold

3 

Fold

4 
All folds 

3D U-Net 
< 

.001 

< 

.001 

< 

.001 

< 

.001 

< 

.001 
0.001 

< 

.001 
0.004 

< 

.001 
< .001 

nnU-Net 0.410 0.126 0.255 0.206 0.040 0.070 0.473 0.122 0.479 0.080 

Swin-Unetr 0.022 0.020 0.030 0.339 0.020 0.007 0.123 0.091 0.392 0.210 

nnFormer 0.046 0.013 0.389 0.122 0.010 0.028 0.116 0.468 0.181 0.020 

VT U-Net v.1 
< 

.001 

< 

.001 

< 

.001 

< 

.001 

< 

.001 

< 

.001 

< 

.001 
0.050 

< 

.001 
< .001 

VT U-Net v.2 0.331 0.051 0.117 0.106 0.010 0.426 0.448 0.170 0.480 0.090 
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Figure 4. Qualitative analysis of the modified VT U-Net v.2 and nnU-Net for PTV auto-segmentation. 
The top, bottom, and joint in PTV made a difference in performance in both models (yellow). (Upper 
row: original images, bottom row: enlarged view). 

3.2. Hyper-parameter Tuning 

In investigating the impact of hyper-parameter selections, the patch size varied from 96×96×96 
through 128×128×128 to 160×160×160 on the modified VT U-Net v.2. The embedded dimension was 
also chosen carefully, with options 96, 128, and 192, based on the corresponding values assigned to 
the pre-trained networks. In addition, as stated in the preceding section, we adaptively tuned the 
head numbers regarding the embedded dimension, and the window size was 7, as in the previous 
transformer-based networks. 

Table 6 presents the DSCs and HD95s for various combinations of patch size and embedded 
dimension, computed over four different folds. Although there were some exceptional cases, the 
proposed network achieved the largest DSC and the lowest HD95 when the patch size was 
128×128×128, and the embedded dimension was 128. It was also found to have a trend that a 
combination of the large patch size (160×160×160) of the input for the network and the smaller 
embedded dimension (96 or 128) or vice versa yielded greater segmentation accuracy. When 
averaging DSCs and HD95s for the testing cases belonging to folds 1 through 4, the selected 
combination of patch size of 128 for three dimensions and the embedded dimension of 128 seemed 
more explicit against the other possible combinations shown in Figure 5. Moreover, there was a slight 
indication that the patch size of 128 was a stronger constraint for enhancing the segmentation 
accuracy relative to the embedded dimension. Table 7 lists the p-values following the statistical 
analysis between the selected combination and the others. In most cases, the selected combination 
had statistically significant differences against the combinations in a consistently exceptional case for 
DSC and HD95 criterion. In the statistical analysis, however, it was difficult to discern which network 
hyper-parameter affected the segmentation accuracy the most. 

Table 6. Hyper-parameter optimization in the proposed network (the modified VT U-Net v.2). DSC 
and HD95 were measured 4-fold. 

Hyper-parameter DSC ↑ HD95 ↓ 

Patch 

size 

Embedded 

dimension 
Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4 

96 96 83.57 82.09 79.57 82.33 2.72 3.78 5.02 3.12 

96 128 83.78 82.34 79.35 82.25 2.52 3.60 4.98 3.12 

96 192 84.36 82.05 79.52 81.98 2.68 4.03 5.02 3.22 

128 96 83.72 82.32 79.77 82.39 2.73 3.70 5.05 3.07 

128 128 84.20 82.65 80.13 82.82 2.49 3.52 4.98 3.01 
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128 192 83.96 81.89 80.45 82.23 2.63 3.78 4.94 3.44 

160 96 84.16 81.87 79.37 81.87 2.78 3.59 5.07 3.26 

160 128 83.65 82.14 79.65 82.11 2.64 3.80 5.02 3.19 

160 192 84.03 81.54 79.85 81.88 2.61 3.78 4.96 3.25 

Table 7. Statistical analysis (p-value) of hyper-parameter optimization in the proposed network. The 
p-value of the models < 0.05 indicates that the performance difference is statistically significant. 

Hyper-parameter DSC HD95 

Patch size 
Embedded 

dimension 

Fold

1 

Fold

2 

Fold

3 

Fold

4 

All 

fold

s 

Fold

1 

Fold

2 

Fold

3 

Fold

4 

All 

fold

s 

96 96 
0.11

1 

0.01

8 

0.06

1 

0.04

3 

0.00

1 

0.02

1 

0.15

7 

0.14

9 

0.19

0 

0.00

6 

96 128 
0.18

5 

0.14

4 

0.04

3 

0.06

9 

0.00

5 

0.08

7 

0.10

8 

0.47

5 

0.40

5 

0.07

9 

96 192 
0.36

5 

0.08

7 

0.07

2 

0.00

5 

0.00

9 

0.17

9 

0.19

9 

0.38

0 

0.08

1 

0.02

6 

128 96 
0.10

1 

0.12

4 

0.02

1 

0.04

6 

0.00

4 

0.02

6 

0.23

6 

0.22

2 

0.16

6 

0.01

9 

128 192 
0.19

3 

0.11

8 

0.08

9 

0.02

0 

0.05

9 

0.08

9 

0.14

5 

0.30

1 

0.02

1 

0.01

8 

160 96 
0.45

1 

0.15

4 

0.00

8 

0.00

1 

<.00

1 

0.05

8 

0.17

6 

0.07

6 

0.00

5 

<.00

1 

160 128 
0.13

7 

0.06

6 

0.12

7 

0.00

7 

0.00

2 

0.22

8 

0.08

0 

0.38

9 

0.00

7 

0.00

6 

160 192 
0.34

7 

0.02

3 

0.17

3 

<.00

1 

0.00

1 

0.29

4 

0.03

6 

0.17

2 

0.00

3 

0.02

0 

 

Figure 5. Hyper-parameter optimization in the proposed network (the modified VT U-Net v.2). (a) 
DSC and (b) HD95 across nine combinations of embedded dimension (head numbers) and patch size. 
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4. Discussion 

This work was motivated by a hypothesis that the limited application of CNN to auto-
segmentation of PTV may be associated with the inherent characteristics of CNN-based networks. 
Specifically, these networks propagated local imaging features throughout the depth of layers, which 
could limit their ability to capture global imaging information. Therefore, the vision transformer has 
attempted the architectural transformation as an alternative, which can bring in more global imaging 
information by shifting the regional patches to the original patch during network training. Out of 
several variants in transformer architecture, the VT U-Net v.1 with fully transformer layers was 
chosen as a candidate for auto-segmenting the whole pelvis PTV for prostate cancer patients in this 
work to investigate the effectiveness of the architectural transformation. Additionally, it was found 
that the other wave was regarding the hyper-parameter optimization under the name of nnU-Net. 
This approach aimed to identify the optimal combinations of hyper-parameters by considering the 
GPU computational efficiency and the capacity based on their statistics, along with the slightly 
different loss definition called deep supervision. However, the updated VT U-Net (v.2) embraced 
some critical features of nnU-Net, especially in computational efficiency, while it may require further 
modifications to take transformer-oriented hyper-parameters into account. Thus, this work did not 
adopt the given hyper-parameters, but instead adjusted vital parameters such as the patch size and 
embedded dimension (associated with head numbers) to find an optimal combination that can 
enhance the segmentation accuracy.  

As a result of the extensive investigations and comparisons against the existing networks, the 
modified VT U-Net v.2 yielded the highest average DSC and lowest average HD95 quantitatively, 
from the 4-fold cross-validations, followed by VT U-Net v.2, nnU-Net, Swin-Unetr, nnFormer, VT U-
Net v.1, and 3D U-Net. Concerning the statistical analysis, the VT U-Net v.2 and nnU-Net turned out 
to be very competitive results. Unexpectedly, VT U-Net v.1 resulted in poor accuracy despite the fully 
transformer architecture applied. There are two things for discussion. First, the nnU-Net, well-
customized to the CNN-based framework, did not lose its competitiveness in the PTV auto-
segmentation relative to the transformer-based architecture. The auto-segmentation results showed 
remarkable differences between VT U-Net v.1 and VT U-Net v.2, even though they had the same 
network architecture, implying that considering the network hyper-parameters would be significant. 
In addition, we trained the proposed network while varying the important network hyper-
parameters, such as patch size and embedded dimension, under nine different conditions. It involved 
36 training sessions for the 4-fold cross-validation, each lasting 4.2 days. From our observation, the 
variation of two influential network hyper-parameters, patch size and embedded dimension, led to 
non-negligible differences in the segmentation accuracy, as seen in quantitative results and statistical 
analysis of Tables 6 and 7. In conclusion, the VT U-Net v.2 chose the embedded dimension to be 96 
as a default, but we found that to be 128 to ensure better accuracy. Along with them, the patch size 
of 128x128x128 yielded the best results.  

The dataset used in this work consisted of 140 CT scans with a prior on the whole pelvis prostate 
PTV given, which was large enough for the network evaluation. The proposed network was assessed 
using only one case, the whole pelvis prostate PTV segmentation, which did not fully generalize the 
selected network hyper-parameters to be optimal for other clinical sites. However, as in our 
experiment, it was assumed that the chosen hyper-parameters might help set the network hyper-
parameters for the datasets with CT images having analogous imaging resolution and image size. 
Another point for discussion is the resolution of hyper-parameters considered in this work, such as 
the embedded dimensions of 96, 128, and 192 and patch sizes of 96, 128, and 160. The values were 
chosen based on the specifications of the pre-trained models used, as the VT U-Net was based on the 
pre-trained model. There could be slightly different combinations of those parameters with denser 
sampling. Considering the network architecture consisting of down- and up-sampling, the possible 
values are somewhat constrained to 64, 96, 128, 160, and 192, etc., in the given hardware. The results 
found in this work might still be validated in this sense. Finally, the hyper-parameter tuning studied 
in this work could only partially comprehend some network hyper-parameters in the transformer. 
As shown in Table 3, the head sizes were adaptively changed from [3,6,12,24] for each layer to the 
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enlarged extent depending on the embedded dimension, [4,8,16,32] for the embedded dimension of 
128. The window size was fixed to 7 for each layer as most existing transformers selected the value. 
The previous work, nnFormer, attempted to adopt a variable window size across the network layers 
[4,4,8,4] instead of the fixed number 7. Still, it did not provide improved accuracy when applied to 
the proposed network (DSC of 81.9 and HD95 of 3.6). This work focused on hyper-parameters 
associated with the size of the first features entering the vision transformer. In the long run, further 
extensive investigations are required to determine the optimal parameter selections regarding 
network architectures. Although there may be a long journey in the hyper-parameter optimizer for 
the new network architecture, vision transformer, the primary findings and insights discussed in this 
work would be a major milestone in emphasizing the hyper-parameter setting for PTV auto-
segmentation using the transformer-based networks. 

5. Conclusions 

This work proposed a fully transformer-based network to auto-segment the whole pelvis PTV 
for prostate cancer patients with appropriate hyper-parameter selections. It successfully 
demonstrated that the network transformation from the CNN-based to the transformer-based 
approach and the choice of essential hyper-parameters oriented to the transformer be important to 
enhance the segmentation accuracy. Additionally, our proposed network with 128 embedded layers 
and 128×128×128 patch size led to a promising performance compared to other investigated networks 
(CNN, hybrid, and transformer-based networks), with an average DSC of 82.5 and HD95 of 3.5 for 4-
fold cross-validation. 
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