Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2022 d0i:10.20944/preprints202112.0380.v2

Considerations and Challenges for Sex-Aware Drug Repurposing

Jennifer L. Fisher'. Emma F. Jones'. Victoria L. Flanary'. Avery S. Williams'. Elizabeth J.
Ramsey'. Brittany N. Lasseigne'.

1. Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine,
University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
Dr. Brittany N. Lasseigne is the corresponding author (bnp0001@uab.edu).

Abstract:

Sex differences are essential factors in disease etiology and manifestation in many diseases
such as cardiovascular disease, cancer, and neurodegeneration (1). The biological influence of
sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic
differences between males and females) and the lack of biomedical studies considering sex
differences in their study design has led to several policies. For example, the National Institute
of Health’s (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research
(SAGER)) policies to motivate researchers to consider sex differences (2). However, drug
repurposing, a promising alternative to traditional drug discovery by identifying novel uses for
FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that
have sex-specific responses (1,3-5). Sex-aware drug repurposing methods either select drug
candidates that are more efficacious in one sex or deprioritize drug candidates based on if they
are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are
more likely to occur in one sex. Computational drug repurposing methods are encouraging
approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific
drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware
methods currently exist for clinical, genomic, and transcriptomic information (3,6,7). They have
not expanded to other data types, such as DNA variation, which has been beneficial in other
drug repurposing methods that do not consider sex (8). Additionally, some sex-aware methods
suffer from poorer performance because a disproportionate number of male and female
samples are available to train computational methods (3). However, there is development
potential for several different categories (i.e., data mining, ligand binding predictions, molecular
associations, and networks). Low-dimensional representations of molecular association and
network approaches are also especially promising candidates for future sex-aware drug
repurposing methodologies because they reduce the multiple hypothesis testing burden and
capture sex-specific variation better than the other methods (9,10). Here we review how sex
influences drug response, the current state of drug repurposing including with respect to
sex-bias drug response, and how model organism study design choices influence drug
repurposing validation.
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Highlights:

e Genetic, epigenetic, hormonal, immunological, metabolic, and environmental factors
affect sex-biased drug responses.

e Drug repurposing approaches provide a significant advantage over novel drug
development by reducing lengthy and costly clinical trials.

e Advances in compute processing power and optimized algorithms for computational
systems have increased the efficiency and feasibility of computational drug repurposing.

e Multiple challenges still need to be addressed for sex-aware drug repurposing, including
the insufficient understanding of the cause of variation of drug responses due to sex
differences, better performing sex-aware repurposing methods, and the lack of large and
balanced datasets to develop improved methods.

e Future low-dimensional representations of molecular association and network
approaches could significantly impact the field of sex-aware drug repurposing.

Introduction

Attempting to isolate novel therapeutic drug candidates can cost 1 to 2 billion dollars and 12-16
years of research (7). As an alternative, drug repurposing strategies require less investment and
lead to faster Food and Drug Administration (FDA) approval because repurposed candidates
are already FDA-approved for alternative indications. Historically, drug repurposing has been
serendipitous (7). For example, hydroxychloroquine was initially approved only to treat malaria
and later repurposed to treat other autoimmune diseases such as systemic lupus
erythematosus (SLE). This repurposing resulted from retrospective clinical studies that found
patients with SLE had better outcomes when treated with hydroxychloroquine for other
conditions besides SLE (11). Another fortuitous drug repurposing example, sildenafil, was
initially intended for ischemic chest pain. However, after phase | clinical trials, it was repurposed
to treat erectile dysfunction because of the unintended therapeutic effect reported (7). Recently,
through advancements in computational approaches, drug repurposing has become more
systematic in predicting drug candidates that are effective and avoid adverse events (7). This
review will discuss the following drug repurposing categories and how they apply to sex-aware
drug repurposing: data mining, ligand-target binding prediction, molecular associations, and
network computational drug repurposing.

The effects of sex differences are known to lead to variation in therapeutic outcomes. For
example, tumor resection followed by radiation and treatment with temozolomide is the standard
treatment for Glioblastoma Multiforme (GBM) and is more efficacious in females (12). This might
be because females are more likely to have the DNA repair enzyme O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylated, a biomarker for a therapeutic response for
temozolomide (13). Another example of a sex-bias drug response is ibuprofen. This


https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/Ri8dp
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/oPdzE
https://paperpile.com/c/xsstZ1/nhalw
https://doi.org/10.20944/preprints202112.0380.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2022 d0i:10.20944/preprints202112.0380.v2

over-the-counter medication is more effective in males than females, even though no
pharmacokinetic differences between the sexes have been identified (14). However, pain
receptors and nociception differences connected to estrogen activity in the nervous system
might cause this variation in drug response (15). Even though several examples of sex-bias
drug responses exist, most drug repurposing methods do not consider sex. In addition, the
available sex-aware drug repurposing methods require algorithmic improvements (e.g.,
potentially incorporating additional data types) to achieve better performance characteristics in
order to improve sex-aware drug repurposing (3).

Adverse events, defined by the FDA as any undesirable experience using a medical product in
a patient (16), are the fourth leading cause of death in the United States and can be caused by
many factors such as tissue differences, age, development, and race (3,17). However, in 2001,
eight of the ten drugs recalled by the FDA were more significant health risks to women than
men (18). This recall led to several studies that found that women are twice as likely to
experience an adverse drug event compared to men based on adverse drug event case reports
from the Food Drug Administration’s Adverse Event Reporting System (FAERS) or World Health
Organization’s VigiBase database (3,5,19,20). Recently, during the coronavirus disease of 2019
(COVID-19) pandemic, there was an increase in the sex-bias adverse event (SBAEs) gap
between females and males, possibly due to the pandemic exacerbating known SBAEs such as
anxiety (17). Even though SBAEs are more common in females, males are more likely to have a
severe drug adverse event than females (20). For instance, ranitidine (an antihistamine and
antacid) causes duodenal damage in males (4). Currently, there are several drug repurposing
methods to identify drugs that might cause adverse events (21,22). Still, most methods that
identify SBAEs, such as AwareDX, have significant limitations and would benefit from
improvements to their accuracy (3,5,23-25).

To summarize, sex differences influence drug safety and efficacy, but drug repurposing, as a
field, rarely considers sex differences when selecting or prioritizing drug candidates. In this
review, we discuss biological mechanisms causing sex-dependent drug responses. In addition,
we summarize current drug repurposing methods, survey cases where it has been done, and
consider the challenges of developing and evaluating new drug repurposing candidates in light
of sex.

Mechanisms Driving Sex-Dependent Variation in Drug Response

In this review, we describe the current challenges and progress in the field of sex-aware drug
repurposing by reviewing variations in drug response due to sex differences (Figure 1). Here
sex refers to the XX (female) or XY (male) genotype of an individual and is the focus of this
review. Intersex and genotypes other than XX or XY, have not been extensively studied through
future study is necessary and warranted. Gender refers to the societal construct of roles for
women and men, which do not always overlap with biological sex (26). Thus, we use sex to
refer to a person’s genotype and gender to refer to a person’s social behavior. Sex differences
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can be sexually dimorphic, meaning a gene or phenotype is present in one sex but not the
other, or sex-biased, meaning there are differences in effect or effect size between the sexes. In
this review, we use sex differences and sex bias interchangeably.

Aside from environmental and social factors, almost all documented molecular sex differences
arise from differences in the sex chromosomes, where mammalian females have two copies of
the X chromosome and males have one X and one Y chromosome. This basic genetic
difference leads to changes in gene expression that give way to larger-scale phenotypic
changes as an organism continues to develop. During fetal development, the SRY gene on the
Y chromosome codes for “maleness”, becoming especially apparent when dysfunction of the
SRY gene leads to XY-genotyped individuals developing female sex characteristics (27).
However, sex-biased genes are not limited to sex chromosomes and can originate from
autosomes (28). When an organism has reached adulthood, many sex differences in gene
expression are tissue-specific, with a large amount of differentially-expressed genes in tissues
such as adipose, liver, and breast; but this can vary depending on the population of cell types in
a given tissue (28-30). In addition, multiple biological pathways have sex-biased gene
expression and transcriptional regulation, including sex-biased expression quantitative trait loci
(eQTLs) (28). Sex-biased gene expression has been associated with sex-biased diseases, and
they are more likely to be drug targets of FDA-approved drugs than non-sex-biased genes (31).

In addition to genetic differences, there are also epigenetic disparities between males and
females, specifically in DNA methylation and histone acetylation and methylation (32,33). For
example, DNA CpG island methylation is strongly associated with X-chromosome inactivation
(XCI), which controls gene dosage compensation and has sex-specific patterns (34).
Lyonization (i.e., XCl) randomly inactivates either parental or maternal X chromosome copy
resulting in tissue mosaicism, differential expression of parentally imprinted genes, and
increased expression for genes that escape XCI (35). About 15% of genes on the inactive X
chromosome are consistently still expressed, and an additional 10% variably escape
inactivation. This results in a ‘double dosage’, which leads to a higher level of gene expression
in females (36,37). Tissue mosaicism and inheritance of both parental imprints of the X
chromosome, as opposed to only the maternal imprint (38), may protect females from
deleterious alleles (1). For histone modifications, neonatal male and female mice brains have
been found to be sexually dimorphic in histone H3 Lys9 acetylation (H3K9/14Ac) and
trimethylation (H3K9me3) (33). Additionally, there is documentation of sex-differentiated
distribution of epigenetic marks such as histone H3 Lys27 trimethylation (H3K27me3), which is
also associated with heterochromatic gene repression and X-chromosome inactivation (28).
Thus, these differences should be considered when identifying novel cancer drugs, many of
which are epigenetic inhibitors that target DNA methyltransferases, histone deacetylases
(HDACs), and histone methyltransferases (39). Epigenetic modifiers have the potential to
disrupt female dosage compensation, and the chemotherapy HDAC-inhibitor drug vorinostat
has been shown to affect levels of H3K27me3 (39).
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Many epigenetic changes that occur early in development are mediated by hormones. It is well
established that males and females have differences in sex steroid hormones such as
testosterone, estrogen, and progesterone (40). These hormones vary in production site, blood
concentration, and organ interactions (41). For example, males produce testosterone in the
testes and produce more testosterone than estrogen, while females produce more estrogen and
progesterone. These hormones, with many others, are necessary for reproduction (42). Sex
hormones modulate body mass and fluids, enzyme synthesis, synthesis of triglycerides and
high-density lipoprotein, and glucose metabolism (43), all of which can affect drug processing.
Through steroid response elements (44) and G-coupled protein receptors (45) sex hormones
affect gene expression, intracellular signaling, and downstream drug processing. Estrogen
receptors, an example of steroid response elements, have an impact on energy intake and
expenditure, regulation of adipose tissue distribution, insulin sensitivity, and the function of
macrophages and immune cells (46). These sex hormone signaling mechanisms may lead to
downstream sex differences in endocytosis of drug transporters, therefore affecting drug
response (25).

Sex chromosome genes and sex hormones, in addition to environmental and age-related
factors, heavily influence immune responses (47). Females have a higher antibody response,
increased amounts of immunoglobulin, and a larger frequency of B cells than males, which
leads to their ability to have a more robust immune response (47). XCl may be one of the main
influences of increased immune response in females because the inactive X chromosome can
become reactivated in lymphocytes, resulting in the overexpression of autoimmune genes (48).
These sex differences in immune responses lead to differential susceptibility to autoimmune
diseases, which disproportionately affect females (49,50), and certain cancers, which
disproportionately affect males (47). The observed discrepancy in autoimmunity could, in part,
be due to sex differences in the microbiome affecting sex hormone regulation (51). These
immune system inconsistencies may explain different pharmacokinetic responses to vaccines
and various immunologic drugs (52).

There are many differences in all stages of pharmacokinetics between males and females
including drug absorption, distribution, metabolism, and elimination (53). Some of the
contributing factors to differential drug absorption rates are variations in gastric enzymes,
transporter proteins, and liver and kidney organ function (54). For example, females have a
higher gastric pH than men, which can increase the absorption of compounds such as caffeine
through decreased ionization of weak bases (54). In terms of the distribution of a drug
throughout the body, plasma volume, body mass index (BMI), average organ blood flow, total
body water versus body fat, and cardiac output all have sex differences (54). Since females
have a higher fat composition than males, the volume of distribution differs depending on
whether a drug is lipid-soluble or water-soluble. In this scenario, a water-soluble drug would
have a higher volume of distribution in males than in females, and vice versa for lipid-soluble
drugs (53). A higher volume of distribution results in higher concentration, so drug dosages
should compensate for these effects to avoid the risk of adverse side effects. Pregnancy can
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cause changes in the elimination half-life of drugs, so the dosage requirements for drugs also
need to be adjusted for pregnant individuals (55).

The drug zolpidem, also known as Ambien, is a drug the FDA recommended to be given to
females at a dose half that of males; however, this recommendation only increased the adjusted
dosage compliance from 10% to 15% (56). The FDA zolpidem statement was due to
pharmacokinetic and pharmacodynamic differences causing lower rates of clearance in women,
resulting in 40%-50% higher concentrations of the drug and a higher likelihood of side effects
such as extreme drowsiness, possibly from non-compliance with the FDA dosage
recommendations (57). Zolpidem is among many drugs affected by the myriad of differences in
drug metabolism in the cytochrome p450 (CYP) enzymes. Sex differences in the CYP
superfamily of genes, which are involved with phase | drug metabolism, can explain some
discrepancies in pharmacokinetic processes between males and females (58). For example,
differences in CYP genes such as CYP1A2, CYP2B6, CYP2E1, CYP3A4, affect the metabolism
of hundreds of compounds (59). CYP2B6 has more than 70 substrates (including ketamine),
and females have higher overall activity compared to males (59). CYP3A4 is involved in the
metabolism of over 50% of all drugs (including zolpidem), and females have been found to have
20%-50% higher activity than males (59). In addition, the CYP superfamily of genes is involved
in sex hormone biosynthesis (60).

Finally, differing environmental and social pressures can lead to conscious decisions that
physically affect the body, resulting in differing responses to various drugs. These social
pressures vary depending on gender, not just biological sex. Gendered behaviors may lead to
changes in testosterone levels in men and women (61). One example of environmental and
social contributions is melanoma: men are more likely than women to develop melanoma and
have a fatal outcome (62). The increased likelihood of development could be due to many
behavioral differences: men spend more time outside, are less likely to wear sunscreen, and are
less likely to self-detect and examine for skin irregularities (63). Males and females have
different immune responses, so women’s higher melanoma survival rate could be due to
women’s immune systems being more effective at preventing metastasis through estrogen
signaling (62). Women are also more likely to use supplements, natural botanicals, and
homeopathic remedies, which are less likely to be reported than FDA-approved drugs and could
cause dangerous drug interactions (64,65). There are also nutritional and gut microbiome
differences between males and females (66). These microbiome differences can be caused by
various factors, including hormones, diet, drugs, BMI, and colonic transit time (66).
Acetaminophen is an over-the-counter drug known to have different toxicity across individuals,
which may be due to microbial metabolites that compete with acetaminophen for liver enzyme
binding sites (67). This competition leads to a higher fraction of acetaminophen transformed into
a toxic byproduct resulting in increased hepatotoxicity (67).

In substance use, men in the United States are more likely to smoke cigarettes than women
(68). Incomplete combustion leads to accumulations of carcinogenic compounds, which are
inducers of CYP enzymes (69), causing many drug interactions, with some drugs requiring
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dosage increases due to higher CYP1A2 levels (70). Among biological females who are heavy
cigarette smokers, low-dose oral contraceptives have a much higher chance of adverse arterial
effects (71); therefore, the FDA advised doctors not to prescribe oral contraceptives for females
smoking over 15 cigarettes a day (72). Another example of how behavior can lead to biological
consequences is the example of alcohol, which interacts with numerous drugs (73). Alcohol has
a stronger effect in women due to differences in alcohol metabolism, leading to higher amounts
of alcohol in the body and a higher risk for severe side effects and adverse drug reactions (54).
Women are drinking at increased rates on a population scale, and because of their
predisposition to stronger effects of alcohol, they are at higher risk for alcohol-related health
problems such as liver disease than men (74,75).

Before reaching 12-17 years old, males are more likely to experience ADEs than females. After
adolescence/puberty however, females consistently report more ADEs than males. (20). The
most marked differences in adverse events reported between females and males is between the
ages of 18-44 (20). In addition, there are major sex differences with respect to aging when
menopause is considered. Menopause causes major biological changes in the female body,
most markedly loss of regular menses and hormonal changes, and occurs around 51 years of
age (76). After menopause, when hormone levels become more comparable to male hormone
levels, females still report an excess of adverse drug events but the margin of events between
men and women is smaller. Elderly people are most vulnerable to ADEs compared to other
groups (77). One reason for this is that with increased age there is an increase in polypharmacy,
which is taking multiple drugs at once. The more drugs a given patient is taking, the greater risk
they have for interactions and general side effects (78). Women, in addition to the elderly, are
also more likely to experience polypharmacy, possibly due to their willingness to seek out
medical attention more readily (78). Other contributing factors to the elderly being more
susceptible to ADEs are the changes in pharmacokinetics during aging due to changes in renal
function (79) and body composition, leading to smaller volumes of distribution for water-soluble
drugs such as digoxin, common heart failure medication (80). Peak concentration of digoxin is
increased from 38 hours in younger subjects to 69 hours in elderly subjects, with clearance also
reduced in older subjects (80). As a result, digoxin has a recommended dose for older adults
reduced by 20% (80). This medication also has an increased risk of mortality in women
compared to men, which could be due to an interaction between hormone-replacement therapy
and digoxin (81).

There are also differences in drug metabolism based on race and ethnicity. In this review, we
look at sex as a binary, wheras race is less readily simplified. Race is a social construct that has
historically been used to group together people based on outward characteristics such as skin
color, presumably based on biological and/or genetic differences. This is not an absolute
classification with clear boundaries, with 85% of genetic variation being found within populations
and only 15% of genetic variation found between populations (82). Ethnicity is generally
considered to consist of a combination of someone's cultural, religious, or national identity, and
is highly subjective. Biological differences in a given population can vary greatly by geographical
regions, and are largely affected by socio-economic status (83). Meaningful biological
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differences such as an increased rate of heart disease in African Americans can be attributed to
decreased access to preventative healthcare, increased concentration of fast-food restaurants
and rates of environmental pollution in primarily minority neighborhoods, and more occupational
hazards as opposed to genetics (83). A person with limited access to medical care may under
report adverse side effects, or only pursue medical care when side effects are more severe.
Racial and ethnic disparities in ADEs have been found in various studies, but consistent
definitions of race and ethnicity and evaluation of underlying factors (i.e., environmental and
cultural) are lacking (84). A major study by Man et al was able to find genetic differences in drug
metabolizing and transporter (DMET) allele variants in three different populations: Caucasian,
African, and East Asian (85). In another study, cisplatin, an anti-cancer drug, is more likely to
cause nephrotoxicity in African Americans than Caucasians (86). When intersecting with
gender, drug transporter genes ATP7B and KCNJ8 have been shown to have higher mRNA
expression in African American women compared to European American women (87). In the
same study, researchers found that there is a significant difference in SLC31A2 in European
American males compared to European American females, but not between African American
males and females (87). Race and ethnicity are contributing factors in drug response and ADE
outcomes, and should be considered for future studies, especially with sex as a biological
variable included.

Due to the overwhelming evidence that males and females have differing responses to many
drugs, their treatment recommendations should reflect these discrepancies. Therefore, the need
to develop alternative drug treatments to minimize sex-bias related adverse side effects is a
high priority, and drug repurposing can help address this in a more timely and cost-effective
manner.

Overview of Drug Repurposing

As drug discovery costs increase (145% between 2003 and 2013), the need to use systematic
methods to identify drug repurposing candidates has grown (88,89). Some of these approaches
are experimental while others are computational. Experimental approaches conduct drug
screens using in vitro and in vivo models testing hundreds to thousands of compounds and
evaluating if those compounds affect a specific molecular target or cellular phenotype (7). An
example of a large-scale application of a drug screen is the Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM) project (90). This project treated 930 cancer cell lines with
21,000 drugs to identify which inhibit cancer growth (90). This large-scale screening process
requires many resources including cell lines, drugs, and personnel time and expertise. However,
researchers can reduce this investment by identifying specific drug candidates via
computational approaches that will prioritize candidates for experimental application.

Over the last several decades, increased processing power and optimized algorithms for rapid
calculations have resulted in in silico drug repurposing methods being quicker at identifying drug
repurposing candidates than exhaustive experimental approaches (Table 1) (7). Additionally, the
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number and size of biomedical databases with appropriate clinical, genomic, transcriptomic,
epigenetic, metabolic, and proteomic information for various diseases and preclinical models
have expanded (91-93). These public databases have expedited the process of identifying new
drug candidates by making this data accessible to research groups across the world to train
their drug repurposing approaches (91-93). Here we discuss data mining, ligand-target binding
prediction, molecular associations, and network computational drug repurposing categories that
contain different strategies for identifying drug repurposing candidates.

Data mining drug repurposing approaches retrospectively analyze information from and across
clinical trials, biomedical literature, and other resources with drug outcome or drug target
information to identify novel drug indications (77). These approaches apply machine learning
models that use logical and mathematical algorithms to interpret or make predictions about
data. For example, Kuenzi et al. generated an interpretable visible neural network, a machine
learning model, to predict the effectiveness of drugs for individual cancer mutation profiles (8).
Another example of a data mining approach, text mining, uses biomedical literature to connect
information from different studies or data sources to discover novel connections or patterns (94).
For example, aspirin, an over-the-counter medication used for analgesia, was repurposed in
2016 to reduce the risk of developing colorectal cancer after a systematic review of data from
the literature and clinical trials (95). An advantage of these data mining approaches is using
large amounts of publicly available data that researchers do not need to recreate for
themselves. However, there are some ethical considerations with data mining methods,
including data storage, distribution (data should be secure for identifiable information and
available for research reproducibility and reuse), and bias within the data, such as the exclusion
of different sexes (as discussed in this review), age/developmental groups, and ethnic/racial
groups (96). For example, The Cancer Genome Atlas (TCGA) includes various “omics" data
from tumor and normal samples across several cancers; however, the majority of the samples in
this database are caucasian (97). To overcome this limitation, Gao and Cui applied a machine
learning method called transfer learning (this method applies knowledge learned from a large
dataset, like TCGA caucasian samples, to a smaller dataset, such as the underrepresented
ethnic groups in TCGA) to create ethnicity-specific cancer survival prediction models (97). This
method created a more accurate model than using the limited and underrepresented ethnic
samples alone (97). Furthermore, another limitation of data mining approaches is the
dependency on information from literature and clinical trials. If a disease or drug is rare or
understudied, there may be limited publications for these approaches.

Additionally, researchers should be aware of data mining challenges with regards to variation in
data structure and nomenclature. While the NIH is implementing a new Policy for Data
Management and Sharing (DMS Policy) effective January 2023 for NIH-funded research to
ensure stricter standards for data sharing and the availability of raw data, this has been a
pervasive issue from past data sharing up until this point (98). Due to different levels of
processed vs raw collected processing of data being shared, accompanying metadata being
missing or incomplete, and unavailability of code used to manipulate and analyze data, NIH
policies are raising the standard to ensure data analyses are reproducible and allow for more
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effective data reuse through proper data repository use, requiring common format by datatype to
maintain consistency, and mandating that full datasets and accompanying metadata be
available to the community with “broadest possible terms of reuse” (99). Additionally,
nomenclature for gene names (i.e., Entrez, GenBank, RefSeq, etc.) has remained an issue for
data mining, where many synonymous terms and annotations must be searched for in text
mining and identification conversion steps for analysis may lead to data loss, errors, or
duplication (100). Ontologies, also known as vocabularies or terminology systems, are also
relied heavily upon for literature mining and semantic tools, but introduce inconsistencies and
can hinder interoperability (101,102). While there have been many attempts to coalesce
ontologies, such as Web Ontology Language (OWL), the Open Biomedical Ontologies (OBO)
Foundry initiative, and Unified Medical Language System (UMLS)
(http://www.nlm.nih.gov/research/umls/), ontology sources often remain incongruent and may
lead to misconceptions and error (101). In summary, there are many factors to consider with
data mining approaches, and the impact of these factors should be reduced and limited in order
to develop accurate data mining models for drug repurposing.

Another drug repurposing approach, ligand-target binding prediction, identifies drugs predicted
to bind to a disease target (i.e., proteins) based on their binding affinity (103). Molecular
dynamic modeling and structure similarity are two types of ligand-target binding prediction
methods. Molecular docking predicts if a ligand and a drug target can bind via their structures
(103). A limitation of this approach is that it requires a significant amount of time and memory,
even on a high-performance computing system (104). Some molecular docking methods have
reduced the complexity of calculations by approximating and removing certain parameters to
increase computational speeds, but this has increased docking energy errors and unreliable
ranks of drug candidates (105). Alternatively, structure similarity approaches predict drug
candidates based on the premise that similar drugs will have similar mechanisms of action or
adverse events (106). Ligand-target binding predictions are limited due to the requirement for
accurate information about drug structures, mechanism of actions, and protein structures of
disease targets to predict suitable drug candidates, which are often inaccurate or unknown (7).

Molecular association methods identify targets or patterns from molecular data (i.e., genomic,
transcriptomic, epigenetic, metabolic, or proteomic profiles) that correlate with disease,
therapeutic outcomes, and/or drug candidates (7). Molecular association strategies include
guilt-by-association, signature matching, and signature reversion (7). Recently, a genome-wide
association study (GWAS) used guilt-by-association to identify drug repurposing candidates for
psoriasis (107). In this study, IL-23 receptor gene variants were found to be associated with the
development of psoriasis, and therefore the IL-23 receptor became a potential drug target (107).
Further, based on biomedical literature, risankizumab was identified as a drug candidate
because it targets the IL-23 receptor, and after clinical trials, risankizumab was indeed approved
for psoriasis treatment (107,108). Signature matching, another molecular association strategy,
has been applied in several cancer applications, as reviewed in Wang et al. (108). It compares
patient molecular profiles to cell line profiles or another model system that were treated with
drugs and assessed for a specific phenotype (e.g.., cell viability in cancer cell lines) (108).

10


https://paperpile.com/c/xsstZ1/6Jy4a
https://paperpile.com/c/xsstZ1/Q6gpJ
https://paperpile.com/c/xsstZ1/AiFiQ+jtnu
http://www.nlm.nih.gov/research/umls/
https://paperpile.com/c/xsstZ1/AiFiQ
https://paperpile.com/c/xsstZ1/UOeQA
https://paperpile.com/c/xsstZ1/UOeQA
https://paperpile.com/c/xsstZ1/vscg6
https://paperpile.com/c/xsstZ1/o5FR
https://paperpile.com/c/xsstZ1/79Hlk
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/Nb3hd
https://paperpile.com/c/xsstZ1/cAKKG
https://paperpile.com/c/xsstZ1/cAKKG
https://paperpile.com/c/xsstZ1/ei0vj+cAKKG
https://paperpile.com/c/xsstZ1/ei0vj
https://paperpile.com/c/xsstZ1/ei0vj
https://doi.org/10.20944/preprints202112.0380.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2022 d0i:10.20944/preprints202112.0380.v2

Another variation, signature reversion, leverages molecular disease signatures (i.e., gene
expression differences between disease and normal) and cell line perturbation signatures (i.e.,
gene expression differences before and after drug treatment) to identify drug signatures that are
inversely related to disease signatures (93). Chen et al. applied this principle to liver cancer and
identified and validated four drug repurposing candidates in xenograft mouse models (109).
Signature matching and reversion can be approached by either enrichment statistics such as
Kolmogorov—Smirnov or correlation methods (110). However, enrichment statistics approaches
had lower accuracy compared to correlation approaches, but correlation approaches were more
sensitive to noise (110,111). Additionally, molecular associations methods can only determine
correlation and not causation; therefore, molecular associations are not always the drug target
or the cause of the disease. For example, if a GWAS study identified a gene variant with favored
drug response, it should not conclude that the gene with the variant or gene closest to the
variant is the drug target. A neighboring gene could be the drug target due to the influence of
linkage disequilibrium where genes near each other tend to be inherited together (7). Therefore,
researchers using these molecular association strategies should be critical when evaluating and
interpreting their associations to avoid making causal inferences about drug targets (7).

Network approaches evaluate mathematical graphs (nodes joined together by edges)
representing relationships as edges between different nodes like genes, proteins, diseases, and
drugs to identify drug repurposing candidates (112). One of the benefits of this approach is that
networks can integrate multiple data types to predict drug candidates. In one study, Morselli et
al. successfully repurposed four drug repurposing candidates for COVID-19 by implementing a
protein-protein interaction network, information about severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), and drug targets (113). Another benefit of a network approach is
interpretability. This interpretability allows for insights into possible disease and drug
mechanisms. For example, a study that used tissue-specific networks derived from transcription
factor sequence motifs, protein-protein interaction, and gene expression data identified the BTK
inhibitor ibrutinib as a drug candidate for metabolic syndrome (114). Because of the
interpretability of their network approach, the researchers gained mechanistic insight into how
ibrutinib treatment might treat metabolic syndrome via BTK expression and immune cells (114).
However, some drug-target interaction networks with nodes representing drugs and gene
targets have a high number of false positives due to nonspecific drug targets making it difficult
for this approach to predict new drug candidates (115). A prime example of one multitarget drug
is imatinib, which was originally designed for its inhibition of BCR-Abl fusion protein, but was
also found to be especially efficacious in chronic myeloid leukemia by also inhibiting
non-oncogenic c-Abl tyrosine kinase in normal cells (116). Another limitation is the dynamic
nature of biological systems means networks capture a specific point in time so critical
evaluation and interpretation of network construction is necessary (115). Additionally, network
analysis can require costly computing resources and time due to complex algorithms (117).

However, a promising approach is to use a combination of computational and experimental

approaches to identify and validate drug repurposing candidates (Table 1). For example, Fang,
et al. conducted a study for Alzheimer’s Disease (AD) with data mining approaches and a
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drug-target network to identify a drug repurposing candidate, sildenafil, followed by experimental
assays to validate its mechanism of action in patient-derived induced pluripotent stem cells
(iPSCs) (118). This study used multiple data sources including health insurance claims from the
MarketScan Medicare Claims database and gene expression data from the Gene Expression
Omnibus (GEO) and Genotype-Tissue Expression (GTEx) databases (118). Moreover, some
studies combine several methods (known as weak learners) into a single framework, resulting in
better therapeutic predictions than using one method alone (110). This technique is called an
ensemble approach. EMUDRA, an example of an ensemble method, combined four weak
learners: Kolmogorov-Smirnov statistic, weighted signed statistic, the sum of fold changes, and
cosine similarity (110). This ensemble model outperformed the individual weak learners and
other drug repurposing approaches with simulated and drug perturbation data (110). This
methodology performs better in cases where the weak learners have similar accuracy but
diverse predictions (119,120). In this situation, the different weak learners' algorithms identify
different important signals to determine drug candidates. A limitation of this approach is the
increase in computational complexity, which requires more computational power and time to
predict drug repurposing candidates.

Lastly, with some complex diseases such as cancer, the use of combinational drug therapy
increases the rate of success because different combinations of drugs can have synergistic
effects on the same target or multiple targets (121). For example, multiple drugs can be used to
synergistically impact one target or pathway, such as GKT136901 and L-NAME working on
NOX4 and co-target NOS (122). Several computational methods are available to investigate
synergistic effects between drugs for therapy (123-126). In a computational development
challenge to find cancer drug combinations, 160 teams developed computational methods to
find synergistic drug combinations (126). After reviewing the performance of the methods
developed by the different teams, this project concluded that ensemble approaches with multiple
computational methods improved drug combination predictions compared to single methods
(126). Similar to the ensemble approach, combinational drug repurposing methods increase the
complexity of the model, affecting computational power and time.

In this section and Table 1, we highlighted several computational methods that have prioritized
novel drug repurposing candidates and their limitations which can significantly impact the
success or accuracy of drug repurposing. Overall, critical evaluation of current and future
computational methods via code peer-review and in silico and experimental validation is
important to continually improve computational drug repurposing (127). In addition, many ethical
considerations that should be acknowledged when developing or using computational models
because all models are designed with different assumptions and biases due to algorithms or
datasets used to train models (128). Understanding the limitations of a model will help identify if
the method is suitable for the task or if another model with less bias or better assumptions
should be used or designed (128). Another common hurdle for all of these methods is the
requirement for statistically powered datasets to create more accurate models. This limitation
can be incredibly challenging for sex-aware drug repurposing because these methods require
powered datasets for males and females. In combination with other challenges to studying sex
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differences (discussed in the last section), these limitations make sex-aware drug repurposing
difficult. Still, we propose and discuss several solutions and drug repurposing approaches to
mitigate these challenges to aid in the development of better sex-aware drug repurposing
approaches (discussed in the next section).

Sex-Aware Drug Repurposing Methods

Currently, there are limited methods available to either select sex-specific drug repurposing
candidates that will be effective against a disease of interest or prioritize candidates to avoid
SBAEs. While these methods fall under the same drug repurposing categories, the following
sex-aware methods are variations that adjusts input data, parameters, and/or algorithms for sex
differences to identify sex-specific drug candidates or SBAEs. We did not consider drug
repurposing methods that used sex as a covariate as sex-aware because using sex as a
covariate reduces the impact of sex in computational models. These models will not identify
sex-specific drug candidates and adverse events. Here we summarize the currently available
sex-aware approaches or studies for sex-aware drug repurposing (Table 2).

The first sex-aware drug repurposing approaches use data mining to identify SBAEs based on
case information from patient adverse events databases such as FAERS or VigiBase. A study
from Yu et al. calculated the reporting odds ratio for a sex-bias adverse event based on FAERS’
case reports (5). They found and confirmed several SBAEs and drug combinations via drug
labels or previous studies (5). The drug repurposing database DrugCentral also used the
FAERS database to calculate the likelihood ratio for a sex-bias adverse event for all drugs in the
database. These calculations can identify drugs with SBAEs and prioritize drug candidates that
avoid SBAEs (129). Another study created a random forest model based on the FAERS
database to predict a propensity score (the likelihood that a patient is female) based on clinical
data and the standardized medical terminology used for medical conditions, medicines, and
medical devices (Medical Dictionary for Regulatory Activiies MedDRA) adverse events
terms(3). This study used several metrics such as out-of-bag score and Receiver Operating
Characteristic Area Under the Curve (ROC-AUC) to evaluate their random forest model. This
model had an out-of-bag score of 0.63 and ROC-AUC of 0.64 (3). However, this model had a
low recall of 0.47 and required 250 patients per sex for each adverse event (3). A more recent
study from Zucker and Prendergast conducted a literature search to identify SABEs based on
pharmacokinetic differences between males and females (4). This approach was successful in
identifying female-bias adverse events but struggled to identify male-bias adverse events (4).
This limitation might suggest pharmacokinetics are less likely to cause male-biased adverse
events (4). In addition, this study was limited by only having pharmacokinetic information for a
small fraction of FDA-approved drugs (4).

Furthermore, there are some additional limitations with data mining studies. For example,

adverse events are often voluntarily reported by healthcare professionals, consumers, and drug
manufacturers (130). Even with standardized terminology like MedDRA, it can be difficult to
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categorize or describe an adverse event; therefore, there could be misclassification of a specific
adverse event. Second, case reports cannot distinguish an adverse event caused by a drug or
an extraneous factor such as another drug. Some databases like FAERS do not require a
causal relationship for a report to be filed (130). Therefore, it is difficult to determine if a drug
causes an adverse event. However, it is possible to estimate disproportionality or calculate odds
ratios to identify associations between drugs and adverse events (17).

Next, we identified two sex-aware molecular association studies that used molecular biomarkers
to identify sex-specific drug candidates or SBAEs. The first, a study by Kfoury et al., identified
drug repositioning candidates not currently FDA approved for any condition that might benefit
GBM patients (12). This group previously reported that GBM is sexually dimorphic because of
the variation in gene expression profiles between males and females that they associated with
different survival between the sexes (12). After this study, they hypothesized that the gene
expression variation might be due to sex differences in epigenetic regulation (12). Specifically,
Kfoury et al. investigated the bromodomain and extraterminal (BET) family of proteins,
epigenetic readers of histone lysine acetylation (131). Their study identified that BET inhibitors
(JQ1 and RVX208) decreased tumor growth in male tumors but increased the growth in female
tumors (131). This study exemplifies how molecular differences between males and females can
lead to a hypothesis resulting in the discovery of a drug candidate. Another study analyzed drug
perturbation profiles from Connectivity MAP, an extensive drug perturbation by cell line
database, to determine what drugs perturbed heart-specific sex-biased genes as determined by
differential gene expression analysis (6). With this information about which drugs perturbed
heart-specific sex-bias genes, they found sex-bias drug responses for acebutolol, tacrine, and
metformin in rat models and further validated their results with clinical information from a human
patient cohort (6). Currently, this sex- and tissue-specific approach is limited to heart tissue
because they only investigated sex-biased gene expression in heart tissue. However,
researchers can adapt this method to develop more tissue-specific and sex-aware models.

One sex-aware experimental approach is the manipulation of sex hormones as a therapy for a
disease. Such manipulation is used when one sex tends to respond better to current therapies
and/or have better outcomes than the other. For example, in AD, which is more prevalent in
females compared to males, leuprolide acetate, an androgen deprivation therapy used for the
treatment of prostate cancer, has been investigated for the treatment of AD as it might slow the
progression of the disease (132,133). This approach requires that the sex differences in
disease outcome is due to hormone differences and not other factors (ie., genetic or epigenetic
differences) that can cause sex differences in disease outcome or drug response.

While most of these methods performed poorly due to limited, sex-balanced datasets. Future
development of strategies to more accurately model sex-bias from these unbalanced datasets
via methods similar to transfer learning approaches done by Gao and Cui study or leverage new
and more balanced datasets is required. Furthermore, sex impacts biological systems in
multiple ways (ie., genetics, epigenetics, etc.) (1,26). This means that computational models
could be over-simplified and inaccurate by treating sex as a single biological variable instead of
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a factor influencing several biological variables in a drug repurposing model (134). In addition,
the influence of sex being understudied means that the true complexity of sex is unknown for
developing or adjusting drug repurposing methods and challenging for interpretation of the drug
repurposing candidates (1). This is especially important to consider when sex differences can
vary across different tissues, ethnic groups, age and development groups, diseases, and
perturbations (1,28). It is also surprising given genomics being a common data source for drug
repurposing methods and sex determination strongly influenced by sex chromosomes that there
are few available methods that use genomic data to predict sex-aware drug repurposing
candidates and SBAEs besides the Cui et al. study for heart and sex -specific drug repurposing
candidates (6). Also, we were unable to identify sex-aware methods for network or
ligand-binding drug repurposing categories. Therefore, we suggest approaches to improve
sex-aware drug repurposing for data mining, ligand-target binding prediction, molecular
associations, and network computational drug repurposing categories.

Molecular association and network approaches are promising candidates for future sex-aware
drug repurposing methodologies. Molecular association studies provide molecular biomarkers
that might be causal for different responses to drugs (6). These methods can separate males
and females to identify genes or other biomarkers to determine drug repurposing candidates or
prioritize drugs. The GTEXx study discovered that gene expression differences between males
and females tend to be small (28). An alternate approach to evaluating gene-level sex
differences or individual biomarkers would be to develop metagenes, signatures, or
low-dimensional representations of gene expression, DNA variation, or protein expression to
identify drug repurposing candidates. Using low-dimensional representations of molecular
patterns reduces the multiple hypothesis testing burden to find significant differences between
males and females (9). These differences could be associated with drug response or adverse
events.

As an emerging computational approach for sex-aware drug repurposing, network techniques
developed by the Network Zoo have been used to build gene regulatory networks to identify
regulatory pattern differences between males and females from GTEXx tissue samples (10). The
authors observed larger sex differences between the edges in the gene regulatory networks
than gene expression (10). They also showed sex differences in the regulatory pattern of drug
metabolism in colon cancer, indicating a possible sex difference in drug response (23). Another
network method developed by the Network Zoo group, ALPACA (ALtered Partitions Across
Community Architectures), determined network module sex differences in breast tissues (135).
These differences were associated with intracellular estrogen receptor signaling pathways,
developmental and signaling pathways, and pathways related to breast cancer (135). While
these network approaches did not identify candidates for drug repurposing, sex-specific
networks capture variation due to sex differences better than differential gene expression
because network approaches identified more significant differences between edges and network
communities (i.e., groups of related nodes and edges in networks) in male and female gene
regulatory networks compared to differences in gene expression (10,135). Therefore, the use of
male and female networks and current network methods is a potential future direction.
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Due to several limitations, data mining and ligand-target binding prediction approaches are
challenging to adapt for sex-aware drug repurposing. First, data mining approaches typically
require large amounts of balanced data, equal male and female data points. However, several
databases are not balanced. For example, the UK biobank is more female-biased (as of 2021: ~
273,000 females & males 229,00) while GTEx is more male-biased ( v8 release: 636 males &
312 females) (28,136,137). In addition, retroactive studies should consider using downsampling
techniques because older clinical trials did not require female subjects, biasing clinical studies
toward male subjects (26). For basic biomedical research data, human samples are slightly
female-biased (52.1%) while mice samples are male-biased (62.5%) (138). Furthermore, this
bias varies between different biomedical research disciplines with reproductive studies having
more female-only studies while pharmacology has more male-specific studies (139). Also,
studies have historically failed to report the sex for their samples (138). Therefore, future studies
should carefully consider what datasets are being used and apply methods to overcome
disproportional datasets to create sex-aware data mining approaches.

Ligand-target binding prediction methods could also be difficult to adjust for sex differences.
Several studies have identified that sex differences can be due to gene regulatory and hormone
signaling (10,28). Therefore, ligand-target binding prediction, a method that only evaluates how
a ligand and target interacts, does not traditionally consider how other influences such as
hormones will affect the ligand-target binding interaction (10,140). This is also a limitation for
experimental target binding assays, too. However, one potential avenue is to compare
structures of drugs with known sex-bias responses to identify drugs with potential for sex-bias
drug responses. This sex-aware approach is similar to Vilar et al.’s approach, which compares
drugs’ structures with known adverse events to identify drugs with potential for adverse events
(141). For molecular docking, future researchers should consider the expression of drug targets
between the sexes. For example, if a target is highly expressed in one sex but not the other, a
drug candidate from molecular docking methods might be only therapeutic in one sex. Also,
ligand-target binding prediction methods should evaluate if the drug target might be in sex-bias
sub-networks, influenced by sex-bias transcription factors, or regulated by sex hormones.
Ideally, the development of ligand-target methods that considers all of these factors before
predicting candidates would be the most useful tool for sex-aware drug repurposing. Overall, the
current methods are not sufficiently developed for sex-aware drug repurposing, but they have
the potential.

Challenges and Proposed Solutions for Model Systems for Sex-Aware
Drug Repurposing

Several challenges exist across basic, translational, and clinical research in assessing sex as a
biological variable (SABV) in in vitro, in vivo, and in silico model systems (Figure 2). These
challenges impact sex-aware drug repurposing because these models are critical for identifying
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and validating drug repurposing candidates. Here we discuss the challenges and proposed
solutions for these model systems.

The genomic basis of sexual differentiation is a confounding factor for all in vitro, in vivo, and in
silico model systems. Sex chromosomes experience lower accuracy than autosomes for
genotype arrays because of the homologous regions between the X and Y chromosomes (1).
Many previous GWAS studies that determined SNPs from genotyping assays removed sex
chromosomes from their analysis (142). This resulted in an underrepresentation of SNPs from
sex chromosome regions in analyses (142). Therefore, GWAS studies including sex chromsome
SNPS due to improved genotyping arrays and analyses are needed to determine the influence
of sex chromosomes. Additionally, several studies have also demonstrated poor mapping quality
of sequencing data and bias from homologous regions between the sex chromosomes,
reducing the ability to detect sex chromosome DNA variation and gene expression accurately
(1). However, approaches are now being used to remedy these issues. For example, XYalign, a
bioinformatics framework, can be applied to next-generation sequencing data to appropriately
account for the sequence homology between the X and Y chromosome by inferring the sex
chromosome ploidy of a sample and remapping the sequencing reads to the sex complement of
the sample (143). Another approach creates sex-specific reference genomes for sequencing
read alignment (144). This approach has been shown to result in more accurate read alignment
for both traditional aligners (i.e., STAR, HISAT) and pseudo-aligners (i.e., Salmon) (144).
Correct alignment is important for DNA variants on the sex chromosomes because, for example,
the CTPS2 and DLG3 X chromosome genes are known to cause differences in drug response
((145). Further, the expression of these genes are correlated to the sensitivity of both platinating
agents carboplatin and cisplatin (145).

In vitro cell line models are important to drug repurposing because many drug screens and
validation experiments use these models for testing the efficacy and toxicity of drug repurposing
candidates. However, some cell lines become “de-sexualized” after losing a Y chromosome, in
the case of male cell lines, or the loss of an X chromosome, in the case of female cell lines
(146). Additionally, after several passages (the number of times a cell line cultured has been
harvested and reseeded), female iPSCs will frequently undergo inactive X erosion from loss of
XIST expression (the long coding RNA that causes X inactivation) and reactivate expression of
silenced genes on the inactive X chromosome, a process known as inactive X erosion (147).
Researchers can validate the sex of in vitro models to make their results more rigorous by
considering SABV in cell lines. Overall, this will improve experimental drug repurposing screens'
ability to predict and validate effective and safe candidates.

Additionally, genetic and hormonal sex differences are also difficult to account for in vivo animal
models as these can vary across organisms (148). While there are several benefits to in vivo
models such as the ability to test hypotheses in dynamic biological systems, animal models are
still not perfect mimics of human biology. For instance, most animals do not follow the same sex
determination as mammals (148). For example, in the Drosophila genus of flies, XX, XXY, and
XXYY flies are female; while XY and XO flies are male (149). In flies, The Y chromosome does
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not impact sex determination and both X chromosomes remain active (149). Another widely
used model organism, C. elegans, has XX hermaphrodites and XO males (149). In addition,
zebrafish have several different loci across the genome that determines sex (150). Overall, all of
these model organisms have been used in drug screens for drug repurposing candidates, but
future studies can further investigate how sex difference for model organisms compare to
human sex differences (151-153).

Another challenge for in vivo models is sex differences in human phenotypes might not be
present in a given model organism. For example, the longevity between males and females
varies significantly between species and human females, similar to yellow baboons, tend to live
longer (154). Mice, a common model organism in biomedical research, also demonstrate
variations in longevity (155). For some mouse strains, the males live longer (ie., 129S1,
NOD.B10, and NZW), but in others the females live longer (ie., B10 and P) (155). However, if
mouse strains are pooled together, mice do not show a sex difference in longevity (155).
Another consideration is hormone differences between humans and model organisms. One
study compared rats, mice, and humans by measuring sex hormone levels at different points in
development (156). They found that these sex hormones peak at different developmental stages
for each organism (156). Also, rodents have estrous cycles in which the uterine lining is
reabsorbed instead of removed, such as in the menstrual cycle in human females (157). At a
later age (around 9-12 months), the estrous cycle becomes irregular and acyclic, similar to
human menopause, but there is evidence of mature ovulatory follicles, neo-oogenesis, and no
extreme decline of estrogen levels in rodents (157). The lack of mature follicles and the
significant decline of estrogen levels are hallmarks of human menopause (157). Currently, there
are three different rodent models for menopause, including the ovary-intact model to investigate
the aging hypothalamic-pituitary-gonadal axis, ovariectomy, and the use of 4-vinylcyclohexene
diepoxide, which reduces the fertility in rodents, mimics the transitional menopause in humans
(157). Overall, how well model organisms reflect sex differences in humans across different
contexts needs further investigation. For example, a recent study suggested that sex-bias gene
expression in the proximal tubule cells of kidney in humans did not match sex-bias gene
expression in mouse proximal tubule cells (158). With the kidney being an important organ for
drug metabolism, this finding can have a major implication for the modeling of drug responses in
mice.

In vivo animal studies have historically excluded female animals from many study designs,
resulting in less female data (159). For example, in publicly available gene expression data
(RNA-Seq and Microarray), 62.5% of labeled mice gene expression samples are male (138).
Stated reasons for excluding female animal models include the perceived need to account for
the estrous cycle in female rodents, increase sample sizes of female subjects for statistical
power, and increased time and costs associated with these factors (140,160-162). Recently,
studies have reported that hormonal fluctuations in animal models do not necessarily lead to
increased variability in results for either of the sexes (140,160-162). Therefore, well-powered
studies can be designed with minimal increase in sample sizes (i.e., 14-33%) that still observe
the effects of and interactions between two independent variables (163). Studies can do this by
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employing factorial study designs which utilize a 2-way analysis of variance (ANOVA) to discern
outcomes due to sex differences from those that result from experimentation (159,163—-165).
Another approach to further understand the impact of sex chromosomes compared to hormones
in mice models is the use of designed studies with models that can discern the effects of sex
chromosomes from those of gonadal hormones. For example, hormonal influences can be
minimized by using functionally gonadectomized mice, such as the Sf7 knockout mouse
(166,167), sex hormone receptor knockout mouce (168,169), or the four-core genotypes model
(167,170,171). In this model, the Sry gene is moved from the Y chromosome to an autosome to
generate four genotypes: XXF (XX mice with ovaries), XXM (XX mice with testes), XYF (XY
mice with ovaries), and XYM (XY mice with testes) (167,170,171). Not only does this allow for
observation of gonadal hormone effects separately from sex chromosome effects, but it also
identifies sex chromosome influences on non-gonadal tissues (167). In the future, in vivo
studies can incorporate other factors such as development/aging and reproductive events (i.e.,
puberty, pregnancy, and menopause). These events have hormone fluctuations that can also
impact sex-bias transcriptomic regulation and drug responses (25,172).

The biological impact of sex extends also to impacts on in silico modeling of biological systems.
The exclusion of female animals in preclinical studies (159) and the low enroliment of female
patients in clinical trials (173,174) have led to a decrease in data for female subjects and
underpowered statistical results for retrospective analyses desegregated by sex (159). There
are also the problems of underreporting (not including the distribution of sex across samples)
and pooling (acknowledging that both sexes were used in the study but the study did not
analyze data for the impact of sex) (160,175). With the recent implementation of NIH's SABV
policy in 2016, underreporting of sex has decreased between 2009 and 2019 from 16% to 6% in
biomedical research articles (139). However, sample pooling is still common in studies with both
male and female samples (42% in 2019 & 50% in 2009) (139). Both underreporting and pooling
reduce the reproducibility and transparency of scientific research because it masks biological
differences between the sexes (160,175). This leads to data accuracy issues and
misinterpretation of the results from the study (160,175). With genomic data, there are ways to
infer sex if the study does not report them. Researchers can identify the ploidy of the X
chromosome or develop sex marker sequences from sex chromosome nucleotide sequences
(143,176). Another method developed by Fylnn et al. identified the sex of a sample by the use
of an elastic net machine learning classifier (138). This classifier had an accuracy of 91% in
microarray and 88% in RNA-seq human gene expression data (138). With sufficiently powered
data from both male and female subjects across basic, translational, and clinical research,
increased quality data will improve in silico models and thus the precision and efficacy of
sex-aware drug repurposing approaches.

Perspectives and Significance

We envision sex-aware drug repurposing as a standard analysis used in drug repurposing
research due to the overwhelming evidence that sex is important for drug response. Even if a
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disease does not show a known sex difference, the variation of drug responses between the
sexes warrants investigations of SBAEs and drugs that might have sex-specific therapeutic
effects. While several drug repurposing strategies attempt to find drug candidates without the
influence of sex, sex-aware drug repurposing identifies drug candidates that will have differential
effects between the sexes by either having variations in therapeutic effects between the sexes
or cause an adverse event in one sex (i.e., SBAEs). In this review, we highlight several
FDA-approved drugs and drug candidates that have different therapeutic effects, such as the
BET inhibitor drug candidate for GBM (131). A potential impact of sex-aware drug repurposing
(and sex-aware drug discovery not discussed in this review) would be more drugs being
approved for only one sex for non-sex-specific conditions due to the difference in therapeutic
effectiveness or to avoid an adverse event. Several drugs are only FDA-approved for a
condition that occurs in one sex (i.e., ovarian or testicular cancer), but in 2019, an HIV
prevention medication, Descovy, was approved for cisgender men and transgender women due
to a large clinical trial with just cisgender men and transgender women (177). While there is
justified criticism for the approval of a drug for a specific gender/sex due to the
underrepresentation of females in a clinical trial, this case highlights that the FDA can approve
drugs in a sex and gender -specific manner even though the condition is not sex or gender
-specific (177). Another future consequence of sex-aware drug repurposing is the practice of
adjusting dosage based on sex-specific pharmacokinetic or pharmacodynamics, as suggested
for the FDA Ambien example discussed earlier (56). We believe as sex-aware drug repurposing
expands and develops that 1) there should be standards or guidelines for doctors to aid in
differentiating prescriptions between the sexes, 2) drug manufacturers should inform clinicians
about sex differences on dosage , efficacious, and side effects, and 3) government agencies like
the FDA should require SBAEs and sex-specific dosage be on labels and information packets
for patients. Currently, many government agencies are encouraging these changes to happen
(178,179). Finally, we hypothesize that the development of sex-aware drug repurposing
methods is the first step in improving drug repurposing and drug discovery methods.

Conclusion:

Here we described sex-aware drug repurposing and discussed the challenges and future of
sex-aware drug repurposing. Drug repurposing is a valuable method for identifying drug
candidates for FDA approval because of its ability to prioritize efficacious drug candidates at a
reduced cost compared to traditional drug discovery (7,88). However, various drugs have male
and female-bias responses and adverse events (4,54). This variation in drug response arises
because of various sex differences in genetic, epigenetic, hormonal, immunological, metabolic,
and environmental factors (1). Several computational drug repurposing approaches exist or are
being developed to identify or prioritize drug candidates for both sexes
(3,5,6,23,31,129,131,135). This can lead to improved therapeutic options and prevent adverse
events for patients. In addition, these drug candidates could provide novel insights into disease
manifestation, progression, and underlying mechanisms. This can be beneficial to
understanding and treating diseases, such as in the case of the BET inhibitor for GBM
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discussed (131). Unfortunately, the validation of these drug candidates is limited by existing
preclinical models (138,160). Therefore, in line with NIH policy, future studies should routinely
investigate how including sex as a biological variable influences study design.

There is an urgent need to address the following: (1) the lack of balanced data to develop
accurate models for sex-aware drug repurposing, (2) the need for a variety of improved
sex-aware drug repurposing methods, and (3) the scarcity of studies relating to sex differences
and variation in drug response between the sexes. Increased representation of females in
biomedical research and clinical trials through balanced sex studies or female-only studies is
needed to improve drug repurposing approaches. While some methods are available to
overcome limited datasets (3,5,6,23,31,129,131,135), ultimately statistically powered datasets
provide more accurate modeling and predictions. Furthermore, one of the sex-aware drug
repurposing methods that investigated pharmacokinetic sex differences (ie., Zucker and
Prendergast) did not find many male-bias adverse events based on pharmacokinetics (4). We
hypothesize that male-bias adverse events due to pharmacokinetics have already been
addressed in the early phases of clinical trials due to males being the maijority of subjects.
However, due to the underrepresentation of female subjects, pharmacokinetic sex differences
are not identified in early clinical studies, which might be the reason the Zucker and Prendergast
study only identified female-biased adverse events. This highlights the importance of
sex-balanced studies and clinical trials. In addition, the current methods are inadequate for
exploring sex-aware drug repurposing and have performance limitations due to the data types
used. Also, while sex-aware methods for data mining and molecular association approaches
have been developed, there is a lack of sex-aware drug repurposing approaches that apply
ligand-target binding prediction and network methods. The development of novel approaches is
crucial for identifying future drug repurposing candidates for both sexes. In addition, the field
needs sex-aware drug repurposing approaches for different omics data such as epigenetics,
metabolomics, etc., which have been beneficial in other drug repurposing methods that do not
consider sex (8,92). The current sex-aware methods are biased towards clinical, genomic, and
transcriptomic input data. Lastly, there is a need for more studies that focus on sex differences
across all diseases (if the disease occurs in both sexes). Even five years after the US National
Institutes of Health required studies to consider sex as a biological variable, there are still many
understudied aspects surrounding sex differences and how they affect drug response (139). The
information about sex differences could inspire and improve drug repurposing methods in the
future.

Upon reflection, one promising sign that sex-aware methods will improve the field of drug
repurposing is how tissue-aware drug repurposing has improved the field. While sex is an
essential factor in drug response, other factors such as tissue differences, aging, development,
race, social, and environmental factors are also important to consider for drug repurposing
methods. For example, a study investigated tissue-specific genetic features of drug target genes
(i.e., tissue specificity of gene expression, Mendelian association, phenotype, and tissue-level
effects of genome-wide associations loci driven by eQTLs, and genetic constraint) (22). They
discovered that these tissue-specific features resulted in a 2.6 more significant risk of side
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effects, and drug development and repurposing studies could use these tissue-specific genetic
features to help evaluate drugs (22). Overall, the use of tissue-specific gene expression
improved drug safety and efficacy predictions in multiple studies (22,180). This indicates that as
drug repurposing expands to account for sex differences, drug safety and efficacy predictions
will also improve for both sexes.

In conclusion, the development of sex-aware drug repurposing methods is essential but
challenging due to the understudied complexity of sex differences. We recognize these
challenges for sex-aware drug repurposing, but its potential for biomedical research and patient
care outweighs the difficulties. In the future, sex-aware drug repurposing will identify safer and
more efficacious drug candidates for both males and females.
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Table 1: Drug Repurposing Methods Overview. This table describes the methods of drug repurposing
with advantages and disadvantages for each. Examples listed were methods used in studies or by
consortiums and research centers.

Method

Description

Advantages

Disadvantages

Examples

Data Mining

Analysis of data from various
sources (including
peer-reviewed published
experimental data,
databases, screens,
pharmaceutical information,
EHR’s, etc)

- Crowdsource data

- Multiomic data
accessible

- Reuse of previously
analyzed data

- Limited data for rare
diseases and
understudied drugs,
and dependent on large
sample sizes

- Inconsistency of data
structure

- Ethics/privacy (for

- Mastermind (181)
- Pharos (182)

- lwata H et al. 2015
(183)

- Duffy A et al. 2020
(122)

within and between
pathways provide insight for
upstream and downstream
drug targets that may infer
treatment for a disease
phenotype and/or show drug
interactions within a
biological system

- Reveals relationships
- Determine
mechanistic pathways
- Exposes off-target
drug effects

- Computationally
expensive

- Requires strong
signal-to-noise or large
datasets to deconvolute
signal

EHR data)
Ligand-Binding | Interactions between ligands | - Identify novel drug - Requires target’s - Chupakhin V et al.
Prediction and targets are predicted to | targets tertiary structure 2013 (184)
determine suitable - Identify novel - Experimental binding | - Napolitano F et al.
candidates through binding compound structures affinities often not 2013 (185)
by structural and chemical - Prior knowledge of recapitulated - Vilar S et al. 2014
simulation protein function not - Disregards (186)
required downstream effects -CaoRetal 2014
- Detect possible side - Computationally (187)
effects by off-target expensive - Cheng F et al.
binding - Missing biological 2013 (188)
context to allow tissue
or sex-specificity
Molecular Molecular perturbations are | - Elucidate - High signal-to-noise - Dr. Insight (189)
Associations associated with disease, drug/disease ratio inhibits - signatureSearch
therapeutic outcomes, or mechanisms deconvolution of (111)
drug candidates - Compatible with signatures - Sanseau P et al.
multiomic data - Disregards 2012 (190)
- Detect druggable physiological - Grover MP et al.
pathways interactions 2015 (191)
- Exposes off-target - Associations may not
drug effects convey direct
causations
Networks The relationship of genes - Multiomic data - Statistically complex - Drug2Ways (192)

- Green CS et al.
2015 (193)
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stabilization and structures

drug-target interactions

feasibility (cost, time,
and accessibility)

Experimental - | Cultured cells are treated - Shows gene - Immortalized cells - LINCS L1000
Perturbation with a variety of drugs and expression as a result - Lacks heterogeneity profiles (194)
Screens screened for phenotypic of perturbation - Limited - lljin K et al. 2009
response - Displays consociation | microenvironment (195)
between cell receptors | - Costly - Shen M et al. 2018
and pharmaceuticals (196)
- Non-predicted, in-vitro
results
Experimental - | The chemical engagement of | - Physically measured - Disregards - Cellular
Binding Assays | targets and ligands are drug-target binding downstream effects ThermoStability
tested in vitro to divulge activity - Selection of drugs and | Assay (CETSA)
repurposed candidates - Captures biophysical targets are much more | (197)
based on disease-target features restricted than in silico | - Miettinen TP et al.
matching via affinity/thermal [ - Reveals promiscuous | approaches due to 2014 (198)

Experimental -
Animal Models

Organisms are treated with
drugs to model patient
response and
patient-specific
disease-causing genetic
variants can be introduced to
provide more pertinent
system

- Recapitulates full
physiological system
- Resource for
multiomic data
collection

- In-vivo results

- Patient-specific
models allow for
precision medicine

- Significant financial
and time expense

- Requires
narrowed-down list of
candidates

- Results frequently do
not translate to patient
response

- Orthologous targets
may vary greatly from
human target structure

- UAB C-PAM (139)
- JAX Center for
Precision Genetics
(140)

- BCM Center for
Precision Medicine
Models (141)

- vivoChip (142)

- The Hollow Fiber
Model (143)

Table 2: Sex-Aware Drug Repurposing Examples. Studies, tools, and databases that have taken sex
into account for drug repurposing are described here in table 2. The main method is listed (as described
in Table 1) as well as examples and a short explanation of how the method integrated sex-specific
awareness.

Method

Examples

Development

Sex-Aware Approach

Data Mining

Drug Central (129)

Database

Drug Database compilation using FDA, EMA, and
PMDA; information includes active ingredients,
MOA'’s, indivations, pharmacological actions,
regulatory data, chemical structure, and adverse
drug events separated by sex to help correct for
sex-bias

AwareDX (3)

Study/Analysis

Pharmacovigilance algorithm that predicts sex-bias
adverse events from FAERS data and found
20,817 sex-specific drug risks

“Sex differences in

Study/Analysis

Pharmacokinetic differences by sex are linked to
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pharmacokinetics predict
adverse drug reactions in
women” ((4))

sex-specific adverse drug reactions using data
procured from ISI Web of Science and PubMed

Molecular “Gender differences in the Study/Analysis Sex influences on pharmacokinetics,
Association effects of cardiovascular pharmacodynamics, and other physiological factors
drugs” (24) are reviewed for cardiovascular drug response
“Brd4-bound enhancers drive | Study/Analysis Sex-specific epigenetic signatures are identified in
cell-intrinsic sex differences in GBM mouse astrocytes and human glioblastoma
glioblastoma” (131) stem cells
“Sex-Dependent Gene Study/Analysis Across-tissue RNAseq analysis finds co-expression
Co-Expression in the Human to be highly sex-dependent
Body” (31)
“Population-scale identification | Study/Analysis Sex-specific desparities are presented in network
Networks of differential adverse events analysis of adverse drug events before and during

before and during a pandemic”
(17)

COVID-19 pandemic

“Gene regulatory network
analysis identifies sex-linked
differences in colon cancer
drug metabolism” (23)

Analysis using
PANDA and
LIONESS

Molecular differences investigated using
sex-specific networks to uncover role in metabolism
of drugs in colon cancer

“Sex Differences in Gene
Expression and Regulatory
Networks across 29 Human
Tissues” (10)

Analysis using
LIONESS

Sex biases are found in patient-specific networks in
every tissue and by disease

“Detecting phenotype-driven

Analysis using

Sexual dimorphism are investigated in human

transitions in regulatory ALPACA breast tissue gene expression networks
network structure” (135)
Ligand-Binding “3D pharmacophoric similarity | Study/Analysis Pharmaceutical 3D structure similarity predictions
Prediction improves multi adverse drug are combined with adverse drug events as a
event identification in method that may be applied for comparing safety
pharmacovigilance” (141) by sex-aware reporting
Experimental “Sexual differentiation of Study/Analysis Rat model is used in comparison with human

central vasopressin and
vasotocin systems in
vertebrates: different
mechanisms, similar
endpoints” (199)

model to compare sex-bias of common
neuropsychiatric drug targets
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Figure 1: Factors known to influence sex-biased drug response include genetic, epigenetic,
hormonal, immunological, metabolic, and environmental factors.
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Solutions
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Better Experimental|
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Sex and Gender )
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‘ Experiments &
Missing Sex Labels —— Datﬁbaﬁeg o
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Figure 2: Proposed solutions to sex-aware drug repurposing challenges. Teal arrows are
connected to cell lines models. Purple arrows are connected to preclinical models. Orange
arrows are connected to clinical trials. Pink arrows are connected to databases.
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