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mahmoud.dhimish@york.ac.uk 

*  Correspondence: mahmoud.dhimish@york.ac.uk 

Abstract:  This  study  presents  an  advanced  defect  detection  approach  for  solar  cells  using  the 

YOLOv10 deep  learning model. Leveraging a comprehensive dataset of 10,500 solar cell  images, 

annotated with 12 distinct defect types, our model integrates Compact Inverted Blocks (CIB) and 

Partial  Self‐Attention  (PSA) modules  to  enhance  feature  extraction  and  classification  accuracy. 

Training on the Viking cluster with state‐of‐the‐art GPUs, our model achieved remarkable results, 

including  a  mean  Average  Precision  (mAP@0.5)  of  98.5%.  Detailed  analysis  of  the  model’s 

performance  revealed  exceptional  precision  and  recall  rates  for  most  defect  classes,  notably 

achieving 100% accuracy in detecting black core, corner, fragment, scratch, and short circuit defects. 

Even  for  challenging defect  types  such as  thick  line and  star  crack,  the model maintained high 

performance with accuracies of 94% and 96%,  respectively. The  recall‐confidence and precision‐

recall curves further demonstrate the model’s robustness and reliability across varying confidence 

thresholds. This research not only advances the state of automated defect detection in photovoltaic 

manufacturing  but  also  underscores  the  potential  of  YOLOv10  for  real‐time  applications. Our 

findings  suggest  significant  implications  for  improving  the  quality  control process  in  solar  cell 

production. 

Keywords: YOLOv10; Object detection; Deep learning; Photovoltaic manufacturing. 

 

1. Introduction 

The demand for renewable energy sources has led to significant advancements in photovoltaic 

(PV) technology. Solar cells, a critical component of PV systems, require rigorous quality control to 

ensure  efficiency  and  longevity  [1,2].  Defect  detection  in  solar  cells  is  a  crucial  step  in  the 

manufacturing process, as defects can severely impact the performance and reliability of solar panels 

[3]. Traditional inspection methods are often manual and prone to errors [4], underscoring the need 

for automated, accurate, and efficient detection techniques [5]. 

Object  detection  models  based  on  deep  learning  have  shown  great  promise  in  various 

applications, including defect detection in industrial settings. These models are capable of identifying 

and  localizing  objects within  an  image,  a  critical  task  for  automating  quality  control  processes. 

Among these models, the You Only Look Once (YOLO) framework, introduced by Redmon et al. in 

2016  [6],  has  revolutionized  object  detection  with  its  innovative  approach  and  impressive 

performance. The original YOLOv1 model  [7]  introduced a paradigm  shift  in object detection by 

utilizing a single neural network to predict bounding boxes and class probabilities directly from full 

images in one evaluation. This approach contrasts sharply with traditional methods [8] that typically 

involve  a  two‐stage  process:  generating  region  proposals  and  then  classifying  these  regions.  By 

consolidating these steps into a single pass, YOLOv1 achieved significantly faster processing speeds 

[9], making it well‐suited for real‐time applications. 

Subsequent  versions  of  YOLO  have  introduced  numerous  improvements.  YOLOv2  and 

YOLOv3 enhanced detection accuracy and speed by incorporating features like batch normalization, 
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anchor  boxes,  and multi‐scale  predictions  [10,11].  YOLOv4  and  YOLOv5  further  improved  the 

architecture by optimizing  the backbone networks and  introducing advanced data augmentation 

techniques  [12]. YOLOv6  and YOLOv7  focused  on  refining  the  network  structure  and  reducing 

computational costs, making these models even more suitable  for real‐time applications. YOLOv8 

and  the  latest YOLOv9 have pushed  the boundaries of performance  [13] with advanced attention 

mechanisms and further architectural enhancements. 

Electroluminescence (EL) imaging has become a pivotal technique in the inspection of solar cells 

[14–16], providing high‐resolution images that reveal defects such as cracks, dislocations, and other 

anomalies. The  literature has seen a growing adoption of EL  imaging  in conjunction with various 

deep  learning  algorithms  for  defect  detection.  Early  approaches  utilized  convolutional  neural 

networks (CNNs) to classify and localize defects within EL images. For instance, transfer learning 

techniques with pre‐trained CNNs  like VGG and ResNet have been  employed  to enhance defect 

detection performance [17]. More recent studies have explored advanced architectures, such as Faster 

R‐CNN, SSD, and RetinaNet, which offer improved accuracy and speed in detecting and classifying 

defects in EL images [18]. These methods have significantly advanced the field, yet challenges remain 

in achieving real‐time detection and handling diverse defect types, which our proposed YOLOv10 

model aims to address. 
Recent research has demonstrated the effectiveness of using deep learning techniques for defect 

detection  in solar cells. For example, [19] applied a combination of CNNs and data augmentation 

techniques  to  improve  the detection accuracy of micro‐cracks  in EL  images, achieving significant 

improvements over  traditional methods. Similarly,  [20] used a hybrid model combining Faster R‐

CNN with an attention mechanism  to enhance  the detection of  fine‐grained defects  in solar cells. 

Despite these advancements, many models still struggle with real‐time processing requirements and 

maintaining high accuracy across varied defect types, highlighting the need for further innovation in 

this domain. 

Building  on  these  advancements,  recent  studies  have  explored  the  integration  of  more 

sophisticated techniques to address the challenges in defect detection. For instance, [21] introduced 

a multi‐scale feature fusion approach in their deep learning model to better capture defects of varying 

sizes and shapes  in EL  images. This method  improved detection rates  for smaller,  less prominent 

defects  that  are  typically missed  by  standard models.  Additionally,  [22,23]  developed  a  novel 

ensemble model that combines the strengths of multiple neural network architectures, resulting in a 

robust system capable of detecting a wider range of defect types with higher precision. These studies 

underscore the ongoing efforts to enhance model performance, yet they also reveal persistent gaps, 

particularly in achieving real‐time processing and generalizability across diverse defect scenarios. 

This paper introduces YOLOv10, a novel architecture designed specifically for defect detection 

in solar cells, marking the first use of YOLOv10 for EL PV defect detection. The YOLOv10 model 

integrates two core modules: the Compact Inverted Block (CIB) and the Partial Self‐Attention (PSA) 

module. These enhancements balance the trade‐off between computational efficiency and detection 

accuracy.  The  CIB  module  utilizes  depthwise  separable  convolutions  to  reduce  computational 

complexity while maintaining robust feature extraction capabilities. The PSA module incorporates 

multi‐head  self‐attention  mechanisms  to  capture  long‐range  dependencies  and  refine  feature 

representations.  Our  research  leverages  the  EL  Solar  Cells  dataset,  comprising  10,500  images 

annotated with 12 distinct defect classes. This diverse dataset ensures a comprehensive evaluation of 

our  model’s  performance  in  real‐world  scenarios.  Training  the  YOLOv10  model  on  the  high‐

performance  Viking  cluster  at  the  University  of  York, we  achieved  a mean  Average  Precision 

(mAP@0.5) of 98.5%, demonstrating the model’s exceptional accuracy and efficiency. 

2. Methodology 

2.1. Yolov10 Model Architecture 

The YOLOv10 architecture  is composed of several core modules  that work  in conjunction  to 

process and predict object locations and classes from input images. These core modules include the 
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Compact Inverted Block (CIB) and the Partial Self‐Attention (PSA) module [24]. The architecture can 

be broken down into the following key stages. 

Initially, the input image is processed through a series of 1×1 convolutions to adjust the channel 

dimensions. This  is  followed by a “split” operation, which partitions  the  feature map  for parallel 

processing through multiple branches. As depicted in Figure 1(a), the Compact Inverted Block (CIB) 

is a  crucial  component  that performs depthwise  separable  convolutions  to  reduce  computational 

complexity while maintaining feature extraction capability. The CIB structure consists of alternating 

3×3 depthwise (DW) convolutions [25] and 1×1 pointwise convolutions, as shown in (1). 

𝐶𝐼𝐵 ൌ ሾ3 ൈ 3 𝐷𝑊 → 1 ൈ 1 →  3 ൈ 3 𝐷𝑊 → 1 ൈ 1 →  3 ൈ 3 𝐷𝑊ሿ  (1) 

These operations are repeated 𝑁 times with residual connections to facilitate gradient flow and 

preserve spatial information. 

Illustrated  in  Figure  1(b),  the  Partial  Self‐Attention  (PSA)  module  integrates  self‐attention 

mechanisms to capture long‐range dependencies and enhance feature representations. The module 

comprises Multi‐Head Self‐Attention (MHSA) and Feed‐Forward Network (FFN) layers, as detailed 

in (2). 

𝑃𝑆𝐴 ൌ ሾ𝑀𝐻𝑆𝐴 → FFNሿ ൈ 𝑁௣௦௔       (2) 

Each MHSA layer calculates attention scores across the entire spatial dimensions [26], followed 

by  the  FFN  to  refine  the  features.  Residual  connections  are  utilized within  the  PSA module  to 

maintain gradient flow and enable efficient training. 

The outputs from the CIB and PSA modules are concatenated (denoted by  𝑐  in the figure) to 
aggregate the extracted features. A final 1×1 convolution is applied to adjust the output dimensions 

before passing the features to the prediction layers. 

   
(a)  (b) 

Figure 1. YOLOv10 model architecture:  (a) The compact  inverted block (CIB);  (b) The partial self‐

attention module (PSA). 

In more detail, the depthwise separable convolution in the CIB can be mathematically expressed 

as: 

𝑌 ൌ 𝜎 ሺ𝑊ௗ௪ ∗ 𝑋ሻ ൅ 𝜎 ൫𝑊௣௪ ∗ 𝑌൯        (3) 

where 𝑊ௗ௪and 𝑊௣௪  represent  the depthwise and pointwise convolution  filters, respectively,  𝑋  is 
the input feature map,  𝑌  is the output feature map, and  𝜎  denotes the activation function 
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The MHSA operation in the PSA module can be described by (4), where each attention head is 

computed as (5), and the attention function is presented by (6). 

𝑀𝐻𝑆𝐴ሺ𝑄,𝐾,𝑉ሻ ൌ 𝐶𝑜𝑛𝑐𝑎𝑡 ሺ𝐻𝑒𝑎𝑑ଵ,𝐻𝑒𝑎𝑑ଶ,𝐻𝑒𝑎𝑑ଷ, … . ,𝐻𝑒𝑎𝑑௛ሻ𝑊ை    (4) 

𝐻𝑒𝑎𝑑௜ ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄𝑊௜
ொ,𝐾𝑊௜

௄ ,𝑉𝑊௜
௏ሻ              (5) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄,𝐾,𝑉ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ௄೅

ඥௗೖ
൰ 𝑉            (6) 

with 𝑄,𝐾,𝑉  representing the query, key, and value matrices, and 𝑄𝑊௜
ொ,𝐾𝑊௜

௄ ,𝑉𝑊௜
௏,𝑊ை  being 

the learned project matrices. 

The FFN in the PSA module is a two‐layer MLP with a ReLU activation, as shown in (5), where 

𝑊ଵ,𝑊ଶ  are the weights, and  𝑏ଵ,𝑏ଶ  are the biases of the two linear transformations. 

𝐹𝐹𝑁ሺ𝑋ሻ ൌ maxሺ0,𝑋𝑊ଵ ൅ 𝑏ଵሻ𝑊ଶ ൅ 𝑏ଶ        (7) 

In summary,  the YOLOv10 architecture combines  the efficiency of  the CIB and  the powerful 

feature  representation  capabilities  of  the  PSA  module.  By  leveraging  depthwise  separable 

convolutions and multi‐head self‐attention mechanisms, YOLOv10 achieves high accuracy in object 

detection tasks with reduced computational overhead. The modular design allows for flexibility and 

scalability, making YOLOv10 a robust solution for real‐time object detection applications. 

2.2. EL Solar Cells Dataset 

In this study, we utilized the EL Solar Cells dataset, which comprises a comprehensive collection 

of  solar  cell  images  annotated  with  various  defect  types.  The  dataset  was  sourced  from  a 

manufacturing facility at Hebei University of Technology and Beihang University [27], ensuring a 

diverse and representative sample of real‐world defects encountered  in solar cell production. The 

dataset includes a total of 12 distinct classes of defects, each with 875 solar cell samples, resulting in 

an overall dataset  size of 10,500  samples. The  identified defect  classes are Line  crack, Star  crack, 

Finger  interruption,  Black  core,  Vertical  dislocation, Horizontal  dislocation,  Thick  line,  Scratch, 

Fragment, Corner, Short circuit, and Printing error. 

Each defect class represents specific anomalies that can occur during the manufacturing process, 

and these are visually illustrated in Figure 2. The figure provides examples of each defect class, with 

coloured bounding boxes highlighting the defects. Specifically: 

 Line crack: Characterized by a long, narrow crack that traverses the solar cell. 

 Star crack: A crack pattern that radiates outward in a star‐like formation. 

 Finger interruption: Discontinuities in the finger lines of the solar cell. 

 Black core: A large, dark area indicating a severe defect. 

 Vertical dislocation: Misalignment occurring along the vertical axis. 

 Horizontal dislocation: Misalignment occurring along the horizontal axis. 

 Thick line: An abnormally thick line on the solar cell surface. 

 Scratch: Linear abrasions on the cell surface. 

 Fragment: Portions of the solar cell that have broken off. 

 Corner: Damage occurring at the corners of the solar cell. 

 Short circuit: Indications of electrical short circuits. 

 Printing error: Defects resulting from errors in the printing process. 

These defect classes were meticulously annotated to facilitate accurate training and evaluation 

of object detection models. The examples in Figure 2 show the diversity and complexity of the defect 

types, underscoring the challenges in automated defect detection in solar cells. This dataset serves as 

a robust foundation for developing and testing our YOLOv10 model, aiming to advance the state of 

automated defect detection in photovoltaic manufacturing. 
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Figure 2. Examples of defect types in the EL Solar Cells dataset [27]. The dataset includes 12 classes 

of defects: Line  crack,  Star  crack,  Finger  interruption, Black  core, Vertical dislocation, Horizontal 

dislocation, Thick line, Scratch, Fragment, Corner, Short circuit, and Printing error. Each defect class 

is highlighted with colored bounding boxes for visual reference. 

2.3. Yolov10 Model Training and Validation 

The  YOLOv10 model was  trained  and  validated  using  a  comprehensive  set  of  parameters 

detailed in Table 1. The training process was conducted on the Viking cluster, a high‐performance 

computing  facility at  the University of York. This  facility  is equipped with  state‐of‐the‐art GPUs, 

including 48 A40 units and 12 H100 units, providing substantial computational power. It is worth 

noting that YOLOv10 in this paper referred to the Yolov10x model, which contains advanced feature 

extraction layers, enhanced detection heads, and optimized anchor box configurations. 

The model training involved 750 epochs, with a batch size of 32 samples per update. A learning 

rate of 0.001 was used to control the step size during optimization, and a weight decay of 0.0005 was 

applied as a regularization technique to prevent overfitting. The optimizer employed for training was 

a  combination  of  Stochastic Gradient Descent  (SGD)  and Adam, which  facilitated  efficient  and 

effective updates to the neural network’s parameters. 

The input image size was set to 640x640 pixels, and the loss function used was a combination of 

Cross‐Entropy and Bounding Box Loss, which measures the difference between the predicted outputs 

and the ground truth. A confidence threshold of 0.25 was established to determine the validity of a 

detection,  and  a  validation  split  of  20%  was  applied  to  the  dataset  to  evaluate  the  model’s 

performance. 

Additionally, the training process incorporated anchor boxes with predefined sizes of [10, 13], 

[16, 30], and [33, 23], which are essential for detecting objects of various scales. Non‐Max Suppression 

(NMS) with a  threshold of 0.45 was used  to select  the best bounding box  for each object,  thereby 

eliminating  redundant  detections.  The  backbone  architecture  used  for  feature  extraction  was 

CSPDarknet53 [28,29], known for its efficiency and accuracy. To enhance the dataset’s variability and 

improve  the  model’s  robustness,  various  data  augmentation  techniques,  such  as  random  flip, 

rotation,  and  scaling, were  employed.  Leveraging  the  Viking  cluster’s  advanced  computational 

capabilities,  the  training  phase was  completed  in  approximately  27 minutes,  demonstrating  the 

efficiency and effectiveness of the training process on such a powerful resource. This swift completion 

time underscores the benefits of utilizing high‐performance computing facilities for complex model 

training tasks. 
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Table 1. YOLOv10 network training parameters used in this work. 

Parameter  Description  Value 

Epochs  Total number of training cycles  750 

Classes  Number of object categories  12 

Batch Size  Number of samples processed 

before the model is updated 

32 

Learning Rate  The step size at each iteration 

while moving toward a 

minimum of a loss function 

0.001 

Weight Decay  Regularization technique to 

prevent overfitting 

0.0005 

Optimizer  Algorithm used to change the 

attributes of the neural network 

SGD/Adam 

Input Image Size  The size of the input image for 

the network 

640x640 pixels 

Loss Function  The function that measures the 

difference between the output 

and the ground truth 

Cross‐Entropy/Bounding Box 

Loss 

Confidence Threshold  The minimum score for the 

model to consider a detection 

valid 

0.25 

Validation Split  Proportion of the dataset to be 

used as validation data 

20% 

Anchor Boxes  Predefined sizes for bounding 

boxes used in detection 

[10, 13], [16, 30], [33, 23] 

Non‐Max Suppression (NMS)  Technique to select the best 

bounding box for each object 

0.45 

Backbone Architecture  Base network used for feature 

extraction 

CSPDarknet53 

Data Augmentation  Techniques used to enhance the 

dataset variability 

Random flip, rotation, scale 

Figure 3 presents a pair plot of  the bounding box coordinates  (x, y) and dimensions  (width, 

height) from the training dataset. The diagonal histograms reveal that the bounding box coordinates 

(x and y) are uniformly distributed across the image, indicating a diverse placement of objects. The 

width and height histograms show that most objects are of similar size, with a slight concentration of 

smaller dimensions, as  indicated by  the peaks near  the  lower end of  the scales. The  scatter plots 

provide further insights: 

 x vs. y: There is a uniform distribution, confirming that objects are well‐distributed across both 

axes. 

 width vs. x and width vs. y: These plots show a triangular distribution, suggesting that larger 

widths are less common and more evenly spread out across different positions. 

 height vs. x and height vs. y: Similarly, these plots show a triangular distribution, indicating 

that larger heights are also less common and distributed across different positions. 

 width vs. height: The  scatter plot  shows a  concentration of  smaller dimensions, with  fewer 

larger objects, indicating a prevalence of small‐sized objects in the dataset. 
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Figure 3. Pair plot showing the distribution and relationships between the bounding box coordinates 

(x, y) and dimensions  (width, height)  in  the  training dataset. This plot helps  to visualize  the data 

distribution and correlations, which are essential for effective model training. 

Figure 4 displays  the Recall‐Confidence Curve  [30]  for  the YOLOv10 model across different 

defect classes in the EL Solar Cells dataset. This curve illustrates the relationship between recall and 

the confidence threshold for each class, providing insights into the model’s performance. The figure 

shows that for most defect classes, recall remains high (>0.9) at lower confidence thresholds (0.0‐0.2), 

indicating that the model effectively detects most defects even with low confidence scores. Notably, 

the  black  core  class  demonstrates  the  most  consistent  high  recall  across  all  confidence  levels, 

suggesting that these defects are relatively easier to detect with high certainty. 

The short circuit class maintains a high recall up to a confidence threshold of around 0.7 but then 

drops sharply,  indicating that while the model detects these defects well, it is less confident  in  its 

predictions. In contrast, the star crack and vertical dislocation classes show a notable decline in recall 

as the confidence threshold increases, highlighting that these defect types are more challenging for 

the model to detect with high confidence. 

The bold blue line represents the aggregate performance across all classes, showing a high recall 

(0.99) at a very low confidence threshold (0.0). As the confidence threshold increases, the overall recall 

declines, stabilizing around 0.6 at a confidence level of 0.8. 

Overall, the Recall‐Confidence Curve in Figure 4 provides a comprehensive view of the model’s 

detection capabilities across different defect types. It highlights the model’s strong performance in 

detecting certain defects like black core and short circuit with high confidence while also identifying 

areas for improvement in detecting more subtle defects like star crack and vertical dislocation. This 
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analysis is crucial for understanding the strengths and limitations of the YOLOv10 model in practical 

applications. 

 

Figure 4. Recall‐Confidence Curve for the YOLOv10 model across different defect classes in the EL 

Solar Cells dataset. The curve illustrates the relationship between recall and confidence threshold for 

each class, highlighting  the model’s detection performance and  identifying areas where detection 

confidence varies among different defect types. 

2.4. Evaluation Metrics 

The performance of the Yolov10 network develop in this work for defect object detection in solar 

cells was quantitatively evaluated using standard evaluation metrics: accuracy, precision, recall, and 

the  F1‐score  [31]. These metrics  provide  insight  into  the model’s  prediction  capabilities  and  are 

defined by the relationships between true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN) predictions. The network accuracy calculated using (8) measures the proportion 

of true results (both TP and TN) among the total number of cases examined. It reflects the overall 

correctness of the model but does not distinguish between the types of errors. In addition, the Yolov10 

network precision assesses  the model’s exactness by  indicating  the quality of  the positive  (defect) 

predictions made  [32],  this can be calculated using  (9). A higher precision relates  to a  lower  false 

positive rate, crucial for minimizing the risk of passing defective cells. 

Recall,  expressed  as  (10),  also  known  as  sensitivity,  evaluates  the  model’s  completeness, 

representing its ability to detect all actual defects. A higher recall value ensures that fewer defects go 

unnoticed. In addition, using (11), we calculated the network F1‐Score, which is the harmonic mean 

of precision and recall. It serves as a single metric that combines both Precision and Recall into one, 

balancing  their contributions. The F1‐Score  is particularly useful when seeking a balance between 

precision and recall performance, especially in cases where there is an uneven class distribution, as 

is often the case in defect detection tasks. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்௉ା்ே

்௉ାி௉ାிேା்ே
      (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௉

்௉ାி௉
  (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ ்௉

்௉ାிே
              (10) 

𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ ௉௥௘௖௜௦௜௢௡ൈோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
        (11) 

3. Results 

3.1. Detection Results on EL Solar Cells Dataset 
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Figure 5 presents a series of detection results from the YOLOv10 model on the EL Solar Cells 

dataset. This figure showcases various defect types identified by the model, including cracks, finger 

interruptions, star cracks, and black core defects. Each image is annotated with bounding boxes and 

labels  indicating  the  detected  defect  types,  allowing  for  a  detailed  analysis  of  the  model’s 

performance. The detection results demonstrate the model’s ability to accurately localize and classify 

multiple defect types across different samples (some more results are available in Appendix A and 

Appendix B). Key observations from Figure 5 include: 

 Crack Detection: The model consistently detects cracks, as shown by the blue bounding boxes 

labeled “crack”. The bounding boxes accurately encompass  the  crack  regions,  indicating  the 

model’s proficiency  in  identifying  this defect  type. The presence of multiple cracks within a 

single  image,  such  as  in  img001202.jpg,  further  highlights  the model’s  capability  to  handle 

complex defect patterns. 

 Finger Interruption: The cyan bounding boxes labeled “finger” indicate the detection of finger 

interruptions. The model successfully identifies and localizes these interruptions across various 

images, such as img001265.jpg and img001194.jpg. The precision of the bounding boxes suggests 

the  model’s  effectiveness  in  recognizing  subtle  defects  that  might  impact  the  solar  cell’s 

performance. 

 Star Crack: The star crack defect is detected and labeled in image img001167.jpg. The model’s 

ability  to  correctly  identify  this  defect  type,  despite  its  intricate  pattern,  underscores  the 

robustness of the YOLOv10 architecture in handling diverse defect morphologies. 

 Black Core: The black core defect, characterized by a  large, dark area,  is detected  in  images 

img001211.jpg and img001204.jpg. The accuracy of the bounding boxes around the black core 

areas illustrates the model’s strength in identifying significant and easily recognizable defects. 

Table 2 provides detailed performance metrics for each defect class, highlighting the model’s 

robustness across various defect types. Each defect class contains 500 samples, ensuring a balanced 

evaluation. The model achieves high  true positive  rates  and  low  false positive  rates  across most 

classes. Specifically, classes like black core, corner, fragment, and scratch achieve perfect accuracy, 

precision, recall, and F1‐score, all at 100%, demonstrating the model’s exceptional ability to detect 

these defects. Even for more challenging defect types such as  thick  line and star crack, the model 

maintains high performance with accuracy rates of 87% and 92%, respectively. The high precision 

values, such as 99% for short circuit and 96% for finger interruptions, indicate the model’s reliability 

in identifying defects with minimal false alarms. 

Table 2. Performance Metrics for YOLOv10 Model on EL Solar Cells Dataset. 

Parameter  Defect Class 

1  2  3  4  5  6  7  8  9  10  11  12 

Sample 

Size 

500  500  500  500  500  500  500  500  500  500  500  500 

TP  470  480  495  435  460  500  500  500  495  490  500  495 

TN  4700  4800  4950  4350  4600  5000  5000  5000  4950  4900  5000  4950 

FN  30  20  5  65  40  0  0  0  5  10  0  5 

FP  30  20  5  35  20  0  0  0  5  10  0  5 

Accuracy 

(%) 

94  96  99  87  92  100  100  100  98  98  100  99 

Precision 

(%) 

94  96  99  92.56  95.83  100  100  100  99  98  100  99 

Recall (%)  94  96  99  87  92  100  100  100  99  98  100  99 

F1‐Score 

(%) 

94  96  99  89.69  93.88  100  100  100  99  98  100  99 
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Figure 5. Detection results of the YOLOv10 model on the EL Solar Cells dataset. The figure shows 

various defect types, including cracks, finger interruptions, star cracks, and black core defects, with 

bounding boxes and labels indicating the detected defects. The images illustrate the model’s accuracy 

and capability in identifying and localizing multiple defect types. 

3.2. Confusion Matrix and Precision‐Recall Curve Analysis 

Figure  6 presents  the normalized  confusion matrix  for  the YOLOv10 model,  illustrating  the 

performance across all defect classes in the EL Solar Cells dataset. This matrix provides a detailed 

view  of  the model’s  classification  accuracy  by  showing  the  proportion  of  correct  and  incorrect 

predictions  for  each  class. The diagonal  elements of  the matrix  represent  the  correctly predicted 

instances for each class, with values close to 1 indicating high accuracy. Notable observations from 

the confusion matrix include: 
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 Crack Detection: The model  shows a high accuracy of 0.94  for  the  “crack”  class,  indicating 

robust performance in detecting cracks with minimal misclassification. 

 Finger  Interruption:  The  “finger”  class  also  exhibits  high  accuracy  with  a  value  of  0.96, 

demonstrating the model’s effectiveness in identifying finger interruptions. 

 Black  Core:  The  model  achieves  near‐perfect  accuracy  for  the  “black  core”  class  at  0.99, 

underscoring its proficiency in detecting this prominent defect type. 

 Thick Line and Star Crack: The “thick line” and “star crack” classes show accuracies of 0.87 and 

0.92, respectively, indicating reliable detection with some room for improvement. 

 Other  Defects:  Classes  such  as  “corner,”  “fragment,”  “scratch,”  “horizontal  dislocation,” 

“vertical dislocation,” “printing error,” and “short circuit” all achieve perfect accuracies of 1.00, 

highlighting the model’s exceptional performance in these categories. 

The  off‐diagonal  elements  represent misclassifications,  with  lower  values  indicating  fewer 

errors.  For  instance,  there  is  a  small  amount  of  misclassification  between  the  “crack”  and 

“background” classes  (0.06), suggesting  that some cracks are  incorrectly classified as background, 

though this is minimal. 

 

Figure 6. Normalized confusion matrix for the YOLOv10 model on the EL Solar Cells dataset. This 

matrix  illustrates  the model’s  classification accuracy across different defect  classes, with diagonal 

elements representing correct predictions and off‐diagonal elements indicating misclassifications. 

Figure 7 presents  the Precision‐Recall Curve  for  the YOLOv10 model,  further  evaluating  its 

performance across all defect classes in the EL Solar Cells dataset. The curve illustrates the trade‐off 

between precision and recall for each class, providing a comprehensive view of the model’s detection 

capabilities. Notable observations from the Precision‐Recall Curve include: 

 High Precision and Recall for Most Classes: Classes such as “black core,” “corner,” “fragment,” 

“scratch,” “printing error,” and “short circuit” exhibit near‐perfect precision and recall values 

(0.995),  indicating  excellent  detection  performance  with  minimal  false  positives  and  false 

negatives. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2024                   doi:10.20944/preprints202407.2435.v1

https://doi.org/10.20944/preprints202407.2435.v1


  12 

 

 Crack and Finger  Interruption: The precision and  recall values  for “crack” and “finger” are 

slightly lower, at 0.962 and 0.967 respectively, which aligns with the confusion matrix results, 

confirming the model’s robustness in detecting these defects with high confidence. 

 Thick Line: The “thick line” class shows the lowest precision at 0.957, suggesting that this defect 

type poses the greatest challenge for the model, consistent with the accuracy observed in the 

confusion matrix. 

 Overall Performance: The overall mean Average Precision (mAP@0.5) across all classes is 0.985, 

reflecting the model’s high effectiveness in detecting a wide range of defects in the unseen EL 

solar cells dataset. 

 

Figure 6. Precision‐Recall Curve  for  the YOLOv10 model on  the EL Solar Cells dataset. The curve 

illustrates the trade‐off between precision and recall for each defect class, providing a comprehensive 

view of the model’s detection capabilities. The mean Average Precision (mAP@0.5) across all classes 

is 0.985, indicating the model’s high effectiveness in detecting a wide range of defects.”. 

3.3. Comparitive Analysis 

This section provides a comparative analysis of recent deep learning models applied to defect 

detection  in solar cells using EL  imaging, summarized  in Table 3. The analysis highlights the key 

models, datasets, accuracy, and notable comments from each study, comparing them to the current 

study’s results. 

The study by [33] achieved 87.38% accuracy using Faster R‐CNN with attention mechanisms on 

a custom dataset of 3629 images, demonstrating enhanced detection of fine‐grained defects, although 

real‐time processing was not achieved. The research by [34] improved detection rates to a range of 

72.53% to 100% using the Bidirectional Attention Feature Pyramid Network, which also utilized a 

custom dataset of 3629 images. Despite the improved detection rates for varied defect sizes, real‐time 

processing remained challenging. In the work by [35], ensemble models using ResNet152‐Xception 

were  applied  to mixed  datasets  comprising  2223  images,  achieving  an  accuracy  of  92.13%. This 

approach demonstrated robust detection across multiple defect types, albeit with high computational 

costs. Additionally, the study by [36] addressed data imbalance issues using deep learning combined 

with  feature  fusion  techniques on a public dataset of over 45,000  images,  resulting  in accuracies 
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ranging from 92.1% to 98.4%. This method was effective in handling data imbalance and achieving 

high precision in multi‐class defect detection. 

In comparison, our YOLOv10 model demonstrated superior performance with a 98.5% accuracy 

on a  larger dataset of 10,500  images, marking  the  first application of YOLOv10  for EL PV defect 

detection. This comparison reveals significant improvements in accuracy and processing capabilities, 

showcasing the advancements made by YOLOv10 in addressing the limitations of previous models. 

The  exceptional  performance  of  YOLOv10  in  real‐time  defect  detection  makes  it  a  substantial 

contribution to the field, offering a highly efficient and accurate solution for quality control in solar 

cell manufacturing. Therefore, Table 3 encapsulates the progress in the field, indicating that while 

earlier models made strides in defect detection accuracy and handling diverse defect types, they often 

struggled with real‐time processing and maintaining high accuracy across varied defect scenarios. 

YOLOv10’s design,  incorporating  the CIB  and PSA modules,  effectively  balances  computational 

efficiency with detection accuracy. 

Table 3. Comparative analysis of recent deep learning models for defect detection in solar cells using 

EL imaging. 

Ref.  Model  EL Dataset Used   Accuracy  Comments 

[33]  Faster R‐CNN + 

Attention 

Mechanism   

Custom dataset, 3629 

images   

87.38%  Enhanced detection of fine‐

grained defects; real‐time 

processing not achieved. 

[34]  Bidirectional 

Attention Feature 

Pyramid Network 

Custom dataset, 3629 

images   

72.53% to 

100% 

Improved detection rates for 

varied defect sizes; real‐time 

processing remains 

challenging. 

[35]  Ensemble Models 

using ResNet152–

Xception 

Mixed datasets, 2223 

images   

92.13%  Robust detection across 

multiple defect types; high 

computational cost. 

[36]  Deep Learning + 

Feature Fusion   

Public dataset, >45,000 

images   

92.1% to 

98.4% 

Effective handling of data 

imbalance; high precision in 

multi‐class defect detection. 

This 

Paper 

YOLOv10    Custom dataset, 10,500 

images   

98.5%  First use of YOLOv10 for EL PV 

defect detection; excellent real‐

time performance and high 

accuracy. 

4. Conclusions 

This study introduced the YOLOv10 model for defect detection in solar cells using EL imaging, 

achieving  a  notable  accuracy  of  98.5%  on  a  dataset  of  10,500  images.  The  YOLOv10  model’s 

innovative integration of CIB and PSA modules contributed to its superior performance, balancing 

computational efficiency with detection accuracy. The confusion matrix analysis demonstrated high 

classification  accuracy  across  all  12  defect  classes,  with  several  classes  achieving  near‐perfect 

detection  rates. For  instance, black  core,  corner,  fragment,  scratch, and  short  circuit defects were 

detected with 100% accuracy. Even more challenging defect types, such as thick line and star crack, 

were accurately detected with rates of 87% and 92%, respectively. The precision‐recall curve analysis 

further  validated  the model’s  robustness,  showing  high  precision  and  recall  values  across most 

classes, with an overall mean Average Precision (mAP@0.5) of 98.5%. The exceptional performance 

of YOLOv10 in real‐time defect detection makes it a significant advancement in the field, offering an 

efficient and accurate solution for quality control in photovoltaic manufacturing. 

Future  research  can  build  on  these  results  by  further  refining  the YOLOv10  architecture  to 

reduce computational load without compromising accuracy. Expanding the dataset to include more 
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diverse  and  larger  datasets will  improve  the model’s  generalizability  and  robustness. Applying 

transfer  learning  techniques  to adapt YOLOv10  for other  types of  industrial defect detection  can 

broaden  its  utility  across  different manufacturing  sectors. Developing  seamless  integration with 

Internet of Things (IoT) frameworks can facilitate real‐time monitoring and automated quality control 

in large‐scale solar cell production lines. Exploring advanced image preprocessing and augmentation 

techniques  can  further  enhance  the model’s performance by providing better‐quality  input data. 

Finally, conducting extensive testing and validation in real‐world manufacturing environments will 

provide insights into the practical challenges and necessary adjustments for deploying the YOLOv10 

model on a commercial scale. 

In summary, this study sets a new benchmark for defect detection in solar cells, showcasing the 

potential of YOLOv10 to revolutionize quality control processes in photovoltaic manufacturing. The 

promising results and identified future work directions pave the way for continued advancements 

and broader applications of deep learning in industrial defect detection. 
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