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Abstract: Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators in plant immune 

responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately 

explored. In this study, we integrated translatome data with conventional genome annotations to 

construct an optimized protein-coding dataset. Subsequently, we developed a robust pipeline 

(“RiceLncRNA”) for the accurate identification of rice lncRNAs. Using strand-specific RNA 

sequencing (ssRNA-seq) data from the resistant (IR25) and susceptible (LTH) and Nipponbare (NPB) 

varieties under M. oryzae infection, we identified 9,003 high-confidence lncRNAs, significantly 

improving identification accuracy over traditional methods. Among the differentially expressed 

lncRNAs (DELs), those unique to IR25 were enriched in the biosynthetic pathways of phenylalanine, 

tyrosine, and tryptophan, which suggests that they enhance the production of salicylic acid (SA) and 

auxin (IAA) precursors to trigger defense responses. Conversely, DELs specific to LTH primarily 

clustered within carbon metabolism pathways, indicating a metabolic reprogramming mechanism. 

Notably, 21 DELs responded concurrently in both IR25 and LTH at 12 h and 24 h post-inoculation, 

indicating a synergistic regulation of jasmonic acid (JA) and ethylene (ET) signaling while partially 

suppressing IAA pathways. Weighted gene coexpression network analysis (WGCNA) and 

competing endogenous RNA (ceRNA) network analysis revealed that key lncRNAs (e.g., 

LncRNA.9497.1) function as miRNA “sponges,” thereby indirectly modulating the expression of 

receptor-like kinases (RLKs), resistance (R) proteins, and hormone signaling pathways. The reliability 

of these findings was confirmed through qRT-PCR and cloning experiments. In summary, our study 

provides an optimized rice lncRNA annotation framework and reveals the mechanism by which 

lncRNAs enhance rice blast resistance through the regulation of hormone signaling pathways. These 

findings offer an important molecular basis for rice disease-resistant breeding. 

Keywords: long noncoding RNAs; Magnaporthe oryzae; plant immunity; ceRNA; WGCNA; hormone 

signaling 

 

1. Introduction 

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited or no 

protein-coding potential [1]. Emerging evidence indicates that lncRNAs participate in a wide range 
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of biological processes across various organisms, regulating gene expression through diverse 

mechanisms at the chromatin, transcriptional, posttranscriptional, translational, and 

posttranslational levels [2,3]. In plants, lncRNAs have been shown to regulate key physiological 

activities, such as flowering time [4,5], crop yield [6], fruit development [7], photomorphogenesis [8], 

gene silencing [9], and responses to biotic and abiotic stresses [10–12]. 

Despite these advances, the functional characterization of plant lncRNAs remains relatively 

limited, with only a few regulatory mechanisms fully elucidated. For example, the lncRNAs 

COLDWARP, COLDAIR, and COOLAIR mediate vernalization by silencing FLOWERING LOCUS C 

(FLC) [9,13,14]. The long noncoding RNA LRK Antisense Intergenic RNA (LAIR) interacts with 

OsMOF and OsWDR5 to promote the expression of leucine-rich repeat receptor kinase (LRK) gene 

clusters, significantly increasing rice yield [6]. Importantly, the crucial roles of lncRNAs in plant 

responses to biotic stress and immunity are gradually coming to light. In tomato, lncRNA16397 

induces the expression of SlGRX, reducing reactive oxygen species (ROS) accumulation and thereby 

increasing resistance to Phytophthora infestans [11]. In Arabidopsis, the lncRNA ELENA1 interacts 

with the mediator complex subunit MED19a to regulate PR1 expression, bolstering immunity against 

pathogens [10]. In rice, the lncRNA ALEX1 enhances resistance to bacterial blight by modulating the 

jasmonic acid (JA) pathway [15], whereas the long noncoding RNA SABC1 helps balance plant 

immunity and growth by regulating salicylic acid (SA) synthesis [16]. Moreover, lncRNA23468 

functions as a competing endogenous RNA (ceRNA) that suppresses miR482b accumulation, 

consequently elevating the expression of NBS-LRR genes and fortifying defense against P. infestans 

in tomato [17]. 

Rice (Oryza sativa L.), one of the world’s most important staple crops (particularly in Asia and 

Africa), faces a major threat from rice blast disease caused by the fungus M. oryzae. Globally, rice blast 

can lead to yield losses up to 30%, posing a severe challenge to food security and agricultural 

economies, with estimated annual losses of up to $66 billion [18]. Hence, understanding the molecular 

mechanisms of rice blast disease is of paramount importance for global food security [19,20]. 

Earlier research demonstrated that protein-coding genes play significant roles in the defense 

response of rice against M. oryzae [21,22]. However, the involvement of lncRNAs in this process has 

not been extensively explored. A recent rice telomere-to-telomere genome annotation revealed an 

additional 1,373 protein-coding genes, indicating that the genome annotation is still incomplete, 

especially in intergenic regions [23]. Such gaps might contribute to false positives in lncRNA 

identification and thus hamper downstream functional analyses. 

To more accurately identify and characterize rice lncRNAs expressed during M. oryzae infection, 

we combined multiple software tools and methods suitable for lncRNA identification in rice and 

developed a pipeline named RiceLncRNA (https://github.com/njausxl/RiceLncRNA). This pipeline 

begins by integrating rice translatome data to construct a novel rice protein-coding gene annotation 

database (the CodingRNA dataset). By merging this dataset with Michigan State University Rice 

Genome Annotation Project version 7 (MSU v7) [24], we substantially improved annotation 

completeness (adding approximately 18.9% more gene loci) and accuracy in intergenic regions. With 

this optimized annotation, we analyzed strand-specific RNA-seq data from IR25 (a monogenic line 

harboring the blast resistance gene Pikm), LTH (a susceptible variety), and NPB (a conventional 

variety) at multiple time points postinoculation (0 h, 12 h, 24 h, 72 h). Through systematic analyses of 

these data, we identified 9,003 high-fidelity lncRNAs, with 605 differentially expressed under 

inoculation—including 415 that respond directly to stress. Notably, the resistant variety IR25 

exhibited 293 specific DELs, whereas LTH showed only 70, suggesting that lncRNAs are substantially 

involved in the resistance signaling network. Functional enrichment analysis revealed that the target 

genes of these DELs are significantly enriched in multiple hormones signaling pathways, notably SA, 

JA, ET, and IAA. By constructing a ceRNA regulatory network and performing WGCNA, we 

discovered that several core regulatory lncRNAs (e.g., LncRNA.9497.1, LncRNA.9562.1) either 

directly target resistance (R) genes, receptor kinases, and disease-resistance proteins, or indirectly 

regulate them by competitively binding specific miRNAs. Through these complementary 
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mechanisms, these lncRNAs synergistically modulate hormone signaling pathways to improve 

resistance. This study not only refines the rice genome annotation and establishes a reliable lncRNA 

identification pipeline but also, more importantly, elucidates the regulatory network of lncRNAs in 

rice–M. oryzae interactions, providing essential theoretical foundations and potential targets for 

advancing plant immune mechanism research and implementing novel disease-resistant breeding 

strategies. 

2. Results 

2.1. Analysis of the CodingRNA Dataset Assembly 

On the basis of translatome data, we constructed a rice protein-coding gene annotation database, 

which we termed “CodingRNA.” Compared with the MSU v7 reference genome alone, this 

translatome-based annotation covered approximately 57% of the genome, and merging both 

annotations yielded an additional ~18.9% of gene loci (Table S2). As shown in Figure S1, several 

protein-coding genes were identified within regions previously annotated as intergenic in MSU v7. 

For example, in the region from 4,643,010 to 4,659,242 on chromosome 4 (Figure S1A), MSU v7 had 

originally classified the entire stretch as intergenic; however, our detailed analysis of the 

corresponding translatome data revealed a novel protein-coding gene with clear ribosome footprint 

signals (labeled “CD48328”). This discovery confirms that the locus encodes a functional protein 

rather than a non-coding transcript. In summary, by incorporating such findings into the CodingRNA 

dataset, we significantly enhance the accuracy and completeness of rice genome annotation by 

ensuring that protein-coding transcripts are not erroneously classified as lncRNAs. 

2.2. Integrated Translatome and Transcriptome-Based Lncrna Identification Pipeline and Analysis 

To systematically uncover rice lncRNAs, we analyzed strand-specific RNA-seq data from IR25 

(carrying the blast resistance gene Pikm), LTH (susceptible), and NPB (a conventional variety), 

sampled at different postinoculation time points (0 h, 12 h, 24 h, 48 h, 72 h) under M. oryzae. Overall, 

40 RNA-seq libraries that have been validated for strand-specificity were utilized (Table S3), though 

two (LTH-24 h-2, LTH-24 h-3) were discarded due to poor quality. 

After trimming low-quality reads and adapters, we retained approximately 10,070,404,673 high-

quality reads with an average GC content of 48.89% (Table S4). The mean alignment rate to MSU v7 

was 96.89%, with an 86.23% rate of correctly paired reads. 

We eventually assembled 114,267 transcripts (≥200 nt, fragments per kilobase of transcript per 

million mapped reads (FPKM) ≥0.5). To mitigate false positives, an updated rice lncRNA 

identification pipeline (Figure 1A) was implemented. Its key innovation lies in employing the refined 

CodingRNA dataset to avoid misclassifying protein-coding transcripts as lncRNAs. Through 

GFFcompare, we extracted transcripts labeled with classcodes i, x, o, u, and p (totaling 12,836 

candidates; see Figure S2A for an explanation of the classcodes). Subsequent filtering against protein 

families database (Pfam), RNA families database (Rfam), and NCBI nonredundant protein database 

(NR) removed additional protein-coding or known noncoding RNAs, giving 11,543 candidates 

(Figure 1B). 

Moreover, we applied Coding Potential Calculator 2 (CPC2) (11,748 transcripts), Predictor of 

Long non-coding RNAs and mEssenger RNAs based on an improved K-mer scheme (PLEK) (11,133), 

and Coding-Non-Coding Index (CNCI) (10,098) to evaluate coding potential (Figure 1C). Only 

transcripts consistently deemed “noncoding” by all three tools were retained (9,350). Taking the 

intersection of these results, we ultimately identified 9,003 high-fidelity lncRNAs (Figure 1D, Table 

S5). Classification indicated 2,803 intergenic, 2,076 antisense, 419 bidirectional, 3,056 intronic, and 649 

sense lncRNAs (Figure 1E, Table S6). 

A more conventional pipeline that did not integrate translatome data identified 10,464 putative 

lncRNAs, which included the aforementioned 9,003 high-confidence lncRNAs plus an additional 

1,461 transcripts (Figure S2B). Further analysis revealed that approximately 96.3% of these 1,461 
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transcripts exhibited protein-coding potential, mostly located in insufficiently annotated intergenic 

regions. When we compared these 1,461 transcripts against newly predicted genes in the T2T rice 

genome (Table S7), about 10.1% (147 transcripts) aligned with those newly predicted coding genes. 

These findings underscore that incorporating translatome data substantially reduces the false-

positive rate in lncRNA identification. 

The final set of 9,003 lncRNAs was unevenly distributed across chromosomes (Figure 2A, Figure 

S3A), with Chr1 bearing the most (1,177) and Chr10 the fewest (549). These lncRNAs featured a mean 

GC content of 41%, notably lower than the ~53% typical of protein-coding genes (Table S8). 

Approximately 64% spanned 200–400 bp (median 333 nt) (Figure 2B), much shorter than mRNAs 

(median 1,008 nt), and displayed lower expression levels (Figure 2C). Notably, ~84.75% contained 

only one exon (Figure 2D), and they had fewer isoforms than mRNAs (Figure 2E). 

Further comparison to publicly available rice lncRNA databases (PlantNATdb, PNRD, 

RNAcentral, NONCODE, CANTATAdb, GreeNC) revealed that 3,778 (41.96%) of our identified 

lncRNAs matched known records (E value <1e-10, identity >80%, coverage >50%), of which 2,446 

were shared across all four sample sets (Figure S3B). 

In summary, the optimized identification pipeline that integrates translatome and transcriptome 

data not only significantly reduces the false-positive rate and ensures high accuracy of the results, 

but also provides a convenient workflow and reference standard for future rice lncRNA 

identification, thereby greatly expanding the rice lncRNA resource. 

 

Figure 1. Bioinformatics pipeline for lncRNA identification and visualization of disease-resistance-associated 

lncRNAs in rice. (A) Comprehensive analysis workflow: Sequential steps from left to right, illustrating the 

construction of the "CodingRNA" dataset, criteria and processes for identifying non-coding RNAs (including 

lncRNAs), and strategies for screening disease-resistance-associated lncRNAs. (B-D) Venn diagrams: Evaluation 

of coding potential of transcripts using multiple tools and databases, including Pfam, Rfam, Nr, PLEK, CPC2, 

and CNCI. (E) Pie chart: Classification of the final identified lncRNAs. 
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Figure 2. Comparative analysis of the basic characteristics of lncRNAs and mRNAs. (A) Circos plot of the trans-

target genes of four specific lncRNAs. From innermost to outermost: the first ring represents chromosomes; the 

second ring shows GC content (outer side for lncRNAs, inner side for mRNAs); the third ring displays heatmaps 

of gene expression levels and line graphs of gene density (outer side for lncRNAs, inner side for mRNAs). Trans-

target gene connections are represented by lines. (B) Transcript length distribution. (C) Normalized expression 

level distribution, displayed as violin plots. (D) Distribution of the number of exons per transcript. (E) 

Distribution of the number of splice variants per gene locus. Red represents lncRNAs, and blue represents 

mRNAs. 

2.3. DELs and Their Differential Expression (DE) Target Genes Regulatory Networks Reveal the 

Mechanisms Underlying Rice Response to M. oryzae Infection 

To investigate the transcriptional regulation differences in rice varieties under M. oryzae 

infection and to discover potential resistance- or susceptibility-related lncRNAs, we systematically 

analyzed the DE of both mRNAs and lncRNAs in the resistant variety IR25 and the susceptible variety 

LTH at 0 h, 12 h, and 24 h postinoculation. A comprehensive comparison of transcriptomic differences 

between inoculated and noninoculated conditions and across time points revealed 4,426 differentially 

expressed mRNAs (DEGs), including 3,821 DEGs and 605 differentially expressed lncRNAs (DELs). 

Of these, 415 DELs and 3,338 DEGs were stress-responsive (Table S9, Figure 3A). 

When comparing conditions before and after inoculation, the resistant genotype IR25 displayed 

293 lineage-specific DELs, whereas the susceptible genotype LTH presented only 70 (Figure 3B). 

Further analysis indicated that IR25 had the highest number of specific DELs (137) at 12 h 

postinoculation, suggesting a faster transcriptional response during the early stage of M. oryzae stress. 

By applying cis and trans target gene prediction (20 kb upstream and downstream, |r| > 0.5; RIblast 

combined with correlation analysis), we identified 61 cis and 341 trans target genes for the 293 IR25-

specific DELs (Table S10, Table S11). GO enrichment analysis showed that these target genes are 

primarily involved in photosynthesis, “small molecule biosynthetic process” (GO: 0006508), and 

“organic acid metabolic process” (GO: 0016053)—all of which are closely tied to aromatic amino acid 

metabolism (Figure 3C). KEGG pathway analysis further revealed significant enrichment in the 

“phenylalanine, tyrosine, and tryptophan biosynthesis” pathway (osa00400) (Figure 3D), with 

notable enrichment of genes such as LOC_Os01g55870 (chorismate mutase 3, chloroplastic) and 

LOC_Os09g08130 (indole-3-glycerol phosphate synthase). These genes play critical roles in 

phenylalanine and tryptophan metabolism, respectively, serving as key precursor nodes for SA and 

IAA biosynthesis. These results suggest that the DELs specific to IR25 may enhance plant defense 

against M. oryzae by modulating aromatic amino acid metabolic pathways and expediting the 

synthesis of resistance-related hormones. 

In contrast, the susceptible genotype LTH exhibited only 70 specific DELs, which were 

associated with 18 cis and 74 trans target genes (corresponding to 15 and 12 DELs, respectively). GO 

enrichment showed that these target genes were enriched in carbon metabolism-related terms such 
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as “starch metabolic process” (GO: 0019250) and “sugar metabolic process” (GO: 0006006) (Figure 

3E). Meanwhile, KEGG analysis indicated that “starch and sucrose metabolism” (osa00500) and 

“glyoxylate and dicarboxylate metabolism” (osa00630) pathways were significantly enriched (Figure 

3F). Thus, under M. oryzae stress, LTH-specific DELs seem more inclined to govern carbon 

metabolism reprogramming rather than potent defense hormone pathways, suggesting that LTH 

predominantly undergoes a metabolic adjustment-based stress pattern at early stages, failing to 

trigger strong hormone-mediated defenses in a timely manner. 

Furthermore, we detected 52 DELs shared by IR25 and LTH (Figure 3B), all of which were 

consistently up- or downregulated in both varieties. GO enrichment analysis on the cis and trans 

target genes of these 52 DELs uncovered terms related to “rhythmic process” (GO: 0048511) and sugar 

metabolism, such as “hexose metabolic process” (GO: 0019318) (Figure S4A). Their KEGG enrichment 

highlighted the “pentose phosphate pathway” (osa00030), “Calvin cycle carbon fixation” (osa00710), 

and “amino acid biosynthesis” (osa01230) (Figure S4B). These findings point to a conserved role for 

these commonly responsive genes in energy metabolism and fundamental physiological regulation, 

helping coordinate basic adaptive responses in both resistant and susceptible genotypes. 

We further examined DELs in the NPB variety at 24, 48, and 72 h post-inoculation (Figure S5), 

observing only a few DELs—just two overlapped with the aforementioned set of 52 DELs—indicating 

significant differences in how LTH, IR25, and NPB respond at the lncRNA level. This highlights 

genotype-specific defense mechanisms. 

A direct comparison of the susceptible and resistant genotypes (LTH vs. IR25) at 12 h and 24 h 

postinoculation revealed 21 lncRNAs co-responsive to M. oryzae infection (Figure S4C). Their cis/trans 

target enrichment suggested potential synergy between JA and ET biosynthesis, as well as IAA 

modulation. GO enrichment analysis indicated that phospholipase A1 (PLA1) and cysteine synthase 

genes are closely associated with these 21 lncRNAs, with PLA1 being crucial for JA biosynthesis 

during early infection stages and cysteine serving directly as a precursor for ET (Figure S4D) [25,26]. 

Furthermore, within the KEGG-enriched “plant hormone signal transduction” pathway (Figure S4E), 

two key genes—JAZ (LOC_Os04g32480) and SAUR (LOC_Os02g52990)—were identified (Figure 

S4F-G) [27,28]. The marked upregulation of JAZ suggests a potential negative feedback mechanism 

isn JA signaling, whereas the pronounced downregulation of SAUR may indicate suppression of 

IAA, thereby prioritizing the synthesis of defense-related hormones. 

We showed that the resistant variety IR25 exhibits a more robust transcriptomic response to M. 

oryzae infection than the susceptible LTH, largely through lncRNAs involved in aromatic amino acid 

metabolism and hormone signaling. Moreover, we identified a subset of lncRNAs that coordinate JA, 

ET, and IAA pathways, indicating that JA and ET signals play pivotal roles under M. oryzae stress 

while IAA signaling functions as an auxiliary route, collectively maintaining a dynamic balance 

between stress tolerance and immune responses. 
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Figure 3. Functional enrichment analysis of DELs and their target DEGs in IR25 and LTH after rice blast infection. 

(A) Bar charts showing the number of DEGs and differentially expressed lncRNAs (DELs), with upregulated 

genes in red and downregulated genes in blue. (B) Venn diagrams of differentially expressed lncRNAs (DELs) 

between LTH and IR25 before and after inoculation (Fold change > 1.5, p-value < 0.05). (C-E) Functional analysis 

of target genes predicted for uniquely expressed DELs in IR25 and LTH, including GO enrichment analysis (D, 

F) and KEGG pathway enrichment analysis. The top 20 significant GO terms were selected based on a p.adjust 

< 0.05 cutoff, and the top 10 KEGG pathways were selected with the same significance threshold. 

2.4. Construction of a ceRNA Network Reveals the Role of lncRNAs in Rice Blast Resistance 

This study constructed a ceRNA network containing 20 miRNAs, 17 lncRNAs, and 115 mRNAs 

(Figure 4), systematically analyzing how lncRNAs indirectly regulate resistance genes and hormone 

signals by “sponging” miRNAs during M. oryzae infection. Four lncRNAs—LncRNA.9497.1, 

LncRNA.9562.1, LncRNA.13491.1, and LncRNA.33800.3—emerged as major nodes, closely linked to 

hormone signaling pathways (e.g., JA; IAA; ABA; and gibberellin, GA) as well as the expression of 

various resistance-related genes. 

LncRNA.9497.1 indirectly regulates several hormone-related genes by “sponging” osa-miR395a, 

osa-miR2864.1, and osa-miR5830. For instance, osa-miR395a targets OsSultr2;2 (a sulfate transporter), 

potentially bolstering sulfur metabolism to supply more substrates for defense [29]. In addition, osa-

miR2864.1 targets a variety of receptor kinases, including OsLRK6 (leucine-rich repeat receptor 

kinase), OsMRLK16 (wheat germ agglutinin domain kinase), OsRLCK204 (receptor-like cytoplasmic 

kinase), and SDRLK-40 (receptor-like kinase). Among these, OsLRK6 is vital for immune signal 

transduction, whereas OsMRLK16, OsRLCK204, and SDRLK-40 facilitate microbe-associated 

molecular pattern (MAMP) perception and potentially abiotic stress cross-tolerance. Significantly 

higher expression of these receptor kinases in IR25 at 24 h post-inoculation suggests that certain 

lncRNAs may facilitate early-stage pathogen recognition through miRNA “sponging”. 
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Moreover, osa-miR5830 targets OsABA8ox3 and OsMETS2, which regulate ABA degradation 

and methionine metabolism, respectively. OsABA8ox3 modulates ABA levels, influencing stress 

adaptability [30]. In IR25 inoculated with M. oryzae, OsABA8ox3 was notably downregulated by 24 h, 

whereas OsMETS2 was upregulated, thus promoting ethylene biosynthesis and reinforcing disease 

resistance [31]. Thus, in the resistant IR25 line, LncRNA.9497.1 may indirectly downregulate ABA 

signaling and upregulate ethylene signaling via miRNA sponging, thereby enhancing the 

downstream immune response in rice. 

LncRNA.33800.3 indirectly regulates OsWRKY70, OsCPS1, and OsGH3-2 by “sponging” osa-

miR5075. OsWRKY70 is a key transcription factor in the JA signaling pathway that positively 

regulates JA biosynthesis while negatively affecting GA synthesis, thus prioritizing defense over 

growth [32]. OsCPS1 participates in GA biosynthesis [33], and OsGH3-2 is an IAA amino acid 

synthase implicated in broad-spectrum resistance by limiting auxin levels [34]. 

In LTH (susceptible) at 12 h postinoculation, OsGH3-2 was significantly downregulated, 

whereas OsWRKY70 was markedly upregulated, indicating that under early pathogen stress, 

lncRNAs such as LncRNA.33800.3 may simultaneously reduce auxin and raise JA signals to enhance 

disease resistance. 

Furthermore, LncRNA.9562.1 and LncRNA.13491.1 regulate several resistance genes and 

hormone signals by targeting osa-miR529a, osa-miR5830, and osa-miR2090. 

osa-miR2090 targets OsRLCK42 (receptor-like protein kinase) and Cht5 (chitinase). OsRLCK42 

aids in early stress signal transduction, whereas Cht5 degrades fungal cell walls, a process pivotal to 

JA-mediated immunity [35]. In LTH, OsRLCK42 was strongly downregulated while Cht5 was 

upregulated, suggesting partial defense activation yet compromised early signaling in a susceptible 

background. 

osa-miR529a targets OsABA8OX2 (ABA metabolic balance) and OsbHLH148 (a transcription 

factor regulating JA signaling), which contribute to both drought and disease stress responses [36] . 

In resistant IR25, OsABA8OX2 tended to be downregulated at 24 h postinfection, while OsbHLH148 

was upregulated, reflecting a shift from ABA to JA-driven defenses [37,38]. 

osa-miR5830 targets OsABA8ox3 and interacts with OsMETS2, a methionine synthase 

supporting ethylene biosynthesis [31,39]. This further underscores intricate hormone crosstalk 

controlled by hub lncRNAs. 

Collectively, these ceRNA interactions indicate that lncRNAs can coordinate hormone pathways 

(ABA, ET, JA, IAA) and receptor kinases to bolster rice blast resistance. 

 

Figure 4. Co-expression ceRNA network of lncRNAs, miRNAs, and mRNAs. Inverted triangles represent 

miRNAs (purple), triangles represent lncRNAs (red), ovals represent mRNAs, and rectangles represent plant 

hormones, disease resistance-related genes, and transcription factors (orange). Solid lines indicate connections 
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between miRNAs and mRNAs, while dashed lines represent interactions between miRNAs and lncRNAs. The 

line color corresponds to the expectation values predicted by psRNAtarget. 

2.5. WGCNA Uncovers Key Hormone, R genes / Proteins, and Receptor Kinase Networks Under M. oryzae 

Stress 

After removing batch effects, normalizing expression, and filtering outliers, a total of 2,583 

lncRNAs and 15,701 genes were retained for WGCNA (Table S12). With a soft threshold power of 18 

(scale-free topology index ~0.85; Figure 5A-B), 26 modules were identified (TOMType=Unsigned, 

deepSplit=2, minModuleSize=30, mergeCutHeight=0.2). Notably, around 85.23% of all 

genes/lncRNAs gathered into the top 10 modules (Figure 5C). 

By correlating module eigengenes (MEs) with phenotypic traits (blast resistance vs. 

susceptibility) (Figure 5D), three notable correlations emerged. The Darkgreen Module showed 

strong positive correlation with resistance (r=0.96, p=3×10^-21), while the Lightyellow Module 

demonstrated negative correlation with resistance (r=–0.87, p=1×10^-12). The Gray60 Module 

exhibited negative correlation with susceptibility (r=–1.0, p=9×10^-40). Scatter plots of transcript 

significance (TS) vs. module membership (MM) (Figure 6E, Figure S6A-B) confirmed these 

relationships, prompting further network analysis of hub lncRNAs and their target genes. 

In the darkgreen module (Figure 6A, Table S13), LncRNA.9497.1, LncRNA.21901.1, and 

LncRNA.35959.1 serve as core nodes, associating with disease/stress resistance genes such as wall-

associated kinase 1 (WAK1), putative disease resistance protein (RGA4), OsWRKY125, and mitogen-

activated protein kinase 17 (MAPK17). WAK1 mediates cell wall strengthening and defense signal 

transduction [40]. Meanwhile, RGA4 and RGA3 are NB-LRR-type resistance genes detecting 

pathogen effectors [41], and OsWRKY125 is a WRKY TF driving the expression of defense genes [42]. 

MAPK17 sits at a crucial position in MAPK signaling cascades under pathogen attack [43]. 

Within the lightyellow module (Figure 7C), LncRNA.10688.1 and LncRNA.36066.1 emerged as 

central regulatory points. LncRNA.10688.1 is directly linked to RGA5 (LOC_Os11g37740, 

LOC_Os12g37770) and Bph40 (LOC_Os11g39209), both contributing to pathogen-triggered immunity 

(PTI) and physical defense barriers [44,45]. It also relates to OsLP2 (LOC_Os12g08240), implying 

cross-disease and environmental stress crosstalk [46]. In LTH inoculated with M. oryzae, RGA5 and 

OsLP2 were notably upregulated, whereas Bph40 was slightly downregulated, suggesting partial 

immune enhancement yet weaker mechanical defenses in a susceptible background. 

Piks-1 and Piks-2, recognized CC-NBS-LRR pairs defending against M. oryzae [47], and Pb1 

(LOC_Os04g06280), a durable blast resistance gene from indica [48], also converged in this module’s 

coexpression network, implying multiple layers of early PTI and defense synergy. In terms of stress 

resistance, OsPUB69 (LOC_Os12g33180), an E3 ubiquitin ligase gene associated with 

LncRNA.21855.1, has been shown to play a crucial role in stress tolerance, particularly in protein 

degradation and cellular homeostasis regulation [49]. Similarly, OsGLP8-12 (LOC_Os12g28015), 

associated with LncRNA.36066.1, regulates reactive oxygen species (ROS) levels, which is essential 

for rice adaptation and disease resistance under oxidative stress conditions [50,51]. 

The gray60 module features LncRNA.13491.1, LncRNA.9562.1, and LncRNA.9997.2 (Figure 7B), 

which coordinate multiple receptor kinases (OsRLCK366, OsRLCK5), resistance genes (RGA5-L1), 

and hormone regulators (OsPP2C19). For example, LncRNA.13491.1 intersects with RGA4, RGA5, 

RPM1, and Xa1, all tied to effector-triggered immunity (ETI) [52,53]. It also influences OsMADS56 

and OsbHLH179, potentially modulating strigolactone (SL) and GA signals [54,55]. Similarly, 

LncRNA.9562.1 correlates with OsRLCK366 (a receptor kinase) and OsPP2C19 (an ABA regulator) 

[56,57], facilitating hormone interplay and stress responses [58–60]. LncRNA.9997.2 impacts the 

regulation of GA, ABA, and even cytoskeletal elements via OsRLCK5 and VLN4 [61]. Interestingly, 

based on the expression heatmap of lncRNA within the module (Figure S6C-E), LncRNA.13491.1 and 

LncRNA.9562.1 peaked in LTH at 12 h but remained low in IR25, indicating potential genotype-

specific temporal regulation of immune-associated lncRNAs. 
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Collectively, these findings demonstrate that multiple lncRNAs within WGCNA modules 

coordinate hormone pathways (ABA, GA, SL), receptor kinases (OsRLCK5, OsRLCK366), and R 

genes/proteins (RGA4, RGA5, Pb1, Piks-1, Piks-2) to bolster both early PTI and downstream ETI, 

thereby establishing a robust multi-layered defense framework in rice. 

 

Figure 5. WGCNA of genes and lncRNAs in rice after M. oryzae infection. (A-B) Soft threshold selection for 

network construction. The optimal soft threshold was chosen based on scale-free topology fit (A) and mean 

connectivity (B). (C) Hierarchical clustering tree of transcripts in different modules. The dendrogram shows the 

clustering of transcripts into modules, with each module labeled by a different color. (D) Module-trait 

relationship. The heatmap shows the correlation between module eigengenes and traits. The correlation 

coefficients and p-values indicate the strength and significance of the relationship. (E) Scatter plots of transcript 

significance (TS) versus module membership (MM) for the salt-associated module MEgreys60. 

 

Figure 6. WGCNA network plot showing the correlation between the three modules strongly associated with 

susceptible and resistant phenotypes. (A) Darkgreen module is significantly positively correlated with resistance 

traits (r = 0.96, p = 3 × 10^-21).(B) Grey60 module is significantly negatively correlated with susceptibility traits 

(r = -1.0, p = 9 × 10^-40).(C) Lightyellow module is significantly negatively correlated with resistance traits (r = -

0.87, p = 1 × 10^-12). The annotations for these related genes are provided in Table S14. 
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Figure 7. GSEA enrichment analysis of gene sets based on four lncRNAs in GO and KEGG pathways. (A) 

lncRNA.9497.1, (B) lncRNA.9562.1, (C) lncRNA.10688.1, and (D) lncRNA.13491.1: Enrichment analysis of the 

gene sets in GO and KEGG pathways for each of the four lncRNAs. The x-axis represents the enrichment score 

(ES), while the color gradient indicates the adjusted p-value (p.adjust), reflecting the significance level of the 

enrichment. 

2.6. Mechanistic Insights into the Functional Roles of Key lncRNAs in Rice Blast Resistance 

To examine the mechanistic roles of the top lncRNAs identified by WGCNA—e.g., 

LncRNA.9497.1, LncRNA.9562.1, LncRNA.10688.1, and LncRNA.13491.1—we performed gene set 

enrichment analysis (GSEA) for single key lncRNAs, focusing on pathways implicated in secondary 

metabolism and hormone signals, and structural diagrams for these four lncRNAs were also 

generated (Figure S7). 

LncRNA.9497.1, annotated as an antisense transcript (Figure 7A), was significantly associated 

with the phenylpropanoid biosynthesis pathway (osa00940) and broader plant secondary metabolite 

biosynthesis (osa00999) (Figure 7A). These metabolic processes contribute to lignin and flavonoid 

production, which reinforce cell walls and produce antimicrobial compounds. Thus, LncRNA.9497.1 

likely boosts disease resistance through robust metabolic defense. 

Genes linked to LncRNA.9562.1 were mainly enriched in plant hormone signal transduction 

(osa04075) (Figure 7B, Figure S8), encompassing SA, ET, brassinosteroid (BR), GA, and JA pathways. 

Critical components like NPR1 and PR1 and ET-related genes appear among its targets, indicating a 

capacity to orchestrate hormone crosstalk and secondary metabolism, thereby enabling a rapid 

immune response to M. oryzae. 

LncRNA.10688.1 was significantly enriched in the phenylpropanoid biosynthesis pathway 

(osa00940) and the carotenoid biosynthesis pathway (osa00906) (Figure 7C). Phenylpropanoids foster 

structural defenses and are precursors to SA, while carotenoids enhance antioxidant capacity and can 

feed into ABA production, thus regulating plant stress adaptation. 

LncRNA.13491.1 exhibited notable enrichment in pigment biosynthetic processes (GO: 0046148) 

and flavonoid biosynthesis (osa00941) (Figure 7D). Flavonoids help mitigate oxidative stress and may 

act as signaling molecules during pathogen attacks, suggesting that LncRNA.13491.1 aligns plant 

defense responses with redox equilibrium. 

Altogether, these key lncRNAs enhance plant adaptation and defense under M. oryzae infection 

by integrating basic metabolic, secondary metabolic, and multiple hormones signaling pathways—

particularly the phenylpropanoid, flavonoid, JA, SA, ET, and IAA pathways. Their multifaceted roles 
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highlight potential targets for breeding disease-resistant rice varieties using gene editing or advanced 

selection techniques. 

2.7. qRT–PCR Analysis and LncRNA Cloning Validation 

To validate these bioinformatic results (Table S14), four important lncRNAs and seven of their 

target genes were chosen from key WGCNA modules for quantitative real-time PCR (qRT–PCR) 

(Figure 8A–C, M, G–I, N-Q). The expression patterns largely matched the RNA-seq data, reinforcing 

the reliability of differential expression analysis. Another three random DELs and their three target 

genes were likewise confirmed (Figure 8D–F, J–L), supporting the computational pipeline’s accuracy. 

One high-priority lncRNA (lncRNA.9562.1) was subsequently cloned, and Sanger sequencing 

verified its length and sequence fidelity (Figure S9A-B). The cloned sequence fully matched the 

predictions, indicating the pipeline’s robust annotation. These validation results pave the way for 

potential functional analyses, such as overexpression or knockout experiments, to assess the 

phenotypic impacts of this lncRNA on rice disease resistance. 

 

Figure 8. Verification of RNA-seq data by qRT-PCR for DELs and their target genes responsive to M. oryzae. The 

yellow line with solid circles represents RNA-seq results, and the blue line with solid squares represents qRT-

PCR results. Error bars indicate the standard error of three replicates. (First and third rows): Expression levels 

of lncRNAs at different time points.(Second and fourth rows): Corresponding target gene expression levels at 

the same time points. 

3. Discussion 

3.1. Optimized lncRNA Identification Pipeline and Its Contribution to Rice Genome Annotation 

In this study, we developed a more comprehensive rice protein-coding gene database 

(CodingRNA) by merging translatome data with existing genome annotations, thereby refining the 

lncRNA identification pipeline (Figure 1A). Compared with conventional annotation approaches, our 

pipeline demonstrates an enhanced ability to exclude transcripts with protein-coding potential, 

effectively reducing false-positive lncRNA calls. This improvement aligns with recent telomere-to-

telomere genome assembly work [23] reporting the discovery of 1,571 additional coding genes 

beyond MSU v7, underscoring the importance of updated annotation strategies (Table S7). 

We identified 9,003 high-fidelity lncRNAs (Figure 1D, Table S5)—exceeding previous tallies by 

Wang et al. (4,787) and Priyanka et al. (5,337) [62,63]. Such discrepancies likely stem from differences 

in rice varieties, stress conditions, sequencing strategies, and lncRNA pipelines. Notably, 40% of our 
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lncRNAs matched those in public databases (Figure S3B), whereas 60% appeared novel, highlighting 

possible genotype-, tissue-, or stress-specific expression. Our pipeline incorporates translatome data 

integration for excluding potential coding transcripts, three-pronged coding potential prediction 

(CPC2, PLEK, CNCI) supplemented by Pfam/Rfam/NR filtering, rice-specific TAD features for 

lncRNA target gene identification, and RIblast for trans-target detection, replacing older methods. 

Despite substantial progress, there remain limitations. The focus on certain genotypes and time 

points leaves open questions about broader spectrum resistance and lncRNA behavior under other 

M. oryzae races or environmental contexts. Additionally, although qRT–PCR verified expression 

changes (Figure 8), functional assays such as overexpression or knockout are still needed to confirm 

direct phenotypic influences. Lastly, this work primarily addressed leaf tissue, calling for future 

multi-tissue or single-cell omics analyses to reveal dynamic spatiotemporal patterns of lncRNAs. 

Nevertheless, by offering an integrated pipeline on GitHub, this study establishes a rigorous 

foundation for more accurate lncRNA discovery and functional research in rice. 

3.2. LncRNAs Participate in Rice Blast Resistance by Regulating JA, ET, and IAA Signaling Pathways in a 

Coordinated Manner 

We observed that during M. oryzae infection, the target genes of DELs — which are themselves 

DEGs — in IR25 (resistant) and LTH (susceptible) varieties were significantly enriched in the JA and 

ET signaling pathways. This aligns with prior evidence highlighting the importance of the JA 

pathway in rice blast resistance. [62]. Yet, our study also unveils the ET pathway’s role. For example, 

some lncRNA targets in both IR25 and LTH—such as PLA1 (involved in JA biosynthesis) and PCO 

(affecting ethylene-related transcription factors [25,26])—suggest overlapping ET–JA crosstalk 

(Figure S4D). This synergy aligns with known JA–ET cooperation in defense against necrotrophic 

pathogens [64,65]. 

In IR25-specific responses, many DEL targets clustered within aromatic amino acid metabolism, 

implying potential enhancement of phenylalanine- and tryptophan-derived SA and IAA. Notably, 

previous studies have demonstrated that IAA and SA exhibit antagonistic effects, and this balance 

helps conserve energy during pathogen infection, thereby optimizing plant defense responses, which 

is consistent with our findings [66]. Meanwhile, JAZ genes (negative regulators of the JA pathway) 

[27] and SAUR genes (auxin-responsive [28]) also appear among the common DEL targets (Figure 

S4E-G), implying dynamic hormone crosstalk. Overall, IR25’s greater number of specific DELs (293) 

versus LTH’s 70 indicates a more robust or earlier activation of these hormone-regulated defenses in 

the resistant genotype. Conversely, LTH-specific DELs were concentrated in carbon metabolism, 

illustrating a metabolic shift that might be less effective at early defense induction. 

Thus, multiple hormone signals—SA, ET, IAA, JA—likely collaborate under M. oryzae stress, 

and each genotype’s capacity to coordinate these pathways promptly could decide the strength and 

timeliness of immune responses. 

3.3. lncRNAs Mediate Immune Responses by Regulating RLKs and R Genes/Proteins and by Participating 

in ceRNA Networks 

Our results further indicate that, within the WGCNA modules correlated to blast resistance, 

RLKs and resistance proteins are markedly enriched. For instance, in the dark green module, 

LncRNA.13491.1 interacts with OsRLCK366 (a receptor-like kinase), OsRGA5-L1 (a resistance 

protein), and OsPP2C19 (a signaling regulator). This observation is consistent with findings in 

mulberry [67], where the lncRNA MuLRR-RLK-AS negatively modulates RLK expression to 

influence disease resistance. 

Moreover, our ceRNA network showed that several lncRNAs—LncRNA.9497.1, 

LncRNA.9562.1, LncRNA.13491.1, and LncRNA.33800.3—competitively bind specific miRNAs (osa-

miR395a, osa-miR2864.1, osa-miR5830), thereby influencing the expression of OsSultr2, OsWRKY70, 

and OsGH3-2, genes affecting sulfur metabolism, JA signaling, and auxin homeostasis, respectively. 

These discoveries validate the endogenous target mimic (eTM) hypothesis by Franco-Zorrilla et al. 
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(2007) [68]. Similarly, studies in tomato [69] and sweet sorghum [70] suggest that lncRNAs strengthen 

resistance by regulating transcription factors and stress response genes via ceRNA-based 

interactions. 

Furthermore, subcellular localization predictions (Table S15) provide further insights into how 

these lncRNAs may exert their regulatory functions. For instance, LncRNA.9562.1 exhibits high-

confidence localization in extracellular, mitochondrial, and nuclear compartments, suggesting 

multifaceted roles in perceiving pathogen signals or orchestrating nuclear transcriptional events. 

Conversely, LncRNA.9497.1 is predicted to reside largely in the extracellular region, supporting a 

putative role in intercellular communication or apoplastic signaling. Such compartment-specific 

predictions enrich our understanding of how each lncRNA may spatially coordinate defense 

responses under M. oryzae infection. 

In summary, lncRNAs in rice not only directly modulate RLKs and R genes/proteins but also 

indirectly shape hormone signaling pathways through ceRNA networks, forming an extensive 

regulatory web to determine the eventual disease resistance phenotype. 

4. Materials and Methods 

4.1. LncRNA Strand-Specific Library Data Sources 

A total of 513 translatome (datasets were collected from various tissues of japonica rice under 

different experimental conditions [71–76], along with 40 strand-specific RNA-seq datasets derived 

from leaves of multiple japonica rice varieties [77,78] (Table S1, Table S3). These datasets served two 

major purposes: (i) constructing the rice coding gene dataset for improved annotation and 

subsequent lncRNA identification, and (ii) conducting differential expression analyses as well as 

coexpression network inference. Specifically, all 40 strand-specific datasets were used for lncRNA 

identification and WGCNA, whereas 16 of these datasets were devoted to differential expression 

analysis. We focused on the monogenic line IR25, harboring the blast resistance gene Pikm, and the 

susceptible line LTH (Lijiangxintuanhe) [79]. Among the 513 translatome datasets, various 

experimental replicates spanned stress conditions such as drought, temperature fluctuation, salinity, 

submergence, and heavy metals, in addition to multiple tissues (roots, stems, leaves, buds, panicles, 

and flowers). Detailed information on library construction is provided in Supplementary Materials 

2. 

4.2. LncRNA Identification and Classification 

For the 40 strand-specific RNA-seq datasets, we first used FastQC (v0.11.9) to check read quality 

[80]. Strand specificity was determined via Rseqc (v5.0.1) [81], with any nonstrand-specific libraries 

excluded (Table S3). Adapter sequences and low-quality reads were removed using TrimGalore 

(v0.6.7) [82] (quality cutoff q30) and Fastp (v0.20.1) [83]. Bowtie2 (v2.4.2) was then employed to 

discard ribosomal RNA (rRNA) reads [84], after which HISAT2 (v2.2.1) [85] aligned the cleaned reads 

to the MSU v7 reference genome with strand-specific parameters (--rna-strandness FR or RF) [24]. 

Transcriptome assembly was carried out using Stringtie (v2.1.5) under the --rf or --fr options, and all 

resulting GTF files were merged using Stringtie merge. Transcripts below 200 nt in length or FPKM 

< 0.5 were discarded [86]. 

To remove protein-coding transcripts, we used GFFcompare (v0.9.8) to compare the assembled 

annotation against our integrated rice coding gene fusion annotation (hereafter referred to as the 

CodingRNA dataset) [87]. Candidate lncRNAs were those with class codes i, x, o, u, and p. Additional 

filtering steps were taken by comparing these candidates to the protein families database (Pfam) 

(v37.0) [88] and NCBI nonredundant protein database (NR) databases (e-value <1e-5) to eliminate 

any potential protein-coding transcripts [89], as well as against the RNA families database (Rfam) 

(v14.10) database (e-value <1e-5) to remove known small RNAs [90]. Next, three coding potential 

prediction tools—Coding Potential Calculator 2 (CPC2) (v1.0.1) [91], Predictor of Long non-coding 

RNAs and mEssenger RNAs based on an improved K-mer scheme (PLEK) (v1.2) [92], and Coding-
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Non-Coding Index (CNCI) (v2) [93]—were simultaneously applied, and only transcripts consistently 

predicted to be noncoding by all three tools were retained. 

To further classify the final lncRNAs, we compared them once more with MSU v7 via 

GFFcompare. Class i was defined as an intronic lncRNA, class o as a sense lncRNA, class x as an 

antisense lncRNA, and classes p and u as general lncRNAs (Figure S2B). Additionally, bedtools 

closest (v2.30.0) identified bidirectional lncRNAs, while the rest were assigned as intergenic [94]. 

4.3. Identification of cis- and trans-Targets and Known lncRNAs 

We extracted both differentially expressed genes (DEGs) and differentially expressed lncRNAs 

(DELs) from the expression analyses and used Pearson correlation analysis (the cor function in R) to 

evaluate DEL–DEG pairs with an absolute correlation >0.5 and p <0.05. For trans-target identification, 

we employed RIblast (interaction energy < –14 kcal/mol, interaction length ≥ 15 bp), alongside the 

same correlation threshold, to confirm putative lncRNA–gene associations [95]. 

Considering the median size of rice topologically associated domains (TADs) is ~35 kb [96], a 

±20 kb window was chosen for cis-target searches. Any genes located within 20 kb upstream or 

downstream of the lncRNA, exhibiting |r| >0.5, were deemed cis-targets. We then downloaded six 

rice lncRNA databases—PlantNATdb (v1.4) [97], PNRD (v1.0) [98], RNAcentral (v22) [99], 

NONCODE (v6.0) [100], CANTATAdb (v2.0) [101], and GreeNC (v2.0) [102]—merging them via CD-

hit (v4.8.1) [103]. Finally, we utilized Blastn (v2.9.0) [104] (E-value<1e-5, identity>95%) to compare 

our candidate lncRNAs with these known datasets, thus identifying novel lncRNAs versus those 

present in public repositories. 

4.4. Differential Expression Analysis and Functional Enrichment 

We performed differential expression analysis using the DESeq2 (v1.22.1) [105] package in R. 

Prior to analysis, batch effects were removed, and each group of lncRNAs and mRNAs was analyzed 

separately. Thresholds of |log2FC| ≥1.5 (for lncRNAs) or |log2FC| ≥2 (for mRNAs) and adjusted p 

≤0.05 were used to designate significant differential expression. Principal component analysis (PCA) 

was then conducted via prcomp package, with visualization through ggplot2 (v3.5.1) [106] and 

pheatmap (v1.0.12). 

Functional enrichment (Gene Ontology, GO; Kyoto Encyclopedia of Genes and Genomes, 

KEGG; Gene Set Enrichment Analysis, GSEA) was carried out using clusterProfiler (v4.10.1)[107], 

referencing the org.Osativa.eg.db (v0.01) rice database [108]. We applied a significance cutoff of p-

value < 0.05 for all enrichment analyses. 

4.5. Transcription Factor Identification and lncrna Localization 

Transcription factors (TFs) are crucial in rice’s response to M. oryzae stress [20]. Hence, 

PlantTFDB (v5.0) [109] was utilized to predict TFs within the DEGs, the ceRNA network, and the 

WGCNA modules. LncRNA subcellular localization was assessed via RNALocate (v3.0) [110], 

providing an initial insight into nuclear- vs. cytoplasmic-located lncRNAs. 

4.6. Weighted Gene Coexpression Network Analysis (WGCNA) 

Weighted gene coexpression network analysis (WGCNA) was undertaken to explore interaction 

relationships among lncRNAs and mRNAs [111], excluding those already used for differential 

expression analysis. Following expression normalization (via DESeq2) and batch effect removal, low-

expression data and outliers were discarded, retaining genes with higher variance (top 75% by 

median absolute deviation). A soft threshold power of 18 was used, constructing an adjacency matrix 

via the adjacency function. A topological overlap measure (TOM) was then calculated to define the 

similarity matrix of lncRNA–mRNA expression. 

Hierarchical clustering was performed, and modules were defined or merged using the dynamic 

tree cut method (deepSplit=2, minModuleSize=30, mergeCutHeight=0.25). Each module’s eigengene 
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was correlated with specific phenotypes (e.g., rice blast resistance vs. susceptibility), generating 

correlation matrices. Modules showing an absolute correlation coefficient |r|≥0.8 and p<0.05 were 

considered significantly associated with the trait. The core hub genes or lncRNAs within those 

modules were visualized using Cytoscape (v3.10.2) [112]. 

4.7. Single Key lncRNA Analysis 

A normalized, batch-corrected expression dataset of both lncRNAs and mRNAs was used for 

Spearman correlation analyses. For each chosen lncRNA, all rice genes were sorted by the absolute 

value of their correlation (descending order), creating an ordered gene list. 

Next, gene set enrichment analysis (GSEA) was performed via clusterProfiler (v4.14.4) on this 

ranked list to determine the biological processes or functional categories most associated with the 

lncRNA in question [107]. The ggplot, ridgeplot, and gseaplot functions in ggplot2 were utilized to 

visualize results from GSEA (v1.68.0) [113]. 

4.8. Competing Endogenous RNA (ceRNA) Network Construction 

A total of 713 rice miRNAs were sourced from miRBase, forming the foundation for our ceRNA 

prediction library. psRNATarget (v2) [114], with parameter settings adapted from Zhang et al. [115], 

was used to predict lncRNA–miRNA and mRNA–miRNA interactions. The integrated mRNA–

miRNA–lncRNA coexpression network was finally visualized in Cytoscape (v3.10.2). 

4.9. qRT-PCR Method and lncRNA Cloning 

To validate the reliability of the sequencing results, we randomly selected three long noncoding 

RNAs (lncRNAs), four key lncRNAs, and ten of their target genes for quantitative real-time 

polymerase chain reaction (qRT-PCR) analysis. Primers for qRT-PCR were designed using 

Primer3Plus software [116] and verified for specificity using PrimerBlast [117]. All primers were 

synthesized by Genscript Biotech (primer sequences are provided in Table S16). 

qRT-PCR experiments were performed using the Applied Biosystems 7500 Real-Time PCR 

System, with three biological replicates for each sample. The reaction program was as follows: pre-

denaturation at 98°C for 2 minutes, followed by 40 cycles of denaturation at 98°C for 2 seconds, 

annealing and extension at 59°C for 10 seconds. A melt curve analysis was performed after each run 

to confirm the specificity of the amplification products. The 18S rRNA gene was used as the reference 

gene. The relative expression levels of the target genes were calculated using the 2^(-ΔΔCt) method. 

Specific primers (Table S16) for amplifying the full-length sequences of target lncRNAs were 

designed based on the RNA-seq data. Total RNA was reverse-transcribed into cDNA using 

SuperScript III Reverse Transcriptase (Invitrogen). PCR amplification was performed using 

PrimeSTAR GXL DNA Polymerase (TaKaRa), with the following reaction conditions: 98°C for 5 

minutes; (98°C for 10 seconds, 60°C for 15 seconds, 72°C for 1 minute per kb) × 30 cycles; and 72°C 

for 10 minutes. 

PCR products were separated by agarose gel electrophoresis, purified, ligated into the pNC-

Cam1304-35S vector, and then transformed into DH5α competent cells. Positive clones were 

confirmed by Sanger sequencing (Tsingke). Sequencing results were aligned with the reference 

genome to verify the accuracy of the cloned sequences. 

5. Conclusions 

This study provides significant advancements in understanding the roles of lncRNAs in rice’s 

defense against M. oryzae. By creating an optimized lncRNA identification pipeline—incorporating 

translatome data and existing annotations—we identified 9,003 high-confidence rice lncRNAs with 

improved accuracy. In-depth analyses of differential expression, WGCNA, and ceRNA network 

construction revealed their critical involvement in multiple hormones signaling pathways (JA, SA, 

ET, IAA), as well as in regulating receptor-like kinases and resistance proteins. Key lncRNAs (such 
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as LncRNA.9497.1 and LncRNA.9562.1) emerged as central regulators enhancing rice adaptability 

and immune response. 

These findings offer a comprehensive framework for delineating lncRNA functions in plant 

immunity and propose molecular targets for breeding resistant rice varieties. Future efforts should 

emphasize the functional validation of top candidate lncRNAs through overexpression or knockout 

lines, exploring their applicability across diverse genotypes and M. oryzae strains. 
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Figure S1. Utilization of the CodingRNA dataset improves the accuracy of lncRNA identification. (A-D) Four 

examples of CodingRNA dataset and lncRNAs annotation. From top to bottom, 1) the figure illustrates the rice 

MSU V7 genome annotation, 2) the CodingRNA dataset annotation, 3)the unfiltered lncRNA annotation 

assembled in this study, 4)and the lncRNA annotation filtered using the CodingRNA dataset. Red highlights 

represent protein-coding genes identified via the CodingRNA dataset, thereby preventing misclassification as 

lncRNA. 
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Figure S2. The impact of the CodingRNA dataset on lncRNA identification and classification code annotation 

categories. (A) Explanation and schematic representation of classcode classification labels. (B) Comparative 

Venn plots of lncRNA identification results before and after the CodingRNA dataset, with the prominent color 

blocks for genes with coding ability. 

 

Figure S3. Distribution and comparison of lncRNAs across rice varieties and reference databases. (A) Number 

of lncRNAs distributed across different chromosomes. (B) Venn diagram illustrating the overlap of lncRNAs 

identified in different rice varieties (NPB, IR25, and LTH) with those found in reference lncRNA databases. 
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Figure S4. Functional analysis of DE target genes predicted for co-expressed DELs in IR25 and LTH in response 

to rice blast stress. (A-B) 52 DELs shared by IR25 and LTH in response to rice blast stress: GO and KEGG pathway 

enrichment analysis results for the target genes of DELs co-expressed in both IR25 and LTH under rice blast 

stress. (C) Venn diagrams of differentially expressed lncRNAs (DELs) between LTH and IR25 under the same 

conditions (Fold change > 1.5, p-value < 0.05). (D-E) 21 lncRNAs co-responsive to M. oryzae infection: GO and 

KEGG pathway enrichment analysis results for the target genes of DELs co-expressed in both LTH and IR25 

under the same conditions. (F) Annotation of genes involved in the salicylic acid (SA) hormone signaling 

pathway. (G) Annotation of genes involved in the auxin hormone signaling pathway. 

 

Figure S5. Venn diagram of 52 commonly responding lncRNAs in NPB and LTH/IR25 under rice blast stress. 

This Venn diagram illustrates the overlap of differentially expressed lncRNAs (DELs) in NPB and LTH/IR25 

under rice blast stress at various time points. The diagram highlights the 52 lncRNAs that are commonly 

responsive to rice blast stress in both NPB and LTH/IR25. 
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Figure S6. Correlation and expression analysis of key WGCNA modules. (A-B) Scatter plots showing the 

correlation between module membership (MM) and gene significance (GS) in the Lightyellow and Darkgreen 

modules, indicating strong associations with resistance traits. (C-E) Heatmaps of lncRNA and mRNA expression 

profiles in three key WGCNA modules (Lightyellow, Darkgreen, Grey60) under different conditions. 

 

Figure S7. Genomic location and structure of the four key lncRNAs in rice genome annotations. Red represents 

lncRNAs, blue represents genes. 
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. 

Figure S8. GSEA KEGG enrichment pathway of lncRNA.9562.1-related genes in plant hormone signal 

transduction (osa04075). The red genes represent those with a strong correlation to lncRNA 9562 based on GSEA 

results. The background color of the boxes indicates the expression level: blue represents downregulated genes, 

while red indicates upregulated genes. 

 

Figure S9. Full-length amplification and sequencing results of lncRNA.9562.1 cloning. (A) Gel electrophoresis 

image of the PCR amplification product. (B) Sanger sequencing alignment results. 

References 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 23 of 29 

 

1. Mattick, J.S.; Rinn, J.L. Discovery and Annotation of Long Noncoding RNAs. Nat Struct Mol Biol 2015, 22, 

5–7, doi:10.1038/nsmb.2942. 

2. Koch, L. Screening for lncRNA Function. Nat Rev Genet 2017, 18, 70–70, doi:10.1038/nrg.2016.168. 

3. Ulitsky, I. Evolution to the Rescue: Using Comparative Genomics to Understand Long Non-Coding RNAs. 

Nat Rev Genet 2016, 17, 601–614, doi:10.1038/nrg.2016.85. 

4. Jin, Y.; Ivanov, M.; Dittrich, A.N.; Nelson, A.D.; Marquardt, S. LncRNA FLAIL Affects Alternative Splicing 

and Represses Flowering in Arabidopsis. The EMBO Journal 2023, 42, e110921, 

doi:10.15252/embj.2022110921. 

5. X, Z.; J, L.; B, L.; H, G.; Y, L.; Y, Q. Global Identification of Arabidopsis lncRNAs Reveals the Regulation of 

MAF4 by a Natural Antisense RNA. Nature communications 2018, 9, doi:10.1038/s41467-018-07500-7. 

6. Wang, Y.; Luo, X.; Sun, F.; Hu, J.; Zha, X.; Su, W.; Yang, J. Overexpressing lncRNA LAIR Increases Grain 

Yield and Regulates Neighbouring Gene Cluster Expression in Rice. Nat Commun 2018, 9, 3516, 

doi:10.1038/s41467-018-05829-7. 

7. Tian, J.; Zhang, F.; Zhang, G.; Li, X.; Wen, C.; Li, H. A Long Noncoding RNA Functions in Pumpkin Fruit 

Development through S-Adenosyl-L-Methionine Synthetase. Plant Physiology 2024, 195, 940–957, 

doi:10.1093/plphys/kiae099. 

8. Wang, Y.; Fan, X.; Lin, F.; He, G.; Terzaghi, W.; Zhu, D.; Deng, X.W. Arabidopsis Noncoding RNA Mediates 

Control of Photomorphogenesis by Red Light. Proceedings of the National Academy of Sciences 2014, 111, 

10359–10364, doi:10.1073/pnas.1409457111. 

9. Marquardt, S.; Raitskin, O.; Wu, Z.; Liu, F.; Sun, Q.; Dean, C. Functional Consequences of Splicing of the 

Antisense Transcript COOLAIR on FLC Transcription. Mol Cell 2014, 54, 156–165, 

doi:10.1016/j.molcel.2014.03.026. 

10. Seo, J.S.; Sun, H.-X.; Park, B.S.; Huang, C.-H.; Yeh, S.-D.; Jung, C.; Chua, N.-H. ELF18-INDUCED LONG-

NONCODING RNA Associates with Mediator to Enhance Expression of Innate Immune Response Genes 

in Arabidopsis. The Plant Cell 2017, 29, 1024–1038, doi:10.1105/tpc.16.00886. 

11. Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative Transcriptome Analysis between Resistant and 

Susceptible Tomato Allows the Identification of lncRNA16397 Conferring Resistance to Phytophthora 

Infestans by Co-Expressing Glutaredoxin. The Plant Journal 2017, 89, 577–589, doi:10.1111/tpj.13408. 

12. Long Non-Coding RNAs and Their Biological Roles in Plants. Genomics, Proteomics & Bioinformatics 2015, 

13, 137–147, doi:10.1016/j.gpb.2015.02.003. 

13. Heo, J.B.; Sung, S. Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science 

2011, 331, 76–79, doi:10.1126/science.1197349. 

14. Kim, D.-H.; Sung, S. Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding 

RNAs. Developmental Cell 2017, 40, 302-312.e4, doi:10.1016/j.devcel.2016.12.021. 

15. Yu, Y.; Zhou, Y.-F.; Feng, Y.-Z.; He, H.; Lian, J.-P.; Yang, Y.-W.; Lei, M.-Q.; Zhang, Y.-C.; Chen, Y.-Q. 

Transcriptional Landscape of Pathogen-Responsive lncRNAs in Rice Unveils the Role of ALEX1 in 

Jasmonate Pathway and Disease Resistance. Plant Biotechnology Journal 2020, 18, 679–690, 

doi:10.1111/pbi.13234. 

16. Liu, N.; Xu, Y.; Li, Q.; Cao, Y.; Yang, D.; Liu, S.; Wang, X.; Mi, Y.; Liu, Y.; Ding, C.; et al. A lncRNA Fine-

Tunes Salicylic Acid Biosynthesis to Balance Plant Immunity and Growth. Cell Host & Microbe 2022, 30, 

1124-1138.e8, doi:10.1016/j.chom.2022.07.001. 

17. Jiang, N.; Cui, J.; Shi, Y.; Yang, G.; Zhou, X.; Hou, X.; Meng, J.; Luan, Y. Tomato lncRNA23468 Functions as 

a Competing Endogenous RNA to Modulate NBS-LRR Genes by Decoying miR482b in the Tomato-

Phytophthora Infestans Interaction. Hortic Res 2019, 6, doi:10.1038/s41438-018-0096-0. 

18. Wilson, R.A.; Talbot, N.J. Under Pressure: Investigating the Biology of Plant Infection by Magnaporthe 

Oryzae. Nat Rev Microbiol 2009, 7, 185–195, doi:10.1038/nrmicro2032. 

19. Liu, J.; Wang, X.; Mitchell, T.; Hu, Y.; Liu, X.; Dai, L.; Wang, G.-L. Recent Progress and Understanding of 

the Molecular Mechanisms of the Rice–Magnaporthe Oryzae Interaction. Molecular Plant Pathology 2010, 11, 

419–427, doi:10.1111/j.1364-3703.2009.00607.x. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 24 of 29 

 

20. Sakulkoo, W.; Osés-Ruiz, M.; Oliveira Garcia, E.; Soanes, D.M.; Littlejohn, G.R.; Hacker, C.; Correia, A.; 

Valent, B.; Talbot, N.J. A Single Fungal MAP Kinase Controls Plant Cell-to-Cell Invasion by the Rice Blast 

Fungus. Science 2018, 359, 1399–1403, doi:10.1126/science.aaq0892. 

21. Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent Advances in Broad-Spectrum Resistance to the Rice 

Blast Disease. Current Opinion in Plant Biology 2019, 50, 114–120, doi:10.1016/j.pbi.2019.03.015. 

22. Li, W.; Zhu, Z.; Chern, M.; Yin, J.; Yang, C.; Ran, L.; Cheng, M.; He, M.; Wang, K.; Wang, J.; et al. A Natural 

Allele of a Transcription Factor in Rice Confers Broad-Spectrum Blast Resistance. Cell 2017, 170, 114-126.e15, 

doi:10.1016/j.cell.2017.06.008. 

23. Shang, L.; He, W.; Wang, T.; Yang, Y.; Xu, Q.; Zhao, X.; Yang, L.; Zhang, H.; Li, X.; Lv, Y.; et al. A Complete 

Assembly of the Rice Nipponbare Reference Genome. Molecular Plant 2023, 16, 1232–1236, 

doi:10.1016/j.molp.2023.08.003. 

24. Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; 

Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza Sativa Nipponbare Reference Genome Using 

next Generation Sequence and Optical Map Data. Rice 2013, 6, 4, doi:10.1186/1939-8433-6-4. 

25. Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.-H.; He, S.-J.; Yang, C.; Yin, C.; Zhao, H.; Zhou, Y.; Zhang, W.-K.; et al. 

Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated 

Rice Seedlings[OPEN]. Plant Cell 2017, 29, 1053–1072, doi:10.1105/tpc.16.00981. 

26. White, M.; Carbonare, L.D.; Puerta, M.L.; Iacopino, S.; Martin; Edwards; Dunne, K.; Pires, E.; Levy, C.; 

McDonough, M.; et al. Structures of the Arabidopsis Thaliana Oxygen-Sensing Plant Cysteine Oxidases 

PCO4 and PCO5 Enable Targeted Manipulation of Their Activity. 2020. 

27. Chini, A.; Boter, M.; Solano, R. Plant Oxylipins: COI1/JAZs/MYC2 as the Core Jasmonic Acid-signalling 

Module. The FEBS Journal 2009, 276, doi:10.1111/j.1742-4658.2009.07194.x. 

28. Bao, D.; Chang, S.; Li, X.; Qi, Y. Advances in the Study of Auxin Early Response Genes: Aux/IAA, GH3, and 

SAUR. The Crop Journal 2024, 12, 964–978, doi:10.1016/j.cj.2024.06.011. 

29. Yang, Z.; Hui, S.; Lv, Y.; Zhang, M.; Chen, D.; Tian, J.; Zhang, H.; Liu, H.; Cao, J.; Xie, W.; et al. miR395-

Regulated Sulfate Metabolism Exploits Pathogen Sensitivity to Sulfate to Boost Immunity in Rice. Molecular 

Plant 2022, 15, 671–688, doi:10.1016/j.molp.2021.12.013. 

30. Zhu, G.; Ye, N.; Zhang, J. Glucose-Induced Delay of Seed Germination in Rice Is Mediated by the 

Suppression of ABA Catabolism Rather Than an Enhancement of ABA Biosynthesis. Plant and Cell 

Physiology 2009, 50, 644–651, doi:10.1093/pcp/pcp022. 

31. Zhai, K.; Liang, D.; Li, H.; Jiao, F.; Yan, B.; Liu, J.; Lei, Z.; Huang, L.; Gong, X.; Wang, X.; et al. NLRs Guard 

Metabolism to Coordinate Pattern- and Effector-Triggered Immunity. Nature 2022, 601, 245–251, 

doi:10.1038/s41586-021-04219-2. 

32. Li, R.; Zhang, J.; Li, J.; Zhou, G.; Wang, Q.; Bian, W.; Erb, M.; Lou, Y. Prioritizing Plant Defence over Growth 

through WRKY Regulation Facilitates Infestation by Non-Target Herbivores. eLife 2015, 4, e04805, 

doi:10.7554/eLife.04805. 

33. Otomo, K.; Kenmoku, H.; Oikawa, H.; König, W.A.; Toshima, H.; Mitsuhashi, W.; Yamane, H.; Sassa, T.; 

Toyomasu, T. Biological Functions of Ent - and Syn -copalyl Diphosphate Synthases in Rice: Key Enzymes 

for the Branch Point of Gibberellin and Phytoalexin Biosynthesis. The Plant Journal 2004, 39, 886–893, 

doi:10.1111/j.1365-313X.2004.02175.x. 

34. Fu, J.; Yu, H.; Li, X.; Xiao, J.; Wang, S. Rice GH3 Gene Family: Regulators of Growth and Development. 

Plant Signaling & Behavior 2011, 6, 570–574, doi:10.4161/psb.6.4.14947. 

35. Miyamoto, K.; Shimizu, T.; Lin, F.; Sainsbury, F.; Thuenemann, E.; Lomonossoff, G.; Nojiri, H.; Yamane, H.; 

Okada, K. Identification of an E-Box Motif Responsible for the Expression of Jasmonic Acid-Induced 

Chitinase Gene OsChia4a in Rice. J Plant Physiol 2012, 169, 621–627, doi:10.1016/j.jplph.2011.12.008. 

36. Zhang, Y.; Wang, X.; Luo, Y.; Zhang, L.; Yao, Y.; Han, L.; Chen, Z.; Wang, L.; Li, Y. OsABA8ox2, an ABA 

Catabolic Gene, Suppresses Root Elongation of Rice Seedlings and Contributes to Drought Response. The 

Crop Journal 2020, 8, 480–491, doi:10.1016/j.cj.2019.08.006. 

37. Seo, J.; Joo, J.; Kim, M.; Kim, Y.; Nahm, B.H.; Song, S.I.; Cheong, J.; Lee, J.S.; Kim, J.; Choi, Y.D. OsbHLH148, 

a Basic Helix-loop-helix Protein, Interacts with OsJAZ Proteins in a Jasmonate Signaling Pathway Leading 

to Drought Tolerance in Rice. The Plant Journal 2011, 65, 907–921, doi:10.1111/j.1365-313X.2010.04477.x. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 25 of 29 

 

38. Zhang, M.; Zhao, R.; Huang, K.; Huang, S.; Wang, H.; Wei, Z.; Li, Z.; Bian, M.; Jiang, W.; Wu, T.; et al. The 

OSWRKY63 – OSWRKY76 – OSDREB1B Module Regulates Chilling Tolerance in Rice. The Plant Journal 2022, 

112, 383–398, doi:10.1111/tpj.15950. 

39. Saika, H.; Okamoto, M.; Miyoshi, K.; Kushiro, T.; Shinoda, S.; Jikumaru, Y.; Fujimoto, M.; Arikawa, T.; 

Takahashi, H.; Ando, M.; et al. Ethylene Promotes Submergence-Induced Expression of OsABA8ox1, a 

Gene That Encodes ABA 8’-Hydroxylase in Rice. Plant Cell Physiol 2007, 48, 287–298, 

doi:10.1093/pcp/pcm003. 

40. Li, H.; Zhou, S.-Y.; Zhao, W.-S.; Su, S.-C.; Peng, Y.-L. A Novel Wall-Associated Receptor-like Protein Kinase 

Gene, OsWAK1, Plays Important Roles in Rice Blast Disease Resistance. Plant Mol Biol 2009, 69, 337–346, 

doi:10.1007/s11103-008-9430-5. 

41. Okuyama, Y.; Kanzaki, H.; Abe, A.; Yoshida, K.; Tamiru, M.; Saitoh, H.; Fujibe, T.; Matsumura, H.; Shenton, 

M.; Galam, D.C.; et al. A Multifaceted Genomics Approach Allows the Isolation of the Rice Pia -blast 

Resistance Gene Consisting of Two Adjacent NBS-LRR Protein Genes. The Plant Journal 2011, 66, 467–479, 

doi:10.1111/j.1365-313X.2011.04502.x. 

42. Yang, W.; Zhao, J.; Zhang, S.; Chen, L.; Yang, T.; Dong, J.; Fu, H.; Ma, Y.; Zhou, L.; Wang, J.; et al. Genome-

Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in 

Regulating Bacterial Blight Resistance in Rice. Rice 2021, 14, 58, doi:10.1186/s12284-021-00501-z. 

43. Rohila, J.S.; Yang, Y. Rice Mitogen-Activated Protein Kinase Gene Family and Its Role in Biotic and Abiotic 

Stress Response. Journal of Integrative Plant Biology 2007, 49, 751–759, doi:10.1111/J.1744-7909.2007.00501.X. 

44. Cesari, S.; Thilliez, G.; Ribot, C.; Chalvon, V.; Michel, C.; Jauneau, A.; Rivas, S.; Alaux, L.; Kanzaki, H.; 

Okuyama, Y.; et al. The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe Oryzae 

Effectors AVR-Pia and AVR1-CO39 by Direct Binding[W][OA]. Plant Cell 2013, 25, 1463–1481, 

doi:10.1105/tpc.112.107201. 

45. Shi, S.; Wang, H.; Nie, L.; Tan, D.; Zhou, C.; Zhang, Q.; Li, Y.; Du, B.; Guo, J.; Huang, J.; et al. Bph30 Confers 

Resistance to Brown Planthopper by Fortifying Sclerenchyma in Rice Leaf Sheaths. Molecular Plant 2021, 14, 

1714–1732, doi:10.1016/j.molp.2021.07.004. 

46. Wu, F.; Sheng, P.; Tan, J.; Chen, X.; Lu, G.; Ma, W.; Heng, Y.; Lin, Q.; Zhu, S.; Wang, J.; et al. Plasma 

Membrane Receptor-like Kinase Leaf Panicle 2 Acts Downstream of the DROUGHT AND SALT 

TOLERANCE Transcription Factor to Regulate Drought Sensitivity in Rice. Journal of Experimental Botany 

2015, 66, 271–281, doi:10.1093/jxb/eru417. 

47. Xiao, G.; Wang, W.; Liu, M.; Li, Y.; Liu, J.; Franceschetti, M.; Yi, Z.; Zhu, X.; Zhang, Z.; Lu, G.; et al. The Piks 

Allele of the NLR Immune Receptor Pik Breaks the Recognition of AvrPik Effectors of the Rice Blast Fungus. 

Journal of integrative plant biology 2022, doi:10.1111/jipb.13375. 

48. Hayashi, N.; Inoue, H.; Kato, T.; Funao, T.; Shirota, M.; Shimizu, T.; Kanamori, H.; Yamane, H.; Hayano-

Saito, Y.; Matsumoto, T.; et al. Durable Panicle Blast-Resistance Gene Pb1 Encodes an Atypical CC-NBS-

LRR Protein and Was Generated by Acquiring a Promoter through Local Genome Duplication. The Plant 

Journal 2010, 64, 498–510, doi:10.1111/j.1365-313X.2010.04348.x. 

49. Kim, M.-S.; Kang, K.-K.; Cho, Y.-G. Molecular and Functional Analysis of U-Box E3 Ubiquitin Ligase Gene 

Family in Rice (Oryza Sativa). International Journal of Molecular Sciences 2021, 22, 12088, 

doi:10.3390/ijms222112088. 

50. Li, L.; Xu, X.; Chen, C.; Shen, Z. Genome-Wide Characterization and Expression Analysis of the Germin-

Like Protein Family in Rice and Arabidopsis. International Journal of Molecular Sciences 2016, 17, 

doi:10.3390/ijms17101622. 

51. Durrani, I.S.; Jan, A.; Shah, S.; Iqbal, A.; Ahmad, D.; Khan, H.; Naqvi, S.M.S. Bioinformatics Studies of 

OSGLP8-12 Gene from Oryza Sativa (Japonica) Reveal Its Role in Conferring Resistance against Disease 

and Stresses. Pakistan Journal of Botany 2020, doi:10.30848/pjb2020-2(23). 

52. Ji, Z.; Ji, C.; Liu, B.; Zou, L.; Chen, G.; Yang, B. Interfering TAL Effectors of Xanthomonas Oryzae Neutralize 

R-Gene-Mediated Plant Disease Resistance. Nat Commun 2016, 7, 13435, doi:10.1038/ncomms13435. 

53. Boyes, D.; Nam, J.; Dangl, J. The Arabidopsis Thaliana RPM1 Disease Resistance Gene Product Is a 

Peripheral Plasma Membrane Protein That Is Degraded Coincident with the Hypersensitive Response. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 26 of 29 

 

Proceedings of the National Academy of Sciences of the United States of America 1998, 95 26, 15849–15854, 

doi:10.1073/PNAS.95.26.15849. 

54. Zhan, P.; Ma, S.; Xiao, Z.; Li, F.; Wei, X.; Lin, S.; Wang, X.; Ji, Z.; Fu, Y.; Pan, J.; et al. Natural Variations in 

Grain Length 10 (GL10) Regulate Rice Grain Size. Journal of Genetics and Genomics 2022, 49, 405–413, 

doi:10.1016/j.jgg.2022.01.008. 

55. Tamiru, M.; Abe, A.; Utsushi, H.; Yoshida, K.; Takagi, H.; Fujisaki, K.; Undan, J.; Rakshit, S.; Takaichi, S.; 

Jikumaru, Y.; et al. The Tillering Phenotype of the Rice Plastid Terminal Oxidase (PTOX) Loss-of-Function 

Mutant Is Associated with Strigolactone Deficiency. The New phytologist 2014, 202 1, 116–131, 

doi:10.1111/nph.12630. 

56. Vij, S.; Giri, J.; Dansana, P.K.; Kapoor, S.; Tyagi, A. The Receptor-like Cytoplasmic Kinase (OsRLCK) Gene 

Family in Rice: Organization, Phylogenetic Relationship, and Expression during Development and Stress. 

Molecular plant 2008, 1 5, 732–750, doi:10.1093/mp/ssn047. 

57. Kim, S.; Park, S.-I.; Kwon, H.; Cho, M.; Kim, B.-G.; Chung, J.; Nam, M.; Song, J.S.; Kim, K.-H.; Yoon, I. The 

Rice Abscisic Acid-Responsive RING Finger E3 Ligase OsRF1 Targets OsPP2C09 for Degradation and 

Confers Drought and Salinity Tolerance in Rice. Frontiers in Plant Science 2022, 12, 

doi:10.3389/fpls.2021.797940. 

58. Xia, C.; Gong, Y.; Chong, K.; Xu, Y. Phosphatase OsPP2C27 Directly Dephosphorylates OsMAPK3 and 

OsbHLH002 to Negatively Regulate Cold Tolerance in Rice. Plant, cell & environment 2020, 

doi:10.1111/pce.13938. 

59. Loutre, C.; Wicker, T.; Travella, S.; Galli, P.; Scofield, S.; Fahima, T.; Feuillet, C.; Keller, B. Two Different 

CC-NBS-LRR Genes Are Required for Lr10-Mediated Leaf Rust Resistance in Tetraploid and Hexaploid 

Wheat. The Plant journal : for cell and molecular biology 2009, 60 6, 1043–1054, doi:10.1111/j.1365-

313X.2009.04024.x. 

60. Luo, H.; Song, F.; Goodman, R.M.; Zheng, Z. Up-Regulation of OsBIHD1, a Rice Gene Encoding BELL 

Homeodomain Transcriptional Factor, in Disease Resistance Responses. Plant biology 2005, 7 5, 459–468, 

doi:10.1055/S-2005-865851. 

61. Wang, A.; Shu, X.; Jing, X.; Jiao, C.; Chen, L.; Zhang, J.; Ma, L.; Jiang, Y.; Yamamoto, N.; Li, S.; et al. 

Identification of Rice ( Oryza Sativa L.) Genes Involved in Sheath Blight Resistance via a Genome-wide 

Association Study. Plant Biotechnology Journal 2021, 19, 1553–1566, doi:10.1111/pbi.13569. 

62. Wang, L.-L.; Jin, J.-J.; Li, L.-H.; Qu, S.-H. Long Non-Coding RNAs Responsive to Blast Fungus Infection in 

Rice. Rice 2020, 13, 77, doi:10.1186/s12284-020-00437-w. 

63. Jain, P.; Sharma, V.; Dubey, H.; Singh, P.K.; Kapoor, R.; Kumari, M.; Singh, J.; Pawar, D.V.; Bisht, D.; Solanke, 

A.U.; et al. Identification of Long Non-Coding RNA in Rice Lines Resistant to Rice Blast Pathogen 

Maganaporthe Oryzae. Bioinformation 2017, 13, 249–255, doi:10.6026/97320630013249. 

64. Metraux, J. Recent Breakthroughs in the Study of Salicylic Acid Biosynthesis. Trends in plant science 2002, 7 

8, 332–334, doi:10.1016/S1360-1385(02)02313-0. 

65. Zhao, Y. Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid 

in Plants. Molecular plant 2012, 5 2, 334–338, doi:10.1093/mp/ssr104. 

66. Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth-Defense Tradeoffs in Plants: A Balancing Act to 

Optimize Fitness. Mol Plant 2014, 7, 1267–1287, doi:10.1093/mp/ssu049. 

67. Liu, Z.; Liu, C.; Zhao, T.; Yang, L.; Shang, Q.; Wang, G.; Liu, Z.; Gai, Y.; Ji, X. Integrated Analysis of lncRNAs 

and mRNAs Reveals Complex Gene Network Mediated by lncRNAs and Regulatory Function of MuLRR-

RLK-AS in Response to Phytoplasma Infection in Mulberry. Biomolecules 2024, 14, 308, 

doi:10.3390/biom14030308. 

68. Franco-Zorrilla, J.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; 

García, J.; Paz-Ares, J. Target Mimicry Provides a New Mechanism for Regulation of microRNA Activity. 

Nature Genetics 2007, 39, 1033–1037, doi:10.1038/ng2079. 

69. Cui, J.; Jiang, N.; Hou, X.; Wu, S.; Zhang, Q.; Meng, J.; Luan, Y. Genome-Wide Identification of lncRNAs 

and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora Infestans. Phytopathology 

2020, 110, 456–464, doi:10.1094/PHYTO-04-19-0137-R. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 27 of 29 

 

70. Sun, X.; Zheng, H.; Li, J.; Sui, N. Comparative Transcriptome Analysis of Sweet Sorghum Provides Insights 

into New lncRNAs Acting as ceRNAs during Salt Responses. 2019, doi:10.21203/rs.2.16023/v1. 

71. Kajala, K.; Gouran, M.; Shaar-Moshe, L.; Mason, G.A.; Rodriguez-Medina, J.; Kawa, D.; Pauluzzi, G.; 

Reynoso, M.; Canto-Pastor, A.; Manzano, C.; et al. Innovation, Conservation, and Repurposing of Gene 

Function in Root Cell Type Development. Cell 2021, 184, 3333-3348.e19, doi:10.1016/j.cell.2021.04.024. 

72. Zhu, W.; Xu, J.; Chen, S.; Chen, J.; Liang, Y.; Zhang, C.; Li, Q.; Lai, J.; Li, L. Large-Scale Translatome Profiling 

Annotates the Functional Genome and Reveals the Key Role of Genic 3’ Untranslated Regions in 

Translatomic Variation in Plants. Plant Commun 2021, 2, 100181, doi:10.1016/j.xplc.2021.100181. 

73. Reynoso, M.A.; Borowsky, A.T.; Pauluzzi, G.C.; Yeung, E.; Zhang, J.; Formentin, E.; Velasco, J.; Cabanlit, S.; 

Duvenjian, C.; Prior, M.J.; et al. Gene Regulatory Networks Shape Developmental Plasticity of Root Cell 

Types under Water Extremes in Rice. Developmental Cell 2022, 57, 1177-1192.e6, 

doi:10.1016/j.devcel.2022.04.013. 

74. Yang, X.; Song, B.; Cui, J.; Wang, L.; Wang, S.; Luo, L.; Gao, L.; Mo, B.; Yu, Y.; Liu, L. Comparative Ribosome 

Profiling Reveals Distinct Translational Landscapes of Salt-Sensitive and -Tolerant Rice. BMC Genomics 

2021, 22, 612, doi:10.1186/s12864-021-07922-6. 

75. Reynoso, M.A.; Kajala, K.; Bajic, M.; West, D.A.; Pauluzzi, G.; Yao, A.I.; Hatch, K.; Zumstein, K.; Woodhouse, 

M.; Rodriguez-Medina, J.; et al. Evolutionary Flexibility in Flooding Response Circuitry in Angiosperms. 

Science 2019, 365, 1291–1295, doi:10.1126/science.aax8862. 

76. Xu, Q.; Liu, Q.; Chen, Z.; Yue, Y.; Liu, Y.; Zhao, Y.; Zhou, D.-X. Histone Deacetylases Control Lysine 

Acetylation of Ribosomal Proteins in Rice. Nucleic Acids Res 2021, 49, 4613–4628, doi:10.1093/nar/gkab244. 

77. Wang, L.-L.; Jin, J.-J.; Li, L.-H.; Qu, S.-H. Long Non-Coding RNAs Responsive to Blast Fungus Infection in 

Rice. Rice (N Y) 2020, 13, 77, doi:10.1186/s12284-020-00437-w. 

78. Fan, J.; Quan, W.; Li, G.-B.; Hu, X.-H.; Wang, Q.; Wang, H.; Li, X.-P.; Luo, X.; Feng, Q.; Hu, Z.-J.; et al. 

circRNAs Are Involved in the Rice-Magnaporthe Oryzae Interaction1[OPEN]. Plant Physiol 2020, 182, 272–

286, doi:10.1104/pp.19.00716. 

79. Tsunematsu, H.; Yanoria, M.J.T.; Ebron, L.A.; Hayashi, N.; Ando, I.; Kato, H.; Imbe, T.; Khush, G.S. 

Development of Monogenic Lines of Rice for Blast Resistance. Breeding Science 2000, 50, 229–234, 

doi:10.1270/jsbbs.50.229. 

80. Wingett, S.; Andrews, S. FastQ Screen: A Tool for Multi-Genome Mapping and Quality Control. 

F1000Research 2018, 7, 1338, doi:10.12688/f1000research.15931.1. 

81. Wang, L.; Wang, S.; Li, W. RSeQC: Quality Control of RNA-Seq Experiments. Bioinformatics 2012, 28, 2184–

2185, doi:10.1093/bioinformatics/bts356. 

82. Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. 

EMBnet.journal 2011, 17, 10–12, doi:10.14806/ej.17.1.200. 

83. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 

34, i884–i890, doi:10.1093/bioinformatics/bty560. 

84. Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat Methods 2012, 9, 357–359, 

doi:10.1038/nmeth.1923. 

85. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping 

with HISAT2 and HISAT-Genotype. Nat Biotechnol 2019, 37, 907–915, doi:10.1038/s41587-019-0201-4. 

86. Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables 

Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat Biotechnol 2015, 33, 290–295, 

doi:10.1038/nbt.3122. 

87. Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res 2020, 9, ISCB Comm J-304, 

doi:10.12688/f1000research.23297.2. 

88. Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; 

Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res 

2021, 49, D412–D419, doi:10.1093/nar/gkaa913. 

89. Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; 

Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res 

2022, 50, D20–D26, doi:10.1093/nar/gkab1112. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 28 of 29 

 

90. Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, 

S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded Coverage of Metagenomic, 

Viral and microRNA Families. Nucleic Acids Res 2021, 49, D192–D200, doi:10.1093/nar/gkaa1047. 

91. Kang, Y.-J.; Yang, D.-C.; Kong, L.; Hou, M.; Meng, Y.-Q.; Wei, L.; Gao, G. CPC2: A Fast and Accurate Coding 

Potential Calculator Based on Sequence Intrinsic Features. Nucleic Acids Res 2017, 45, W12–W16, 

doi:10.1093/nar/gkx428. 

92. Li, A.; Zhang, J.; Zhou, Z. PLEK: A Tool for Predicting Long Non-Coding RNAs and Messenger RNAs 

Based on an Improved k-Mer Scheme. BMC Bioinformatics 2014, 15, 311, doi:10.1186/1471-2105-15-311. 

93. Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing Sequence Intrinsic 

Composition to Classify Protein-Coding and Long Non-Coding Transcripts. Nucleic Acids Research 2013, 41, 

e166, doi:10.1093/nar/gkt646. 

94. Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. 

Bioinformatics 2010, 26, 841–842, doi:10.1093/bioinformatics/btq033. 

95. Fukunaga, T.; Hamada, M. RIblast: An Ultrafast RNA-RNA Interaction Prediction System Based on a Seed-

and-Extension Approach. Bioinformatics 2017, 33, 2666–2674, doi:10.1093/bioinformatics/btx287. 

96. Golicz, A.A.; Bhalla, P.L.; Edwards, D.; Singh, M.B. Rice 3D Chromatin Structure Correlates with Sequence 

Variation and Meiotic Recombination Rate. Commun Biol 2020, 3, 1–9, doi:10.1038/s42003-020-0932-2. 

97. Chen, D.; Yuan, C.; Zhang, J.; Zhang, Z.; Bai, L.; Meng, Y.; Chen, L.-L.; Chen, M. PlantNATsDB: A 

Comprehensive Database of Plant Natural Antisense Transcripts. Nucleic Acids Res 2012, 40, D1187-1193, 

doi:10.1093/nar/gkr823. 

98. Yi, X.; Zhang, Z.; Ling, Y.; Xu, W.; Su, Z. PNRD: A Plant Non-Coding RNA Database. Nucleic Acids Res 2015, 

43, D982-989, doi:10.1093/nar/gku1162. 

99. RNAcentral Consortium RNAcentral 2021: Secondary Structure Integration, Improved Sequence Search 

and New Member Databases. Nucleic Acids Res 2021, 49, D212–D220, doi:10.1093/nar/gkaa921. 

100. Zhao, L.; Wang, J.; Li, Y.; Song, T.; Wu, Y.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Pei, D.; et al. NONCODEV6: An 

Updated Database Dedicated to Long Non-Coding RNA Annotation in Both Animals and Plants. Nucleic 

Acids Res 2021, 49, D165–D171, doi:10.1093/nar/gkaa1046. 

101. Szcześniak, M.W.; Bryzghalov, O.; Ciomborowska-Basheer, J.; Makałowska, I. CANTATAdb 2.0: 

Expanding the Collection of Plant Long Noncoding RNAs. Methods Mol Biol 2019, 1933, 415–429, 

doi:10.1007/978-1-4939-9045-0_26. 

102. Di Marsico, M.; Paytuvi Gallart, A.; Sanseverino, W.; Aiese Cigliano, R. GreeNC 2.0: A Comprehensive 

Database of Plant Long Non-Coding RNAs. Nucleic Acids Res 2022, 50, D1442–D1447, 

doi:10.1093/nar/gkab1014. 

103. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing 

Data. Bioinformatics 2012, 28, 3150–3152, doi:10.1093/bioinformatics/bts565. 

104. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST 

and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research 1997, 25, 

3389–3402, doi:10.1093/nar/25.17.3389. 

105. Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data 

with DESeq2. Genome Biol 2014, 15, 550, doi:10.1186/s13059-014-0550-8. 

106. Wickham, H. Ggplot2. WIREs Computational Statistics 2011, 3, 180–185, doi:10.1002/wics.147. 

107. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 

4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation (Camb) 2021, 2, 100141, 

doi:10.1016/j.xinn.2021.100141. 

108. xuzhougeng Xuzhougeng/Org.Osativa.Eg.Db v0.01 2019. 

109. Tian, F.; Yang, D.-C.; Meng, Y.-Q.; Jin, J.; Gao, G. PlantRegMap: Charting Functional Regulatory Maps in 

Plants. Nucleic Acids Research 2020, 48, D1104–D1113, doi:10.1093/nar/gkz1020. 

110. Wu, L.; Wang, L.; Hu, S.; Tang, G.; Chen, J.; Yi, Y.; Xie, H.; Lin, J.; Wang, M.; Wang, D.; et al. RNALocate 

v3.0: Advancing the Repository of RNA Subcellular Localization with Dynamic Analysis and Prediction. 

Nucleic Acids Research 2024, gkae872, doi:10.1093/nar/gkae872. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1


 29 of 29 

 

111. Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC 

Bioinformatics 2008, 9, 559, doi:10.1186/1471-2105-9-559. 

112. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, 

T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. 

Genome Res. 2003, 13, 2498–2504, doi:10.1101/gr.1239303. 

113. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; 

Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based 

Approach for Interpreting Genome-Wide Expression Profiles. Proceedings of the National Academy of Sciences 

2005, 102, 15545–15550, doi:10.1073/pnas.0506580102. 

114. Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A Plant Small RNA Target Analysis Server (2017 Release). 

Nucleic Acids Res 2018, 46, W49–W54, doi:10.1093/nar/gky316. 

115. Zhang, X.; Shen, J.; Xu, Q.; Dong, J.; Song, L.; Wang, W.; Shen, F. Long Noncoding RNA lncRNA354 

Functions as a Competing Endogenous RNA of miR160b to Regulate Genes in Response to Salt Stress in 

Upland Cotton. Plant, Cell & Environment 2021, 44, 3302–3321, doi:10.1111/pce.14133. 

116. Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New 

Capabilities and Interfaces. Nucleic Acids Res 2012, 40, e115, doi:10.1093/nar/gks596. 

117. Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design 

Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinformatics 2012, 13, 134, doi:10.1186/1471-

2105-13-134. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1634.v1

https://doi.org/10.20944/preprints202502.1634.v1

