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Abstract: Long noncoding RNAs (IncRNAs) have emerged as pivotal regulators in plant immune
responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately
explored. In this study, we integrated translatome data with conventional genome annotations to
construct an optimized protein-coding dataset. Subsequently, we developed a robust pipeline
(“RiceLncRNA”) for the accurate identification of rice IncRNAs. Using strand-specific RNA
sequencing (ssSRNA-seq) data from the resistant (IR25) and susceptible (LTH) and Nipponbare (NPB)
varieties under M. oryzae infection, we identified 9,003 high-confidence IncRNAs, significantly
improving identification accuracy over traditional methods. Among the differentially expressed
IncRNAs (DELs), those unique to IR25 were enriched in the biosynthetic pathways of phenylalanine,
tyrosine, and tryptophan, which suggests that they enhance the production of salicylic acid (SA) and
auxin (IAA) precursors to trigger defense responses. Conversely, DELs specific to LTH primarily
clustered within carbon metabolism pathways, indicating a metabolic reprogramming mechanism.
Notably, 21 DELs responded concurrently in both IR25 and LTH at 12 h and 24 h post-inoculation,
indicating a synergistic regulation of jasmonic acid (JA) and ethylene (ET) signaling while partially
suppressing IAA pathways. Weighted gene coexpression network analysis (WGCNA) and
competing endogenous RNA (ceRNA) network analysis revealed that key IncRNAs (e.g.,
LncRNA.9497.1) function as miRNA “sponges,” thereby indirectly modulating the expression of
receptor-like kinases (RLKSs), resistance (R) proteins, and hormone signaling pathways. The reliability
of these findings was confirmed through qRT-PCR and cloning experiments. In summary, our study
provides an optimized rice IncRNA annotation framework and reveals the mechanism by which
IncRNAs enhance rice blast resistance through the regulation of hormone signaling pathways. These
findings offer an important molecular basis for rice disease-resistant breeding.

Keywords: long noncoding RNAs; Magnaporthe oryzae; plant immunity; ceRNA; WGCNA; hormone
signaling

1. Introduction

Long noncoding RNAs (IncRNAs) are transcripts longer than 200 nucleotides with limited or no
protein-coding potential [1]. Emerging evidence indicates that IncRNAs participate in a wide range
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of biological processes across various organisms, regulating gene expression through diverse
mechanisms at the chromatin, transcriptional, posttranscriptional, translational, and
posttranslational levels [2,3]. In plants, IncRNAs have been shown to regulate key physiological
activities, such as flowering time [4,5], crop yield [6], fruit development [7], photomorphogenesis [8],
gene silencing [9], and responses to biotic and abiotic stresses [10-12].

Despite these advances, the functional characterization of plant IncRNAs remains relatively
limited, with only a few regulatory mechanisms fully elucidated. For example, the IncRNAs
COLDWARP, COLDAIR, and COOLAIR mediate vernalization by silencing FLOWERING LOCUS C
(FLC) [9,13,14]. The long noncoding RNA LRK Antisense Intergenic RNA (LAIR) interacts with
OsMOF and OsWDR5 to promote the expression of leucine-rich repeat receptor kinase (LRK) gene
clusters, significantly increasing rice yield [6]. Importantly, the crucial roles of IncRNAs in plant
responses to biotic stress and immunity are gradually coming to light. In tomato, IncRNA16397
induces the expression of SIGRX, reducing reactive oxygen species (ROS) accumulation and thereby
increasing resistance to Phytophthora infestans [11]. In Arabidopsis, the IncRNA ELENAI interacts
with the mediator complex subunit MED19a to regulate PR1 expression, bolstering immunity against
pathogens [10]. In rice, the IncRNA ALEX1 enhances resistance to bacterial blight by modulating the
jasmonic acid (JA) pathway [15], whereas the long noncoding RNA SABCI helps balance plant
immunity and growth by regulating salicylic acid (SA) synthesis [16]. Moreover, IncRNA23468
functions as a competing endogenous RNA (ceRNA) that suppresses miR482b accumulation,
consequently elevating the expression of NBS-LRR genes and fortifying defense against P. infestans
in tomato [17].

Rice (Oryza sativa L.), one of the world’s most important staple crops (particularly in Asia and
Africa), faces a major threat from rice blast disease caused by the fungus M. oryzae. Globally, rice blast
can lead to yield losses up to 30%, posing a severe challenge to food security and agricultural
economies, with estimated annual losses of up to $66 billion [18]. Hence, understanding the molecular
mechanisms of rice blast disease is of paramount importance for global food security [19,20].

Earlier research demonstrated that protein-coding genes play significant roles in the defense
response of rice against M. oryzae [21,22]. However, the involvement of IncRNAs in this process has
not been extensively explored. A recent rice telomere-to-telomere genome annotation revealed an
additional 1,373 protein-coding genes, indicating that the genome annotation is still incomplete,
especially in intergenic regions [23]. Such gaps might contribute to false positives in IncRNA
identification and thus hamper downstream functional analyses.

To more accurately identify and characterize rice IncRNAs expressed during M. oryzae infection,
we combined multiple software tools and methods suitable for IncRNA identification in rice and
developed a pipeline named RiceLncRNA (https://github.com/njausxl/RiceLncRNA). This pipeline
begins by integrating rice translatome data to construct a novel rice protein-coding gene annotation
database (the CodingRNA dataset). By merging this dataset with Michigan State University Rice
Genome Annotation Project version 7 (MSU v7) [24], we substantially improved annotation
completeness (adding approximately 18.9% more gene loci) and accuracy in intergenic regions. With
this optimized annotation, we analyzed strand-specific RNA-seq data from IR25 (a monogenic line
harboring the blast resistance gene Pikm), LTH (a susceptible variety), and NPB (a conventional
variety) at multiple time points postinoculation (0 h, 12 h, 24 h, 72 h). Through systematic analyses of
these data, we identified 9,003 high-fidelity IncRNAs, with 605 differentially expressed under
inoculation—including 415 that respond directly to stress. Notably, the resistant variety IR25
exhibited 293 specific DELs, whereas LTH showed only 70, suggesting that IncRNAs are substantially
involved in the resistance signaling network. Functional enrichment analysis revealed that the target
genes of these DELs are significantly enriched in multiple hormones signaling pathways, notably SA,
JA, ET, and IAA. By constructing a ceRNA regulatory network and performing WGCNA, we
discovered that several core regulatory IncRNAs (e.g., LncRNA.9497.1, LncRNA.9562.1) either
directly target resistance (R) genes, receptor kinases, and disease-resistance proteins, or indirectly
regulate them by competitively binding specific miRNAs. Through these complementary
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mechanisms, these IncRNAs synergistically modulate hormone signaling pathways to improve
resistance. This study not only refines the rice genome annotation and establishes a reliable IncRNA
identification pipeline but also, more importantly, elucidates the regulatory network of IncRNAs in
rice-M. oryzae interactions, providing essential theoretical foundations and potential targets for
advancing plant immune mechanism research and implementing novel disease-resistant breeding
strategies.

2. Results

2.1. Analysis of the CodingRNA Dataset Assembly

On the basis of translatome data, we constructed a rice protein-coding gene annotation database,
which we termed “CodingRNA.” Compared with the MSU v7 reference genome alone, this
translatome-based annotation covered approximately 57% of the genome, and merging both
annotations yielded an additional ~18.9% of gene loci (Table S2). As shown in Figure S1, several
protein-coding genes were identified within regions previously annotated as intergenic in MSU v7.
For example, in the region from 4,643,010 to 4,659,242 on chromosome 4 (Figure S1A), MSU v7 had
originally classified the entire stretch as intergenic; however, our detailed analysis of the
corresponding translatome data revealed a novel protein-coding gene with clear ribosome footprint
signals (labeled “CD48328”). This discovery confirms that the locus encodes a functional protein
rather than a non-coding transcript. In summary, by incorporating such findings into the CodingRNA
dataset, we significantly enhance the accuracy and completeness of rice genome annotation by
ensuring that protein-coding transcripts are not erroneously classified as IncRNAs.

2.2. Integrated Translatome and Transcriptome-Based Lncrna Identification Pipeline and Analysis

To systematically uncover rice IncRNAs, we analyzed strand-specific RNA-seq data from IR25
(carrying the blast resistance gene Pikm), LTH (susceptible), and NPB (a conventional variety),
sampled at different postinoculation time points (0 h, 12 h, 24 h, 48 h, 72 h) under M. oryzae. Overall,
40 RNA-seq libraries that have been validated for strand-specificity were utilized (Table S3), though
two (LTH-24 h-2, LTH-24 h-3) were discarded due to poor quality.

After trimming low-quality reads and adapters, we retained approximately 10,070,404,673 high-
quality reads with an average GC content of 48.89% (Table S54). The mean alignment rate to MSU v7
was 96.89%, with an 86.23% rate of correctly paired reads.

We eventually assembled 114,267 transcripts (=200 nt, fragments per kilobase of transcript per
million mapped reads (FPKM) =20.5). To mitigate false positives, an updated rice IncRNA
identification pipeline (Figure 1A) was implemented. Its key innovation lies in employing the refined
CodingRNA dataset to avoid misclassifying protein-coding transcripts as IncRNAs. Through
GFFcompare, we extracted transcripts labeled with classcodes i, x, o, u, and p (totaling 12,836
candidates; see Figure S2A for an explanation of the classcodes). Subsequent filtering against protein
families database (Pfam), RNA families database (Rfam), and NCBI nonredundant protein database
(NR) removed additional protein-coding or known noncoding RNAs, giving 11,543 candidates
(Figure 1B).

Moreover, we applied Coding Potential Calculator 2 (CPC2) (11,748 transcripts), Predictor of
Long non-coding RNAs and mEssenger RNAs based on an improved K-mer scheme (PLEK) (11,133),
and Coding-Non-Coding Index (CNCI) (10,098) to evaluate coding potential (Figure 1C). Only
transcripts consistently deemed “noncoding” by all three tools were retained (9,350). Taking the
intersection of these results, we ultimately identified 9,003 high-fidelity IncRNAs (Figure 1D, Table
S5). Classification indicated 2,803 intergenic, 2,076 antisense, 419 bidirectional, 3,056 intronic, and 649
sense IncRNAs (Figure 1E, Table S6).

A more conventional pipeline that did not integrate translatome data identified 10,464 putative
IncRNAs, which included the aforementioned 9,003 high-confidence IncRNAs plus an additional
1,461 transcripts (Figure S2B). Further analysis revealed that approximately 96.3% of these 1,461

d0i:10.20944/preprints202502.1634.v1
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transcripts exhibited protein-coding potential, mostly located in insufficiently annotated intergenic
regions. When we compared these 1,461 transcripts against newly predicted genes in the T2T rice
genome (Table S7), about 10.1% (147 transcripts) aligned with those newly predicted coding genes.
These findings underscore that incorporating translatome data substantially reduces the false-
positive rate in IncRNA identification.

The final set of 9,003 IncRNAs was unevenly distributed across chromosomes (Figure 2A, Figure
S3A), with Chrl bearing the most (1,177) and Chr10 the fewest (549). These IncRNAs featured a mean
GC content of 41%, notably lower than the ~53% typical of protein-coding genes (Table S8).
Approximately 64% spanned 200-400 bp (median 333 nt) (Figure 2B), much shorter than mRNAs
(median 1,008 nt), and displayed lower expression levels (Figure 2C). Notably, ~84.75% contained
only one exon (Figure 2D), and they had fewer isoforms than mRNAs (Figure 2E).

Further comparison to publicly available rice IncRNA databases (PlantNATdb, PNRD,
RNAcentral, NONCODE, CANTATAdDb, GreeNC) revealed that 3,778 (41.96%) of our identified
IncRNAs matched known records (E value <le-10, identity >80%, coverage >50%), of which 2,446
were shared across all four sample sets (Figure S3B).

In summary, the optimized identification pipeline that integrates translatome and transcriptome
data not only significantly reduces the false-positive rate and ensures high accuracy of the results,
but also provides a convenient workflow and reference standard for future rice IncRNA
identification, thereby greatly expanding the rice IncRNA resource.
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Figure 1. Bioinformatics pipeline for IncRNA identification and visualization of disease-resistance-associated
IncRNAs in rice. (A) Comprehensive analysis workflow: Sequential steps from left to right, illustrating the
construction of the "CodingRNA" dataset, criteria and processes for identifying non-coding RNAs (including
IncRNAs), and strategies for screening disease-resistance-associated IncRNAs. (B-D) Venn diagrams: Evaluation
of coding potential of transcripts using multiple tools and databases, including Pfam, Rfam, Nr, PLEK, CPC2,
and CNCIL (E) Pie chart: Classification of the final identified IncRNAs.
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Figure 2. Comparative analysis of the basic characteristics of IncRNAs and mRNAs. (A) Circos plot of the trans-
target genes of four specific IncRNAs. From innermost to outermost: the first ring represents chromosomes; the
second ring shows GC content (outer side for IncRNAs, inner side for mRNAs); the third ring displays heatmaps
of gene expression levels and line graphs of gene density (outer side for IncRNAs, inner side for mRNAs). Trans-
target gene connections are represented by lines. (B) Transcript length distribution. (C) Normalized expression
level distribution, displayed as violin plots. (D) Distribution of the number of exons per transcript. (E)
Distribution of the number of splice variants per gene locus. Red represents IncRNAs, and blue represents
mRNAs.

2.3. DELs and Their Differential Expression (DE) Target Genes Regulatory Networks Reveal the
Mechanisms Underlying Rice Response to M. oryzae Infection

To investigate the transcriptional regulation differences in rice varieties under M. oryzae
infection and to discover potential resistance- or susceptibility-related IncRNAs, we systematically
analyzed the DE of both mRNAs and IncRNAs in the resistant variety IR25 and the susceptible variety
LTH at0h, 12 h, and 24 h postinoculation. A comprehensive comparison of transcriptomic differences
between inoculated and noninoculated conditions and across time points revealed 4,426 differentially
expressed mRNAs (DEGs), including 3,821 DEGs and 605 differentially expressed IncRNAs (DELs).
Of these, 415 DELs and 3,338 DEGs were stress-responsive (Table S9, Figure 3A).

When comparing conditions before and after inoculation, the resistant genotype IR25 displayed
293 lineage-specific DELs, whereas the susceptible genotype LTH presented only 70 (Figure 3B).
Further analysis indicated that IR25 had the highest number of specific DELs (137) at 12 h
postinoculation, suggesting a faster transcriptional response during the early stage of M. oryzae stress.
By applying cis and trans target gene prediction (20 kb upstream and downstream, Irl > 0.5; Rlblast
combined with correlation analysis), we identified 61 cis and 341 trans target genes for the 293 IR25-
specific DELs (Table S10, Table S11). GO enrichment analysis showed that these target genes are
primarily involved in photosynthesis, “small molecule biosynthetic process” (GO: 0006508), and
“organic acid metabolic process” (GO: 0016053) —all of which are closely tied to aromatic amino acid
metabolism (Figure 3C). KEGG pathway analysis further revealed significant enrichment in the
“phenylalanine, tyrosine, and tryptophan biosynthesis” pathway (0sa00400) (Figure 3D), with
notable enrichment of genes such as LOC_Os01g55870 (chorismate mutase 3, chloroplastic) and
LOC_Os09g08130 (indole-3-glycerol phosphate synthase). These genes play critical roles in
phenylalanine and tryptophan metabolism, respectively, serving as key precursor nodes for SA and
IAA biosynthesis. These results suggest that the DELs specific to IR25 may enhance plant defense
against M. oryzae by modulating aromatic amino acid metabolic pathways and expediting the
synthesis of resistance-related hormones.

In contrast, the susceptible genotype LTH exhibited only 70 specific DELs, which were
associated with 18 cis and 74 trans target genes (corresponding to 15 and 12 DELSs, respectively). GO
enrichment showed that these target genes were enriched in carbon metabolism-related terms such
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as “starch metabolic process” (GO: 0019250) and “sugar metabolic process” (GO: 0006006) (Figure
3E). Meanwhile, KEGG analysis indicated that “starch and sucrose metabolism” (0sa00500) and
“glyoxylate and dicarboxylate metabolism” (0sa00630) pathways were significantly enriched (Figure
3F). Thus, under M. oryzae stress, LTH-specific DELs seem more inclined to govern carbon
metabolism reprogramming rather than potent defense hormone pathways, suggesting that LTH
predominantly undergoes a metabolic adjustment-based stress pattern at early stages, failing to
trigger strong hormone-mediated defenses in a timely manner.

Furthermore, we detected 52 DELs shared by IR25 and LTH (Figure 3B), all of which were
consistently up- or downregulated in both varieties. GO enrichment analysis on the cis and trans
target genes of these 52 DELs uncovered terms related to “rhythmic process” (GO: 0048511) and sugar
metabolism, such as “hexose metabolic process” (GO: 0019318) (Figure S4A). Their KEGG enrichment
highlighted the “pentose phosphate pathway” (0sa00030), “Calvin cycle carbon fixation” (0sa00710),
and “amino acid biosynthesis” (0sa01230) (Figure 54B). These findings point to a conserved role for
these commonly responsive genes in energy metabolism and fundamental physiological regulation,
helping coordinate basic adaptive responses in both resistant and susceptible genotypes.

We further examined DELs in the NPB variety at 24, 48, and 72 h post-inoculation (Figure S5),
observing only a few DELs —just two overlapped with the aforementioned set of 52 DELs —indicating
significant differences in how LTH, IR25, and NPB respond at the IncRNA level. This highlights
genotype-specific defense mechanisms.

A direct comparison of the susceptible and resistant genotypes (LTH vs. IR25) at 12 h and 24 h
postinoculation revealed 21 IncRN As co-responsive to M. oryzae infection (Figure S4C). Their cis/trans
target enrichment suggested potential synergy between JA and ET biosynthesis, as well as IAA
modulation. GO enrichment analysis indicated that phospholipase Al (PLAI) and cysteine synthase
genes are closely associated with these 21 IncRNAs, with PLAT being crucial for JA biosynthesis
during early infection stages and cysteine serving directly as a precursor for ET (Figure S4D) [25,26].
Furthermore, within the KEGG-enriched “plant hormone signal transduction” pathway (Figure S4E),
two key genes—JAZ (LOC_Os04g32480) and SAUR (LOC_0s02g52990) —were identified (Figure
S4F-G) [27,28]. The marked upregulation of JAZ suggests a potential negative feedback mechanism
isn JA signaling, whereas the pronounced downregulation of SAUR may indicate suppression of
IAA, thereby prioritizing the synthesis of defense-related hormones.

We showed that the resistant variety IR25 exhibits a more robust transcriptomic response to M.
oryzae infection than the susceptible LTH, largely through IncRNAs involved in aromatic amino acid
metabolism and hormone signaling. Moreover, we identified a subset of IncRNAs that coordinate JA,
ET, and IAA pathways, indicating that JA and ET signals play pivotal roles under M. oryzae stress
while IAA signaling functions as an auxiliary route, collectively maintaining a dynamic balance
between stress tolerance and immune responses.
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Figure 3. Functional enrichment analysis of DELs and their target DEGs in IR25 and LTH after rice blast infection.
(A) Bar charts showing the number of DEGs and differentially expressed IncRNAs (DELs), with upregulated
genes in red and downregulated genes in blue. (B) Venn diagrams of differentially expressed IncRNAs (DELs)
between LTH and IR25 before and after inoculation (Fold change > 1.5, p-value < 0.05). (C-E) Functional analysis
of target genes predicted for uniquely expressed DELs in IR25 and LTH, including GO enrichment analysis (D,
F) and KEGG pathway enrichment analysis. The top 20 significant GO terms were selected based on a p.adjust
< 0.05 cutoff, and the top 10 KEGG pathways were selected with the same significance threshold.

2.4. Construction of a ccRNA Network Reveals the Role of IncRNAs in Rice Blast Resistance

This study constructed a ceRNA network containing 20 miRNAs, 17 IncRNAs, and 115 mRNAs
(Figure 4), systematically analyzing how IncRNAs indirectly regulate resistance genes and hormone
signals by “sponging” miRNAs during M. oryzae infection. Four IncRNAs—LncRNA.9497.1,
LncRNA.9562.1, LncRNA.13491.1, and LncRNA.33800.3 —emerged as major nodes, closely linked to
hormone signaling pathways (e.g., JA; IAA; ABA; and gibberellin, GA) as well as the expression of
various resistance-related genes.

LncRNA.9497.1 indirectly regulates several hormone-related genes by “sponging” osa-miR395a,
0sa-miR2864.1, and osa-miR5830. For instance, osa-miR395a targets OsSultr2;2 (a sulfate transporter),
potentially bolstering sulfur metabolism to supply more substrates for defense [29]. In addition, osa-
miR2864.1 targets a variety of receptor kinases, including OsLRK6 (leucine-rich repeat receptor
kinase), OsMRLK16 (wheat germ agglutinin domain kinase), OsRLCK204 (receptor-like cytoplasmic
kinase), and SDRLK-40 (receptor-like kinase). Among these, OsLRK6 is vital for immune signal
transduction, whereas OsMRLK16, OsRLCK204, and SDRLK-40 facilitate microbe-associated
molecular pattern (MAMP) perception and potentially abiotic stress cross-tolerance. Significantly
higher expression of these receptor kinases in IR25 at 24 h post-inoculation suggests that certain
IncRNAs may facilitate early-stage pathogen recognition through miRNA “sponging”.
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Moreover, osa-miR5830 targets OsABA8ox3 and OsMETS2, which regulate ABA degradation
and methionine metabolism, respectively. OsABA80x3 modulates ABA levels, influencing stress
adaptability [30]. In IR25 inoculated with M. oryzae, OsABA8ox3 was notably downregulated by 24 h,
whereas OsMETS2 was upregulated, thus promoting ethylene biosynthesis and reinforcing disease
resistance [31]. Thus, in the resistant IR25 line, LncRNA.9497.1 may indirectly downregulate ABA
signaling and upregulate ethylene signaling via miRNA sponging, thereby enhancing the
downstream immune response in rice.

LncRNA.33800.3 indirectly regulates OsWRKY70, OsCPS1, and OsGH3-2 by “sponging” osa-
miR5075. OsWRKY70 is a key transcription factor in the JA signaling pathway that positively
regulates JA biosynthesis while negatively affecting GA synthesis, thus prioritizing defense over
growth [32]. OsCPS1 participates in GA biosynthesis [33], and OsGH3-2 is an IAA amino acid
synthase implicated in broad-spectrum resistance by limiting auxin levels [34].

In LTH (susceptible) at 12 h postinoculation, OsGH3-2 was significantly downregulated,
whereas OsWRKY70 was markedly upregulated, indicating that under early pathogen stress,
IncRNAs such as LncRNA.33800.3 may simultaneously reduce auxin and raise JA signals to enhance
disease resistance.

Furthermore, LncRNA.9562.1 and LncRNA.13491.1 regulate several resistance genes and
hormone signals by targeting osa-miR529a, osa-miR5830, and osa-miR2090.

0sa-miR2090 targets OsRLCK42 (receptor-like protein kinase) and Cht5 (chitinase). OsRLCK42
aids in early stress signal transduction, whereas Cht5 degrades fungal cell walls, a process pivotal to
JA-mediated immunity [35]. In LTH, OsRLCK42 was strongly downregulated while Cht5 was
upregulated, suggesting partial defense activation yet compromised early signaling in a susceptible
background.

osa-miR529a targets OsABA8OX2 (ABA metabolic balance) and OsbHLH148 (a transcription
factor regulating JA signaling), which contribute to both drought and disease stress responses [36] .
In resistant IR25, OsABA8OX2 tended to be downregulated at 24 h postinfection, while OsbHLH148
was upregulated, reflecting a shift from ABA to JA-driven defenses [37,38].

0sa-miR5830 targets OsABAS8ox3 and interacts with OsMETS2, a methionine synthase
supporting ethylene biosynthesis [31,39]. This further underscores intricate hormone crosstalk
controlled by hub IncRNAs.

Collectively, these ceRNA interactions indicate that IncRNAs can coordinate hormone pathways
(ABA, ET, JA, IAA) and receptor kinases to bolster rice blast resistance.

imnmEn

Figure 4. Co-expression ceRNA network of IncRNAs, miRNAs, and mRNAs. Inverted triangles represent
miRNAs (purple), triangles represent IncRNAs (red), ovals represent mRNAs, and rectangles represent plant

hormones, disease resistance-related genes, and transcription factors (orange). Solid lines indicate connections
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between miRNAs and mRNAs, while dashed lines represent interactions between miRNAs and IncRNAs. The

line color corresponds to the expectation values predicted by psRNAtarget.

2.5. WGCNA Uncovers Key Hormone, R genes / Proteins, and Receptor Kinase Networks Under M. oryzae
Stress

After removing batch effects, normalizing expression, and filtering outliers, a total of 2,583
IncRNAs and 15,701 genes were retained for WGCNA (Table 512). With a soft threshold power of 18
(scale-free topology index ~0.85; Figure 5A-B), 26 modules were identified (TOMType=Unsigned,
deepSplit=2, minModuleSize=30, mergeCutHeight=0.2). Notably, around 85.23% of all
genes/IncRNAs gathered into the top 10 modules (Figure 5C).

By correlating module eigengenes (MEs) with phenotypic traits (blast resistance vs.
susceptibility) (Figure 5D), three notable correlations emerged. The Darkgreen Module showed
strong positive correlation with resistance (r=0.96, p=3x10"-21), while the Lightyellow Module
demonstrated negative correlation with resistance (r=—0.87, p=1x10"-12). The Gray60 Module
exhibited negative correlation with susceptibility (r=-1.0, p=9x10"-40). Scatter plots of transcript
significance (TS) vs. module membership (MM) (Figure 6E, Figure S6A-B) confirmed these
relationships, prompting further network analysis of hub IncRNAs and their target genes.

In the darkgreen module (Figure 6A, Table S13), LncRNA.9497.1, LncRNA.21901.1, and
LncRNA.35959.1 serve as core nodes, associating with disease/stress resistance genes such as wall-
associated kinase 1 (WAKT), putative disease resistance protein (RGA4), OsWRKY125, and mitogen-
activated protein kinase 17 (MAPK17). WAK1 mediates cell wall strengthening and defense signal
transduction [40]. Meanwhile, RGA4 and RGA3 are NB-LRR-type resistance genes detecting
pathogen effectors [41], and OsWRKY125 is a WRKY TF driving the expression of defense genes [42].
MAPK1Y7 sits at a crucial position in MAPK signaling cascades under pathogen attack [43].

Within the lightyellow module (Figure 7C), LncRNA.10688.1 and LncRNA.36066.1 emerged as
central regulatory points. LncRNA.10688.1 is directly linked to RGA5 (LOC_Os11g37740,
LOC_0Os12g37770) and Bph40 (LOC_Os11g39209), both contributing to pathogen-triggered immunity
(PTI) and physical defense barriers [44,45]. It also relates to OsLP2 (LOC_Os12g08240), implying
cross-disease and environmental stress crosstalk [46]. In LTH inoculated with M. oryzae, RGA5 and
OsLP2 were notably upregulated, whereas Bph40 was slightly downregulated, suggesting partial
immune enhancement yet weaker mechanical defenses in a susceptible background.

Piks-1 and Piks-2, recognized CC-NBS-LRR pairs defending against M. oryzae [47], and Pbl
(LOC_Os04g06280), a durable blast resistance gene from indica [48], also converged in this module’s
coexpression network, implying multiple layers of early PTI and defense synergy. In terms of stress
resistance, OsPUB69 (LOC_Os12g33180), an E3 ubiquitin ligase gene associated with
LncRNA.21855.1, has been shown to play a crucial role in stress tolerance, particularly in protein
degradation and cellular homeostasis regulation [49]. Similarly, OsGLP8-12 (LOC_Os12g28015),
associated with LncRNA.36066.1, regulates reactive oxygen species (ROS) levels, which is essential
for rice adaptation and disease resistance under oxidative stress conditions [50,51].

The gray60 module features LncRNA.13491.1, LncRNA.9562.1, and LncRNA.9997.2 (Figure 7B),
which coordinate multiple receptor kinases (OsRLCK366, OsRLCK5), resistance genes (RGA5-L1),
and hormone regulators (OsPP2C19). For example, LncRNA.13491.1 intersects with RGA4, RGAS5,
RPM1, and Xal, all tied to effector-triggered immunity (ETI) [52,53]. It also influences OsMADS56
and OsbHLH179, potentially modulating strigolactone (SL) and GA signals [54,55]. Similarly,
LncRNA.9562.1 correlates with OsRLCK366 (a receptor kinase) and OsPP2C19 (an ABA regulator)
[56,57], facilitating hormone interplay and stress responses [58-60]. LncRNA.9997.2 impacts the
regulation of GA, ABA, and even cytoskeletal elements via OsRLCK5 and VLN4 [61]. Interestingly,
based on the expression heatmap of IncRNA within the module (Figure S6C-E), LncRNA.13491.1 and
LncRNA.9562.1 peaked in LTH at 12 h but remained low in IR25, indicating potential genotype-
specific temporal regulation of immune-associated IncRNAs.


https://doi.org/10.20944/preprints202502.1634.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1634.v1

10 of 29

Collectively, these findings demonstrate that multiple IncRNAs within WGCNA modules
coordinate hormone pathways (ABA, GA, SL), receptor kinases (OsRLCK5, OsRLCK366), and R
genes/proteins (RGA4, RGAS5, Pbl, Piks-1, Piks-2) to bolster both early PTI and downstream ETI,
thereby establishing a robust multi-layered defense framework in rice.
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Figure 5. WGCNA of genes and IncRNAs in rice after M. oryzae infection. (A-B) Soft threshold selection for
network construction. The optimal soft threshold was chosen based on scale-free topology fit (A) and mean
connectivity (B). (C) Hierarchical clustering tree of transcripts in different modules. The dendrogram shows the
clustering of transcripts into modules, with each module labeled by a different color. (D) Module-trait
relationship. The heatmap shows the correlation between module eigengenes and traits. The correlation
coefficients and p-values indicate the strength and significance of the relationship. (E) Scatter plots of transcript
significance (TS) versus module membership (MM) for the salt-associated module MEgreys60.
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Figure 6. WGCNA network plot showing the correlation between the three modules strongly associated with
susceptible and resistant phenotypes. (A) Darkgreen module is significantly positively correlated with resistance
traits (r = 0.96, p = 3 x 10"-21).(B) Grey60 module is significantly negatively correlated with susceptibility traits
(r=-1.0, p =9 x 10"-40).(C) Lightyellow module is significantly negatively correlated with resistance traits (r = -
0.87, p =1 x 10"-12). The annotations for these related genes are provided in Table S14.
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Figure 7. GSEA enrichment analysis of gene sets based on four IncRNAs in GO and KEGG pathways. (A)
IncRNA.9497.1, (B) IncRNA.9562.1, (C) IncRNA.10688.1, and (D) IncRNA.13491.1: Enrichment analysis of the
gene sets in GO and KEGG pathways for each of the four IncRNAs. The x-axis represents the enrichment score
(ES), while the color gradient indicates the adjusted p-value (p.adjust), reflecting the significance level of the

enrichment.

2.6. Mechanistic Insights into the Functional Roles of Key IncRNAs in Rice Blast Resistance

To examine the mechanistic roles of the top IncRNAs identified by WGCNA—e.g.,
LncRNA.9497.1, LncRNA.9562.1, LncRNA.10688.1, and LncRNA.13491.1 —we performed gene set
enrichment analysis (GSEA) for single key IncRNAs, focusing on pathways implicated in secondary
metabolism and hormone signals, and structural diagrams for these four IncRNAs were also
generated (Figure S7).

LncRNA.9497.1, annotated as an antisense transcript (Figure 7A), was significantly associated
with the phenylpropanoid biosynthesis pathway (0sa00940) and broader plant secondary metabolite
biosynthesis (0sa00999) (Figure 7A). These metabolic processes contribute to lignin and flavonoid
production, which reinforce cell walls and produce antimicrobial compounds. Thus, LncRNA.9497.1
likely boosts disease resistance through robust metabolic defense.

Genes linked to LncRNA.9562.1 were mainly enriched in plant hormone signal transduction
(0sa04075) (Figure 7B, Figure S8), encompassing SA, ET, brassinosteroid (BR), GA, and JA pathways.
Critical components like NPR1 and PR1 and ET-related genes appear among its targets, indicating a
capacity to orchestrate hormone crosstalk and secondary metabolism, thereby enabling a rapid
immune response to M. oryzae.

LncRNA.10688.1 was significantly enriched in the phenylpropanoid biosynthesis pathway
(0sa00940) and the carotenoid biosynthesis pathway (0sa00906) (Figure 7C). Phenylpropanoids foster
structural defenses and are precursors to SA, while carotenoids enhance antioxidant capacity and can
feed into ABA production, thus regulating plant stress adaptation.

LncRNA.13491.1 exhibited notable enrichment in pigment biosynthetic processes (GO: 0046148)
and flavonoid biosynthesis (0sa00941) (Figure 7D). Flavonoids help mitigate oxidative stress and may
act as signaling molecules during pathogen attacks, suggesting that LncRNA.13491.1 aligns plant
defense responses with redox equilibrium.

Altogether, these key IncRNAs enhance plant adaptation and defense under M. oryzae infection
by integrating basic metabolic, secondary metabolic, and multiple hormones signaling pathways—
particularly the phenylpropanoid, flavonoid, JA, SA, ET, and IAA pathways. Their multifaceted roles
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highlight potential targets for breeding disease-resistant rice varieties using gene editing or advanced
selection techniques.

2.7. qRT-PCR Analysis and LncRNA Cloning Validation

To validate these bioinformatic results (Table S14), four important IncRNAs and seven of their
target genes were chosen from key WGCNA modules for quantitative real-time PCR (qRT-PCR)
(Figure 8A-C, M, G-I, N-Q). The expression patterns largely matched the RNA-seq data, reinforcing
the reliability of differential expression analysis. Another three random DELs and their three target
genes were likewise confirmed (Figure 8D-F, J-L), supporting the computational pipeline’s accuracy.

One high-priority IncRNA (IncRNA.9562.1) was subsequently cloned, and Sanger sequencing
verified its length and sequence fidelity (Figure S9A-B). The cloned sequence fully matched the
predictions, indicating the pipeline’s robust annotation. These validation results pave the way for
potential functional analyses, such as overexpression or knockout experiments, to assess the
phenotypic impacts of this IncRNA on rice disease resistance.
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Figure 8. Verification of RNA-seq data by qRT-PCR for DELs and their target genes responsive to M. oryzae. The
yellow line with solid circles represents RNA-seq results, and the blue line with solid squares represents qRT-
PCR results. Error bars indicate the standard error of three replicates. (First and third rows): Expression levels
of IncRNAs at different time points.(Second and fourth rows): Corresponding target gene expression levels at

the same time points.
3. Discussion

3.1. Optimized IncRNA Identification Pipeline and Its Contribution to Rice Genome Annotation

In this study, we developed a more comprehensive rice protein-coding gene database
(CodingRNA) by merging translatome data with existing genome annotations, thereby refining the
IncRNA identification pipeline (Figure 1A). Compared with conventional annotation approaches, our
pipeline demonstrates an enhanced ability to exclude transcripts with protein-coding potential,
effectively reducing false-positive IncRNA calls. This improvement aligns with recent telomere-to-
telomere genome assembly work [23] reporting the discovery of 1,571 additional coding genes
beyond MSU v7, underscoring the importance of updated annotation strategies (Table S7).

We identified 9,003 high-fidelity IncRNAs (Figure 1D, Table S5)—exceeding previous tallies by
Wang et al. (4,787) and Priyanka et al. (5,337) [62,63]. Such discrepancies likely stem from differences
in rice varieties, stress conditions, sequencing strategies, and IncRNA pipelines. Notably, 40% of our
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IncRN As matched those in public databases (Figure S3B), whereas 60% appeared novel, highlighting
possible genotype-, tissue-, or stress-specific expression. Our pipeline incorporates translatome data
integration for excluding potential coding transcripts, three-pronged coding potential prediction
(CPC2, PLEK, CNCI) supplemented by Pfam/Rfam/NR filtering, rice-specific TAD features for
IncRNA target gene identification, and Rlblast for trans-target detection, replacing older methods.

Despite substantial progress, there remain limitations. The focus on certain genotypes and time
points leaves open questions about broader spectrum resistance and IncRNA behavior under other
M. oryzae races or environmental contexts. Additionally, although qRT-PCR verified expression
changes (Figure 8), functional assays such as overexpression or knockout are still needed to confirm
direct phenotypic influences. Lastly, this work primarily addressed leaf tissue, calling for future
multi-tissue or single-cell omics analyses to reveal dynamic spatiotemporal patterns of IncRNAs.
Nevertheless, by offering an integrated pipeline on GitHub, this study establishes a rigorous
foundation for more accurate IncRNA discovery and functional research in rice.

3.2. LncRNAs Participate in Rice Blast Resistance by Regulating JA, ET, and IAA Signaling Pathways in a
Coordinated Manner

We observed that during M. oryzae infection, the target genes of DELs — which are themselves
DEGs — in IR25 (resistant) and LTH (susceptible) varieties were significantly enriched in the JA and
ET signaling pathways. This aligns with prior evidence highlighting the importance of the JA
pathway in rice blast resistance. [62]. Yet, our study also unveils the ET pathway’s role. For example,
some IncRNA targets in both IR25 and LTH —such as PLA1 (involved in JA biosynthesis) and PCO
(affecting ethylene-related transcription factors [25,26])—suggest overlapping ET-JA crosstalk
(Figure S4D). This synergy aligns with known JA-ET cooperation in defense against necrotrophic
pathogens [64,65].

In IR25-specific responses, many DEL targets clustered within aromatic amino acid metabolism,
implying potential enhancement of phenylalanine- and tryptophan-derived SA and IAA. Notably,
previous studies have demonstrated that IAA and SA exhibit antagonistic effects, and this balance
helps conserve energy during pathogen infection, thereby optimizing plant defense responses, which
is consistent with our findings [66]. Meanwhile, JAZ genes (negative regulators of the JA pathway)
[27] and SAUR genes (auxin-responsive [28]) also appear among the common DEL targets (Figure
S4E-G), implying dynamic hormone crosstalk. Overall, IR25’s greater number of specific DELs (293)
versus LTH’s 70 indicates a more robust or earlier activation of these hormone-regulated defenses in
the resistant genotype. Conversely, LTH-specific DELs were concentrated in carbon metabolism,
illustrating a metabolic shift that might be less effective at early defense induction.

Thus, multiple hormone signals—SA, ET, IAA, JA—likely collaborate under M. oryzae stress,
and each genotype’s capacity to coordinate these pathways promptly could decide the strength and
timeliness of immune responses.

3.3. IncRNAs Mediate Immune Responses by Requlating RLKs and R Genes/Proteins and by Participating
in ceRNA Networks

Our results further indicate that, within the WGCNA modules correlated to blast resistance,
RLKs and resistance proteins are markedly enriched. For instance, in the dark green module,
LncRNA.13491.1 interacts with OsRLCK366 (a receptor-like kinase), OsRGA5-L1 (a resistance
protein), and OsPP2C19 (a signaling regulator). This observation is consistent with findings in
mulberry [67], where the IncRNA MuLRR-RLK-AS negatively modulates RLK expression to
influence disease resistance.

Moreover, our ceRNA network showed that several IncRNAs—LncRNA.9497.1,
LncRNA.9562.1, LncRNA.13491.1, and LncRNA.33800.3 — competitively bind specific miRNAs (osa-
miR395a, osa-miR2864.1, osa-miR5830), thereby influencing the expression of OsSultr2, OsWRKY70,
and OsGH3-2, genes affecting sulfur metabolism, JA signaling, and auxin homeostasis, respectively.
These discoveries validate the endogenous target mimic (€TM) hypothesis by Franco-Zorrilla et al.
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(2007) [68]. Similarly, studies in tomato [69] and sweet sorghum [70] suggest that IncRNAs strengthen
resistance by regulating transcription factors and stress response genes via ceRNA-based
interactions.

Furthermore, subcellular localization predictions (Table S15) provide further insights into how
these IncRNAs may exert their regulatory functions. For instance, LncRNA.9562.1 exhibits high-
confidence localization in extracellular, mitochondrial, and nuclear compartments, suggesting
multifaceted roles in perceiving pathogen signals or orchestrating nuclear transcriptional events.
Conversely, LncRNA.9497.1 is predicted to reside largely in the extracellular region, supporting a
putative role in intercellular communication or apoplastic signaling. Such compartment-specific
predictions enrich our understanding of how each IncRNA may spatially coordinate defense
responses under M. oryzae infection.

In summary, IncRNAs in rice not only directly modulate RLKs and R genes/proteins but also
indirectly shape hormone signaling pathways through ceRNA networks, forming an extensive
regulatory web to determine the eventual disease resistance phenotype.

4. Materials and Methods

4.1. LncRNA Strand-Specific Library Data Sources

A total of 513 translatome (datasets were collected from various tissues of japonica rice under
different experimental conditions [71-76], along with 40 strand-specific RNA-seq datasets derived
from leaves of multiple japonica rice varieties [77,78] (Table S1, Table S3). These datasets served two
major purposes: (i) constructing the rice coding gene dataset for improved annotation and
subsequent IncRNA identification, and (ii) conducting differential expression analyses as well as
coexpression network inference. Specifically, all 40 strand-specific datasets were used for IncRNA
identification and WGCNA, whereas 16 of these datasets were devoted to differential expression
analysis. We focused on the monogenic line IR25, harboring the blast resistance gene Pikm, and the
susceptible line LTH (Lijiangxintuanhe) [79]. Among the 513 translatome datasets, various
experimental replicates spanned stress conditions such as drought, temperature fluctuation, salinity,
submergence, and heavy metals, in addition to multiple tissues (roots, stems, leaves, buds, panicles,
and flowers). Detailed information on library construction is provided in Supplementary Materials
2.

4.2. LncRNA Identification and Classification

For the 40 strand-specific RN A-seq datasets, we first used FastQC (v0.11.9) to check read quality
[80]. Strand specificity was determined via Rseqc (v5.0.1) [81], with any nonstrand-specific libraries
excluded (Table S3). Adapter sequences and low-quality reads were removed using TrimGalore
(v0.6.7) [82] (quality cutoff q30) and Fastp (v0.20.1) [83]. Bowtie2 (v2.4.2) was then employed to
discard ribosomal RNA (rRNA) reads [84], after which HISAT2 (v2.2.1) [85] aligned the cleaned reads
to the MSU v7 reference genome with strand-specific parameters (--rna-strandness FR or RF) [24].
Transcriptome assembly was carried out using Stringtie (v2.1.5) under the --rf or --fr options, and all
resulting GTF files were merged using Stringtie merge. Transcripts below 200 nt in length or FPKM
< 0.5 were discarded [86].

To remove protein-coding transcripts, we used GFFcompare (v0.9.8) to compare the assembled
annotation against our integrated rice coding gene fusion annotation (hereafter referred to as the
CodingRNA dataset) [87]. Candidate IncRNAs were those with class codes i, x, 0, u, and p. Additional
filtering steps were taken by comparing these candidates to the protein families database (Pfam)
(v37.0) [88] and NCBI nonredundant protein database (NR) databases (e-value <le-5) to eliminate
any potential protein-coding transcripts [89], as well as against the RNA families database (Rfam)
(v14.10) database (e-value <le-5) to remove known small RNAs [90]. Next, three coding potential
prediction tools—Coding Potential Calculator 2 (CPC2) (v1.0.1) [91], Predictor of Long non-coding
RNAs and mEssenger RNAs based on an improved K-mer scheme (PLEK) (v1.2) [92], and Coding-
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Non-Coding Index (CNCI) (v2) [93] —were simultaneously applied, and only transcripts consistently
predicted to be noncoding by all three tools were retained.

To further classify the final IncRNAs, we compared them once more with MSU v7 via
GFFcompare. Class i was defined as an intronic IncRNA, class o as a sense IncRNA, class x as an
antisense IncRNA, and classes p and u as general IncRNAs (Figure 52B). Additionally, bedtools
closest (v2.30.0) identified bidirectional IncRNAs, while the rest were assigned as intergenic [94].

4.3. Identification of cis- and trans-Targets and Known IncRNAs

We extracted both differentially expressed genes (DEGs) and differentially expressed IncRNAs
(DELs) from the expression analyses and used Pearson correlation analysis (the cor function in R) to
evaluate DEL-DEG pairs with an absolute correlation >0.5 and p <0.05. For trans-target identification,
we employed Rlblast (interaction energy < —14 kcal/mol, interaction length > 15 bp), alongside the
same correlation threshold, to confirm putative IncRNA-gene associations [95].

Considering the median size of rice topologically associated domains (TADs) is ~35 kb [96], a
+20 kb window was chosen for cis-target searches. Any genes located within 20 kb upstream or
downstream of the IncRNA, exhibiting Ir| >0.5, were deemed cis-targets. We then downloaded six
rice IncRNA databases—PlantNATdb (v1.4) [97], PNRD (v1.0) [98], RNAcentral (v22) [99],
NONCODE (v6.0) [100], CANTATAdD (v2.0) [101], and GreeNC (v2.0) [102] —merging them via CD-
hit (v4.8.1) [103]. Finally, we utilized Blastn (v2.9.0) [104] (E-value<le-5, identity>95%) to compare
our candidate IncRNAs with these known datasets, thus identifying novel IncRNAs versus those
present in public repositories.

4.4. Differential Expression Analysis and Functional Enrichment

We performed differential expression analysis using the DESeq2 (v1.22.1) [105] package in R.
Prior to analysis, batch effects were removed, and each group of IncRNAs and mRNAs was analyzed
separately. Thresholds of [1og2FC| >1.5 (for IncRNAs) or |1og2FC| >2 (for mRNAs) and adjusted p
<0.05 were used to designate significant differential expression. Principal component analysis (PCA)
was then conducted via prcomp package, with visualization through ggplot2 (v3.5.1) [106] and
pheatmap (v1.0.12).

Functional enrichment (Gene Ontology, GO; Kyoto Encyclopedia of Genes and Genomes,
KEGG; Gene Set Enrichment Analysis, GSEA) was carried out using clusterProfiler (v4.10.1)[107],
referencing the org.Osativa.eg.db (v0.01) rice database [108]. We applied a significance cutoff of p-
value < 0.05 for all enrichment analyses.

4.5. Transcription Factor Identification and Incrna Localization

Transcription factors (TFs) are crucial in rice’s response to M. oryzae stress [20]. Hence,
PlantTFDB (v5.0) [109] was utilized to predict TFs within the DEGs, the ceRNA network, and the
WGCNA modules. LncRNA subcellular localization was assessed via RNALocate (v3.0) [110],
providing an initial insight into nuclear- vs. cytoplasmic-located IncRNAs.

4.6. Weighted Gene Coexpression Network Analysis (WGCNA)

Weighted gene coexpression network analysis (WGCNA) was undertaken to explore interaction
relationships among IncRNAs and mRNAs [111], excluding those already used for differential
expression analysis. Following expression normalization (via DESeq2) and batch effect removal, low-
expression data and outliers were discarded, retaining genes with higher variance (top 75% by
median absolute deviation). A soft threshold power of 18 was used, constructing an adjacency matrix
via the adjacency function. A topological overlap measure (TOM) was then calculated to define the
similarity matrix of IncRNA-mRNA expression.

Hierarchical clustering was performed, and modules were defined or merged using the dynamic
tree cut method (deepSplit=2, minModuleSize=30, mergeCutHeight=0.25). Each module’s eigengene
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was correlated with specific phenotypes (e.g., rice blast resistance vs. susceptibility), generating
correlation matrices. Modules showing an absolute correlation coefficient 1r1>0.8 and p<0.05 were
considered significantly associated with the trait. The core hub genes or IncRNAs within those
modules were visualized using Cytoscape (v3.10.2) [112].

4.7. Single Key IncRNA Analysis

A normalized, batch-corrected expression dataset of both IncRNAs and mRNAs was used for
Spearman correlation analyses. For each chosen IncRNA, all rice genes were sorted by the absolute
value of their correlation (descending order), creating an ordered gene list.

Next, gene set enrichment analysis (GSEA) was performed via clusterProfiler (v4.14.4) on this
ranked list to determine the biological processes or functional categories most associated with the
IncRNA in question [107]. The ggplot, ridgeplot, and gseaplot functions in ggplot2 were utilized to
visualize results from GSEA (v1.68.0) [113].

4.8. Competing Endogenous RNA (ceRNA) Network Construction

A total of 713 rice miRNAs were sourced from miRBase, forming the foundation for our ceRNA
prediction library. psRNATarget (v2) [114], with parameter settings adapted from Zhang et al. [115],
was used to predict IncRNA-miRNA and mRNA-miRNA interactions. The integrated mRNA-
miRNA-IncRNA coexpression network was finally visualized in Cytoscape (v3.10.2).

4.9. qRT-PCR Method and IncRNA Cloning

To validate the reliability of the sequencing results, we randomly selected three long noncoding
RNAs (IncRNAs), four key IncRNAs, and ten of their target genes for quantitative real-time
polymerase chain reaction (qRT-PCR) analysis. Primers for qRT-PCR were designed using
Primer3Plus software [116] and verified for specificity using PrimerBlast [117]. All primers were
synthesized by Genscript Biotech (primer sequences are provided in Table 516).

qRT-PCR experiments were performed using the Applied Biosystems 7500 Real-Time PCR
System, with three biological replicates for each sample. The reaction program was as follows: pre-
denaturation at 98°C for 2 minutes, followed by 40 cycles of denaturation at 98°C for 2 seconds,
annealing and extension at 59°C for 10 seconds. A melt curve analysis was performed after each run
to confirm the specificity of the amplification products. The 185 rRNA gene was used as the reference
gene. The relative expression levels of the target genes were calculated using the 2*(-AACt) method.

Specific primers (Table S16) for amplifying the full-length sequences of target IncRNAs were
designed based on the RNA-seq data. Total RNA was reverse-transcribed into cDNA using
SuperScript III Reverse Transcriptase (Invitrogen). PCR amplification was performed using
PrimeSTAR GXL DNA Polymerase (TaKaRa), with the following reaction conditions: 98°C for 5
minutes; (98°C for 10 seconds, 60°C for 15 seconds, 72°C for 1 minute per kb) x 30 cycles; and 72°C
for 10 minutes.

PCR products were separated by agarose gel electrophoresis, purified, ligated into the pNC-
Cam1304-35S vector, and then transformed into DH5a competent cells. Positive clones were
confirmed by Sanger sequencing (Tsingke). Sequencing results were aligned with the reference
genome to verify the accuracy of the cloned sequences.

5. Conclusions

This study provides significant advancements in understanding the roles of IncRNAs in rice’s
defense against M. oryzae. By creating an optimized IncRNA identification pipeline —incorporating
translatome data and existing annotations —we identified 9,003 high-confidence rice IncRNAs with
improved accuracy. In-depth analyses of differential expression, WGCNA, and ceRNA network
construction revealed their critical involvement in multiple hormones signaling pathways (JA, SA,
ET, IAA), as well as in regulating receptor-like kinases and resistance proteins. Key IncRNAs (such
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as LncRNA.9497.1 and LncRNA.9562.1) emerged as central regulators enhancing rice adaptability
and immune response.

These findings offer a comprehensive framework for delineating IncRNA functions in plant
immunity and propose molecular targets for breeding resistant rice varieties. Future efforts should
emphasize the functional validation of top candidate IncRNAs through overexpression or knockout
lines, exploring their applicability across diverse genotypes and M. oryzae strains.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Figure S1: Utilization of the CodingRNA dataset improves the accuracy of
IncRNA identification. Figure S2. The impact of the CodingRNA dataset on IncRNA identification and
classification code annotation categories. Figure S3 Distribution and comparison of IncRNAs across rice varieties
and reference databases. Figure S4 Functional analysis of DE target genes predicted for co-expressed DELs in
IR25 and LTH in response to rice blast stress. Figure S5 Venn diagram of 52 commonly responding IncRNAs in
NPB and LTH/IR25 under rice blast stress. Figure S6 Correlation and expression analysis of key WGCNA
modules. Figure S7. Structural analysis of key IncRNAs in rice. Figure S8 GSEA KEGG enrichment pathway of
IncRNA.9562.1-related genes in plant hormone signal transduction (0sa04075). Figure S9 Full-length
amplification and sequencing results of INcRNA.9562.1 cloning. Table S1: Translatome Data Information. Table
52: Comparison of Translatome Assembly Data and the Merged Dataset with MSU v7 Rice Annotation. Table
S3: Validation Information for Strand-Specific RNA-seq Data. Table S4: Statistical Summary of Strand-Specific
Transcriptome Sequencing Data. Table S5: Complete GTF Annotation Information of Long Non-Coding RNAs
(IncRNAs). Table Sé6: Classification of Long Non-Coding RNAs (IncRNAs). Table S7 Distinguishing False
Positive IncRNAs from Novel Protein-Coding Genes in the Telomere-to-Telomere (T2T) Genome Assembly.
Table S8 Comparative Statistics of IncRNA and Gene Features. Table S9 Statistics of Differential Expression
Analysis for IncRNAs and mRNAs. Table S10 Statistics of Cis-Target Genes for Differentially Expressed IncRNAs
Across Groups. Table S11 Statistics of Trans-Target Genes for Differentially Expressed IncRNAs Across Groups.
Table S12 Expression Statistics of Filtered and Normalized Genes and IncRNAs for WGCNA Analysis. Table 513
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Figure S1. Utilization of the CodingRNA dataset improves the accuracy of IncRNA identification. (A-D) Four
examples of CodingRNA dataset and IncRNAs annotation. From top to bottom, 1) the figure illustrates the rice
MSU V7 genome annotation, 2) the CodingRNA dataset annotation, 3)the unfiltered IncRNA annotation
assembled in this study, 4)and the IncRNA annotation filtered using the CodingRNA dataset. Red highlights
represent protein-coding genes identified via the CodingRNA dataset, thereby preventing misclassification as
IncRNA.
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Figure S2. The impact of the CodingRNA dataset on IncRNA identification and classification code annotation
categories. (A) Explanation and schematic representation of classcode classification labels. (B) Comparative
Venn plots of IncRNA identification results before and after the CodingRNA dataset, with the prominent color
blocks for genes with coding ability.
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Figure S3. Distribution and comparison of IncRNAs across rice varieties and reference databases. (A) Number

of IncRNAs distributed across different chromosomes. (B) Venn diagram illustrating the overlap of IncRNAs
identified in different rice varieties (NPB, IR25, and LTH) with those found in reference IncRNA databases.
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Figure S4. Functional analysis of DE target genes predicted for co-expressed DELs in IR25 and LTH in response
to rice blast stress. (A-B) 52 DELs shared by IR25 and LTH in response to rice blast stress: GO and KEGG pathway
enrichment analysis results for the target genes of DELs co-expressed in both IR25 and LTH under rice blast
stress. (C) Venn diagrams of differentially expressed IncRNAs (DELs) between LTH and IR25 under the same
conditions (Fold change > 1.5, p-value < 0.05). (D-E) 21 IncRNAs co-responsive to M. oryzae infection: GO and
KEGG pathway enrichment analysis results for the target genes of DELs co-expressed in both LTH and IR25
under the same conditions. (F) Annotation of genes involved in the salicylic acid (SA) hormone signaling

pathway. (G) Annotation of genes involved in the auxin hormone signaling pathway.
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Figure S5. Venn diagram of 52 commonly responding IncRNAs in NPB and LTH/IR25 under rice blast stress.
This Venn diagram illustrates the overlap of differentially expressed IncRNAs (DELs) in NPB and LTH/IR25
under rice blast stress at various time points. The diagram highlights the 52 IncRNAs that are commonly

responsive to rice blast stress in both NPB and LTH/IR25.
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Figure S6. Correlation and expression analysis of key WGCNA modules. (A-B) Scatter plots showing the
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modules, indicating strong associations with resistance traits. (C-E) Heatmaps of IncRNA and mRNA expression

profiles in three key WGCNA modules (Lightyellow, Darkgreen, Grey60) under different conditions.
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Figure S9. Full-length amplification and sequencing results of IncRNA.9562.1 cloning. (A) Gel electrophoresis
image of the PCR amplification product. (B) Sanger sequencing alignment results.
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