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Abstract: Our genome has evolved a complex network of information designed to precisely regulate
gene transcription. Commonly known as cis-regulatory elements, they represent those parts of DNA
that are highly sensitive to environmental changes in the form of associated multi-protein complexes.
Oxygen levels are an important environmental factor influencing a range of cellular activities,
including cell survival. To respond to changes in oxygen levels, cells have developed an efficient and
precise system for regulating gene expression. Cis-regulatory elements are the key hubs of this
response and control the activation of the transcriptional response to hypoxia. In this review, we will
discuss the complex genomic and epigenomic structures that are modulated by oxygen and control
the activity of cis-regulatory elements and the adaptations to variations in Oz availability.
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1. Hypoxia-Inducible Factors (HIFs) and the Cellular Oxygen Sensor

In order to proliferate and survive, cells must sense Oz levels and adapt to their fluctuations. In
our tissues, hypoxia is a critical environmental factor that triggers efficient and rapid adaptations by
controlling gene transcription. Cells are exposed to different O2 concentrations that influence their
behavior. In addition, cells must quickly adapt to oxygen fluctuations, which are strictly monitored
by an efficient sensor [1,2]. The key elements of this evolutionarily conserved adaptive response are
the transcription factors (TFs) hypoxia-inducible factors (HIFs). HIF-1 is a heterodimer composed of
an Oz-regulated subunit HIF-1a/HIF1A and a constitutively expressed subunit HIF-1 /ARNT. A
second Oz-sensitive subunit, EPAS1/HIF2A/HIF-20 may be expressed and the relative amounts of the
two isoforms may vary from cell to cell. The abundance of HIF-1a is controlled by O: via the
hydroxylation of proline residues 402 and 564 (Pro-405 and Pro-531 in EPAS1/HIF2A). These
modifications are carried out by the prolyl hydroxylases PHD1, PHD2 and PHD3, also known as
EGLN2, EGLN1 and EGLNS3, respectively, and 2-oxoglutarate. Prolyl hydroxylation promotes
interaction with the von Hippel-Lindau (VHL) E3-ubiquitin ligase complex. VHL is an important
subunit of an E3 ubiquitin ligase complex that includes, Elongin C, Elongin B, CUL2 and other
proteins. This degradation machinery polyubiquitylates, HIF-1a. and HIF-2a for proteasomal
degradation in an oxygen-dependent manner. Under hypoxia, the prolyl-hydroxylases that
hydroxylate HIF-1o. and HIF-2a in the presence of oxygen are inactive. In this state, HIF-1o. and HIF-
20 are not hydroxylated and are not recognized by the VHL complex [1,3-5]. This leads to an
accumulation of these TFs in the cells to activate the transcription of hypoxia-inducible genes.
EGLN2, EGLN1 and EGLN3 have the highest in vitro KM values for oxygen of all other 2-
oxoglutarate-dependent dioxygenases and are therefore able to respond to changes in oxygen levels
in the range generally found in our body [6].
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2. Cis-Regulatory Elements and the 3D Genome

Distal regulatory elements, known as enhancers, super-enhancers and silencers, are important
DNA sequences that control gene expression. Enhancers work together with promoters to control
gene expression in response to environmental cues or to coordinate cell fate decisions. In certain
genomic regions, enhancers can cluster and form a dense core of TF binding sites 5-50 kb in length.
These clusters are referred to as super-enhancers (SE) and, in addition to their particular size, also
have similar epigenetic characteristics to typical enhancers (TE). SEs are important nodes that control
gene expression in the context of cell fate [7-10]. Recently, various regulatory elements have been
proposed to organize SE. Using the model of alpha-globin, SE were divided into different domains
defined as classical and facilitator enhancers, the latter elements being involved in the potentiation
of classical enhancers. In the absence facilitators, reduced Mediator recruitment, enhancer-RNA
transcription and enhancer-promoter interactions were observed for the alpha-globin locus [11].

How enhancers and promoters interact and cooperate to control gene expression, and which
genes are under the spatial control of enhancers, is not entirely clear. One hypothesis assumes that
the Cohesin complex drives the chromatin loops and thus the contacts between enhancers and
promoters (E-P) [12]. The ability of the Cohesin complex to extrude chromatin loops has been
implicated as a tool to control E-P interactions and to create transcription units by controlling the
organization of TADs (topologically associating domains) via insulator-insulator protein interactions
[10,12]. However, interfering with Cohesins expression does not lead to dramatic changes in gene
expression, although the organization of TADs is disturbed [13,14]. Instead, active transcription is
necessary for the stability of E-P interaction, but it is dispensable for the stability of TADs and limiting
the extrusion of longer CTCF-anchored loops [14]. Recently, it has been proposed that RNA
polymerase II, when paused at promoters, contributes to E-P interactions [14,15]. Regulation that may
be influenced by HIF-1a through its ability to switch paused RNAPII at the promoters of hypoxia-
regulated genes into an elongation-capable enzyme [16-18].

Several factors have been held responsible for the organization of E-P interactions [19-21]. For
example, the architectural protein and transcriptional cofactor LDB1 has recently been proposed to
mediate E-P and E-E loops and gene transcription independently of the Cohesins CTCF or YY1 [22].
It is therefore becoming apparent that there are probably different types of E-P and E-E contacts/loops
that are controlled by specific multiprotein complexes.

3. Distal cis-Regulatory Elements and the Hypoxia Response

Not surprisingly, distal cis-regulatory elements also play a key role in regulating the hypoxia
response. TEs can promote the transcription of hypoxia genes and also influence the adaptation of
organisms to a hypoxic environment through Darwinian selection. Initial studies have identified a
TE that promotes transcription of the erythropoietin (EPO) gene under hypoxia. This TE is located at
the 3’-end of the gene [23-25]. TEs have also been identified that control or are embedded in other
hypoxia-responsive genes such as vascular endothelial growth factor (VEGF) [26,27], GLUT1, the
glucose transporter gene [28], lactate dehydrogenase A (LDHA) [29], glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) [30] and others [31,32], including genes involved in iron metabolism [33].
TEs may also be responsible for regulating HIF-1a expression in a feed-forward loop [34].

Often, these distal cis-regulatory elements contain hypoxia-responsive elements (HRE), the
conserved HIF-binding site with an A/GCGTG core motif and a highly variable flanking sequence
[35]. In complex with chromatin remodelers and in cooperation with various transcription factors,
HIFs (HIF-1o and/or HIF-2a) can also potently activate transcription at these sites. There is also
evidence that the transcriptional activity of HIFs may be under the influence of the circadian rhythm
[36-38].

The list of TE examined under hypoxia is long and includes elements involved in the tumor
formation process. Clear cell renal cell carcinoma (ccRCC) is characterized by the germline variant
and somatic inactivation of the tumor suppressor VHL with the resulting stabilization of HIFs. ccRCC
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accounts for 80 % of renal cell carcinomas and represents an important model for understanding the
contribution of HIFs to the tumor formation process [39]. In primary ccRCC cells and established cell
lines, the rearrangements of cis-regulatory elements (promoters, enhancers and super-enhancers)
were mapped using classical epigenetic markers (H3K4mel, H3K4me3 and H3K27ac). Activated
promoters control general cancer-related processes (cell cycle, RNA metabolism, etc.), while activated
enhancers are associated with genes specific to ccRCC, including HIF1A, angiogenesis, glycolysis and
metabolism. Gained SEs were related to important oncogenes for ccRCC development (VEGFA and
EPAS1/HIF2A). Although several of these cis-regulatory elements are under the regulation of VHL,
particularly genes of the HIF pathway, other elements are activated independently of VHL. Indeed,
mutations in chromatin regulators may characterize ccRCC. These genes may be involved in the
switching of cis-regulatory elements, thus ensuring independence from VHL [40,41].

In ccRCC, rewiring of the transcriptional landscape driven by HIFs through binding to selected
TEs, also in cooperation with other TFs, plays a crucial role in the tumorigenic process. HIF2A
cooperates with the lineage-specific TF PAX8 to support the tumor cells growth. HIF2A is recruited
to PAX8-bound TEs, including a cyclin D1 (CCND1) TE, to reshape the transcriptional landscape. In
ccRCC, dysregulation of CCND1 is an important event of the tumorigenic process [42]. In ccRCC,
polymorphisms can also influence HIF-DNA interactions at the TE and thus promote the tumorigenic
process [43]. A similar observation was made for other oncogenes regulated by HIF1A, such as MYC
and [44].

Similar to TEs, SEs can also be used to regulate the hypoxia response. An SE drives the
upregulation of the glycolysis gene hexokinase II (HK II) during hypoxia [45]. SEs may also be
responsible for individual adaptation to the hypoxic environment. A structural variant, a deletion in
SE that regulates EPASI/HIF2A and possibly the expression of other genes, was identified in an
altitude-adapted Tibetan [46]. In this context, the pioneer transcription factor FOXA1 can modulate
various SEs, of which the one that controls HIF2A transcription [47].

By mapping nascent long non-coding RNAs (IncRNAs) using GRO-seq in endothelial cells
under hypoxic conditions, an increase in promoter-associated IncRNA transcription over enhancer-
associated was observed. This result suggests an important role of promoters in shaping
transcriptome adaptation to hypoxia. However, the same authors also reported a significant
induction of the activity of super-enhancers associated with genes controlling angiogenesis, cell
adhesion and survival [48].

In summary, a complex network of interactions between proximal and distal cis-regulatory
elements controls the fine-tuning of hypoxic responses, and it is not surprising that dysregulations in
this network can affect adaptation to hypoxic conditions.

4. The 3D Genome Under Hypoxia

Chromosome conformational assays were used to map the long-range physical connections
between enhancers and promoters, including those recognized and bound by HIF-1a. Remarkably,
these interactions are not altered by hypoxia in the experimental models used. Thus, HIF-1a appears
to act on already defined sets of chromatin loops. These sometimes-extended chromatin loops are
already defined under normoxic conditions. It appears that the hypoxic response in terms of nuclear
architecture is a structurally predefined response that is already primed in cells that are not
challenged by the hypoxic environment. It is possible that this strategy has become evolutionarily
established because it allows a faster and more efficient response to changes in oxygen levels [49,50].
The predetermined E-P network of interactions that controls transcription of hypoxia genes has also
been observed in other studies. HIF-2a. binds to an oxygen-sensitive enhancer in intron 3 and
stimulates transcription of the WT1 gene in neuroblastoma cells through hypoxia-independent
chromatin loops [51]. Furthermore, a hypoxia-responsive element (HRE) located -82 kb from the TSS
of the PAG1 gene physically associates with the PAG1 promoter region independently of the HIF-
DNA interaction and is required for hypoxia-induced upregulation of transcription [52].
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Using a different approach, high-throughput imaging, the spatial localization of about 100
hypoxia-responsive genes within the nucleus was determined. These hypoxia genes are often
localized in the intermediate region of the nucleus. About 20 % of them changed their position during
hypoxia, but without a clear correlation with gene activation [53]. A recent study suggests that
hypoxia may affect the fine 3D nuclear structure. Under hypoxia, upregulation of CTCF expression
and binding may modulate the upstream promoter-exon loop. This spatial reorganisation influences
alternative splicing and supports EMT [54].

In summary, although few studies have investigated the changes in high-order chromatin
organization during hypoxia, it is emerging that several distal contacts between T-E, under the
influence of HIFs, are already established in the absence of hypoxia [55]. However, further studies
are needed to confirm this scenario and perhaps some new discoveries will be possible.

5. The Landscape of HIFs Genomic Binding

As mentioned above, two different transcriptionally active heterodimeric HIF complexes can be
formed during hypoxia, which share the common subunit HIF-1a/ARNT. The exclusive presence of
HIF-1a or HIF-2a characterizes the two complexes, and the prevalence of the two isoforms depends
mainly on the cell type. Despite some similarities in terms of regulation, HIF-1a and HIF-2a have a
different tissue distribution, with HIF-2a being expressed only in certain tissues, while HIF-1a is
more ubiquitously expressed [55-57]. In addition to dimerization with HIF-1o, interactions with
other transcriptional coactivators, including the acetyl-transferases, CBP (CREBBP) and p300,
influence the transcriptional activities of HIF-1ao and HIF-2a [57,58]. These KATs enhance the
transcriptional activities of HIFs by acetylating HIFs themselves and the surrounding chromatin
[5,55].

Pan-transcriptomic analyses of cells under hypoxia have shown that the transcriptional targets
of HIFs are highly variable, mainly depending on the cell type [59]. Despite this high variability, a
consensus set of 48 HIFs target genes was defined that is highly conserved across different cancer
types and cell lines. This common signature may be useful as a reference for HIFs activities in
different contexts [59].

The RCGTG motif is considered the minimal cis-regulatory element required for the binding of
HIFs to dsDNA [35]. To understand the distinct and shared activities of HIF-1a and HIF-20, defining
the genomic regions under their influence was a fundamental step. In the initial ChIP-seq studies
aimed at defining the genome-wide binding sites of HIF-1a and HIF-2a, only 0.05% and 0.04% of the
putative (more than 106) RCGTG binding motifs in the human genome were found to be bound by
these TFs under hypoxia regulation, respectively. ChIP-seq studies in MCF-7 cells have shown that
both HIF-1a. and HIF-2a show a preference for A over a G in the R position, but preference was also
seen for T immediately 5’ to the RCGTG and for C immediately 3’ to this motif. In addition, HIF-1a
binds preferentially near the TSS compared to HIF-2a [60,61] (Figure 1). Another ChIP-seq analysis
performed in HUVECs under 1% O: for 24 hours revealed 2,060 binding regions for HIF-1a, which
are often quite distant from the TSS (>50 kb). The authors observed a decrease in binding of HIF-1a
to the intergenic regions upon hypoxia, accompanied by an increase in binding to promoters [62].
Other studies reported far fewer regions bound by HIF-1a, a variability that could be due to the cell
models studied, the experimental protocol used to induce hypoxia, or technical reasons [63-67].

Not surprisingly, the same large heterogeneity observed in the transcriptomic studies also
occurred in the ChIP-seq experiments. When comparing the genomic regions bound by HIFs between
different cell models, the differences dominated. Although HIF-1a and HIF-2a show frequently not-
conserved DNA binding activities in different cell lines, they also exhibit conserved features such as
distance from the TSS and genome binding ratio. HIF-1a always shows a higher number of bound
regions than HIF-2a [60,61].

All these genomic peculiarities are clearly reflected in specific patterns of hypoxia gene
transcription. HIF-1a preferentially binds cis-regulatory elements of genes encoding enzymes of
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glycolytic metabolism [68] PGK and BNIP3 [68,69], while HIF-2a. specific targets are EPO, OCT4 and
TGFB [69-73]. In contrast, VEGF is a common target of both TFs [58].

A large percentage of genomic regions bound by HIFs under hypoxia are already in open
chromatin (DNAse I hypersensitive sites) under normoxic conditions and show markers for open
chromatin conformation such as H3K4me3 and H3 acetylation [60,63]. A predetermined condition
also observed for the long-range interactions (E-P, P-E, and E-E) between intergenic HIF-binding
regions and one or more promoters of hypoxia-inducible genes [49].

Since tumor growth is closely associated with the creation of a hypoxic environment, the
activities of HIFs in the tumor formation process have been frequently studied. In general, cancer
cells appear to be more dependent on HIF-1a than on HIF-2a, with the important exception of ccRCC
[74,75]. Although HIF-20. and HIF-la have the same effects on angiogenesis, invasion and
metabolism, all of which contribute to tumor growth and progression, they also exhibit opposite
activities. For example, HIF-20. promotes c-Myc transcriptional activity and cell cycle progression,
while HIF-1a inhibits c-Myc functions and cell proliferation [76].

6. Chromatin Accessibility Under Hypoxia

Further studies on the accessibility of chromatin under hypoxia have shown that while many
regions are already available for transcription under normoxia, other regions can open up or increase
their accessibility under hypoxia [77]. Using ATAC-seq, different open regions between normoxia
and 6 hours of hypoxia were identified in HUVEC cells. These regions account for 15.81 % of the total
54,102 accessible chromatin regions [78].

Studies on changes in chromatin accessibility under hypoxia have often been associated with the
identification of cis-regulatory elements. These studies have provided a better understanding of the
evolution of cis-regulatory elements in the regulation of hypoxia. Identification of DNase I-sensitive
sites was critical for defining a tissue-specific VEGFA enhancer [27] or for identifying single
nucleotide polymorphisms (SNPs) in intergenic regions with regulatory properties, as described
above [44]. In renal cell carcinoma (RCC), accessible chromatin regions with HIF-responsive
promoters are embedded within an endogenous retroviral long terminal repeat (LTR). LTR elements
can act as distal enhancers or promoters [79] and induce the expression of genes that are important
for the aggressiveness of renal cell carcinoma [80]. Accessible chromatin regions often correlate with
hypoxia-induced 6mA- and H3K4mel-marked regions, strongly indicating that they are functional
transcriptional regulatory elements such as TEs and SEs [81].

In addition to distal cis-regulatory elements, promoters are also frequently modulated in terms
of their accessibility during hypoxia. Indeed, under hypoxia, differentially accessible regions, as
defined by ATAC-seq experiments, correlate well with HIF-dependent changes in gene transcription
[82]. Not surprisingly, there are also regions where chromatin accessibility is reduced during
hypoxia. These restrictions can also occur independently of HIF-1a or HIF-2a.. Examples include the
regulatory regions that control the expression of genes belonging to the IFN signaling pathway and
that may contribute to the immunosuppressive environment observed in hypoxic tumors [83] or to
the activation of specific differentiation pathways [84]. In other studies, a reduction in accessibility
was observed primarily at promoters of genes involved in DNA repair, RNA splicing and the R-loop
interactome [85].

Chromatin remodelers are large multiprotein complexes with ATPase activity that favor access
to the DNA sequence [86]. Increased chromatin accessibility through the involvement of chromatin
remodelers can also influence the response to hypoxia. The multiprotein complex SWI/SNF is the best
studied chromatin remodeler. In human, it is known as BAF (BRG1- or BRM-associated factors). In
human, three different subcomplexes of different sizes have been characterized: the canonical BAF
(cBAF), the polybromo BAF (PBAF), and the non-canonical BAF (ncBAF, also known as GBAF). The
three subcomplexes are characterized by a specific composition the subunits. BAF is characterized by
the presence of ARID1A/ARID1B and DPF2. PBRM1, ARID2 and BRD? distinguish pBAF, while
GLTSCR1/GLTSCRIL and BRD9 are present in ncBAF/GBAF [87].
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The involvement of components of the SWI/SNF complex in the activity of HIF-la and
presumably in the regulation of chromatin accessibility has been reported in an ealry study [36]. This
likely reflects a basic strategy in nucleosome remodeling/eviction to facilitate access to genomic
regions where the consensus binding sites of HIFs are located or access to other TF binding sites that
cooperate with HIFs [36,88,89].

The existence of different BAF subcomplexes could explain some seemingly contradictory
results regarding HIF-dependent transcription, especially in pathogenic contexts. In ccRCC, in
addition to the VHL mutations, other cooperating mutations are necessary for the development of
the disease. An example of this are mutations in the tumor suppressor genes PBRM1 and BAP1. The
PBRM1 component of the PBAF complex limits the transcription activity of HIFs, and its loss
increases the transcription intensity of HIF-1a [90,91]. In lung cancer, the alteration of the BAF
complex due to a deficiency of the ARID1A subunit promotes tumour development and supports the
hypoxia response. Loss of ARID1A leads to increased binding of HIF-1a to the promoter regions of
glycolytic metabolism genes (PGAM1, PKM and PGK1). In the absence of ARID1A, HDAC1 is not
recruited to chromatin, leading to increased H4K8 and H4K12 acetylation at the promoter of these
genes [92].

In summary, the overall profile of chromatin accessibility is not dramatically perturbed in
hypoxia, suggesting a predetermined structural organization. This predefined configuration may
reflect the requirement of a certain level of gene transcription even under normoxic conditions.
Regulation of chromatin accessibility may dynamically enhance this baseline level of gene expression
under hypoxia. Moreover, these specific modulations may have important effects on tissue-specific
adaptations to hypoxia and on the tumor formation process.

7. Epigenetic Modifications

7.1. DNA Methylation

DNA methylation is an important epigenetic modification that is generally involved in creating
a compact chromatin state and a transcription inhibitory environment. DNA methylation occurs at
selected cytosines (cytosine (5-methylcytosine; 5mC), often in the presence of the dinucleotide
cytosine-guanine, extended as CpG island [93-95].

During hypoxia, DNA methylation can shape the gene landscape under HIFs control in a
differentiation- and tissue-specific context [96,97]. Hypoxia can also promote DNA methylation to
repress gene expression [98-100]. For example, DNA methyltransferase 3a (DNMT3a), a de novo
methylase, can silence the HIF-2a gene, preventing activation of the HIF-2a genetic program
associated with hypoxic cell growth. This deficiency reduces the proliferative capacity of adult cells
under low oxygen tension [101].

In addition to targeted DNA methylation, a global decrease in methylation was also observed
during hypoxia. This decrease could have various causes. A decrease in the methyl donor S-
adenosylmethionine (SAM), which was observed during hypoxia, could contribute to it [102]. This
global demethylation can cause the expression of genomic regions that were silenced during
normoxia, such as repetitive elements, including endogenous retroviruses [103,104]. Demethylation
at repetitive elements may be under the control of HIFs, may cause accumulation of dsRNAs and
viral mimicry, and may affect the immune response in tumors [105].

Considering also the studies on chromatin accessibility at HIF binding sites, DNA methylation
appears to be primarily involved in regulating the tissue-specific or context-specific accessibility to
hypoxia-responsive elements. Less common are the observations of a contribution of DNA
methylation to the reorganization of chromatin accessibility at HIF binding sites under hypoxia [106].
However, there are also reports indicating an active role of DNA methylation in the plasticity of the
hypoxia response and in adaptive mechanisms, e. g. in the adaptation to high altitude exposure [107-
110]. Modulation of DNA methylation under hypoxia can also influence the local spatial organization
of chromatin and exon usage for the formation of VEGFA mRNA splice variants and angiogenesis
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[111]. Thus, although the potential hypoxia-dependent transcriptional program is largely
predetermined by DNA methylation, some modifications are still possible.

DNA methylation is also subject to the control of enzymes that reverse this modification through
a complex mechanism. DNA demethylation is catalysed by the ten-eleven-translocation 5-
methylcytosine dioxygenase (TET) family of enzymes. These enzymes convert 5-methylcytosine (5-
mC) into the intermediate 5-hydroxymethylcytosine (5-hmC), which is subsequently modified into
cytosine using various strategies [112]. Studies have shown a global increase in 5-hmC levels,
including hypoxia genes. This regulation is part of a regulative circuit in which HIF-la also
upregulates TET1 transcription during hypoxia with the support of other TFs [113-115]. It has also
been reported that TET1 acts as a co-activator of HIF-2a independently of its enzymatic activity [116].
In hematopoietic stem and progenitor cells, hypoxia, again via HIF-1a, regulates the transcription of
TET3 [117]. The modulation of 5-hmC and of TET1 and TET3 during hypoxia has been confirmed by
other studies [118,119]. TET2 activity is also involved in the hypoxia response. In breast cancer, TET2
is required to enable the binding of HIF-1a to the CTCF promoter, an important step in the regulation
of EMT and tumor invasion [54]. A provocative report suggests that TET2 cooperates with NF-kB in
macrophages and sustains the inflammatory response associated with immune infiltration and better
prognosis of tumors [120]. Further studies have shown that TETs are regulated in hypoxia. In
glioblastomas, they can regulate stem cells and pluripotency [121] and be a substrate of the PHD-
pVHL pathway for proteasomal-mediated degradation. A mechanism that could help explain the
increase in 5-hmC observed in hypoxia [122].

Although the expression of TETs is upregulated during hypoxia, their activity can be reduced,
leading to hypermethylation in certain contexts. This leads to increased methylation of tumour
suppressor gene promoters in hypoxic tumour tissue. A condition that gives the tumour cells an
advantage. In a mouse model, this methylation can be reversed by the presence of oxygen [123].

Recently, another type of DNA methylation has entered the field: N6-methyldeoxyadenosine
(6mA). The 6mA is enriched in mitochondrial DNA and increases further in hypoxia, suggesting a
regulatory role in the mitochondrial stress response [124]. In the nucleus, 6mA is under the control
of METTL4 during hypoxia. This modification controls the expression of RP11-390F4.3, an IncRNA,
and of ZMIZ1, a novel HIF-1a activator. These genes coordinate the transcription of EMT genes. A
response that influences the metastatic properties of cancer cells [125]. The 6mA modification has also
been associated with accessible chromatin regions and may play a role in controlling distal E-P
interactions during hypoxia-induced gene expression [81].

In summary, overt changes in DNA methylation do not appear to be involved in the regulation
of the essential hypoxia response, but peculiar modifications are emerging in various studies.

7.2. The Epigenetic of Histones

Chromatin accessibility and gene transcription is under the influence of different post-
translational modifications (PTMs) of histone (Figure 2). These PTMs can influence the nucleosome
structure and interaction as well as the assembling of multiprotein complexes through the direct
recognition of the induced PTMs. The result in term of gene expression is or repression or
transcription [126-128]. As we already briefly discussed, HIFs can interact with different co-activators
or co-repressors which can also orchestrate different epigenetic changes aimed to influence chromatin
accessibility and gene expression. Several PTMs of histones such as acetylation, methylation,
citrullination, krotonylation or ubiquitylation can be supervised by HIFs through the assembly in
multiprotein complexes [129-134]. In the next sections, we will mainly focus the discussion on studies
aimed to explore the genome-wide distribution of histone PTMs under hypoxia, using ChIP-seq
experiments. We refer to previous excellent published reviews for a discussion on the local variations
in specific histone PTMs during hypoxia [55,135].
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7.3. Histone Acetylation Under Hypoxia

Histone acetylation is always associated with increased chromatin accessibility and the assembly
of multiprotein complexes that promote gene expression [95,136]. A configuration of accessible
chromatin achieved by neutralizing the positive charge of the e-amino group, promoting chromatin
remodelling, and controlling the assembly of transcriptional coregulators. N-e-acetylation of lysine
residues acts as a signal recognized by reader proteins characterized by the presence of acetyl-lysine
binding domains known as bromodomains, YEATS domains and PHD fingers [137].

Histone acetylation and more in general lysine acetylation, is regulated by two antagonistic
enzyme families of enzymes: the KATs, lysine acetyl-transferase and the KDACs, lysine deacetylases,
also known as HDACs (histone deacetylases) [136,138,139]. The donor of the acetyl group is acetyl-
CoA, whose availability directly links histone acetylation and gene expression to cell metabolism
[137,138]. Cancer cells increase acetate uptake under hypoxia [140-142]. It has been proposed that
this acetate uptake serves to buffer the global decrease in histone acetylation induced by hypoxia.
Some leucine residues (H3K9, H3K27 and H3K56) show an increase in acetylation, while others
(H3K14, H3K18, H3K23 and H3K36) are unaffected. This increase in histone acetylation affects genes
involved in lipogenesis to regulate cell survival [142].

Acetylation of lysine 27 in histone H3 (H3K27ac) is the best-studied histone acetylation and plays
a key role in activating the transcription of several genes, including those involved in the hypoxia
response. H3K27ac is present in various cis-regulatory elements such as promoters, TEs and SEs that
can be modulated during hypoxia [7,143,144].

The genome distribution of histone acetylation by ChIP-seq was first performed in DLD-1 cancer
cells and the non-cancerous counterpart TIG-3 to compare peak H3ac levels and distribution in
normoxia and hypoxia. In the regions surrounding the HIF-1a binding sites, H3ac peaks were already
present in normoxia and slightly increased in hypoxia in both cell lines [63]. In HUVEC cells, a
comparative analysis of the genome-wide distribution of H3K27ac, H3ac and H4ac between
normoxia and hypoxia revealed that these epigenetic modifications were enriched in association with
HIF-1a.. Furthermore, H3K27ac covered 65% of the HIF-1a binding sites present in the genome [62].
In general, H3K27ac signals at HIF binding sites were already present in normoxia and prior to
binding of HIF-1a itself, although less abundant, suggesting that low-level expression of hypoxia-
related genes occurs prior to hypoxia [49]. H3K27ac signals were already present in normoxia and
increased upon hypoxic exposure [145]. In HUVECs, H3K27ac peaks were increased after hypoxia,
but the pattern of genome distribution did not change compared to normoxia. About 70 % of H3K27ac
peaks were found at the gene level under all conditions. Specifically, about 40 % of the peaks were
found between the first (16-17 %) and the other introns (23-24 %), and about 13-14 % of the peaks
were found between TSS (7 %) and 5-UTR (6-7 %). The same results were obtained around the
promoter of the ANGPTL4 gene in all conditions, emphasising the relationship between H3K27ac,
hypoxia and angiogenesis [146]. This relationship between H3K27ac, hypoxia and angiogenesis has
been confirmed by other studies. In fetal growth restriction (FGR), a condition in which the fetus
cannot achieve full growth due to an insufficient supply of nutrients, growth factors and oxygen in
the placenta, differentially acetylated regions can be mapped by ChIP-seq. 515 genes can be
associated with hyperacetylated regions and 868 with hypoacetylated regions in FGR samples. Genes
mapped to hyperacetylated regions were enriched in transcription regulated by HIF1-alpha/hypoxia
or belonging to signaling pathways related to cancer and immune response. The genes annotated in
the hypoacetylated regions, on the other hand, belonged to pathways related to angiogenesis,
response to external signals and immune response [147].

The importance of H3K27ac in hypoxia has also been emphasized in the context of copper (Cu)
deprivation. The authors performed a ChIP-Seq analysis of H3K27ac and HIF-1a distribution in a
human umbilical vein endothelial cell line under simultaneous hypoxia and Cu deprivation. Based
on colocalization between HIF-1a and H3K27ac signals, regions within 20 kb of the TSS bound by
HIF-1a binding and characterized by H3K27ac signals were defined as “putative enhancers” (PEs).
Approximately a thousand PEs were identified using this approach [148].
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In ccRCC samples compared with corresponding healthy tissues, there were some gained
enhancers characterised by the presence of H3K27ac and enriched with specific features of ccRCC
such as HIF-1a network activity and proangiogenic pathways such as VEGFA. This H3K27ac
signature is VHL-dependent [40].

Hypoxia can be a problematic condition in the very last phase of pregnancy. During labor, the
myometrium suffers from repeated transient hypoxia, which leads to increased uterine contraction.
A key role in this process is played by members of the contraction-associated protein (CAP) family,
such as gap junction protein alpha 1 (Gjal), prostaglandin endoperoxide synthase 2 (Ptgs2) and
oxytocin receptors (Oxtr). In human myometrial smooth muscle cells (hMSMCs) exposed to hypoxia,
H3K27ac levels were increased. Furthermore, HIF-1a ChIP-seq signals overlapped with H3K27ac
peaks near the TSS or in the coding region of many genes, including those encoding the CAPs
proteins [149].

CBP/CREBBP/KAT3A and p300/KAT3B are important H3K27 acetyltransferases and key
epigenetic regulators that determine the activity of TE and SE. These KATs can also regulate the
activities of HIF-1a by direct binding and acetylation, but they also bind DNA in the vicinity of HREs.
ChIP-seq experiments showed that 43% of CBP/p300 peaks induced by 2,2'-dipyridyl (2,2’-DP), a
hypoxia mimetic, were within 2.5 kb of a TSS, but about 19% were within putative TEs that were
more than 50 kb from a known TSS [150]. A result that confirms the important contribution of these
KATs to hypoxia regulation [151].

Compared to H3K27ac, H3K4ac is much less studied. It can occur at both active TSSs and
enhancers, where it appears to play a role in histone eviction and RNA transcription. H3K4ac signals
mutually correlates with the presence of H3K4me1/3 [152]. Genome-wide studies on H3K4ac changes
during hypoxia are still preliminary. However, modulation of H3K4ac at the promoter of genes
modulated by hypoxia has been reported [153].

As mentioned above, a number of regions (cis-regulatory elements) bound by HIF-1a during
hypoxia are already accessible under normoxia, but hypoxia can cause differential accessibility to
DNA and a more open chromatin state in certain regions. This is the case with hypoxia-inducible
enhancer RNA (HERNA), which is under the control of HIF-1a and in which H3K27 acetylation at
its promoter increases during hypoxia. HERNA in turn confers hypoxia sensitivity to nearby genes
[154]. Other studies have similarly suggested changes in H3K27ac levels at the promoters of hypoxia-
induced genes in line with their up- or down-regulation. A role for the repressive SIN3A complex,
which contains HDAC1/2 activities in both the up- and down-regulated regions, has been suggested
following genome-wide binding and RNA interference studies [155].

7.4. Histone Methylation Under Hypoxia

Histone methylation is not a unique epigenetic modification in terms of effects on chromatin
compaction and gene expression (Figure 2). Depending on the specific sequence surrounding the
modified residue, different types of readers dictate transcriptional output by opening or closing
access to DNA. Another factor that influences the state of chromatin is the ability to conjugate single
or two/three methyl groups to the same lysine or arginine residue. This complexity is reflected by a
variety of readers that recognize the introduced PTMs via different specific domains and monitor the
assembly of multiprotein complexes [156].

The s-adenosylmethionine (SAM) is the donor of the methyl group and its conjugation to lysine
and arginine residues is supervised by different families of N-methyltransferases [55,95,135,157]. This
PTM is reversible, and there are different types of demethylases. Groups have been defined on the
basis of the catalysis mechanism [95,135,158]. As already discussed for KATs and KDACs, KTMs and
KDMs can act as modulators of histone tails and HIFs activities by methylating their residues. For
example, the methyltransferase SET1B accumulates on chromatin under hypoxia and forms
complexes with HIFs that are required to regulate H3K4me3 levels, H3K27 acetylation at promoters
and transcription of hypoxia genes [159]. Furthermore, these enzymes may themselves be under the
control of HIFs during hypoxia, creating an integrated cycle of epigenetic changes [55,135,160].
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All cis-regulatory elements, promoters, TEs and SEs can be modulated by histone methylation
during hypoxia, and this possibility soon aroused great interest [161]. It is important to know that
KDMs belong to the family of 2-oxoglutarate-dependent dioxygenases (2-OGDO), which also
includes the prolyl hydroxylases that control the stability of HIF-lo. and HIF-20. The catalytic
activities of KDM depend on oxygen, iron and 2-oxoglutarate [162,163]. Therefore, a possible direct
contribution of oxygen to the enzymatic activities of KDMs and to the shaping of the histone
methylation landscape under hypoxia was initially hypothesized. This appears to be the case for
KDM3A and KDM6A, which have been shown to sense oxygen levels and control gene expression
and chromatin state during hypoxia [164,165]. However, further data are needed to clarify whether
and which KDMs can be directly modulated by oxygen, within the range of variation in oxygen levels
normally found in our bodies [55,135,166].

Genome-wide studies using ChIP-seq approaches, have mapped the variation in histone
methylation during hypoxia using different cell models (Table 2) [160,167-169]. As markers for active
gene transcription, H3K4me3, which is enriched at promoters/TSS, and H3K1mel, which is enriched
at promoters, were examined genome-wide under different hypoxia conditions. Among the
repressive methylation marks, H3K27me3, a major repressive trait subject to regulation by Polycomb
repressive complex 2 (PRC2), was instead examined more frequently. In general, these epigenetic
adaptations diverge in different tumors and cell types, indicating a dominant influence of the original
differentiation lineage [105,170-172].

In Hela cells grown under hypoxia, modification of H3K4me3 and H3K36me3, both markers of
active transcription, is mainly caused by depletion the KDM5A demethylase, which belong to JmjC
domain family. Notably, ChIP-seq analysis revealed that hypoxia induced a higher number of
downregulated H3K4me3 peaks compared to upregulated peaks. The downregulated peaks were
mainly found at promoters, whereas upregulated peaks were frequently found in the gene body and
in intergenic regions predicted to be enhancers of hypoxia-inducible genes. H3K36me3 peaks
upregulated by hypoxia correlated with HIF targets and H3K36me3 peaks downregulated by
hypoxia correlated with genes repressed by hypoxia [169].

A dynamic global increase (reversible upon reoxygenation) of the repressive mark H3K27me3
was reported in MCF7 breast cancer cells during hypoxia. ChIP-seq analysis of H3K4me3, active TSS
and H3K27me3 marks revealed a global increase in these antagonistic epigenetic modifications. This
upregulation correlates with inhibition of KDMs and an increase in methyltransferase activities.
H3K4me3 was increased at the TSS of specific loci such as OPRL1, APLN, ATP2A3, FOXF1 and
IGFBP4 [167,173]. These promoter-driven enrichments of H3K4me3 signalling during hypoxia
correlated with HIF binding sites, unlike the increase in enhancer-associated histone mark H3K4mel
[145]. The HIF-la-bound promoters already show H3K4me3 and RNA Pol II occupancy under
normal growth conditions before the onset of hypoxia [172].

Interestingly, some regions that were positive for both markers H3K4me3 and H3K27me3
increased during hypoxia, especially at the level of promoters rich in CpG [167]. A state of bivalence
characteristic of embryonic stem cells (ESC) that serves to control the temporal expression of
differentiation genes [173]. 25% of hypoxia-induced bivalent genes in MCF7 cells overlapped with
previously identified trimethylated genes in ESC [167].

As discussed for other genomic and epigenomic traits, the hypoxia program of histone
methylation is largely predetermined. In fact, the normoxic profiles of the genomic distributions of
H3K4me3 and H3K27me3 determine gene activity under hypoxia [168]. Although the status and
deposition of H3K27me3 are largely preset in normoxia, some changes may also occur in hypoxia. In
breast cancer cells, 8 hours of hypoxia exposure resulted in an increase in H3K27me3 ChIP-seq
signalling in the DICER promoter region. DICER expression is reduced in hypoxic human breast
cancer cells, leading to defects in miRNA processing and promoting EMT and metastasis [174].
Downregulation of DICER expression and changes in miRNA processing during hypoxia were
previously described as VHL-dependent [175]. In addition to epigenetic control of transcription,
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mRNA stability and protein stability may also be involved in controlling the amount of DICER
protein. Interestingly, this downregulation may also maintain the hypoxia response [175].

A change in antagonistic epigenetic marks during hypoxia has also been observed, but is
restricted to certain loci. At the promoter of the ANp63 gene, ChIP-seq analyses in HCC1806 breast
cancer cells under normoxic or hypoxic conditions revealed that H3K27ac signals, which are enriched
under normoxia, are replaced by H3K27me3 signals under hypoxia. This switch is mediated by the
action of a multiprotein complex of HDAC2 and PRC2. A mechanism that favours the metastatic
process [176]. To coordinate the accessibility of DNA and the transcription or repression of genes,
various epigenetic modifications act in a coordinated manner, with a few exceptions, such as the
poised promoters discussed above [173]. This is also the case with adaptations to hypoxia, where
coordination between DNA and histone methylation has been demonstrated. The modification 6mA
on the DNA correlates positively with H3K4mel, a marker for active enhancers, in hypoxia. These
regions also correlated positively with H3K27ac signals, further supporting their bona fide role as TE
or SE [81].

The resetting of an epigenetic signature can also occur by more drastic mechanisms. The N-
terminus of histone H3 can be subject to proteolytic cleavage, especially during differentiation or
senescence [177-179]. A phenomenon defined as H3 clipping. Removal of the histone tail can be seen
as an epigenetic irreversible change (at least in non-proliferating cells) that could affect chromatin
structure and alter histone-DNA contacts [179]. Hypoxia can counteract senescence [180,181] and
limit H3 clipping. Hypoxia-assisted inhibition of H3 cleavage, by H3K18me3 and H3K23me3
methylation in heterochromatic regions. Overall, these hypoxia-dependent methylations reduce
chromatin accessibility during oncogene-induced senescence [182].

In summary, similar to other genomic and epigenomic adaptations to hypoxia, evolution
appears to have selected a predetermined transcriptional response in which chromatin for hypoxia
genes is already accessible during normoxia as a more efficient option. Interventions, including
regulation of histone methylation, are still possible to increase transcription, such as increasing the
intensity and breadth of H3K4me3 signalling at the promoters of hypoxia genes [62,183].

7.5. Other PTMs of Histones and Hypoxia

In addition to acetylation and methylation, other PTMs of histones can also act as epigenetic
signals, including ubiquitylation, phosphorylation, O-glycosylation, lactylation, citrullination,
crotonylation, succinylation, SUMOylation, propionylation, butyrylation and hydroxylation (Figure
2). Some of them have already been studied during hypoxia, while others have only recently been
included in the scenario. In the next sections, we will briefly discuss the most important ones related
to hypoxia.

7.5.1. Histone Phosphorylation

Phosphorylation of the histone 2A variant H2A.X is an established marker for DNA double
breaks (DSBs). The carboxyl-terminal Ser-Gln-Glu (SQE) motif of H2AX can be phosphorylated after
DSBs by the ataxia-telangiectasia mutation (ATM), a member of the phosphoinositide 3-kinase-
related kinase family [184-187]. Phosphorylated H2AX (yYHAX) is produced during DNA replication
by cells growing in a hypoxic environment [188]. YH2AX positive domains generally spread to large
regions of the genome [189,190]. Moreover, H2AX can control the nuclear retention of HIF-1o. and
influence its stability [191]. YH2AX can also be monoubiquitylated (mUb-H2AX) [192]. Hypoxia
triggers mUb-H2AX and yH2AX in in both normal and cancer cells. This leads to an overactivation
of HIF1a-driven tumorigenesis, glycolysis and metastasis. H2AX-mediated HIF-1a activation occurs
through nuclear retention and increased stability of HIF-1la. A proposed circuit that works via a
positive feedback mechanism [191].
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7.5.2. Histone Ubiquitylation

Hypoxia induces the accumulation of H2BK120ubl at HIFs target genes through the
involvement of HIF-la. This modification is important for the modulation of HIF-la-mediated
transcription initiation and elongation. This activity requires the presence of the complex FACT
(facilitates chromatin transcription) with chaperone and destabilizing effect on histones H2A and
H2B [193] and the E3 ubiquitin ligase complex RNF20/40 [130]. Monoubiquitylation of histone H2B
(H2BK120ub1) is closely linked to activation of gene expression. H2BK120ubl enables the
accumulation of H3K4me3 and H3K79 mono-, di- and trimethylation and gene transcription by
modulating the activity of COMPASS/MLL1/KMT2A and DOT1L/KMT4, respectively [194].

7.5.3. Histone Hydroxylation

Hypoxia can also regulate epigenetics independently of HIFs. Recently, it was reported that H3
hydroxylation at proline 16 is regulated by ELGN2 and thus by O2 content. Regions labelled with
H3P16oh are quite abundant in the genome. This PTM facilitates the binding of KDM5A to its
substrate H3K4me3, increases its demethylation and gene repression [195]. Hypoxia can directly
decrease binding between H3 and KDMB5A, leading to an increase in H3K4me3 and gene
transcription. Several genomic regions containing H3P160oh are enriched in H3K4me3 under hypoxia.
This result suggests HIF-independent modulations of chromatin status and gene expression under
hypoxia. In addition, the authors indicated that the loss of H3P16oh under hypoxia occurs rapidly
before changes in KDM5A [195]. Therefore, this mechanism may anticipate or act synergistically with
the downregulation of KDM5A associated with hypoxia [169].

7.5.4. Histone Citrullination

The modification of proteins by the presence of citrulline has been known for many years, and
several proteins can be subjected to such PTM [196]. Citrullination or peptidylarginine deimination
consists of the hydrolysis of arginine and the simultaneous release of ammonia. [196] A family of
enzymes is involved in this reaction: the peptidylarginine deiminases (PADI) [196]. Citrullination of
histones has been reported in several studies [197-200]. Recently, a link between citrullination and
hypoxia has been proposed. Hypoxia can induce citrullination of histones (H3 and H4) especially at
HREs. This citrullination is dependent on PADI4 and HIF-1a, and PADI4 is a hypoxic gene controlled
by HIF-la. This is another example of a positive feedback loop operating during hypoxia.
Citrullination appears to be required for the orchestration of other epigenetic changes associated with
gene activation, such as: H3K4me3, H3K36me3, H3K4ac and H4K5ac [132]. These analyses were
limited to selected loci using ChIP-endpoint assays. It will be interesting to evaluate these changes at
the genomic level.

7.5.5. Histone Lactylation

The modification L-lactate is a metabolic byproduct of the glycolytic metabolism. It is generated
in the cytosol by the lactate dehydrogenase A (LDHA), which converts pyruvate and regenerates
NAD*, supporting glycolysis [201]. During hypoxia cells accumulate L-lactate due to the
upregulation of the HIFs target genes pyruvate dehydrogenase kinase 1 (PDK1) and LDHA [171,202].
Lactate influences various cellular activities and can also modulate the tumor microenvironment
[201]. Particularly, during hypoxia lactate is actively effluxed by the cells in the microenvironment to
prevent intracellular acidification [203]. Lactate can also act as an epigenetic modifier and promote
gene transcription. Lactyllysine was mapped in various residues at the amino terminus of the four
core histones and also within the globular domain. Lactylation of histones increases in hypoxia and
is a secondary adaptive response compared to acetylation [204]. This PTM of histones is under the
control of KATs and KDACs, with p300 playing an established role as a lactyltransferase and class I
HDAC1/2/3 controlling delactylation [202,204,205].
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In a first attempt to map the genomic distribution of H3K18la (lactylation of lysine 18 in H3) in
different tissue and cells, a comparison was made with the distribution of H3K4me3 H3K27ac traits
of active transcription and the repressive mark H3K27me3. H3K18la is frequently present at the TSS
of transcribed genes. In addition, the distribution of H3K18la is more similar to that of H3K27ac
(marker of both active promoters and enhancers) compared to H3K4me3 (more specific for active
promoters). H3K18la is enriched in active CpG island-containing promoters of highly expressed
genes with cell line specificities, including many housekeeping genes [206]. Subsequent genomic
studies aimed at investigating the effects of hypoxia on H3K18la and HIF-1a distribution have
confirmed partial co-localization with HIF-1a-linked regions (approximately 23% of peaks). These
regions include genes that are important for cell proliferation [207]. The regulation of genes involved
in cell proliferation by H3K18la was also observed in a second study [208]. In another study, the
genomic distribution of H3K9la was investigated using squamous cell carcinoma cells of the
oesophagus. Here, the most obvious effect of hypoxia was not an increase in H3K91a ChIP-seq peaks,
but a redistribution from gene bodies and intergenic regions to promoters. Genes under H3K9la are
involved in the regulation of cell adhesion and invasion [209].

To summarise, histone lactylation represents a new and so far, only partially investigated
epigenetic mechanism that directly links metabolism to the activation of gene transcription.
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Figure 2. Main PTMs of the histones that are regulated during hypoxia.
Table 1. List of ChIP-seq data on histone acetylation under hypoxia.
Histone . . .
re L. Cell line/Tissue Hypoxia Reference GEOID
modification
GSE38555
o,
H3K27ac HUVECs 1% 146 CSE50144
H3K27ac MCE-7 0.5% 49, 145 GSE78113
H3K27ac hMSMCs 3% 149 HR12666.4 X
(GSA repository)
GSE93982
_ —10
H3K27ac PANC-1 pO2=1% 143 GSE93989
H3K27ac EA.Hy926 1% 148 GSE120527
H3K27ac FaDu 1% 81 GSE260872
H3K27ac ccRCC VHL inactivation 40 GSE86095
H3K27ac, o
H3ac, Hdac HUVECs 1% 62 GSE35932
DRA000285-000288
H3ac DLD-1, TIG-3 1% 63 DRA000293-000296
(DDBJ database)
H3K4ac FaDu 1% 153 GSEB80218
H3K27ac Human placenta FGR 146 N.A*
* Not available.
Table 2. List of ChIP-seq data on histone methylation under hypoxia.
Histone Cell line .
modifications Tissue Hypoxia Reference GEOID
H3K4me3, H3K36me3 HelLa cells 1% 169 GSE120339
H3K4me3 H3K4mel FaDu 1% 81 GSE260872
H3K4me3 ESF, DSC 1% 183 GSE167946
H3K4me3, H3K4mel HUVEC 1% 62 GSE39089
H3K4me3, H3K27me3 MCF7 <0.02% 168 GSE71031
H3K4me3 H3K27me3 MCEF7 <0.02% 167 GSE71031
H3K4me3 MCEF-7, Human PTCs 1% 145 GSE78113
H3K4me3 H3K4mel MCF7, RCC4, SK-MEL-28, A549 0.5% 105 GSE85352
H3K4me3 HepG2, U87 0.5% 172 GSE18505
H3K27me3 MCF7, HMLER <0.02 to 1.0% 174 GSE61740
H3K27me3 HCC1806 cells 1% 176 GSE253833

8. Conclusions

The response to reduced oxygen levels is an important adaptation to ensure cell survival under
altered environmental conditions. Although the HIFs are the central machinery of this adaptive
response, actions independent of the HIFs can also contribute This response is largely predetermined
in terms of genomic organization and epigenetic regions. The definition of the accessible cis-
regulatory elements that can be activated during hypoxia are predetermined and depend on the
specific differentiation program. In several examples, the regulation of gene transcription occurs via
the “normoxia” profile of already active and organized transcription units. Nevertheless, the
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modulations are important and involve both classical epigenetic marks and recently discovered
marks. These modifications are important in linking metabolism to gene expression. Overall, the
response to hypoxia is a fascinating and useful model to understand how our genome works.
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