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Abstract: The performance of the nanoribbon biosensor upon the use of two different types of 

molecular probes — the antibodies and the aptamers against HCVcoreAg — has been tested. The 

sensor chips employed are based on “silicon-on-insulator structures”. Two different HCVcoreAg 

preparations have been tested: recombinant  β-galactosidase-conjugated HCVcoreAg (“Virogen”, 

USA) and recombinant HCVcoreAg (“Vector-Best”, Russia). Upon the detection of either type of the 

antigen preparation, the lowest concentration of the antigen detectable in buffer with pH 5.1 has 

been found to be approximately equal, amounting to ~10–14 M. This value has been found to be 

similar upon the use of either type of molecular probes.  
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1. Introduction 

Hepatitis caused by the hepatitis C virus (HCV) represents an urgent problem of public health 

[1,2]. Globally, more than 170 million people are infected with HCV [3]. This virus has been known 

since 1989. Despite the tremendous advances achieved in treatment of this disease over the past 

decades, many patients may still remain difficult to treat [4,5]. The well-studied structure of HCV 

core proteins allows one to use them as biomarkers [6–8].  

HCV core antigen (HCVcoreAg) is a marker protein used for the detection of HCV. This protein 

is found both in complete HCV virions and in RNA-less core protein structures [9]. The primary 

sequence of HCVcoreAg is highly conserved among all the different genotypes of the virus [31]. 

HCVcoreAg appears in blood 10–15 days after infection with HCV (1–2 days later than HCV RNA), 

thus not hindering early diagnosis of the disease [10,11]. This is why HCVcoreAg represents a 

promising protein marker for early revelation of HCV. Worldwide, a wide variety of different 

analytical systems for the detection of HCVcoreAg was proposed [12–14].  

To date, enzyme linked immunosorbent assay (ELISA)-based methods of HCVcoreAg detection 

are routinely used in clinical practice [15]. Once again, it is the early diagnosis of HCV infection what 

the use of HCVcoreAg as a marker is promising. And the most serious drawback of ELISA-based 

assays is the lack of sensitivity [16,17]. With regard to early diagnosis of diseases, methods with at 
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least femtomolar (or, better, sub-femtomolar) detection limits are required [17]. In this regard, 

nanotechnology-based methods are the way to overcome this detection limit threshold [18]. Among 

these methods, nanowire and nanoribbon-based systems should be singled out [18]. These systems 

have numerous advantages. The first one is the label-free detection [19]. Furthermore, the presence 

of multiple sensor elements (i.e., an array of nanowires or nanoribbons) on a single sensor chip 

provides multiplexed detection [20]. The third advantage is that these biosensors allow one to detect 

the target analyte within ~15-20 minutes in a small sample volume [19]. Owing to these advantages, 

this type of biosensors has found its applications for highly sensitive real-time detection of a number 

of various types of analytes (such as nucleic acids, proteins, and viral particles) at low and ultra-low 

(femto- and subfemtomolar) concentrations, as was demonstrated in numerous papers [21–34]. This 

explains why this type of biosensors is so attractive for use in early revelation of various diseases in 

humans. 

In our present research, we have employed the nanoribbon biosensor-based approach for the 

detection of HCVcoreAg in order to compare the biosensor performance upon the use of different 

molecular probes used for the capturing of the target protein. Namely, either anti-HCVcoreAg 

aptamers or anti-HCVcoreAg antibodies have been employed in oru biosensor experiments as 

nanoribbon-immobilized maolecular probes against the target HCVcoreAg protein. Furthermore, 

two model samples of purified HCVcoreAg preparation, which were manufactured by either 

“Virogen” (USA) or “Vector-Best” (Russia), have been studied. In the biosensor, sensor chips based 

on the so-called “silicon-on-insulator” structures have been employed. These chips have been 

fabricated by photolithography and gas-phase etching. We have been demonstrated that these sensor 

chips, whose surface has been sensitized with either antibodies or anti-HCVcoreAg aptamers, can be 

successfully employed for label-free real-time detection of HCVcoreAg manufactured by “Virogen” 

or “Vector-Best” with virtually equal efficiency. 

2. Materials and Methods 

2.1. Reagents 

The following reagents were used to pre-clean the sensing surface of the SOI-NW chip and 

perform its chemical modification: hydrofluoric acid (HF), 96% ethanol (C2H5OH) (“Reakhim”, 

Moscow, Russia), isopropanol, purified to 99.9% (C3H8O) (“Acros Organics”, Geel, Belgium), 3-

aminopropyltriethoxysilane (APTES) (“Sigma Aldrich”, St.-Louis, MO, USA) [30].  

The sensitization of the nanoribbon surface with molecular probes was performed bu their 

covalent immobilization onto the surface of individual nanoribbons using 3,3′-
dithiobis(sulfosuccinimidyl propionate (DTSSP) (“Thermo Scientific”, Waltham, MA, USA) as a 

crosslinker. 

The following auxiliary compounds were also used in this study: potassium phosphate buffer 

(PPB) and potassium phthalate buffer (PPhthB). 

Deionized water was purified using a Millipore Simplicity UV water purification system 

(“Millipore”, Molsheim, France). 

2.2. Anti-HCVcoreAg Antibodies 

Murine monoclonal anti-HCVcoreAg antibodies (clone 1E5, specificity: the 1–80 a.a.r. region of 

the HCV core protein) (“Virogen”, USA) were used.  

The antibodies were specific to the regions of anti-HCVcoreAg antigens employed as target 

molecules. 

2.3. Aptamers against HCVcoreAg 

Anti-HCVcoreAg aptamers procured from “Evrogen” JSC (Moscow, Russia) with the sequence 

5’-NH2-(T)10-

ACGCTCGGATGCCACTACAGGCACGCCAGACCAGCCGTCCTCTCTTCATCCGAGCCTTCAC

CGAGCCTCATGGACGTGCTGGTGA-3’ [35] were employed. 
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2.4. Antigens 

The following antigens were employed in this study: (1) recombinant hepatitis C virus core 

protein (HCVcoreAg, 22 kDa) modified at the N-terminus with β-galactosidase (114 kDa) (“Virogen”, 

USA), pI = 8.9; (2) recombinant hepatitis C virus core protein HCVcoreAg (kindly provided by O.N. 

Yastrebova, “Vector-Best”, Russia). 

2.5. Preparing Buffer Solutions of HCVcoreAg 

HCVcoreAg solutions within a concentration range from 10–14 M to 10–13 M were prepared from 

the initial protein solution (2 μM in 50 mM PPB, pH 7.4) by tenfold serial dilution in 1 mM PPhthB 

(pH 5.1).  

Each solution prepared was incubated in the shaker at 10°C for 30 min. Protein solutions were 

prepared immediately prior to the measurements. 

2.6. The Sensor Chips 

The sensor chip is based on an ultrasensitive field-effect nanotransistor, in which the 

nanooribbon surface acts as a virtual gate [30,36]. Figure 1 displays a photographic image of the SOI-

NW biosensor chip employed in our biosensor. 

 

Figure 1. A photographic image of the SOI-NW chip. 

The chips comprised five pairs of nanoribbons. The nanoribbons were 33 μm wide, 32 nm thick, 

and 10 μm long [37]. Thickness of the cut-off silicon layer and the buried oxide layer was 32 nm and 

300 nm, respectively. The drain–source areas were formed by applying polysilicon layers followed 

by doping. The nanoribbon structures had n-type conductivity. Figure 2 displays a schematic 

drawing of the cross section of an individual nanoribbon. 

 

Figure 2. A schematic drawing of the cross-section of an individual nanoribbon based on the silicon-

on-insulator structures. 
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2.7. Modification of the Surface of the SOI-SW Chip 

Chemical modification of the sensing surface involved its pretreatment and further silanization 

with 3-aminopropyltriethoxysilane (APTES) analogously to the method developed by Yamada et al. 

[38] as described elsewhere [30,39]. 

At the pretreatment stage, mechanical impurities were removed from the chip surface by its 

rinsing with isopropanol (C3H7OH). A solution containing hydrofluoric acid (HF) and ethanol 

(C2H5OH) was further applied in order to remove any resting organic contaminants and, 

subsequently, the natural oxide [39,40], which was formed during storage of the chip [40]. 

In order to provide formation of hydroxyl groups the surface of the nanoribbons, the sensor chip 

was placed into a UV Ozone Cleaner (ProCleaner™ Plus, Ossila Ltd., Sheffield, UK) for 60 min. After 

these operations, vapour-phase silanization of the chip surface with APTES [38] was then carried out 

[30]. 

2.8. Sensitization of Individual Nanoribbons 

The surface of individual nanoribbons was sensitized in order to provide biospecific detection; 

in other words, agents increasing the likelihood of selective binding between the analyzed molecules 

and the surface of the sensing element are applied onto the nanoribbon surface. These agents also 

ensure high sensitivity [41]. 

Sensitization was carried out by covalent immobilization of molecular probes of either type onto 

the surface of individual nanoribbons after the silanization of the sensor chip surface. DTSSP was 

used as a crosslinker for the immobilization [42]. The freshly prepared DTSSP solution was placed 

into a shaker and kept there at 10°C for 10 min; the solution was then dispensed onto the sensor chip 

surface and incubated thereon at 15°C and 80% humidity for 30 min. The chip surface was then rinsed 

ten times with 1 mL of deionized water. After that, solutions of either anti-HCVcoreAg antibodies or 

anti-HCVcoreAg aptamers were applied onto the surface of individual nanorbbons using a Piezorray 

dispensing system (PerkinElmer, Inc., Waltham, MA, USA). The dispensed volume was ~3 nL. 

The nanoribbons with immobilized antibody or aptamer molecular probes were used as 

working nanoribbons, while nanoribbons without immobilized molecular probes were used as 

control ones. 

2.9. The Biosensor Setup 

A nanoribbon biosensor represents a system consisting of two modules: the analytical one and 

the electronic measuring one (Figure 3). 

 

Figure 3. The schematic diagram of a NW-biosensor comprised of the analytical and electronic 

measuring modules. 
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The analytical module consisted of a liquid measuring cell (of 1000 μL capacity), whose bottom 

was formed by the sensor chip. 

The signal from the nanoribbons was received and recorded in real time by the electronic 

measuring module. This module allowed us to simultaneously record data from five nanoribbons on 

the one and the same sensor chip, and visualize the signal on a PC monitor during the experiment in 

real time. Analog-to-digital conversion of the recorded signal, as well as analysis and visualization 

of the measurement results, was performed using the TURBO NBS software (Rospatent registration 

No. 2015612969, February 27, 2015). 

2.10. Electrical Measurements 

Electrical measurements were conducted using a Keithley picoammeter (Model 6487, Keithley 

Instruments Inc., USA). A substrate of the SOI structures was used as a gate during the 

measurements. 

The nanoribbon biosensor system allows one to measure electrical signal in two modes: 

1. The real-time mode: measuring Ids(t) (recording drain–source current (Ids) vs. experiment 

duration (t)); 

2. The mode of recording the current–voltage characteristics (CVC) of the nanoribbons: measuring 

Ids(Vg) (recording drain–source current (Ids) vs. applied voltage (Vg)). 

The working value of gate voltage (the working point) Vg, at which the drain–source current (Ids) 

was recorded, had been selected prior to performing the biosensor measurements. The working point 

was determined by measuring the current–voltage characteristics in a buffer solution. The Ids(Vg) 

dependence was recorded within the voltage range from 0 to 60 V. Figure 4 displays typical CVC 

curves obtained in this way. 

 

Figure 4. Typical CVC curves recorded for nanoribbons arranged on one and the same sensor chip. 

Experimental conditions: Vg = 0÷60 V, Vds = 0.1 V, PPhthB (pH 5.1). 

In order to avoid the problems related to Debye shielding, the salt concentration in the buffer 

solutions, used in the biosensor experiments on the detection target protein, was low (1 mM). At this 
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concentration of buffer salts, the Debye length is ~12 nm, which is sufficient for detecting signal from 

HCVcoreAg on the nanoribbon surface [43,44]. 

Measurements were carried out at a constant voltage between the ohmic contacts of the 

nanoribbons (source–drain) Vds = 0.1 V and at operating gate voltage Vg = 45 V. Once the measurement 

system was switched on, the cell was filled with the working solution and sequential measurements 

were then carried out: at the initial time interval before the test sample had been added; after the test 

solution had been added to the cell; and when the test solution in the cell was replaced with wash 

buffer. 

2.11. Detection of HCVcoreAg with the Nanoribbon Biosensor 

A sensor chip, whose individual nanoribbons were sensitized with either anti-HCVcoreAg 

antibodies or anti-HCVcoreAg aptamers as described above in section 2.8, was used in this study. In 

order to detect HCVcoreAg in purified buffer solution, 150 μL of buffer solution of HCVcoreAg at 

concentration ranging from 10–14 M to 10–13 M was pipetted into the measuring cell containing 300 μL 

of 1 mM buffer solution (PPhthB, pH 5.1). The measurements were conducted starting with the lowest 

concentration. After each test run, the sensor chip surface was washed with pure protein-free buffer 

(PPhthB, pH 5.1) and then, with warm deionized water (50 mL). 

In the blank experiments, pure protein-free buffer (PPhthB, pH 5.1) was pipetted into the 

measuring cell instead of the HCVcoreAg solution. The sensor chip surface was washed with the 

same buffer, followed by washing with warm deionized water (50 mL). 

2.12. Data Analysis 

The data obtained in the real-time mode were presented as sensorgrams, which displayed time 

dependence of a dimensionless parameter expressed as arbitrary units. 

Changes in the current Ids,’ recorded for each nanoribbon, were first normalized to unity by 

dividing their values by the initial current. Next, in order to take into account the nonspecific 

interactions, the values obtained in the blank experiment were subtracted from the absolute data 

obtained with HCVcoreAg solution. The differential signal was then calculated by subtracting the 

signal for the control nanoribbon from the signal for the working nanoribbon. The resulting time 

dependencies of the current Ids(t) were presented as sensorgrams showing the differential signal. 

This data processing allowed us to account for the fact that the initial characteristics of currents 

flowing through different nanoribbons on one and the same sensor chip can differ. The initial currents 

for different nanoribbons may differ by one or two orders of magnitude. The standard deviation 

function was used to confirm the validity of the results. 

3. Results 

3.1. Detection of HCVcoreAg with the Use of Antibody Molecular Probes 

We have performed the experiments on the HCVcoreAg detection with nanoribbons sensitized 

with anti-HCVcoreAg antibody probes. Two different HCVcoreAg preparations, produced by two 

different manufacturers, “Virogen” (USA) and “Vector-Best” (Russia) have been tested. Figure 5 

displays typical sensograms obtained in the course of detection of HCVcoreAg at concentrations 

ranging from 10–14 M to 10–13 M in 1 mM PPhthB buffer (pH 5.1). 
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(a) (b) 

Figure 5. Typical sensograms illustrating the detection of HCVcoreAg with a nanoribbon biosensor 

sensitized with antibody probes. Two different HCVcoreAg preparations were tested: (a) HCVcoreAg 

manufactured by “Virogen”; (b) HCVcoreAg manufactured by “Vector-Best”. The HCVcoreAg 

concentration was 10–14 M (orange curve) or 10–13 M (pink curve). The data obtained in blank 

experiments for pure PPhthB containing no protein molecules are shown with a violet curve. The SOI-

NW chip had n-type conductivity. Experimental conditions: 1 mM PPhthB; Vg = 45 V, Vds = 0.1 V; 

solution volume in the measuring cell was 450 μL. All measurements were performed in three 

technical replicates. Arrows indicate the time points of pipetting the HCVcoreAg solution into the cell 

and of sensor chip washing with pure buffer. 

Figure 5 clearly shows that the addition of HCVcoreAg protein solutions manufactured by either 

“Virogen” (Figure 5a, orange and pink curves) or “Vector-Best” (Figure 5b, orange and pink curves) 

at concentrations ranging from 10–14 M to 10–13 M induced an increase in the conductivity of the 

nanoribbons sensitized with anti-HCVcoreAg antibody probes. This was caused by the positive 

charge of the target HCVcoreAg protein molecules under the experimental conditions at acidic pH 

5.1. Accordingly, their binding to the probes immobilized on the surface of silicon nanoribbon altered 

its conductivity. We also observed an expected decrease in the level of the recorded signal upon 

decreasing the concentration of the target protein from 10–13 M to 10–14 M. Furthermore, the analysis 

of the blank solution revealed no change in conductivity of the antibody-sensitized nanoribbons 

(Figures 5a and 5b, violet curve), thus indicating it’s the detection specificity. 

The data obtained in our experiments indicated that recombinant HCVcoreAg manufactured by 

both “Virogen” and “Vector-Best” was detected using antibody molecular probes with comparable 

sensitivity. At that, the lowest concentration of HCVcoreAg detectable in buffer solution with pH 5.1 

was determined to be 10–14 M. 

3.2. Detection of HCVcoreAg with the Use of Aptamer Molecular Probes 

In the tests performed at this stage, similar to the experiments described above, two different 

HCVcoreAg preparations from “Virogen” (USA) and “Vector-Best” (Russia) were used. But the 

nanoribbons were sensitized with covalently immobilized aptamers instead of antibodies. 

It was found that both antigen samples can be successfully detected in the solution using 

nanoribbons sensitized by aptamer probes. Figure 6 displays typical sensograms obtained in the 

course of detection of HCVcoreAg in the solution at concentrations ranging from 10–14 M to 10–13 M 

using n-type nanoribbons with immobilized aptamer probes. 
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(a) (b) 

Figure 6. Typical sensograms illustrating the detection of HCVcoreAg with a nanoribbon biosensor 

sensitized with aptamer probes. Two different HCVcoreAg preparations were tested: (a) HCVcoreAg 

manufactured by “Virogen”; (b) HCVcoreAg manufactured by “Vector-Best”. The HCVcoreAg 

concentration was 10–14 M (orange curve) or 10–13 M (pink curve). The data obtained in blank 

experiments for pure PPhthB containing no protein molecules are shown with a violet curve. The SOI-

NW chip had n-type conductivity. Experimental conditions: 1 mM PPhthB; Vg = 45 V, Vds = 0.1 V; 

solution volume in the measuring cell was 450 μL. All measurements were performed in three 

technical replicates. Arrows indicate the time points of pipetting the HCVcoreAg solution into the cell 

and of sensor chip washing with pure buffer. 

The sensograms shown in Figure 6 indicate that upon addition of HCVcoreAg solutions at 

concentrations ranging from 10–14 M to 10–13 M the nanoribbon conductivity expectedly increases due 

to binding of positively charged HCVcoreAg antigen molecules with the aptamer-sensitized 

nanoribbon surface. This was observed for the both HCVcoreAg preparation tested, which were 

purchased from either “Virogen” (Figure 6a, orange and pink curves) or “Vector-Best” (Figure 6b, 

orange and pink curves). In contrast, the analysis of the blank solution revealed no change in the 

conductivity of aptamer-sensitized nanoribbons (Figures 6a and 6b, violet curve), being indicative of 

its specificity. 

Thus, our analysis revealed comparable sensitivities of detecting recombinant HCVcoreAg 

procured from both “Virogen” and “Vector-Best” using immobilized aptamer probes (10–14 M). 

4. Discussion 

Nanoribbon biosensor is a unique platform for high-sensitivity detection of protein molecules. 

It allows one to register signal, which corresponds to a level of a single molecule per the nanoribbon 

sensing element [45], since the latter has quite high surface-to-volume ratio [46]. 

Currently, ELISA and polymerase chain reaction (PCR) are the key methods used for diagnosing 

HCV [47–49]. One of the significant drawbacks of PCR is that data interpretation can be impeded (in 

particular, for the samples with viral loads below the quantitation limit) [50]. Moreover, PCR is quite 

sensitive to sample contamination — as opposed to the methods based on the detection of protein 

markers. Furthermore, relatively expensive equipment and reagents are required for PCR-based tests 

[51]. In turn, ELISA may yield false negative results in immunocompromised patients [52]. 

Furthermore, this analysis can yield low positive prognostic values in cohorts with low (<10%) 

prevalence of HCV infection [53,54]. In addition, as was noted in the Introduction ELISA allows one 

to detect biomarkers with concentration sensitivity of ~10–12 M [17], which is insufficient for 

diagnosing asymptomatic hepatitis C [17]. 

It is promising to use a nanoribbon biosensor as a universal platform for large-scale 

manufacturing of highly sensitive diagnostic systems available for personalized use owing to the 

ability of this biosensor to detect protein markers of infectious diseases with high sensitivity [55,56]. 
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Our study reported has demonstrated that both anti-HCVcoreAg aptamer probes and anti-

HCVcoreAg antibody probes, immobilized on the nanoribbon surface, have allowed us to 

successfully detect the target HCVcoreAg protein in buffer solutions at ultra-low concentrations (10–

14 M). The conductivity of n-type nanoribbons expectedly increased when upon pipetting of 

HCVcoreAg solution into the measuring cell.  

Hence, the detection sensitivity upon the use of aptamer molecular probes has been found to be 

comparable with that attained upon the use of antibodies. However, aptamer probes have a number 

of advantages over antibodies — namely, higher chemical, temperature, and time stability, and low 

production cost, Accordingly, aptamers are preferred to be used as molecular probes [57].  

Furthermore, the detection sensitivities have been found to be comparable upon the use of either 

of the HCVcoreAg preparations produced by “Virogen” and “Vector-Best”. It is also worth 

mentioning that the HCVcoreAg preparation produced by “Virogen” represented a conjugate of the 

target protein with β-galactosidase. This conjugate, accordingly, had higher molecular weight than 

the protein in the preparation manufactured by “Vector-Best”. It is to be emphasized that under the 

conditions of our experiments, this fact did not affect the detection sensitivity. Furthermore, analysis 

of the blank solutions containing no HCVcoreAg revealed no changes in the nanoribbon 

conductivity, being indicative of its specificity. 

5. Conclusions 

In our biosensor experiments on the detection of HCVcoreAg protein with a nanoribbon 

biosensor, the nanoribbons were sensitized with covalently immobilized molecular probes of two 

types: antibodies and aptamers against HCVcoreAg. Furthermore, two different HCVcoreAg 

preparations have been tested. The first one was the  β-galactosidase conjugate of recombinant 

HCVcoreAg produced by “Virogen” (USA). The second one was recombinant hepatitis C virus core 

protein HCVcoreAg (produced by “Vector-Best”, Russia). The measurements have been carried out 

in the real-time mode and last ~15 min. Upon the use of either type of the antigen preparation in the 

experiments performed in purified buffer at pH 5.1, the lowest detectable concentration of the antigen 

was found to be approximately equal, amounting to ~10–14 M. This value was similar upon the use of 

either aptamer or antibody molecular probes. The biosensor used in our present study is a prototype 

of a unique test kit, which represents a molecular detector opening up new avenues for detecting 

target molecules in solutions at low and ultra-low concentrations. This biosensor allows one to 

perform early revelation of serological protein markers of socially significant diseases in humans, 

thus reducing the mortality rate as well as improve drug therapy efficacy and patients' quality of life.  
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