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Abstract: Determining accurate PM2.5 pollution concentrations and understanding their dynamic
patterns is crucial for scientifically informed air pollution control strategies. Traditional reliance on
linear correlation coefficients for ascertaining PM2.5 related factors only uncovers superficial
relationships. Moreover, the invariance of conventional prediction models restricts their accuracy.
To enhance the precision of PM2.5 concentration prediction, this study introduces a novel integrated
model that leverages feature selection and a clustering algorithm. Comprising three components -
feature selection, clustering, and integrated prediction, the model first employs the non-dominated
sorting Genetic Algorithm (NSGA-III) to identify the most impactful features affecting PM2.5
concentration within air pollutants and meteorological factors. This step offers more valuable
feature data for subsequent modules. The model then adopts a two-layer clustering method
(SOM+K-means) to analyze the multifaceted irregularity within the dataset. Finally, the model
establishes the Extreme Learning Machine (ELM) weak learner for each classification, integrating
multiple weak learners using the Adaboost algorithm to obtain a comprehensive prediction model.
Through feature correlation enhancement, data irregularity exploration, and model adaptability
improvement, the proposed model significantly enhances the overall prediction performance. Data
sourced from 12 Beijing-based monitoring sites in 2016 were utilized for an empirical study, and the
model's results compared with five other predictive models. The outcomes demonstrate that the
proposed model significantly heightens prediction accuracy, offering useful insights and potential
for broadened application to multifactor correlation concentration prediction methodologies for
other pollutants.

Keywords: PM2.5 concentration; feature selection; clustering algorithm; Adaboost integration
model

1. Introduction

As nations continue to industrialize and expand transportation networks to keep pace with
rapid urban modernization, there is an attendant rise in living standards. But coupled with growth
are escalating air quality indices, signifying increased quantities of harmful substances discharged
into the atmosphere and exacerbating environmental issues. Polluted air comprises detrimental
particles such as PM2.5, PM10, CO, SO2, NOx, and O3, which have been implicated in the onset of
respiratory and cardio-cerebrovascular illnesses [1]. Among these pollutants, PM2.5, particulates
with diameters under 2.5um, are particularly concerning due to their high toxic substance content,
lengthy atmospheric residence time, and extensive transport distance. This pollutant critically
impacts both human health and atmospheric quality. According to the United Nations Environment
Programme's Global Environmental Outlook 5 launched in 2012, PM2.5-induced respiratory diseases
cause nearly 700,000 deaths annually, with almost 2 million premature deaths linked to particulate
pollution. Recent estimates from the Global Burden of Disease Project attribute approximately a
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million deaths in China yearly to PM2.5 pollution. Consequently, investigating air pollutants,
particularly PM2.5, stands out as a prime research focus. Notably, numerous countries globally have
installed air quality monitoring stations for real-time pollutant surveillance, enhancing the practical
significance of forecasting pollutant concentrations. Accurate PM2.5 concentration prediction has
important implications for shaping air pollution prevention and mitigation strategies, providing a
useful navigate and reference point.

1.1. Related works

Current research on PM2.5 concentration prediction models largely falls into two main
categories: deterministic methods, exemplified by chemical transport models (CTMs), and statistical
methods, which primarily encompass machine learning models, multiple linear regression (MLR),
and auto-regressive comprehensive moving average models (ARIMA) [2]. Deterministic methods,
which account for the chemical reaction and transport process of air pollutants, formulate models
based on chemical and kinetic expressions, enabling simulations of pollutant emission, migration,
and transformation, producing respective predictive results [3]. However, this method's efficacy is
compromised by the intricacy of the model and the extensive time required for model construction
and solution, posing calculation-result realization challenges [2]. In contrast, statistical models,
forgoing pollutant chemical evolution considerations, focus solely on data aspects, simplifying the
model construction process, and consequently garnering increased interest. These statistical methods
can be broken down into traditional statistical methodologies, machine learning approaches, and
integrated learning practices. Traditional statistical methods, including linear statistical models like
MLR and ARIMA, have notable limitations in predicting PM2.5 concentration, chiefly stemming from
their dependency on linear mapping ability in non-linear processes. This leads to a significant
inefficacy in exploring the laws governing non-linear models. In reality, most air pollutant sequences
are non-linear and irregular. On comparing, machine learning models prove superior with an
enhanced non-linear fitting ability. Techniques like artificial neural networks (ANN), support vector
machines (SVM), and random forests (RF) find extensive applications in air pollution prediction. For
instance, Ren et al. proposed a PM2.5 concentration level prediction model, leveraging a random
forest and characterized by Taiyuan meteorological data from 2013 to 2016, and the site's PM2.5
concentration change time sequence, coupled with its temporal and spatial correlation to
surrounding sites [4]. Similarly, Hong et al. put forth a novel approach for estimating global PM2.5
concentration variations through the integration of satellite imagery, ground measurements, and
deep convolutional neural networks [5]. Wu et al. proposed an adaptive genetic algorithm (AGA)-
based long short-term memory (LSTM) network prediction model, employing a copula entropy(CE)
framework, to analyze the correlation between multiple meteorological factors and different
atmospheric pollutants and PM2.5 [6]. Meanwhile, Pruthi et al. offered a deep learning model,
integrating neural networks, fuzzy inference systems, and wavelet transforms, to predict Delhi's
major air pollutant, PM2.5 [7].

Although machine learning models robustly exploit the nonlinear ability of air pollution
prediction, they are subject to inherent limitations (such as underfitting or overfitting). However,
integrated models can counter these limitations by training multiple 'weak learners', which are
subsequently converged via a specific strategy to form a 'strong learner'. This approach mitigates the
risk of underfitting or overfitting, resulting in enhanced predictive performance. For instance, Liu et
al. employed an amalgamation of the Bagging method and the Gradient Boosting Decision Tree
(GBDT) to prognosticate PM2.5 levels in Beijing, China; comparative experiments substantiated that
an ensemble model attains lesser predictive errors than a singular machine learning model [8].
Similarly, S. Yin et al. utilized two boosting algorithms, namely the Modified AdaBoost. RT and
Gradient Boosting, for hourly PM2.5 concentration forecasting [3]. Further, Liu et al. advanced a
multi-objective and multi-resolution ensemble model that assimilates a diversity of information
expressions to elevate model accuracy [9].

Aside from model selection, the identification of influential factors related to PM2.5
concentration significantly impacts predictive results. Many studies favor the Pearson Correlation
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Coefficient (PCC) for correlation analyses, owing to its straightforward processing method for
generating a correlation matrix of PM2.5 concentration indices. However, PCC's reliance on linear
Gauss may undermine its reliability when dealing with non-linear air pollutant sequences. Thus,
effective selection of multiple PM2.5-impacting factors and the elimination of irrelevant ones can save
precious resources for prediction and enhance accuracy [10].

Feature selection methods are often categorized into filtering, packaging, and embedding
techniques. The filtering method, which includes PCC, scores each feature according to divergence
or correlation, sets a threshold value or a limit for feature selection. Conversely, the packaging
method leverages machine learning algorithms for evaluating the impact of feature subsets, detecting
interactions between two or more features, and selecting optimally performing feature subsets.
However, this method demands significant computational resources due to the need to train a model
for each subset. To enhance computational efficiency, multi-objective optimization algorithms are
often applied to packaging methods to undertake feature selection. For instance, Redkar et al. utilized
a multi-objective optimization-based packaging method for feature selection to handle drug-target
interaction (DTI) data's imbalance and high dimensionality [10]. Similarly, Wu et al. employed a
multi-objective feasibility enhanced particle swarm optimization (MOFEPSO) algorithm to optimize
maximum relevancy, minimum redundancy, and maximum interaction of features while selecting
the ideal ones [12].

1.2. Nowvelty of the study

Derived from the aforementioned literature review, we propose an innovative mixed model for
PM2.5 concentration prediction composed of three modules: feature selection, clustering, and
integrated prediction. By enhancing feature correlation, refining data irregularity, and improving
model prediction ability, this model seeks to boost overall prediction performance.

Our study's contributions and innovations manifest in the following ways:

a) We employ a multi-objective optimization algorithm for selecting features from atmospheric
pollutant and meteorological factor datasets that influence PM2.5 concentration, thereby supplying
valuable feature data input for subsequent modules. Specifically, we use the non-dominated sorting
genetic algorithm-III (NSGA-III) to compute the weight coefficient between the multi-factor feature
variables and PM2.5 concentration prediction. By comparing this with a defined threshold value, we
select Pareto-optimal input feature variables.

b) The features selected using the multi-objective optimization algorithm are subsequently
clustered, further mining the irregularity of the multi-factor dataset and establishing a weak learner
for each class. This enables data with high similarity to be predicted under the same model. In our
study, we adopt a two-layer clustering method (initially using the SOM neural network, followed by
K-means clustering). This method's primary advantage lies in noise reduction, as the prototype of
SOM constitutes average data, exhibiting lower sensitivity to random changes than the original data
[13].

c) In our model, we harness the reinforcement learning method in ensemble learning to curtail
the bias of preceding weak learners through iterative training, dynamically adjust the weight
distribution of multiple weak learners, and ultimately transform these trained weak learners into a
robust learner through linear combination. Specifically, we utilize the Adaboost algorithm for
integrating the weak learner composed of multiple extreme learning machine models. The resulting
integrated prediction model seeks to enhance prediction accuracy.

The paper's structure is as follows: Section 2 delineates our proposed PM2.5 concentration
forecasting method and offers a detailed introduction to each ensemble model algorithm. Section 3
applies these proposed models to actual PM2.5 concentration data prediction, followed by an analysis
of the experimental results. Section 4 concludes our research.
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2. Materials and Methods

2.1. Description of experimental data

The experimental dataset utilized in this study was obtained from the environmental cloud of
Nanjing Yunchuang Big Data Technology Co., LTD. We accessed hourly meteorological records
(comprising weather condition, air temperature, felt temperature, air pressure, humidity, rainfall,
wind direction, and wind speed) and hourly air quality monitoring data (PM10, CO, SO2, NOx, O3)
for Beijing, spanning from January 1, 2016 to December 31, 2016. The air quality monitoring data
refers to the hourly data from 12 monitoring locations, resulting in a total of 8,784 records for each
monitoring point, though some data are missing due to uncontrollable factors. We employed the
linear interpolation method to address gaps in the data. Chinese descriptions of weather conditions,
wind direction, and wind speed were encoded, as outlined in Tables 1-3.

Table 1. Weather condition codes.

Weather conditions Code Weather conditions Code
Clear 1 Fog 10
Haze 2 Rain and snow 11
Cloudy 3 Snow 12
Yin 4 Moderate to heavy snow 13
Light rain 5 Heavy Snow 14
Moderate to heavy rain 6 Heavy to blizzard 15
Heavy rain 7 Floating dust 16
Showers 8 Medium Rain 17
Thundershowers 9 Rainstorm 18

Table 2. Wind code.

Wind direction Code
North Wind 1
Northeast wind
East Wind
Southeast Wind
South Wind
Southwest Wind
West Wind
Northwest Wind

I[N [C [ |W|N

Table 3. Wind power code.

Wind Power Code
Breeze 1
Level 1
Level 2
Level 3
Level 4
Level 5

N U1 &~ W N

In the endeavor to construct and assess the predictive model, the dataset for each of the 12
monitoring points was partitioned into three categories: a predictive training set, predictive
validation set, and a test set. The training set, which is integral to the three modules, comprises
records 1 to 7000 from the dataset. The validation set is composed of data records 7001 to 7200, and
the test set consists of records 7201 to 8784. Equipped with an Intel(R) Core(TM) i7-8565U CPU at
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1.80GHz, 8GB of memory, and Windows 10 operating system, we used Python 3.7.8 as our
programming tool for this experimental setup.

2.2. Framing

The conceptualized prediction model for PM2.5 concentration, dubbed as NSGA-II-SOM-
Kmeans-Elm-Adaboost-MRT (NSKEAM), is an integrated apparatus that primarily consists of three
modules. Its main components are as follows:

1. The utilization of NSGA-III for feature selection;

2. Implementation of a two-layer clustering method (SOM-Kmeans) to cluster data post feature
selection;

3. Use the ELM model for the clustered data resulting from each cluster;

4. Lastly, integration with Adaboost is facilitated to realize the prediction of the PM2.5
concentration.

The inner structure of the proposed NSKEAM model is conveniently illustrated in Figure 1.
Therefore, a detailed investigation aids in understanding the intricate operations of this model.

Data

Feature Selection:
NSGA-III alogrithm

A 4
two-level Cluster:
SOM+Kmeans

ELMModel 1] ELMModd2 BRG] -~ o e
3 ! Ensemble Model

Figure 1. The whole structure of the proposed model.

2.3. Feature selection: Multi-objective optimization: NSGA-III algorithm

This study employs meteorological factors (such as air temperature, apparent temperature, air
pressure, humidity, rainfall, wind direction, and wind speed) along with other air pollutants (PM10,
CO, S0O2, NOx, O3) as characteristic data in the feature selection process. It was found that these
selected features had a strong correlation with PM2.5.

The aim of feature selection is identifying the optimal feature subset. It enables the elimination
of irrelevant or redundant features, thus reducing the count of features, bettering the model’s
precision, and decreasing the execution time.

Feature selection methodologies can be categorized into filtering method, wrapping method,
and embedding method. Out of these, the wrapping method’s basic approach involves training the
model for each feature subset to be selected on the training set. The feature subset is then chosen on
the test set, based on the error magnitude.

In our feature selection module, we have taken the approach of the wrapping method, applying
the NSGA-III algorithm for multi-objective optimization (MAE, MSE, and SD). It is used to compute
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the correlation between the predicted results of PM2.5 concentration for each feature and its actual

value. Feature selection is performed by setting a specific threshold value.

The NSGA-III algorithm was first introduced by Kalyanmoy Deb and Himanshu Jain in 2014.
This algorithm is an enhanced version of the multi-objective algorithm NSGA-IL It abandons the
crowding-distance sorting mechanism often used in NSGA-II and introduces a new sorting
mechanism based on reference points [14]. The NSGA-III is especially designed to deal with multi-
objective optimization issues that have three or more objectives [15]. When compared with the
NSGA-II algorithm, the NSGA-III not only significantly reduces the computational complexity but
also excels in preserving diversity. This makes it an efficient tool for complex multi-objective
optimization tasks.

The basic idea of using NSGA-III algorithm for feature selection is as follows:

e  The primary variables include PM10, CO, SO2, NOx, O3, air temperature, sensible temperature,
air pressure, humidity, rainfall, wind direction, wind power and wind speed, totalling 13 factors
{x,(1),i=1,2,3,,13};

e  The focus for prediction is the PM2.5 concentration, identified as our target feature Xpu2.5 (t) .

7

e  The Extreme Learning Machine (ELM) model is used individually with each feature x; (t) as an
input for prediction. Each feature's predictive capability {&/"*®,i=1,2,3, +,13} is assessed
and an aggregated prediction is achieved using weighted reconstruction(equation (1)),

13
~ PM2.5

Xpai2.s = W; X; (1
i=1
e  The evaluation is objective using the NSGA-III algorithm, taking into account the mean square
error (MSE), Mean Absolute Error (MAE), and standard deviation (SD). These metrics, outlined
in equations (2) through (4), are deployed to measure the divergence between the predicted

results and the actual values accurately,

1,
MSE = N Z (xpmzs - xPM2.5) : 2)
=1

1 &
MAE = — Z |5CPM2.5 — Xpm2.5 3)

N =1

1 &

SD=, | Z (JACPM2.5 — Xpm2.s T Mmean (JACPMZ.S - xPMZ.S)) ’ 4)

N &
7

Where, Xpymo2 sindicates the true value of PM2.5 concentration.

e  To realise multi-objective optimisation featuring Mean Absolute Error (MAE), Mean Square
Error (MSE), and Standard Deviation (SD), we harness the capabilities of the NSGA-III algorithm.

Our strategy embodies an iterative search for a weight-set {w,i=12,3,,13} that
concurrently minimises MAE, MSE, and SD. Given the defined threshold value - T, only those
features {x'|w,=T,i=1,2,3, -+, 13} that comply with the condition @; =T are selected. This

precision-guided approach enables us to optimise feature selection effectively.

2.4. Two-layer clustering

Emphasising the identification of anomalies in multifaceted datasets, we employ clustering
algorithms, each providing a unique set of characteristics for the resulting clusters. Herein, we report
the use of a two-layer clustering method employing a combination of Self-Organizing Maps (SOM)
and K-means algorithms.
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Initially, the SOM algorithm is applied to learn the data from the input space, which comprises
12 monitoring points; this serves to excavate similarities amongst them. Following acquisition of the
prototype vector via this initial stage, the K-means algorithm is employed to cluster this vector,
further extracting features of the training dataset. Our two-layer clustering methodology not only
brings high-dimensional data visualization to fruition but also upholds the topological structure of
input space whilst reducing dataset noise.

SOM also known as Kohonen maps, are effectively used to visualize and explore data properties,
projecting the input space onto a low-dimensional, regular grid prototype. This form of unsupervised
learning is utilised to cluster data. Rooted in an uncomplicated concept, this type of neural network,
with solely the input, and competition layer, uses a "competitive learning" method during training.
Each input sample seeks the most compatible node within the competitive layer, referred to as its
activation node or "winning neuron" [16]. The parameters of this active node are updated via random
gradient descent, while those of nodes located near to the active node are suitably updated based on
their proximity to it.

2.5. Prediction Model

To predict PM2.5 concentration levels, we've established a third module: a predictive model
enhanced through ensemble learning methods. Unpackaging the outcomes from the two initial
modules, we generate multiple cluster-resultant datasets, each accompanied by its respective ELM
predictive model (equation (5)).

fL(x):Z,Bigi(x):Z,Big(wi"'xi+bi)/].:1r"'/N (5)

In this context, 'L' symbolizes the quantity of hidden units, while 'N ' represents the count of
training samples. 'f; ' designates the i th weight vector interlinking the primary hidden layer and the
output layer. The ith input vector is represented by 'X;". ';" stands for the weight vector connecting

the ith input layer to the output layer. The activation function is represented by 'g; (x)". b, signifies

a bias vector.

An ELM, a single-hidden-layer feedforward neural network (SLEN), is employed to expedite the
training process [17]. This training methodology is notably superior to traditional SLFN algorithms,
with ELM selecting random weights for input layers, hidden-layer bias, and output-layer weight,
determined through minimization of a loss function — a sum of the training error term and a regular
term reflecting the output-layer weight norm [18].

Despite the randomized generation of hidden-layer nodes, ELM preserves the fundamental
approximation capacity of the SLFN. This network structure is depicted in Figure 2. ELM provides a
rapid learning speed, robust generalization ability, and reduced parameter training dependency.
Nonetheless, ELM disadvantages prevail; its exclusive focus on empirical risk inspires an overfitting
proclivity remedied by introducing ensemble learning in this study.

Introduced by Yoav Freund and Robert Schapire in 1997, the Adaptive Boosting (AdaBoost)
algorithm emerged as an innovative variant of the ensemble learning method, Boosting [19]. The
adaptive nature of this algorithm comes to the fore in its weighting strategy; training errors result in
increased sample weights, whereas correctly classified samples see a decrease, readying them for
training in succeeding basic classifiers. Moreover, with each iterative cycle, a new weak classifier is
incorporated into the ensemble until either achieving a predefined minimum error rate or reaching
the maximum number of iterations.
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Wi Bixc
Figure 2. Network structure of extreme learning machine.

The procedure for an AdaBoost ensemble prediction model utilizing an Extreme Learning
Machine (ELM) as a base classifier unfolds as follows:
Step 1: Initiate the weight distribution for each ELM base classifier such that each classifier

1
assumes an equal weight of w; = T This process generates the initial weight distribution, denoted

as D, (i), across the training sample set. The setup is defined by equation (6).

11 1
D / pu— , ,---/ pr— 7/7/"'/7
1 (Z) (wl Wy wk) (k k k) (6)
Step 2: Iterative Process:

(a) From the collection of weak classifiers, identify the classifier # with the lowest current error
rate. This is designated as the t(f =1,2, "‘,T) -base classifier, H,, and calculate its value

h:X—{-1,1} . The corresponding error ¢, and distribution D, of the weak classifier are

enumerated in equation (7).
k
e,:P(H, (x,-)iy,-): ZwtiI(Ht(xi)iyi) @)

(b) Ascertain the weight @, of the weak classifier within the final classifier ensemble(equation

(8))-
i
@=ln . (8)

(c) Update the weight distribution D, (equation (9)) for the training sample set.

D, = D, (i)exp (Z“tyth(xz)) )
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Here, it's essential to note that Z, represents the normalization constant Z, =24/¢, (1 — et) .
Step 3: Compile each weak classifier ELM according to its weight. In the final stage, this
integration generates the robust final classifier, H,. (equations (10-11)), which then delivers the

predictive output.

f(x) = XT: a.H, (x) (10)

H,a = sign(f (x)) = sign (Z o, H, (x)) (11)

3. Case study

3.1. Evaluation criteria

To assess the efficacy of the prediction model, we conduct an inclusive evaluation using a three-
fold metric of MAE, Root Mean Square Error (RMSE), and Determination Coefficient (R?). The
calculated formulae for these parameters can be found in Table 4. Within these formulae, the variables

Y; and Yy; signify the predicted and actual PM2.5 concentrations, respectively, whereas 7 stands

for the total number of predicted values.

Table 4. Evaluation Criteria.

Criteria Definition

15 G-

n i=1

Root mean square error (RMSE) RMSE =

. _ 1
Coefficient of determination (R?) R*= SS%ST =1- SS%ST =1-S—, y= ;Z Yi

3.2. Experimental design

3.2.1. The NSGA-III based feature selection method analysis

To validate the feasibility and precision of the feature selection method proposed herein, we
designed three prediction models for comparative analysis - NSGA-III-ELM-Adaboost (NEA) model;
single factor-ELM-Adaboost (SFEA), a unifactorial ensemble model centered solely on PM2.5
concentration features; and all features-ELM-Adaboost (AFEA), an ensemble model incorporating all
features. For consistency and to ensure the legitimacy of our comparative results, all three models
employ an ELM-Adaboost model and keep the integrated model parameters consistent.

The NEA model's parameter settings can be found in Table 5. Figure 3 depicts the results of the
Pareto fronts and the selected point from the one-step predicted dataset. We chose the intermediate
solution of Pareto fronts to harmonise the benefits from the three objective functions. Figure 4
represents the optimal weight results for each feature in a 12-point monitoring dataset. Table 6
presents a comparative analysis of the evaluation indicators from the three prediction models.

Table 5. Parameter setting of the NSGA-III-ELM-Adaboost model.

Models Parameters Values
Maximum number of iterations 400
NSGA-III Population size 100

Mutation percentage 0.5
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10
Crossover percentage 0.5
Mutation rate 0.03
Cross parameter 20
Mutation parameter 20
ELM Number of hidden neurons 20
Activation function sigmoid
. 1, there is a trade-off between learning
Learning rate . . .
AdaBoost rate and maximum integration Number

Maximum integration number 50

Non-dominated solution
X Pareto fronts

-0.8

PM10 0.36 0.39 0.28 0.39

-0.7

[\[Op® 0.16 0.17 0.120.0310.12 |0
(OB 0.31 0.34 0.26 0.170.028 0.17 0.19 0.17 0.12

(@6 0.13 0.13 0.12 0.16 0.0410.079 0.28 0.18 0.2 0.26 0.28 0.2

humidity . .0610.13 0.120.0970.14 0.22 0.32 0.17 0.26 0.21 0.17

[l VAT O 0.35 0.0630.11 0.16 0.12 0.15 0.25 0.32 0.18 0.2 0.26 0.27
temperature -, 0.110.0460.056 0.12 0.2 0.15 0.18 0.13 0.12 0.18 0.21
barometric pressure -SELES EREETER PR ERBERSERS PR ERE AN
LE I e ]a s [I( o413 0.06 0.0530.056 0.2 0.0280.0790.0930.067 0.17 0.042 0.17 0.12
(EIN IR 0.39 0.0660.0630.056 0.19 0.0280.0790.0910.067 0.17 0.042 0.17

(Ml Nelllaalo]10.054 0.13 0.17 0.23 0.2 0.17 0.13 0.11 0.14 0.2 0.0470.15

(WIaleB{e](e(=E 0.15 0.16 0.19 0.26 0.0150.16 0.18 0.19 0.0380.16 0.18 0.12

wind speed - |, | Coo G |
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Figure 4. Optimal weight results for each feature of a dataset of 12 monitoring points.

Table 6. Comparison of evaluation Criteria of six prediction models.

Monitoring point Model Criteria M.onitoring Model Criteria
dataset MAE RMSE R?  point dataset MAE RMSE R?

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA 15.241 22.127 0.912 NEA  14.521 22.064 0.910

1 SFEA 17.727 25.671 0.724 . SFEA 16.702 25.717 0.828
AFEA 16.502 24.518 0.815 AFEA 16.217 24.601 0.881

RNN 17.031 25.126 0.774 RNN  17.258 25.102 0.798

LSTM 16.557 24.673 0.811 LSTM  16.343 24.720 0.861

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA  15.026 22.536 0.927 NEA  14.414 23.212 0.934

5 SFEA 17.838 25.603 0.818 8 SFEA 17.515 25.372 0.745
AFEA 16.882 24.126 0.867 AFEA 16.683 24.505 0.789

RNN 17.524 25.331 0.785 RNN 17.518 25.002 0.766

LSTM  16.266 24.791 0.850 LSTM 16.206 24.751 0.823

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA  14.857 22.822 0.928 NEA  14.138 23.222 0.926

SFEA 17.685 26.101 0.820 SFEA 17.371 25.618 0.804

3 AFEA 15.863 25.237 0.883 ? AFEA 16.617 24.379 0.858
RNN 17.106 25.639 0.841 RNN 17.113 25.338 0.842

LSTM 16.313 24.604 0.866 LSTM  16.653 24.472 0.890

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA 14.776 21.702 0.935 NEA 14.538 22.502 0.910

4 SFEA 17.371 25.419 0.738 10 SFEA  17.219 25.421 0.826
AFEA 15.013 24.665 0.799 AFEA 16.619 24.315 0.871

RNN 17.077 25.028 0.783 RNN 17.787 24.801 0.836

LSTM  16.326 24.552 0.806 LSTM  16.175 24.390 0.857

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA 14.872 22.108 0.914 NEA 14.716 22.667 0.916

5 SFEA 17.983 25.433 0.783 1 SFEA 17.131 25.366 0.798
AFEA 16.382 24.712 0.805 AFEA 16.618 24.212 0.820

RNN 17.321 25.114 0.792 RNN 17.812 25.771 0.815

LSTM 16.505 24.536 0.826 LSTM 16.326 24.405 0.837

NSKEAM 13.418 21.401 0.953 NSKEAM 13.418 21.401 0.953

NEA 14.761 23.134 0.916 NEA  14.515 23.521 0.912

SFEA 17.382 25.662 0.812 SFEA 17.617 25.780 0.835

6 AFEA 16.287 24.404 0.887 12 AFEA 16.280 24.271 0.866
RNN 17.680 25.311 0.784 RNN 17.428 25.263 0.787

LSTM  16.627 24.573 0.862 LSTM 16.750 24.542 0.842

Employing the ten-fold cross-validation method, the threshold for the NSGA-III feature
selection stage was determined as 7" = 0.4 . Each feature's weight was compared with this threshold,
and those with a weight (w:) equal to or surpassing 0.4 were selected, as exemplified by the results
of the 12-point monitoring study (Figure 4). Consequently, seven features - namely SO2, PM10, NO2,
O3, humidity, temperature, and barometric pressure - were chosen as the input data for the prediction
model.

The experimental evaluations from three distinct models, presented in Table 6, underscore that
NEA predictions at 12 monitoring points are most favorable after feature selection via NSGA-IIL This
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finding substantiates that a feature selection strategy premised on the NSGA-III algorithm can indeed
enhance the accuracy of the prediction model.

3.2.2. Ensemble modle analysis

In this section, we analyze the experimental outcomes of a two-layer clustering method
(SOM+Kmeans). As delineated in Section 3.2, the SOM algorithm is initially employed for cluster
learning on datasets subject to feature selection, contingent on NSGA-IIL. This is subsequently
followed by using the Kmeans algorithm to cluster the prototype vector, thus further mining the
features of the training dataset.

To critically assess the number of clusters, we utilize evaluation metrics such as F-measure,
Accuracy, and Normalized Mutual Information. These indicators range between [0, 1], where a larger
value signifies that the clustering outcome is commensurate with expectations.

Table 7 encapsulates the calculation formulas of these three metrics. True Positive (TP) denotes
the positive predicted sample count, while True Negative (TN) indicates the negative predicted
count. False Positive (FP) represents instances where the predicted class number is wrongly marked
as positive, whereas False Negative (FN) refers to samples falsely predicted as negative. Entropy of
correct classification is represented as H(U), and H(V) stands for the entropy of results obtained via
the algorithm.

Table 7. Evaluation index of clustering results.

Criteria Definition
A TP
Precision = TP + FP Recall = TP 1 FN

F-measure(FM
(FM) 2Recall X Precision

F — measure = .
Recall + Precision

A ACC ACC= IPHIN
ceuracy(ACC) TP + TN + FP + FN
Normalized Mutual NMI = —— V)
Information (NMI) HU)H(V)

Data collated from three evaluation indicators, for differing cumulative cluster numbers, is
presented in Table 8. Figure 5, meanwhile, portrays the variance in clustering efficacy in relation to
fluctuating cluster numbers. An impartial analysis of both Table 8 and Figure 5 highlights that the
number of clusters yielding the most optimal result across all three indices, and the most conducive

clustering effect, when k= 4.

Table 8. Results of three evaluation indexes with different number of clusters.

Cluster number M ACC NMI
2 0.00289 0.03401 0.07301
3 0.00443 0.33880 0.15358
4 0.01354 0.63023 0.16661
5 0.00576 0.42640 0.18444
6 0.00583 0.38350 0.19668
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Figure 5. Clustering effect under different number of clusters.

4. Discussion

To validate the proposed prediction model's feasibility and accuracy, the study instituted a
comparative experiment involving six unique predictive models, including the NSKEAM model.
This examination also incorporated the NEA, SFEA, and AFEA models, previously laid out in section
4.2.1, along with the recurrent neural network models embodied by the Recurrent Neural Network
(RNN) and Long Short Term Memory (LSTM). Performance indicators of these varied predictive
models are visually presented in Table 6 and Figure 6.
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Figure 6. Histograms of different forecasting models evaluation criteria.

Upon examining Table 6 and Figure 6, several conclusions can be drawn:

(a) In all comparative experiments, the evaluation index results, as measured by NSKEAM at
every monitoring point, are identical. Specifically, during the second phase, data from the twelve
monitoring points is aggregated, amplifying similarities among these points, to yield a single, unique
final prediction result. Notably, the NSKEAM algorithm demonstrates favorable performance in
accordance with the assessment indices of MAE, RMSE, and R2.

(b) A direct comparison of the NEA, SFEA, and AFEA models revealed that NEA profited from
the best results. This suggests that feature selection within the original dataset positively influences
the model's predictive accuracy, further hinting at a nonlinear relationship existing between the
attributes. This highlights the need for machine learning methods to probe deeper into these mutual
feature relationships.

(c) When comparing NSKEAM, RNN, and LSTM, NSKEAM emerged supreme. This suggests
that contrasted with standalone models, a comprehensive learning model that dynamically selects
the dataset's beneficial features and adjusts the weak prediction model's weight ratios using the
proposed prediction mechanism, is more efficient. By being adaptable, the predictive model can
deliver more accurate PM2.5 concentration forecasts.

5. Conclusions

Rapid global climate change has led to escalating concerns surrounding air pollution, with
adverse effects increasingly infringing upon daily life. As awareness of environmental conditions
grows, so too does the demand for improved air quality. This increased societal pressure makes the
urgent task of meticulous pollution prevention and control management necessary. Simultaneously,
while sustaining rapid economic development, minimizing industrialization's environmental and
climatic impact has emerged as a shared objective sought by global academicians. Therefore, the
scientific, accurate monitoring of air quality and pollutant concentrations, alongside understanding
the pollution variation laws and environmental impacts of air pollution severity, offers strategic
advantages. This knowledge promotes precisely guided pollution control measures and is critical for
fostering healthy urban development.
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This manuscript introduces a multifactorial model predicting PM2.5 concentration levels within
the atmosphere. The described method integrates feature selection, clustering, and ensemble learning
techniques to deep-mine original dataset in-house features thereby augmenting the model's
predictive precision. Key findings from the experimental outcomes highlight:

(I) The model outlined herein enhances PMZ2.5 concentration prediction accuracy.
Demonstrating significant adaptability, the NSKEAM model capably mines data, evident in its
performance amidst PM2.5 seasonal fluctuations.

(2) Implementing multi-objective optimization for multi-factor feature selection supports
enhanced diversity preservation, consequential in advancing the predictive model's precision.

(3) The study employed the ELM as a weak learner without considering variations in the
prediction model in light of diverse basic learners. Future research will explore this area further,
focusing on identifying the optimal basic learner to enhance the robustness and accuracy of the
integrated predictive model.
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