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Abstract: In general, the conventional Lewis-Riesenfeld invariant-based inverse engineering is a non-
adiabatic process that results in the adiabatic final states to achieve the shortcut to adiabaticity, which
does not provide complete suppression of non-adiabaticity throughout the evolution. We propose
a new method to accomplish the shortcut to adiabaticity through an entirely adiabatic path. This
new method is developed using the number operator as an invariant of the Hamiltonian. This paper
discusses the mathematical framework of the new method in two-level quantum system and analyzes
its performance compared to the conventional Lewis-Riesenfeld invariant-based inverse engineering
method.

Keywords: inverse engineering; shortcut to adiabaticity; two-level quantum system

1. Introduction
The adiabaticity in classical thermodynamics refers to the processes in thermally isolated systems

[1]. However, the quantum mechanical definition of adiabaticity requires not only the isolation from the
heat bath (environment) but needs to preserve the probability of occupation among the eigenstates [2,3].
Quantum adiabaticity is a relevant topic, considering its necessity in modern quantum technologies
[4–8]. The quantum adiabatic theorem states that the process takes long time durations to achieve an
entirely adiabatic evolution. This requirement of long time durations poses practical challenges to its
testing and application. Quantum experiments and technologies deal with the preparation of quantum
systems, quantum control, and quantum measurements; The needed time duration for quantum
adiabaticity usually exceeds the coherence time of the prepared quantum systems [9]. Further, the
technologies like quantum heat engines can produce only a negligible power output due to the long
time duration of cycles [8]. Thus, the reduction of the time duration to achieve an entirely adiabatic
process is in the research front over the last decade [10–19]. The attempts for the same succeeded in
bringing several methods collectively called the shortcut to adiabaticity (STA) [2,3].

STA methods provide protocols to drive the quantum systems to an adiabatic final state corre-
sponding to the system’s initial state. These protocols are theoretically optimized to give accurate
results in short time durations. Several methods to achieve STA differ in the approach to developing
protocols. Let us consider the theoretical approach of the counter-diabatic (CD) method [10–12] and
invariant-based inverse engineering (IE) [14–19]. The CD method restructures the Hamiltonian to get
the approximate adiabatic solution as the general solution of the time-dependent Schrodinger equation
[10]. The above approach cancels the non-adiabatic excitations throughout the evolution, and the
process follows an entirely adiabatic path. The IE method uses the Lewis-Riesenfeld (LR) invariants
of the Hamiltonian and some boundary conditions to obtain the STA protocol. This method gives
more freedom to arbitrarily fix the protocols and explore different paths to reach the final adiabatic
state. Equivalent to say that the method produces a class of inverse engineered Hamiltonians to drive
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the system to a final adiabatic state. The CD method lacks this arbitrary set of protocols, and the IE
method will not evolve through the entirely adiabatic path in general [3]. We use the number operator
as an invariant of the Hamiltonian to develop protocols that drive the quantum system in an entirely
adiabatic path, and prove that the Number-operator-based inverse engineering (NOBIE) method can
generate a class of Hamiltonians to achieve STA. Also, we illustrate the new method for two-level
systems.

Two-level systems are the most simple but essential systems for understanding quantum-level
dynamics [20]. The two-level systems were vital in developing quantum theory from the early days.
The quantum theory advanced from a subject explaining the quantumness in nature to engineering
quantum systems with desired quantum effects, and the two-level systems became an inalienable part
of modern-day quantum technologies. The usage of two-level systems ranges from the Stern-Gerlach
experiment to qubits for quantum computation and information. Any combination of three Pauli
spin matrices can represent a Hamiltonian to drive two-level systems [21]. Among numerous such
possibilities, the Landau-Zener (LZ) Hamiltonian might be the one that is widely studied [22–26].
Existing STA methods were applied and tested for LZ dynamics [3], and this paper illustrates the
NOBIE method for the LZ Hamiltonian. We verify the credibility of the NOBIE method using a
numerical simulation of the fidelity of the shortcut process. Also, this paper compares the performance
of the conventional IE method and the NOBIE method from the fidelity plots.

2. IE and NOBIE Methods for Two-Level Systems
We begin this section by considering the LZ Hamiltonian [8],

H =

(
z x
x −z

)
, (1)

to drive the two level quantum system. The LZ dynamics depend on the linearly time-dependent
variation of z with a constant x. In other words, the LZ Hamiltonian is a combination of the Pauli-Z
operator with a linearly time-dependent function,

z = z(0) +
(z(τ)− z(0))t

τ
(2)

and a Pauli-X operator with a constant, x. Here, τ is the total time duration of the driving process, and
t represents time. The initial state of the two level system, |ϕ(0)⟩, changes during the driving with
LZ Hamiltonian and attains a state, |ψ(τ)⟩ on completion of the process. The variation of a quantum
system’s state during a time-dependent driving can be understood from the parameter called fidelity
[8,27],

F = |⟨ψ(τ)|ϕ(τ)⟩|2 (3)

where |ϕ(τ)⟩ is the adiabatic final state. If the state obtained after the driving is the same as the adiabatic
final state, then the fidelity will be unity (F = 1). Otherwise, the fidelity takes a value between zero
and one. Thus, the fidelity will be unity for a successfully completed adiabatic process/shortcut
process, and any deviation from the final adiabatic state results in 0 ≤ F < 1. We can generate F
by numerically simulating the time-ordered exponential of the Hamiltonian. The precise method of
numerical simulation of time-ordered exponential is provided in Appendix A.

Figure 1a shows the fidelity for the non-adiabatic driving of different time durations (in arbitrary
unit) using the Hamiltonian in equation (1) (solid yellow line). We have assumed z(0) = 0, z(τ) = 10,
and the constant x = 0.1. The fidelity of the non-adiabatic drive increases with the increase in the time
duration of the process. However, the fidelity is very low for short time durations. The evolution paths
of LZ driving for different time durations are depicted in figures 1b-1d (solid yellow line). It moves
towards the entirely adiabatic path for an increased time duration of the process. However, the fidelity
fluctuates throughout the path, showing the drive’s instability. The non-adiabaticity and instability of
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the LZ dynamics are evident from the above mentioned figures. Further, developing a conventional IE
method and NOBIE method will enable us to compare the fidelities. Let us revisit the conventional
inverse engineering method for two-level systems.

2.1. IE Method for Two-Level Systems

The IE method was developed based on two fundamental concepts in quantum mechanics. The
first concept is that an operator/observable which is invariant in the Hilbert space of the Hamiltonian
satisfies the relation [14],

∂I
∂t

= i[I ,H] (4)

where the invariant, I and Hamiltonian, H are the time-dependent operators. The time dependence of
H is determined by its control parameters (z for LZ Hamiltonian), while I contains arbitrarily chosen
time-dependent functions. The above equation can inverse engineer the control parameters of H from
the arbitrary parameters of I . Secondly, the commuting operators share a common set of eigenstates,
which helps to set the boundary conditions guiding the protocol to the final adiabatic state [21]. The
boundary conditions are obtained using the relations [8],

[I(0),H(0)] = 0 (5)

and
[I(τ),H(τ)] = 0 (6)

Let us understand the step-by-step mathematical formulation of the IE method for a two level system
driven by the LZ Hamiltonian in equation (1). Assume the invariant of the form,

I =

(
c a − ib

a + ib −c

)
,

where a, b, and c are arbitrary time-dependent parameters. These parameters can be designed so that
the invariant will satisfy the condition in equation (4). For the above purpose, we have to substitute the
assumed form of invariant and the LZ Hamiltonian to the invariance condition (4). Then, we obtain
the following conditions relating to the arbitrary parameters of I and the control parameters of H,

ȧ = −2bz, (7)

ḃ = 2az − 2cx, (8)

ċ = 2bx, (9)

where the dot accent represents the time derivative. We can rewrite all the arbitrary parameters of
the invariant in terms of c and its time derivatives. From equation (9), we can write b = ċ

2x , and from
equation (8), we get a = c̈

4xz +
cx
z . Thus, the explicit form of the invariant becomes,

I =

(
c c̈

4xz +
cx
z − i ċ

2x
c̈

4xz +
cx
z + i ċ

2x −c

)
. (10)

Using the property that the eigenvalue of an invariant is a constant [14], we can write,

A2 =

(
c̈

4xz
+

cx
z

)2
+

(
ċ

2x

)2
+ c2, (11)
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where A is the constant eigen value of the invariant. On rearranging the above equation, we get an
expression for z in terms of other parameters. The obtained explicit form is

z =
c̈

4x + cx(
A2 − ċ2

4x2 − c2
) 1

2
. (12)

The above two equations (11) and (12) help inverse engineer the LZ Hamiltonian. In other words, the
LZ Hamiltonian with z defined in equation (12) satisfies the invariance condition with the invariant
in equation (10). Further, we need to apply the boundary conditions to achieve STA. For that we
substitute the LZ Hamiltonian in equation (1) and invariant in equation (10) to equations (5) and (6)
and obtain

ċ(0) = ċ(τ) = c̈(0) = c̈(τ) = 0. (13)

Thus, an arbitrary function c which satisfies the above boundary conditions, can inverse engineer the
LZ Hamiltonian using equation (12) to achieve STA. We choose a particular function [8],

c = z(0) + 6(z(τ)− z(0))
(

t
τ

)5
+ 10(z(τ)− z(0))

(
t
τ

)3
− 15(z(τ)− z(0))

(
t
τ

)4
, (14)

which satisfies the required boundary conditions to inverse engineer the LZ Hamiltonian. The
numerical simulation of time-ordered evolution of inverse engineered LZ Hamiltonian provides the
fidelity as given in figure 1a (dot-dashed blue line). Compared with the fidelity of the non-adiabatic
drive (solid yellow line), the STA based on the conventional IE method is not enough to improve
significantly. The fidelity of the IE method shows some fluctuations for short time durations, while it
merges with the fidelity of the non-adiabatic drive for long time durations. The evolution path for the
IE method (dot-dashed line in figures 1b-1d) also shows the exact characteristics of the non-adiabatic
drive without any improvement. Although, the original formalism of the IE method claims to achieve
adiabatic final state in arbitrarily short time durations, the cost (C) of implementation also plays a
vital role in its successful completion. The cost of implementation for successful completion of STA
methods increases as the time duration of the process decreases [27–29]. In our previous paper [8], we
have discussed the implementation of the invariant-based STA method in qubits for varying cost. And
we found the cost required to achieve the adiabatic final state increases for decreasing time duration of
the STA process. Also, for a specified short time duration, the invariant-based STA method (Ref. [8])
unsuccessful to achieve the adiabatic final state for cost values below the required cost of successful
implementation. Similarly, in this work, figure 1a shows that the IE method unsuccessful to achieve
final adiabatic state in short time durations, which implies the insufficient cost of implementation.
Choosing a different arbitrary function c might change the cost of implementation and improve the
fidelity of the drive for given time durations. However, it is not ideal to arbitrarily guess the c function
until we improve fidelity. In the following subsection, we develop the NOBIE method to achieve STA
through an entirely adiabatic path and compare its fidelity with non-adiabatic and IE fidelities. The
comparison is performed for time durations for which the conventional IE method unsuccessful to
achieve STA. Also, a comparison of the cost of the IE and NOBIE methods is provided towards the end
of this section.

2.2. NOBIE Method for Two-Level Systems

As we mentioned in the introduction, quantum adiabaticity requires isolation from the environ-
ment and preservation of probability among the eigenstates. The first mentioned can be achieved by
perfecting the experimental setup, while the latter depends on the driving protocol and time duration
of driving. We aim to preserve the probability among the eigenstates, although in a short time. Such a
short process through an entirely adiabatic path can be developed based on an invariant that commutes
with the system Hamiltonian for the whole driving duration. We define a number operator for the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0389.v1

https://doi.org/10.20944/preprints202501.0389.v1


5 of 14

(a) (b)

(c) (d)
Figure 1. (a) Fidelity of the non-adiabatic driving (Solid yellow line), IE method (dot-dashed blue line), and
NOBIE method (dotted red line) are plotted against the total time duration of the process, τ. The evolution path
of the non-adiabatic driving (Solid yellow line), IE method (dot-dashed blue line), and NOBIE method (dotted red
line) are plotted against ratio s = t/τ for different τ values, (b) τ = 1 (c) τ = 100, and (d) τ = 500. The parameters
z(0) = 0,z(τ) = 10, and x = 0.1 are used for the calculation. Time is considered in arbitrary units for all the plots.

system Hamiltonian and use it as an invariant for the above purpose. Let us see why the invariance of
the number operator leads to driving through an entirely adiabatic path.

Consider the spectral decomposition of the system Hamiltonian [21],

H = ∑
n

λn|n⟩⟨n|,

where λn is the energy eigenvalues, |n⟩ is the instantaneous eigenstates, and n is the quantum number.
In general, λn is a time-dependent function that also depends on the corresponding quantum number.
If it is possible to write the energy eigenvalues in a separable form as a product, λn = g(n) f (t) (g(n)
is a function of n alone and f (t) is a function of t alone), then, we can define a number operator,

N =
H

f (t)
= ∑

n
g(n)|n⟩⟨n|. (15)

As N is just a scaling of system Hamiltonian by a function of time alone, N will always commute with
H. It is essential to prove that the invariance of the number operator leads to the preservation of the
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Figure 2. The cost ratio of NOBIE and IE methods for time durations of the process (τ) ranges from 1 to 10. The
black dotted line corresponds to the cost ratio with k = 1 and the blue solid line corresponds to the cost ratio with
k = 2. All the other required parameters are same as in figure 1.

probability among the eigenstates. Let us find the expectation value of the number operator for that
purpose,

⟨N ⟩ = ⟨ψ|N |ψ⟩, (16)

where |ψ⟩ is the general solution of the time-dependent Schrodinger equation. We can decompose |ψ⟩
on to the instantaneous eigenstates |n⟩ using time-dependent coefficients, Cn as [21]

|ψ⟩ = ∑
n

Cn|n⟩. (17)

Substituting the above expression for |ψ⟩ to equation (16), we obtain,

⟨N ⟩ = ∑
n

C2
n⟨n|N |n⟩ = ∑

n
C2

ng(n), (18)

where C2
n is the probability of occupation among the instantaneous eigenstates, which is a function

of time. The above equation clearly says that the constant probability among the instantaneous
eigenstates corresponds to the constant expectation value of the number operator. The converse of
the above statement is also true: if g(n) is distinct for all the eigenstates, then a constant expectation
value of the number operator results in a constant probability of occupation among the eigenstates.
Thus, a Hamiltonian that obeys the invariance condition with the number operator is needed to drive
the system through an entirely adiabatic path. We assume that a NOBIE Hamiltonian HN satisfies the
invariance condition:

∂N
∂t

= i[N ,HN ]. (19)

In the case of LZ Hamiltonian, the energy eigenvalues are given by λn = ±
√

z2 + x2, which gives

g(n) = ±1 (20)

and
f (t) =

√
z2 + x2 (21)
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(a) (b)

(c) (d)

(e) (f)
Figure 3. The evolution path of the non-adiabatic driving (Solid yellow line), IE method (dot-dashed blue line),
and NOBIE method (dotted red line) are plotted against ratio s = t/τ (τ = 1) for different control functions
z = z(0) + (z(τ)−z(0))tm

τ , where m takes values, (a) m = 2, (b) m = 3, (c) m = 4, (d)m = 5, (e) m = 10, and (f)
m = 100. The parameters z(0) = 0,z(τ) = 10, and x = 0.1 are used for the calculation. Time is considered in
arbitrary units for all the plots.

Then the number operator corresponding to the LZ Hamiltonian becomes

N =
H

f (t)
=

1√
z2 + x2

(
z x
x −z

)
(22)

Considering the structure of N , we should choose HN = yσy , where y is an arbitrary function of
time. Then, the commutation of HN with the number operator results in an operator of σx and σz

combination (as same as the combination of the left-hand side of the above equation). Substituting the
explicit form of N and HN to the invariance condition (equation (19)) will result ż

f (t) −
z ḟ (t)
f 2(t) − x ḟ (t)

f 2(t)

− x ḟ (t)
f 2(t) − ż

f (t) +
z ḟ (t)
f 2(t)

 =

(
− 2yx

f (t)
2yz
f (t)

2yz
f (t)

2yx
f (t)

)
, (23)

from which we can deduce two relations,

ż
f (t)

− z ḟ (t)
f 2(t)

= − 2yx
f (t)

(24)

and

− x ḟ (t)
f 2(t)

=
2yz
f (t)

(25)
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Adding equation (24) multiplied by x and equation (25) multiplied by z gives

xż
f (t)

= −2y
x2 + y2

f (t)
= −2y f (t) (26)

The above equation results in the arbitrary function of inverse engineered Hamiltonian,

y = − xż
2 f 2(t)

(27)

and explicitly, we can write,

HN =

(
0 i xż

2 f 2(t)

−i xż
2 f 2(t) 0

)
. (28)

We have simulated the time-ordered evolution of the two level system using the above NOBIE
Hamiltonian. The obtained fidelity for various time durations is plotted in figure 1a (red dotted line).
The performance of the newly developed method is as expected and always gives near to unit fidelity
irrespective of the time duration of the process. The path of evolution using HN for various time
durations are given in figures 1b-1d (red dotted line). The path deviates from the entirely adiabatic
path (F = 1) at the initial moments of the drive. However, the NOBIE methods attain complete
adiabaticity in the early instants of drive, while the non-adiabatic and conventional IE methods usually
unsuccessful to attain the same. The stability of the NOBIE method to maintain the unit fidelity is
commendable compared with the fluctuating non-adiabatic and IE methods. The trend of evolution
path by NOBIE method is similar irrespective of the total time duration of the process, which is highly
desirable.

As it is already mentioned, the unsuccessful of the IE method in achieving adiabatic final state
is a consequence of inefficient cost of implementation. Then, it becomes necessary to compare the
cost for both IE and NOBIE methods to understand the merits or demerits of the new method. The
cost as a measure of resources involved in the implementation of a shortcut, it does not have a unique
definition. There are multiple definitions for the cost and this paper use a recent definition [3,27,30],

C ∝
∫ τ

0
||H||kdt, k = 1, 2, 3... (29)

where ||H|| =
√

trace(H†H) is the Frobenius norm and H is the Hamiltonian driving the system
i.e., substituting the inverse-engineered Hamiltonian gives the cost for IE method (CI) and NOBIE
Hamiltonian gives the cost for NOBIE method (CN). The cost depends on the quantum system and the
fields used to implement the Hamiltonian, since the value of k is associated with power required to
generate the control fields [3]. For example, the value of k = 1 for a neutral atom in a time-dependent
electric field, and k = 2 for a single spin system in a time-dependent magnetic field [30].

The propotionality relation of cost for the IE and NOBIE methods can be obtained by substituting
the respective driving Hamiltonians in equation (29). Further, the ratio of the cost gives,

CN
CI

=

∫ τ
0

(√
x2 + z2

)k
dt∫ τ

0 yk dt
, (30)

where z is given by equation (12). In figure 2, we have plotted the above cost ratio with k = 1, 2 for
time durations of the process ranging from 1to10. The obtained value of cost ratio is less than one
implying that the cost for NOBIE method is always less than that of the IE method. The indicated
costs for the process in unit time duration (τ = 1) reveals that the magnitude of NOBIE cost is very
small compared with that of IE method (CN = 0.0857CI for k = 1 and CN = 0.285CI for k = 2). Also,
the cost ratio decreases with increase in the time duration of the process. This analysis clearly shows
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the advantage of the NOBIE method that it succeeded to achieve the final adiabatic state for time
durations for which IE method is unsuccessful and with lesser cost than the cost of IE method.

All the fidelity calculations in figures 1 and 2 are based on the linear variation of the control
parameter z as given in equation (2). It is possible to analyze the performance of STA methods
for different control parameters of the LZ Hamiltonian. A class of control parameters, z = z(0) +
(z(τ)−z(0))tm

τ can be defined for the varying rate of change of the control parameter with values of m.
In figure 3, we have compared the evolution path of the non-adiabatic, IE, and NOBIE methods for
m = 2, 3, 4, 5, 10, and 100. The total time duration for all the plots is fixed as unity, τ = 1. The IE method
still unsuccessful to achieve the final adiabatic state for all the values of m. The increase in the value of
m increases the rate of change of the control parameter and energy (λn). The high rate of change of
energy affects the entirety of the adiabatic path of the NOBIE method, and the deviation of the NOBIE
method’s fidelity curve from unit fidelity increases with increasing values of m. However, the NOBIE
method achieves unit fidelity (adiabatic state) towards the end of the drive for a dramatically high
energy change rate with m = 100, assuring the final adiabatic state.

3. Discussion
A shortcut to adiabaticity through an entirely adiabatic path is the motivating factor for the

new method, NOBIE. As the driving protocols based on the invariance of the number operator are
theoretically optimized to get an entirely adiabatic path, the stability of the protocol is presumably
higher than that of the conventional IE method. From all the comparisons (Figures 1 and 3), it is evident
that the stability of the method to achieve the final adiabatic state is far better than the conventional IE
method in short time durations. To see the cancellation of the the non-adiabatic transitions throughout
the evolution of NOBIE dynamics, find the expression for the non-diagonal elements of HN in the
instantaneous eigen basis of H using the equation (19),

⟨n|HN |m⟩ = i
⟨n| ∂N

∂t |m⟩
g(m)− g(n)

. (31)

Also, from the definition of number operator, we can get,

⟨n|∂H
∂t

|m⟩ = f (t)⟨n|∂N
∂t

|m⟩. (32)

Combining above two equations results

⟨n|HN |m⟩ = i
⟨n| ∂H

∂t |m⟩
λm − λn

, (33)

which is equivalent to the off-diagonal elements of the counter-diabatic Hamiltonian in energy eigen
basis [10]. Although the off-diagonal elements of NOBIE and counter-diabatic methods are equivalent,
the method of deriving Hamiltonian for shortcut to adiabaticity is completely different. This equiva-
lence justifies the entirely adiabatic path of the NOBIE method. Also, the fidelity curves obtained for
NOBIE method will be same as that of CD method for two-level system governed by LZ Hamiltonian
(see the Appendix B).

The driving Hamiltonian for STA resulting from the NOBIE method is not unique, but it provides
a class of NOBIE Hamiltonians to drive the system. It is possible only due to the mathematical
formalism of the entirely adiabatic path. In the NOBIE the number operator always commutes with
system Hamiltonian (see equation (15)),

[N ,H] = 0. (34)
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Figure 4. Path of evolution for HN , HN +H, and HN −H with z = z(0) + (z(τ)−z(0))t10

τ in unit time duration,
τ = 1.

This relation is useful to see that the addition or subtraction of arbitrary times the system Hamiltonian
from the NOBIE Hamiltonian (HN ± kH, where k is an arbitrary number) will satisfy the invariance
condition throughout the path of evolution, i.e.,

∂N
∂t

= i[N ,HN ± kH] = i([N ,HN ]± k[N ,H]) = i[N ,HN ]. (35)

The above property of the NOBIE method gives a class of NOBIE Hamiltonians, H′
N = HN ± kH to

drive the system to achieve STA. Figure 4 illustrates this property by showing the same evolution

paths for the NOBIE Hamiltonian, HN , HN +H, and HN −H with z = z(0) + (z(τ)−z(0))t10

τ .
The disadvantage NOBIE method is that the current definition of the number operator (15) is

valid only for Hamiltonian with separable eigenvalues of the form λn = g(n) f (t). Thus, we need a
much more general definition for number operators to include any arbitrary Hamiltonian of quantum
systems. Although, The NOBIE method outperforms the conventional IE method, the deviation from
the entirely adiabatic path for an increased energy change rate is a demerit of the new method.

4. Conclusion
In this paper, we have formulated a new STA method to overcome the shortcomings of the

conventional IE method. The newly designed method, NOBIE, is supposed to provide an STA protocol
that drives the system through an entirely adiabatic path. We have successfully developed the NOBIE
method by using the number operator as an invariant of the Hamiltonian and applied it to a two
level system governed by LZ Hamiltonian. The fidelity of the NOBIE method is compared with that
of the non-adiabatic and IE method. Conventional IE driving did not to show any improvement in
fidelity compared with non-adiabatic driving. Although, the IE method is expected to attain adiabatic
states at the initial and final instants of time using the boundary conditions, it is unsuccessful to
achieve the adiabatic final state in the short time durations of the protocol due to insufficient cost of
implementation. The NOBIE method produced adiabatic final states for time durations in which the
conventional IE method unsuccessful to achieve.

The path of evolution of the system is analyzed in terms of fidelity for non-adiabatic, IE, and
NOBIE methods. The non-adiabatic and IE methods drive the system in nearly equivalent and highly
fluctuating paths. The NOBIE method follows the entirely adiabatic path (F = 1) almost all the time,
except at the beginning of the drive for a linear control parameter. It is interesting to note that the cost
of a successful NOBIE method is lesser than that of a unsuccessful IE method. However, Increasing the
rate of change of the energy during the process increases the deviation of the NOBIE method’s fidelity
curve from unit fidelity. Even though the high rate of change of energy affects the entirety of the
adiabatic path expected from the NOBIE method, it achieves the final adiabatic state for a dramatically
high rate of change of energy. The robustness of the NOBIE method is evident from its stable trend of
evolution in approaching unit fidelity.

As an advantage of the formalism for the entirely adiabatic path, the new method can provide
a class of NOBIE Hamiltonians to drive the system to achieve STA. The new method is applicable
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only if the system Hamiltonian has separable eigenvalues (λn = g(n) f (t)), which can be considered a
limitation of the method. However, a general definition for the number operator can be pursued to
apply the NOBIE method to any arbitrary Hamiltonian of quantum systems. The new method can be
applied to various systems such as time-dependent quantum harmonic oscillators to achieve STA.

Appendix A Numerical Simulation of Time-Ordered Evolution

The time-dependent Schrodinger equation for the evolution of a state, Ψ(t), is i ∂Ψ(t)
∂t = F(t)Ψ(t),

where F(t) is the generator of the evolution (either H or HN in this paper). If F(t) of two different
instants of time are not commuting with each other, then we need to execute the time-ordered evolution
of the state. We split the total time duration (τ) into m equal intervals for the above purpose. Further, we
can define the generator at any instant of time as F(tj), where j ∈ [0, m]. In this scenario, the complete
evolution operator, U(0; τ) can be defined as the product of instantaneous evolution operators as [21]

U(0; τ) =
m−1

∏
j=0

U(tj; tj+1), (A1)

where U(tj; tj+1) = exp
(
−i
∫ tj+1

tj
F(t)dt

)
. The value of m is selected to make the intervals small, so the

time-dependent change in the generator becomes negligible. In other words, we can assume a constant
value, F(t) = F

( tj+tj+1
2

)
, for the duration, tj ≤ t ≤ tj+1 [32,33]. The above assumption reduces the

instantaneous time-evolution operator to

U(tj; tj+1) = exp
(
−i · F

( tj + tj+1

2

)
·
(
tj+1 − tj

))
. (A2)

We find the above instantaneous evolution operator for all the intervals and iteratively take the time-
ordered product to obtain U(0; τ). Applying the obtained complete evolution operator to the initial
state, Ψ(0) gives the final state, Ψ(τ). The step-by-step algorithm is as follows,
Step 1: Initialize the variables, m = 10001, t0 = 0, and tm = τ (i.e., the total duration is specified for
each figure in the main text.)
Step 2: Define a set of m − 1 values between t0 and tm.
Step 3: Iteratively find F

( tj+tj+1
2

)
and U(tj; tj+1) for all the values of j.

Step 4: Calculate U(0; τ) using equation (A1).
Step 5: Find Ψ(τ) = U(0; τ)Ψ(0).

Appendix B: Analysis of Counter-Diabatic Driving
The counter-diabatic method finds an Hamiltonian, HCD and adds it to the system Hamiltonian

H to suppress the non-adiabatic transitions. Thus the total Hamiltonian, H′ = H +HCD drives
the system through an entirely adiabatic path. The additional counter-diabatic term in the above
Hamiltonian can be derived using the equation [10,17],

HCD = i ∑
n
[|∂tn⟩⟨n| − ⟨n|∂tn⟩|n⟩⟨n|], (A3)

where |n⟩ is the instantaneous eigenstate of H and ∂t is the partial dervative with respect to time. In
the case of LZ Hamiltonian (1) considered in this paper, the eigenstates are given by

|1⟩ = 1√
2( f 2(t) + f (t)z)

(
−( f (t) + z)

x

)
(A4)

and

|2⟩ = 1√
2( f 2(t) + f (t)z)

(
x

( f (t) + z)

)
, (A5)
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Figure A1. Paths of evolution of the two-level system driven by the Hamiltonian, H′ given in equation (A7) for
various time durations.

where |1⟩ (|2⟩) is the ground state (excited state) corresponding to the energy eigenvalue λ− (λ+). The
resulting counter-diabatic Hamiltonian obtained from the equation (A3) is [31]

HCD = − xż
2 f 2(t)

(
0 −i
i 0

)
, (A6)

which is same as the derived NOBIE Hamiltonian. Thus, the total Hamiltonian that can be used to
drive the quantum system is

H′ =

(
z x + i xż

2 f 2(t)

x − i xż
2 f 2(t) −z

)
, (A7)

The path of evolution of the two-level system using the above Hamiltonian is given in figure A1.
The paths of evolution are same as the paths given by the NOBIE driving for all the plotted time
durations. The total Hamiltonian obtained by counter-diabatic method is a special case of NOBIE
method and obeys equation (35) with k = 1 (H′ = H+HN). Although the shortcut solutions of both
the methods are equivalent for LZ dynamics, the procedure of NOBIE method is much easier than the
counter-diabatic method.
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12. Barış Çakmak “Finite-time two-spin quantum Otto engines: shortcuts to adiabaticity vs. irreversibility,"

arXiv:2102.11657 [quant-ph] (2021)
13. S. Ibáñez, Xi Chen, E. Torrontegui, J. G. Muga, and A. Ruschhaupt “Multiple Schrödinger Pictures and Dynamics

in Shortcuts to Adiabaticity," Phys. Rev. Lett. 109, 100403 (2012)
14. H. R. Lewis and W. B. Riesenfeld “An exact quantum theory of the time dependent harmonic oscillator and of a

charged particle in a time dependent electromagnetic field," J. Math. Phys. 10, 1458 (1969)
15. Xi Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga “Fast Optimal Frictionless

Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity," Phys. Rev. Lett. 104, 063002 (2010)
16. E. Torrontegui, S. Ibáñez, Xi Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga “Fast atomic transport

without vibrational heating," Phys. Rev. A 83, 013415 (2011)
17. Xi Chen, E. Torrontegui, and J. G. Muga “Lewis-Riesenfeld invariants and transitionless quantum driving," Phys.

Rev. A 83, 062116 (2011)
18. Xi Chen, E. Torrontegui, Dionisis Stefanatos, Jr-Shin Li, and J. G. Muga “Optimal trajectories for efficient atomic

transport without final excitation," Phys. Rev. A 84, 043415 (2011)
19. E. Torrontegui, Xi Chen, M. Modugno, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga “Fast transitionless

expansion of cold atoms in optical Gaussian-beam traps," Phys. Rev. A 85, 033605 (2012)
20. D. J. Griffiths and D. Schroeter “Introduction to Quantum Mechanics (3rd ed.)," Cambridge University Press,

doi:10.1017/9781316995433 (2018)
21. J. J. Sakurai and J. Napolitano “Modern Quantum Mechanics (2nd ed.)," Cambridge University Press.

doi:10.1017/9781108499996 (2017)
22. L. D. Landau “Zur Theorie der Energieübertragung II," Phys. Z. Sowjetunion 2, 46 (1932)
23. C. Zener “Non-adiabatic crossing of energy levels," Proc. R. Soc. A 137, 696 (1932)
24. Artur Ishkhanyan, Matt Mackie, Andrew Carmichael, Phillip L. Gould, and Juha Javanainen “Landau-Zener

problem for trilinear systems," Phys. Rev. A 69, 043612 (2004)
25. N. V. Vitanov and K.-A. Suominen “Nonlinear level-crossing models," Phys. Rev. A 59, 4580 (1999)
26. Boyan T. Torosov and Nikolay V. Vitanov “Pseudo-Hermitian Landau-Zener-Stückelberg-Majorana model," Phys.

Rev. A 96, 013845 (2017)
27. O Abah, R Puebla, A Kiely, G De Chiara, M. Paternostro and S. Campbell “Energetic cost of quantum control

protocols," New Journal of Physics, IOP Publishing 21, 10, 103048 (2019)
28. O. Abah and E. Lutz “Performance of shortcut-to-adiabaticity quantum engines," Phys. Rev. E 98, 032121 (2018)
29. T. Kiran and M. Ponmurugan “Invariant-based investigation of shortcut to adiabaticity for quantum harmonic

oscillators under a time-varying frictional force," Phys. Rev. A 103, 042206 (2021)
30. Y. Zheng, S. Campbell, G. D. Chiara, and D. Poletti “Cost of counterdiabatic driving and work output," Phys. Rev.

A 94, 042132 (2016)
31. B. Çakmak and Ö. E. Müstecaplıoglu “Spin quantum heat engines with shortcuts to adiabaticity," Phys. Rev. E 99,

032108 (2019)
32. Hans De Raedt “Product formula algorithms for solving the time dependent Schrödinger equation," Comput. Phys.

Rep. 7, 1 0167-7977 (1987)
33. F. Jin, R. Steinigeweg, H. De Raedt, K. Michielsen, M. Campisi, and J. Gemmer “Eigenstate thermalization

hypothesis and quantum Jarzynski relation for pure initial states," Phys. Rev. E 94, 012125 (2016)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0389.v1

https://doi.org/10.20944/preprints202501.0389.v1


14 of 14

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0389.v1

https://doi.org/10.20944/preprints202501.0389.v1

	Introduction
	IE and NOBIE Methods for Two-Level Systems
	IE Method for Two-Level Systems
	NOBIE Method for Two-Level Systems

	Discussion
	Conclusion
	Appendix A
	References

