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Abstract: Detection of  lung mass  lesion  is widely  required  in  the clinic  for diagnosis of different 

pulmonary defects  like  lung  cancer  and pulmonary  embolism. Due  to  severe  symptoms of  such 

diseases,  real‐time detection of  the  lung mass  lesion  is  significant.  In  this paper,  this problem  is 

addressed by a new image segmentation algorithm. Primarily, a Gabor‐based filtering algorithm is 

employed to remove the intensity nonuniformity of the CT image. Then, the holes and discontinuities 

of the mass lesion are eliminated through morphological operations. Finally, the lesion objects are 

extracted by using  the  thresholding and connected‐component‐analysis. The experimental  results 

demonstrated significantly short CPU time of the proposed algorithm, as 73 milliseconds for each 

slice on a typical laptop. Also, the solution quality of our method was considerably high, as 91.6%, 

85.4%, and 93.3% in terms of accuracy, sensitivity, and specificity, respectively. We further showed 

that the proposed method provided better solutions compared to six other counterpart algorithms. 

Keywords: computed tomography; pulmonary defects; image segmentation   

 

I. Introduction 

The  lung cancer  is  the  (second) most  important cancer  in men  (women)  [1]. Today,  the high 

growth of lung cancer requires modern methods for accurate and early diagnosis [2,3]. CT images 

are always considered as one of the most common and accurate methods for diagnosing suspicious 

lung glands [4,5]. The lung mass lesion is one of the frequently‐observed biomarkers of such diseases 

in CT images. Hence, real‐time detection of those lesions is drastically required in clinic due to high 

mortality risk of pulmonary diseases. 

Generally, the lung mass lesion detection algorithms can be divided into the intensity‐based and 

model‐based methods.  In  the  former,  the  intensity  distribution  of  the mass  lesion  is  used  as  the 

biomarker while in the later; its shape is modelled based on the anatomy and prior information [6]. On 

the other hand, many researchers recently proposed elegant methods based on the convolutional neural 

networks for nodule detection [7–10]. Although these methods are significantly elaborate, still naive 

image processing methods are advantageous for rapid detection. Hereafter, we will focus on this field. 

For example, Abdillah et al. [11] proposed a new algorithm for mass lesion detection based on 

the watershed transform and region growing. In another work, Hashemi et al. [12] took advantage of 

the region growing for lung region segmentation. They also employed a fuzzy inference system and 

a multilayer perceptron for cancer type detection. Arya and Gupta [13] employed an elegant method 

based on the discrete wavelet transform and template matching for mass lesion detection. In another 

work, Shakeel et al. [14] evaluated a number of classical image processing methods including region 

growing, global thresholding, fuzzy c‐means, Canny and Sobel edge detection, watershed transform, 

and profuse clustering for mass lesion detection.   
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In this paper, we proposed a new real-time accurate method for lung mass lesion detection in CT images. 
As  shown  in  Figure  1,  our  proposed  method  consists  of  Gabor‐based  image  enhancement, 

morphological  closing,  thresholding,  and  connected  component  analysis  that  will  be 

comprehensively stated, in the sequel. 

 

Figure 1. The steps of the proposed lung lesion‐mass detection algorithm. 

II. The Proposed Method 

Our method was originally developed for lung mass lesion detection in 2D CT slices. However, 

it is worth to cite that for a 3D CT volume, we can separately extract the lesion regions in all the 2D 

slices. Obviously, by aggregating all the 2D segmented regions, the whole 3D lesion volume can be 

obtained. 

The source CT slices suffer from the intensity nonuniformity which can potentially degrade the 

detection  performance.  To  overcome  this  problem,  at  the  first  step,  we  propose  an  image 

enhancement  algorithm  based  on  the  Gabor  filter  bank.  Generally,  a  Gabor  filter  supports  the 

directional  low‐pass  filtering  in  a  2D  image  by  combining  a  Gaussian  filter with  a  directional 

sinusoidal function [15], as follows: 
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where σx and σy are STDs of the Gaussian filter and λ and φ adjust the frequency and phase offset of 

the sinusoidal function, respectively. Also,  )~,~( yx   determines the position of the filter samples after 

rotation by the angle θ:   
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where r is the radius of the filter domain. For example, Figure 2 illustrates the low‐pass Gabor filter 

bank obtained by λ=4, σx=43, σy= σx/2, and φ=0. 

The CT slice f:ΩR (where Ω is the slice domain) is filtered by using all the given Gabor filters 

(with σx=4.3) as follows: 

 ,...,2,1),,(),(  kyxfyxg kk
                    (3) 

Indeed, the directional low‐pass filter ψk degrades noise and small variations along its direction 

(2πk/λ). Therefore, at each pixel  (x,y), we have a vector of λ different coefficients given by all  the 

Gabor filters. Therefore, we compute the norm of that vector as the weighting measure of significant 

bright variations at each pixel of the CT slice: 

Gabor Enhancement 

Morphological Closing 

Thresholding 

Connected Component 

Decision Making 
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Although the source CT image is considerably improved in that last step, still there may remain 

some discontinuities and holes in the lesion objects. To tackle this problem, at the second step of our 

algorithm, we perform the morphological closing operator over the image η. It removes dark holes 

and discontinuities  by  using  a  primary dilation  and  keeps  the  size  of  bright  objects  unchanged 

through a subsequent erosion operator (with the same structure element) [16]. We experimentally 

used a square structure element with the side length of 5 mm. 

Due  to  the previously‐performed  enhancements,  the  lesion  regions  are  now uniform  in  the 

resultant image. Thus, at the third step of our method, we can separate the bright lesion regions from 

the dark background by using a global thresholding method to obtain the binary foreground image 

(BFI). We  employ  the  optimal  threshold  selection  method  proposed  by  Otsu  [17]  due  to  the 

robustness  against  noise  and  intensity  unimodality  [18,19].  Figure  3  illustrates  the Gabor‐based 

enhancement and thresholding results for a sample CT slice. 

    

(k=0) (k=1) (k=2) (k=3) 

Figure 2. An illustration of the Gabor filter bank with λ=4, σx=43.4, σy= σx/2, and φ=0. 

   
(a) (b) (c) 

Figure 3. (a) A sample CT slice of the lung and the corresponding results of (b) the Gabor‐based enhancement 

algorithm and (c) thresholding (BFI). 

Then, the lesion objects should be extracted from BFI. However, we should primarily remove 

the large bright region of the chest chamber. For this purpose, the largest connected binary object in 

BFI  is extracted to obtain the binary chest chamber  image (CCI) as shown  in Figure 4.a. Next, the 

outer region of the chest chamber is filled in CCI, by using four corners of the image as initial seeds, 

to obtain  the outer chest  image  (OCI), as  illustrated  in Figure 4.b. Now, according  to  the  formula 

MLI=BFI&~OCI  (where  &  and  ~  are  the  binary  AND  and  COMPLEMENT  operators),  all  the 

foreground pixels of BFI which does not belong to the foreground of OCI are added to the mass lesion 

image (MLI).   

Indeed, MLI includes all the lung bright objects inside the chest chamber. Therefore, a large mass 

lesion can significantly increase the area of the MLI foreground. Thus, at the last step of our algorithm, 

the  total  number  of  voxels  (n)  in  the  LMI  foreground  (i.e.  the  possible mass  lesion)  is  counted. 
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Regarding  the  CT  scanning  resolution  of  λx×λy×λz,  the  total  volume  of  the mass  lesion  can  be 

computed by vCMI=nλxλyλz. Since the lesion increases the volume of the LMI foreground, the defective 

lung  was  distinguished  from  the  healthy  by  comparing  vCMI  with  a  pre‐adjusted  threshold  θ 

(experimentally regulated as θ=870 mm3 for getting the best performance). 

   

(a) (b) (c) 

Figure 4. Post processing of the binary image of Figure 2.c: (a) CCI, (b) OCI, and (c) LMI. 

   
(34th slice) (142th slice) (202th slice) 

Figure 4. The 34th, 142th, and 202th slices of a sample 3D chest CT volume. 

III. Experimental Results 

In this work, we chose 50 (36 normal+14 cancer) 3D chest CT volumes (with the voxel size of 

0.664×0.662×1.2 mm)  from  the  public  VIA  and  ELCAP  databases  [20].  Then,  5  2D  slices  were 

randomly selected from each volume to make our benchmark dataset. The ground‐truth mass lesion 

regions in each CT slice were delineated by a medical‐imaging expert. For example, Figure 4 shows 

three chosen slices of a sample chest CT volume in our dataset. 

We  classified  all  the  benchmark  images  (into  healthy  and  cancer  groups)  by  the  proposed 

method  to  evaluate  its  performance  in  terms  of  accuracy  (with  91.6%),  sensitivity  (85.4%),  and 

specificity (93.3%) measures. Also, as reported in Table 1, we further compared our method with six 

different  counterpart  algorithms  in  the  same  category  for  lung  lesion‐mass  detection. Although 

different databases were used  in evaluations,  the proposed approach generally provided  the best 

performance in terms of accuracy and sensitivity while it is located at the second place in terms of 

specificity.   

On the other hand, the average CPU time of the proposed method for a single slice with the size 

of 512×512 pixel was 0.073 second on a MAC with the CPU of Intel Core‐i7 2.8GHz and 8 GB of main 

memory. Hence, the proposed method provided suitable performance in real time which makes it as 

appropriate choice for clinical applications.   
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Table  1. Comparing  the  solution  quality  of  our method with  six  other  counterpart  algorithms  in  terms  of 

accuracy, sensitivity, and specificity. 

  Modality  Slice Number  Accuracy  Sensitivity  Specificity 

Our Method  2D CT Slice  250  91.6%  85.4%  93.3% 

Arya and Gupta [13] 
2D  X‐Ray 

Radiology 
60  86.2%  –  – 

Region Growing [14]  2D CT Slice  5043  73.8%  74.6%  83.0% 

Global  Thresholding 

[14] 
82.4%  83.5%  95.2% 

Fuzzy c‐means [14]  88.2%  69.0%  94.3% 

Canny Method [14]  86.3%  77.0%  89.0% 

Sobel Method [14]  87.4%  83.4%  93.1% 

IV. Conclusion 

In this paper, a new fast straightforward method for lung lesion‐mass detection in CT images 

was  proposed.  It  provided  short  CPU  time  and,  simultaneously,  significant  solution  quality  in 

comparison to a number of counterpart algorithms at the same category. For performance evaluation, 

we took advantage of a public dataset as the benchmark. However, it would be a good idea to further 

assess its performance on a local national dataset which requires more efforts to this end. 
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