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Abstract

The widespread deployment of deep learning in real-world applications has prompted a paradigm shift
toward collaborative learning between resource-constrained edge devices and powerful cloud-based
infrastructures. Traditional deep learning architectures, typically optimized for centralized cloud environ-
ments, often fall short in scenarios where latency, privacy, energy efficiency, and real-time responsiveness
are critical. Conversely, purely on-device models are limited in capacity and accuracy due to stringent
computational and memory constraints. To address these challenges, a hybrid approach has emerged,
where lightweight on-device models collaborate with large, high-capacity models hosted in the cloud,
enabling the seamless integration of low-latency inference and high-accuracy computation. This survey
provides a comprehensive examination of collaborative learning frameworks that bridge the gap between
on-device and cloud-based models, including federated learning, split learning, model offloading, and
knowledge distillation. We analyze the theoretical foundations of each approach, explore their mathe-
matical formulations, and discuss their practical trade-offs in terms of communication overhead, privacy
guarantees, learning efficiency, and robustness to heterogeneous environments. The survey further explores
the optimization of collaborative inference workflows, where inference is partitioned between devices and
the cloud to minimize latency and energy consumption while maximizing model accuracy. Techniques
such as dynamic model partitioning, early exit strategies, quantization, and sparsification are discussed
in detail, along with system-level co-design considerations that align learning objectives with hardware
and network capabilities. We highlight key applications across diverse domains, including healthcare,
autonomous systems, smart cities, and personalized Al, demonstrating how collaborative learning enables
responsive, context-aware, and privacy-preserving Al services. Through in-depth case studies, we illus-
trate how these systems are implemented in practice, shedding light on architectural decisions, model
deployment strategies, and real-time performance outcomes. Moreover, the abstract delves into emerging
trends that are shaping the future of collaborative learning, such as privacy-enhancing technologies, edge
Al hardware acceleration, continual learning, and adaptive collaboration mechanisms. The intersection
of these advances is poised to redefine how Al is deployed at scale, enabling intelligent systems that are
not only accurate and efficient but also secure, autonomous, and adaptable to dynamic environments. We
conclude by identifying key open challenges, including the need for standardized benchmarks, scalable
learning protocols, and trust frameworks that ensure responsible Al deployment in collaborative settings.
This survey aims to serve as both a foundational reference for researchers entering the field and a strategic
guide for practitioners designing next-generation Al systems that leverage the full potential of collaborative
learning across the edge-cloud continuum.

Keywords: collaborative learning; edge computing; cloud computing; on-device Al; Federated learning;
split learning; knowledge distillation; edge-cloud inference; privacy-preserving Al; distributed deep
learning; adaptive inference; resource-constrained devices; deep neural networks; Al systems engineering
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1. Introduction

In recent years, the rapid advancement of deep learning has brought about transformative changes
across a wide spectrum of application domains, ranging from computer vision, natural language pro-
cessing, and speech recognition to autonomous driving, healthcare, and smart Internet-of-Things (IoT)
environments. Traditionally, state-of-the-art deep learning models have required immense compu-
tational resources and large-scale datasets for both training and inference. These models, typically
comprising millions or even billions of parameters, such as BERT, GPT, and ResNet, are predominantly
trained and deployed in centralized cloud data centers where abundant computational resources
and storage capabilities are available. However, the proliferation of mobile devices, edge computing
infrastructures, and embedded systems has introduced a new paradigm in deep learning: the desire
and necessity to perform inference, and to some extent training, on resource-constrained devices at
the edge of the network [1]. This shift is driven by multiple compelling factors [2]. First, there is
an increasing demand for real-time, low-latency inference in applications such as augmented reality,
robotics, and smart homes, which cannot tolerate the round-trip latency incurred by transmitting
data to remote cloud servers [3]. Second, concerns regarding data privacy, security, and compliance
with regulations such as GDPR have motivated on-device processing to minimize the exposure of
sensitive user data. Third, the sheer volume of data generated at the edge makes it impractical and
cost-prohibitive to transmit all data to the cloud for processing, thus necessitating more intelligent
and distributed computing paradigms [4]. Nonetheless, the limited computational power, energy
constraints, and memory limitations of edge devices pose significant challenges to the deployment of
large-scale deep learning models directly on-device. To address these constraints, various techniques
such as model quantization, pruning, knowledge distillation, and architecture search for efficient
models (e.g., MobileNet, TinyBERT) have been proposed to enable the design and deployment of
small deep learning models that can operate within the capabilities of edge hardware [5]. Despite
these advances, small models often suffer from reduced accuracy and generalization performance
compared to their large-scale cloud counterparts, thereby creating a trade-off between efficiency and
performance [6]. This confluence of cloud and edge computing capabilities has given rise to the
concept of collaborative learning, a hybrid learning paradigm where small models on edge devices and
large models in the cloud cooperate to optimize inference and learning tasks. Collaborative learning
seeks to harness the complementary strengths of both edge and cloud: the proximity, privacy, and
responsiveness of on-device models, and the accuracy, computational richness, and data aggregation
abilities of cloud-based models. The overarching objective is to design synergistic frameworks that
allow seamless interaction between these heterogeneous models while addressing challenges related to
communication overhead, model consistency, system heterogeneity, and dynamic environmental con-
ditions [7]. Several collaborative learning frameworks have been proposed, including but not limited
to, split computing (also known as split learning), where a deep neural network is partitioned between
the edge and cloud; federated learning, where decentralized models are trained collaboratively without
sharing raw data; and knowledge distillation-based approaches, where large cloud models distill
knowledge to small edge models either offline or dynamically during inference. Moreover, hybrid
techniques that integrate multiple paradigms, such as federated distillation or split-federated learning,
have emerged to exploit the advantages of each method. Beyond the methodological developments, the
deployment of collaborative learning systems introduces a range of system-level challenges, including
network variability, energy management, model synchronization, data heterogeneity, and security
threats such as model inversion and poisoning attacks. Consequently, the design of robust, efficient,
and secure collaborative learning architectures demands a cross-disciplinary approach, integrating
insights from machine learning, systems engineering, communication networks, and security [8].
This survey provides a comprehensive and structured review of the emerging field of collaborative
learning between on-device small models and cloud-based large deep learning models. Our aim is to
elucidate the fundamental principles, technical challenges, and current state-of-the-art methodologies
in this domain [9]. We categorize and analyze existing approaches, highlight key design trade-offs,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0352.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2025 doi:10.20944/preprints202508.0352.v1

30f17

and identify promising directions for future research. Specifically, we address the following aspects
in this survey:

e  The motivation and rationale for collaborative learning, with an emphasis on application scenarios
and system constraints [10].

e A taxonomy of collaborative learning frameworks, including split learning, federated learning,
and knowledge distillation, and their adaptations for heterogeneous model collaboration.

e  Technical challenges inherent to collaborative learning, such as latency, energy consumption,
model heterogeneity, and security, along with potential mitigation strategies.

e Anoverview of real-world systems and platforms that support collaborative learning, including
hardware, software, and network considerations.

*  Open research questions and future directions, including the role of foundation models, personal-
ized learning, adaptive collaboration strategies, and standardization efforts [11].

In summary, as the demand for intelligent edge applications continues to grow, and the limitations
of both standalone cloud and edge computing become more pronounced, collaborative learning offers
a promising pathway towards scalable, efficient, and privacy-preserving deep learning systems. This
survey seeks to equip researchers, practitioners, and system designers with a deep understanding of
the landscape of collaborative learning and to foster the development of next-generation intelligent
systems that seamlessly blend the capabilities of on-device small models with those of cloud-based
large models [12].

2. Problem Formulation

Let us formally define the problem of collaborative learning between an on-device small model
and a cloud-based large deep learning model. We denote the input space by X C R? and the
corresponding output or label space by ). Given a data distribution D over X x )/, the goal of a
learning system is to find a function f : X — ) that minimizes a loss function £(f(x),y), where
(x,y) ~ D. In the context of collaborative learning, this function f is not implemented by a single
monolithic model, but rather decomposed into two (or more) components that are distributed across
the edge device and the cloud infrastructure [13]. Let us denote the on-device small model by
fs: X — Z, where Z C RF represents an intermediate feature space, and the cloud-based large model
by f; : Z — Y [14]. The complete model is then given by the composition f(x) = f;(fs(x)). The
optimization objective is to minimize the expected loss:

I}:ifrll]E(x,y)wD[£<fl (fs(x)), y)]- 1)

In practice, only a finite dataset {(x;,y;)}/" ; sampled from D is available. Moreover, this dataset
may be distributed across edge devices and cloud servers, denoted by D, and D, respectively. In
some cases, data cannot be directly shared between devices and the cloud due to privacy constraints,
leading to the need for distributed optimization strategies [15]. Let us denote the empirical loss over

the dataset by:
A 1 &
L(fofi) = o 3 LA vi). @
i=1
The problem then becomes minimizing £ subject to system constraints:
min L£(fs, 3
it (fs f1) ®)

subjectto C(fs, f;) <,

where C(fs, f;) represents a composite cost function encompassing computation time, energy con-
sumption, communication latency, and privacy leakage, and 7 is a user-defined threshold. One of
the primary challenges in collaborative learning lies in the optimal partitioning of the model and the
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coordination between f; and f;. For instance, in split learning, the partition point 7t determines the
layer at which the model is split between the edge and the cloud [16]. Let f(x; 1) = fl[nH:L} ( fs[lzn] (x)),
where L denotes the total number of layers in the complete model. Finding an optimal partition point
requires balancing the computational cost C,(77) on the edge and C.(7t) on the cloud, as well as the
communication cost Ceomm (77) incurred in transmitting the intermediate activation z = fs[lzn] (x) from
the edge to the cloud. Therefore, the partition optimization problem can be formalized as:

mgn Ce() + Ce(71) + Coomm(m), st L(f(x;m),y) <, 4)

where € denotes an acceptable loss tolerance. In knowledge distillation-based collaborative learning,
the objective shifts towards minimizing a distillation loss Lxp between the output of the small model
fs and a large teacher model fr deployed in the cloud [17]. The distillation objective is typically
formulated as:

Lkp =a- Lcp(fs(x),y) + (1 —a) - LxL(fs(x), fr(x)), ()

where L denotes the cross-entropy loss, L is the Kullback-Leibler divergence between the soft
outputs of fs and fr, and a € [0, 1] is a hyperparameter balancing the two terms. The goal is to train
the on-device small model to mimic the predictions of the large cloud model while retaining acceptable
computational efficiency. In federated learning scenarios, let us consider a set of M devices, each with
a local dataset D,,, m = 1,..., M [18]. The collaborative objective is to minimize the global loss:

M Dm .
min ) %Em(fs), (6)
5 m=1

where L, (fs) = IDlTA Y(x,y:)eDn £(fs(xi),yi). The large cloud model f; may serve as an aggregator
or teacher, distilling knowledge to the federated edge models via a server-based coordination proto-
col [19]. In summary, the mathematical formulation of collaborative learning encompasses diverse
optimization objectives and constraints, dependent on the chosen collaboration paradigm—split learn-
ing, federated learning, knowledge distillation, or hybrid models [20]. Each paradigm introduces
unique computational and communication trade-offs, necessitating multi-objective optimization ap-
proaches to balance performance, efficiency, and privacy [21]. Additionally, dynamic environmental
factors such as network bandwidth fluctuations, device heterogeneity, and user mobility introduce
further complexity into this optimization landscape, making adaptive and robust solutions critical
to real-world deployment. This section sets the mathematical foundation upon which subsequent
discussions of specific methodologies and systems will be built [22].

3. System Architecture

A fundamental aspect of collaborative learning between on-device small models and cloud-based
large models lies in the design and implementation of an efficient, scalable, and adaptable system
architecture [23]. This architecture must orchestrate the interactions between edge devices and cloud
servers to facilitate joint model inference and training while satisfying constraints related to latency,
privacy, energy, and communication bandwidth [24]. Figure 1 presents a vertical overview of a typ-
ical collaborative learning architecture [25]. At the bottom layer are Edge Devices, which include
smartphones, [oT sensors, autonomous vehicles, and wearable devices. Each device contains limited
computational resources—CPU, GPU, or specialized Al accelerators—and stores a lightweight model
component f;, along with a local dataset D, [26]. These devices perform initial data processing and
model inference, and optionally contribute to local training [27]. Above the edge lies the Communica-
tion Layer, responsible for managing data transmission between edge and cloud. This layer accounts
for variable network conditions, latency constraints, and security protocols such as encryption and
differential privacy. It also supports compression and quantization of intermediate representations
to minimize communication overhead. At the top is the Cloud Infrastructure, which hosts the large
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deep learning model f;, trained on massive datasets D.. The cloud has high computational capacity,
enabling intensive tasks such as fine-tuning, centralized aggregation, and large-scale inference [28]. It
also coordinates collaborative protocols, maintains global model versions, and performs knowledge
distillation to enhance the performance of edge models.

Cloud Infrastructure
Large Model f;, Centralized Training,
Knowledge Distillation, Model Aggregation

Model Updates, Distilled Knowledge | Processed z, Feedback

Communication Layer
Latency Management, Security Protocols,
Bandwidth Optimization, Data Compression

Optimized f;, Instructions | Forwarded z

Network Infrastructure
5G/6G, Wi-Fi, Edge Gateways, Load Balancing, Data Routing

N

Updated fs | Intermediate Data z

-

Edge Devices
Small Model f;, Local Inference, Sensor Integration, Data Collection, User Interaction

Control Signals | Raw Data

Local Data Sources
Cameras, Microphones, Wearables, IoT Sensors, User Input

Figure 1. Extended vertical system architecture for collaborative learning between on-device small models and
cloud-based large models. The figure illustrates a full-stack view from data sources to the cloud, emphasizing
communication and model update flows.

The edge-cloud collaboration depicted in Figure 1 supports various operational modes [29].
In inference mode, raw input x is first processed by the small model f; on the device to generate
intermediate features z = f;(x) [30]. These features are transmitted through the communication
layer to the cloud, where the large model f; completes the inference, producing § = f;(z) [31]. This
division reduces latency while leveraging the accuracy of the large model [32]. In training mode,
either federated learning or knowledge distillation may be used. In federated learning, each edge
device trains fs on local data and periodically sends model updates (e.g., gradients or weights) to the
cloud, which aggregates them into a global model. In distillation, the cloud model f; sends distilled
outputs or soft labels to the edge, enhancing the training of f; without exposing raw data. A critical
component of this architecture is the communication protocol [33]. Due to bandwidth constraints
and energy limitations on edge devices, it is essential to compress the transmitted data z without
significantly degrading model performance [34]. Techniques such as sparsification, quantization,
and entropy coding are commonly used [35]. Additionally, privacy-preserving mechanisms such as
homomorphic encryption, secure multi-party computation, or differential privacy can be applied to z
to protect sensitive user information [36]. Furthermore, the architecture must adapt to heterogeneous
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edge devices with varying capabilities [37]. Dynamic model partitioning allows the system to select
the optimal split point 7t in the model, based on real-time monitoring of network latency, energy
availability, and computational load. This requires a runtime decision engine, potentially driven by
reinforcement learning, to balance the trade-offs between local computation and remote processing [38].
In conclusion, the system architecture for collaborative learning must holistically integrate edge
computation, communication efficiency, and cloud intelligence. The interplay between small and large
models across this architecture enables a continuum of intelligence from edge to cloud, empowering
applications that demand responsiveness, privacy, and high accuracy simultaneously [39]. Subsequent
sections will delve into the specific methodologies that instantiate this architecture in practical systems.

4. Comparison of Collaborative Learning Paradigms

Collaborative learning between on-device small models and cloud-based large models can be
implemented through several distinct paradigms, each with its own operational principles, advantages,
and limitations [40]. Among the most widely adopted frameworks are Split Learning, Federated
Learning, and Knowledge Distillation, along with emerging hybrid models that combine elements
from these approaches [41]. A systematic comparison of these paradigms is crucial for understanding
the design trade-offs involved and for selecting the most appropriate strategy for a given application
scenario. Table 1 provides a comparative summary of the key characteristics of the major collaborative
learning paradigms. The comparison covers aspects such as the structure of model partitioning, data
locality, communication patterns, privacy implications, computational load distribution, and typical
use cases [42]. Each paradigm is tailored to address specific constraints and goals, and their suitability
varies depending on the context, such as the heterogeneity of edge devices, network conditions, and
privacy requirements.

Table 1. Comparison of Collaborative Learning Paradigms.

Aspect Split Learning Federated Learning Knowledge Distillation

Model is split between edge
Model Partitioning and cloud at an
intermediate layer

Full model resides on each Small model on device,
edge device; no split large teacher in cloud

Raw data stays on edge;
Data Locality only intermediate

Raw data may stay on edge;

Raw data stays on edge; soft labels or logits

only model updates sent

activations sent exchanged
Frequent bidirectional Periodic upload of model Irregular transfer of
Communication Pattern transfer of activations and updates; occasional predictions or distilled
gradients per sample/batch ~ downloads knowledge
Privacy Preservation Moderate; activations may High; only updates Variable; depends on
y leak some data transmitted distillation method used
. Low to moderate; partial ngh.; full. Low; primarily forward
Edge Computation Load training/inference on
forward /backward pass . pass
device
High; completes Low to moderate; model .
. . High; teacher model
Cloud Computation Load forward /backward pass for  aggregation or central > S
2. training and distillation
each sample training
e High; rea.l-tlr.ne Low to moderate; trainingis ~ Low; distillation can be
Latency Sensitivity communication needed for .
- . asynchronous scheduled flexibly
inference/training
. Real-time inference, Large-scale collaborative Mod.el compression,
Typical Use Cases . oo . 2. o continual learning,
privacy-sensitive settings training, personalization

personalization

Split Learning offers a fine-grained division of computation between edge and cloud, making it
particularly suitable for real-time inference in latency-sensitive applications [43]. In this paradigm,
the edge device processes the input x through the early layers of the model, generating intermediate
activations z, which are sent to the cloud. The cloud completes the inference or backpropagation and
may return gradients or output predictions [44]. While this approach minimizes data exposure and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0352.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2025 doi:10.20944/preprints202508.0352.v1

7 of 17

supports dynamic model partitioning, it requires low-latency, high-bandwidth connections and can
be communication-intensive during training. Federated Learning decentralizes the training process
by distributing full copies of a small model to each participating edge device. Devices perform local
training on their own data and periodically transmit model updates, such as weight deltas or gradients,
to a central server [45]. The server aggregates these updates to produce a global model, which is redis-
tributed [46]. This method excels in privacy preservation and supports massive scalability, but imposes
significant computation on edge devices and may struggle with data heterogeneity (non-IID data) and
stragglers in asynchronous environments. Knowledge Distillation enables indirect collaboration by
having a powerful cloud model (teacher) generate softened labels or feature representations, which
are then used to train a smaller model (student) on the edge. This can occur either offline or online,
and may involve continual distillation as the student model encounters new data. This approach is
flexible in terms of communication frequency and can significantly compress large models for edge
deployment [47]. However, its effectiveness depends on the alignment between teacher and student
models and may require repeated cloud access for optimal performance [48]. Ultimately, the choice
of paradigm depends on the specific application requirements, such as the need for privacy, latency
constraints, and the computational capacity of edge devices. Hybrid models, such as split-federated
learning or federated distillation, are gaining popularity as they attempt to combine the strengths
of different approaches [49]. For example, federated learning may be augmented with distillation to
reduce communication overhead, or split learning may be integrated with privacy-preserving tech-
niques to enhance security. In conclusion, understanding the comparative landscape of collaborative
learning paradigms allows system designers and researchers to better align technical capabilities with
application demands [50]. As edge-cloud ecosystems become more diverse and pervasive, the ability
to flexibly adopt and combine different paradigms will be crucial for building robust, efficient, and
intelligent systems.

5. Challenges and Research Opportunities

While collaborative learning between on-device small models and cloud-based large models
presents immense potential, realizing its full benefits requires overcoming several fundamental and
practical challenges. These challenges span multiple dimensions, including system-level constraints,
algorithmic limitations, privacy-preserving mechanisms, and real-world deployment concerns. Ad-
dressing these issues not only enables more robust and efficient systems but also opens up fertile
ground for impactful research and innovation. One of the foremost challenges is the optimization
of communication efficiency between edge and cloud [51]. As collaborative learning often involves
frequent exchange of intermediate data, model parameters, or gradients, the communication cost can
become a bottleneck, especially in bandwidth-constrained or latency-sensitive environments [52]. In
split learning, for instance, transmitting high-dimensional feature maps z at each forward pass imposes
significant load on the network, which may not be sustainable for real-time applications or in regions
with limited connectivity. Advanced techniques such as adaptive compression, sparse representation
learning, and progressive transmission of features are actively being explored to mitigate this issue.
Additionally, dynamically selecting the model partition point 7r based on current network conditions
and computational load is a promising strategy, but it requires sophisticated orchestration mecha-
nisms and real-time monitoring. Another critical issue is data heterogeneity and non-1ID distribution
across edge devices [53]. In federated and distillation-based learning paradigms, each device typi-
cally collects data unique to its environment and user behavior, leading to statistically diverse local
datasets Dg(i) [54]. This non-IID nature of data introduces challenges in achieving convergence and
generalization, as model updates from different devices may be conflicting or biased. Consequently,
aggregation methods such as weighted averaging in federated learning (e.g., FedAvg) may lead to
suboptimal performance [55]. Research is increasingly focusing on personalized federated learning,
meta-learning, and domain adaptation techniques that can account for data heterogeneity and tailor
the global model to diverse local conditions without compromising overall performance. Privacy and
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security concerns are also paramount in collaborative learning scenarios. Although raw data typically
remains on the edge, intermediate features or model updates may still leak sensitive information. For
example, in split learning, it has been shown that activations z can be exploited through inversion
attacks to reconstruct input data. Similarly, in federated learning, gradients may reveal private data if
not properly sanitized [56]. Techniques such as differential privacy, secure multi-party computation
(SMPC), homomorphic encryption, and trusted execution environments (TEE) offer potential solutions,
but each comes with trade-offs in terms of computational cost, latency, and scalability [57]. A key
research direction involves developing lightweight, scalable privacy-preserving mechanisms that can
be deployed efficiently across heterogeneous devices with limited resources. From an algorithmic per-
spective, model co-design poses a unique challenge [58]. Collaborative learning necessitates designing
models that are not only accurate but also modular, with clearly defined interfaces between the small
model f; and large model f; [59]. This requires innovations in neural network architectures that support
efficient partitioning, distillation, or transfer of knowledge [60]. Techniques such as neural architecture
search (NAS), modular neural networks, and efficient transformer variants (e.g., MobileBERT, Tiny ViT)
are being adapted to facilitate this co-design [61]. Moreover, dynamically reconfigurable models that
adjust their complexity or depth based on available resources can offer additional flexibility, but they
require reliable runtime control mechanisms and robust performance guarantees. A further challenge
lies in the evaluation and benchmarking of collaborative learning systems. Traditional metrics such as
accuracy and inference time do not fully capture the multi-dimensional trade-offs involved, including
energy consumption, privacy risk, communication overhead, and system robustness. Standardized
benchmarks, datasets, and simulation environments that reflect realistic edge-cloud scenarios are
urgently needed. Such benchmarks should account for diverse device capabilities, network conditions,
and user behaviors to enable fair comparison and reproducibility of research outcomes. Finally, scal-
ability and deployment at scale remain significant hurdles. Real-world applications involve a large
number of edge devices, each with varying hardware, software, and network configurations [62]. Effi-
cient orchestration, fault tolerance, and update propagation in such heterogeneous environments are
complex yet essential for practical adoption. Emerging technologies such as 5G, edge Al accelerators,
and distributed computing frameworks (e.g., Kubernetes, TensorFlow Federated) offer infrastructure
support, but their integration into collaborative learning workflows remains an open research area.
In conclusion, while collaborative learning between on-device small models and cloud-based large
models holds transformative potential, realizing this vision necessitates overcoming substantial chal-
lenges across communication, computation, privacy, and scalability [63]. These challenges, however,
simultaneously represent rich research opportunities. Future work that integrates advances in ma-
chine learning, systems engineering, and privacy-enhancing technologies will be crucial in making
collaborative learning not only feasible but also ubiquitous across diverse domains such as healthcare,
autonomous systems, smart cities, and personal Al

6. Applications and Case Studies

The collaborative learning paradigm—where on-device small models work in tandem with pow-
erful cloud-based deep learning models—has begun to transform a wide range of application domains.
This transformation is driven by the growing need for systems that balance the often conflicting
requirements of responsiveness, accuracy, privacy, and energy efficiency [64]. In this section, we ex-
plore several prominent application areas and case studies that demonstrate the tangible benefits and
practical considerations of deploying collaborative learning systems in real-world environments [65].
One of the most impactful areas is healthcare and personalized medicine, where patient data is highly
sensitive and privacy regulations such as HIPAA and GDPR impose strict data protection require-
ments. In scenarios such as wearable health monitoring or mobile diagnostics, edge devices such as
smartwatches or smartphones continuously collect physiological data (e.g., heart rate, blood oxygen
levels, ECG signals). On-device models provide immediate feedback, detecting anomalies or triggering
alerts in real-time. However, due to the limited capacity of edge models, complex diagnostic tasks or
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longitudinal pattern recognition may necessitate cloud-based analysis. Through collaborative learn-
ing—often via split learning or federated learning—the edge can process raw signals locally and send
compact, privacy-preserving representations to the cloud, which refines the diagnosis using advanced
models trained on large-scale medical datasets. Case studies have demonstrated this approach in
early detection of arrhythmias, diabetic retinopathy screening, and even mental health monitoring via
speech and behavioral analysis, offering both high accuracy and robust privacy [66]. In the realm of
autonomous vehicles and intelligent transportation systems, real-time decision-making is critical, yet
full reliance on cloud services is infeasible due to latency and connectivity limitations. Autonomous
vehicles must process sensor data (e.g., LIDAR, camera, radar) rapidly to perform tasks such as object
detection, path planning, and collision avoidance. On-board models offer low-latency inference but
are constrained in complexity due to energy and space limitations [67]. Collaborative learning enables
these systems to offload computationally intensive tasks, such as complex scene understanding or
global route optimization, to the cloud [68]. For example, a vehicle might detect objects locally but send
semantically rich representations to the cloud for high-level decision support, receiving back optimized
navigation strategies. Furthermore, federated learning can be used to aggregate driving experiences
from multiple vehicles without exposing raw sensor data, leading to continual improvement of both
edge and cloud models [69]. These systems also benefit from real-time cloud updates, enabling vehicles
to adapt quickly to new traffic patterns or hazardous conditions [70]. Smart cities and IoT infrastructure
represent another fertile domain for collaborative learning [71]. In such environments, a multitude of
distributed sensors and edge devices collect data related to energy consumption, air quality, traffic
flow, and public safety. These devices, typically constrained in power and compute, require efficient
local inference to enable immediate responses, such as triggering alarms or adjusting environmental
controls [72]. However, the aggregate data across a city provides valuable insights for long-term
planning and policy-making. Collaborative learning enables both immediate local responsiveness and
comprehensive global analysis. For instance, in energy management systems, local devices predict
energy demand and adjust consumption autonomously, while cloud-based models forecast city-wide
energy trends and optimize grid operations [73]. Split learning facilitates secure, real-time interaction
between local and centralized intelligence, while federated learning ensures that sensitive user data
remains on-premise. In the field of natural language processing (NLP) and personal Al assistants,
collaborative learning is crucial for enabling personalized yet privacy-preserving interactions. Virtual
assistants like Siri, Alexa, or Google Assistant must respond quickly to voice commands, often without
reliable network connectivity [74]. On-device models handle basic commands and wake-word detec-
tion, while cloud-based large language models provide more sophisticated understanding and dialog
generation [75]. Through distillation and collaborative inference, the on-device models can continually
improve from cloud-based models without exposing user conversations [76]. Moreover, federated
learning allows models to learn from user interactions across millions of devices while ensuring that
individual voice data never leaves the device. Recent studies have shown that such approaches can sig-
nificantly improve the quality and personalization of dialog systems while maintaining strong privacy
guarantees. Finally, in augmented reality (AR) and mobile gaming, collaborative learning enables rich,
immersive experiences on resource-constrained devices. AR applications require real-time processing
of video, depth, and spatial data to render virtual content accurately and responsively. On-device
models perform rapid pose estimation and environment mapping, while cloud models handle complex
tasks such as object recognition, scene understanding, or multiplayer coordination [77]. Collaborative
inference ensures that latency-critical operations are kept local, while cloud intelligence enhances
realism and consistency across devices [78]. Case studies in mobile AR gaming and industrial AR
support systems highlight how hybrid model deployment enables scalable, low-latency experiences
that were previously only possible on high-end hardware [79]. In summary, collaborative learning
between on-device small models and cloud-based large models is being actively deployed across
diverse application domains, each with unique requirements and challenges. The key to successful
deployment lies in carefully balancing the division of labor between edge and cloud, optimizing com-
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munication, and ensuring privacy and robustness. As hardware capabilities continue to evolve and
networks become more pervasive, the reach and impact of collaborative learning systems are poised to
expand dramatically, enabling smarter, more responsive, and more privacy-respecting technologies
across all facets of daily life.

7. Future Directions and Emerging Trends

As collaborative learning continues to gain traction in both academic research and industrial
deployment, several emerging trends and future directions are shaping its evolution [80]. These trends
are influenced not only by advances in machine learning algorithms but also by innovations in hard-
ware, networking, privacy technologies, and system-level design. The future of collaborative learning
will be characterized by increasing intelligence and autonomy at the edge, more seamless and efficient
integration with the cloud, and greater personalization, security, and adaptability of Al systems across
diverse application contexts. One significant future direction lies in the development of adaptive and
dynamic collaboration mechanisms [81]. Current collaborative learning systems often rely on static
configurations, where the division of computation and learning responsibilities between edge and
cloud is fixed or predetermined. However, real-world environments are inherently dynamic, with
fluctuating network bandwidth, varying computational resources, and evolving user requirements [82].
Future systems must be capable of dynamically adjusting the model partitioning point 7, selectively
offloading tasks based on current resource availability, latency constraints, or privacy concerns. Such
systems require real-time monitoring, predictive analytics for resource forecasting, and reinforcement
learning-based strategies that can learn optimal collaboration policies over time. Additionally, dynamic
model reconfiguration, such as elastic neural networks that adjust their size or depth on-the-fly, will
play a key role in enabling fluid, context-aware collaborative intelligence [83]. Another critical area
of growth is the integration of privacy-enhancing technologies (PETs) into collaborative learning
workflows [84]. While methods such as differential privacy, homomorphic encryption, and secure
multi-party computation have seen increasing adoption, future systems will need to embed these tech-
nologies more deeply and efficiently into learning pipelines [85]. Lightweight cryptographic protocols,
efficient privacy budget management, and user-controllable privacy settings will become essential,
particularly in consumer-facing applications such as personal Al assistants and health monitoring [86].
Moreover, the intersection of PETs with federated and split learning opens up new possibilities, such
as privacy-preserving split learning or federated analytics, where both raw data and intermediate rep-
resentations remain secure. The design of PET-aware model architectures, communication protocols,
and optimization algorithms is an emerging field that will significantly influence the deployment of
trustworthy Al systems [87]. The rise of specialized edge Al hardware represents another transfor-
mative trend. Dedicated Al accelerators, such as Tensor Processing Units (TPUs), Neural Processing
Units (NPUs), and custom ASICs, are becoming increasingly prevalent in smartphones, IoT devices,
and embedded systems. These accelerators enable low-latency, energy-efficient execution of inference
and training tasks on the edge, thus expanding the scope of collaborative learning. Future research
will focus on co-designing algorithms and hardware to maximize performance within stringent power
and thermal envelopes. Techniques such as quantization-aware training, hardware-aware neural
architecture search (HW-NAS), and compiler optimizations for Al inference (e.g., TVM, XLA) will be
critical enablers of efficient collaboration [88]. Additionally, the emergence of neuromorphic computing
and in-memory processing holds promise for ultra-low-power edge intelligence, further enhancing the
feasibility of real-time, on-device learning [89]. Another promising direction is the advancement of
continual and lifelong learning in collaborative settings. In many real-world scenarios, data is not static
but evolves over time, reflecting changes in user behavior, environment, and system requirements [90].
Collaborative learning systems must be capable of incremental learning, continually adapting to new
data without catastrophic forgetting [91]. This requires the development of algorithms that support
on-device continual learning, coupled with cloud-assisted memory consolidation and knowledge
transfer [92]. Techniques such as elastic weight consolidation, experience replay, and meta-learning can
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be adapted to collaborative settings, enabling personalized and adaptive Al experiences that improve
over time [93]. Moreover, decentralized learning paradigms, where learning occurs in peer-to-peer
networks without centralized cloud orchestration, may emerge as viable alternatives in privacy-critical
or resource-constrained environments. Finally, the future of collaborative learning will be shaped by
the emergence of standardized frameworks, benchmarks, and platforms that facilitate experimentation,
evaluation, and deployment. Current research is often siloed, with limited comparability due to the
lack of common datasets, metrics, or system configurations [94]. Open-source platforms such as Tensor-
Flow Federated, PySyft, and Flower are beginning to address this gap, but there is a pressing need for
comprehensive toolchains that integrate model design, privacy controls, communication optimization,
and deployment orchestration. Benchmarks that reflect realistic edge-cloud scenarios—including
heterogeneous devices, dynamic network conditions, and adversarial threats—will enable more robust
evaluation of proposed methods [95]. Furthermore, the development of simulation environments and
digital twins for collaborative learning will facilitate rapid prototyping and stress-testing of systems
under diverse conditions [96]. In conclusion, the future of collaborative learning lies at the intersection
of machine learning, systems engineering, privacy science, and hardware design. The trajectory of
research and development will be shaped by the need for intelligent, secure, and adaptable systems
that seamlessly integrate the strengths of edge and cloud. As collaborative learning matures, it has
the potential to unlock transformative capabilities across sectors, from personalized healthcare and
autonomous systems to smart environments and beyond [97]. Continued interdisciplinary collabora-
tion and innovation will be essential to realize this vision and to address the profound technical and
societal challenges it presents.

8. Conclusions

The proliferation of intelligent devices and the exponential growth of deep learning capabilities
have converged to create both opportunities and challenges in the deployment of artificial intelligence
across diverse environments. At the heart of this convergence lies the paradigm of collaborative
learning between on-device small models and cloud-based large models—a paradigm that seeks
to combine the immediacy, privacy, and autonomy of edge computing with the power, scalability,
and holistic intelligence of the cloud [98]. This survey has examined the multifaceted aspects of this
collaborative learning landscape, encompassing fundamental methodologies, technical challenges,
practical applications, and emerging research directions [99]. One of the core themes that emerges from
this survey is the intricate balance that collaborative learning seeks to strike among competing system
objectives. On-device models are constrained by limited compute, storage, and energy resources, yet
they offer unique advantages such as low-latency inference, enhanced privacy, and real-time respon-
siveness [100]. In contrast, cloud-based models leverage vast computational resources and massive
datasets, enabling sophisticated analysis, continual model updates, and global context-awareness [101].
Collaborative learning frameworks—including split learning, federated learning, knowledge distilla-
tion, and hybrid approaches—provide flexible mechanisms to distribute computational and learning
workloads across the edge-cloud continuum, dynamically adapting to system constraints and user
needs. The design and deployment of such systems, however, is far from trivial [102]. Communication
efficiency, privacy preservation, robustness to heterogeneous environments, and the ability to person-
alize models without compromising scalability are persistent challenges [103]. The interplay between
model design and system architecture is particularly critical—requiring co-optimization of algorithms,
network protocols, and hardware acceleration [104]. The survey has outlined how recent advances in
edge Al hardware, privacy-enhancing technologies, and dynamic model orchestration are beginning
to address these challenges, but significant research and engineering work remains. Moreover, the
applications of collaborative learning are rapidly expanding across domains [105]. From real-time
health monitoring and autonomous driving to smart infrastructure and natural language interfaces,
collaborative learning systems are enabling intelligent functionalities that were previously unattainable
in resource-constrained settings. These applications not only demonstrate the practical feasibility of
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collaborative learning but also highlight its societal impact—in improving accessibility, enhancing
safety, protecting privacy, and delivering personalized services at scale. Looking forward, the future of
collaborative learning promises even greater integration and intelligence. Emerging trends such as
adaptive learning architectures, privacy-centric Al governance, continual and lifelong learning, and
standardized benchmarking will drive the next wave of innovation. Collaborative learning is poised
to become a foundational element in the architecture of ubiquitous Al—permeating every aspect of
human-computer interaction, embedded intelligence, and distributed computing [106].

In conclusion, the collaborative learning of on-device small models and cloud-based large models
represents a transformative shift in the design of intelligent systems. It transcends traditional bound-
aries between centralized and decentralized computing, offering a unified approach that leverages
the best of both worlds. Realizing the full potential of this paradigm will require sustained, interdisci-
plinary efforts that bridge machine learning, systems engineering, privacy science, and user-centric
design. As these efforts mature, collaborative learning will not only enhance the capabilities of Al
systems but also ensure that these capabilities are delivered in ways that are efficient, equitable, secure,
and aligned with human values.
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