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Abstract: A neural network model for a constitutive law in nonlinear structures is proposed. The
neural model is constructed based on a data set of responses of representative volume elements,
calculated by finite elements. An open scientific software machine learning platform Tensorflow and
an application programming interface, intended for a deep learning Keras library, provided by Python
are used for the development of the artificial neural network. The tangential stiffness matrix within a
multi-scale model is calculated via the method of automatic differentiation of Tensorflow. The results
are compared with given data set. The loss function, including the Sobolev metrics is computed. The
results can be integrated into a multiscale finite element analysis and provide results with less effort.
The technique is also tested on hyperelastic materials.

Keywords: neural network; constitutive law; composite structure; representative elements; computa-
tional procedure

1. Introduction
Multiscale modeling is a simulation technique that describes a behavior at a given length scale

based on the physics at a finer scale, which in turn is considered to be better known or easy to be
modeled. Structures made of composite materials or materials with microstructure constitute typical
candidates for multiscale modeling. In fact, it is impossible to model a whole structure by taking all
constituents and their, possibly nonlinear interactions within the model. Therefore, a compromise
must be considered, where a reduction in precision and an increase in uncertainty related to mul-
tiscale modeling should be accepted, to avoid the complexity of a full-scale model. In engineering,
homogenization is a representative example of applied multiscale modeling [1]. In linear problems,
homogenization is usually based on analytical expressions that give the homogenized properties for a
given microstructure or composite material [2,3]. This approach is powerful, despite certain theoretical
difficulties for the calculation of homogenized properties. Numerical homogenization allows for the
extension of classical analytical homogenization in order to describe more complicated problems.
Homogenized properties are load-dependent or even path-dependent; therefore, analytical solutions
are difficult to calculate orxist. A path-independent problem is considered here as a first example.

Artificial neural networks have been applied in different areas of science and engineering, where
data sets are available for training and testing. In particular, ANNs are employed in elastoplastic and
contact problems in mechanics by using a minimization of energy. The Hopfield and Tank neural
networks have been proposed by Kortesis and Panagiotopoulos [4], and Avdelas et al. [5]. The
feedforward NNs trained by the backpropagation algorithm have been used for an approximation
of several problems in mechanics based on examples (supervised learning). Inverse and parameter-
identification problems in mechanics have been solved by using backpropagation neural networks
in Stavroulakis et al. [6,7], Stavroulakis [8], Waszczyszyn and Ziemianski [9]. The buckling loads
in non-linear problems for elastic plates have been calculated by neural netwoks in Muradova and
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Stavroulakis [10]. A recent review of the classical usage of neural networks within computational
mechanics has been published by Yagawa and Oishi [11].

Several neural network-based constitutive models have been proposed in recent works. The main
directions are described in the review article of Dornheim et al. [12].

The workdescribed here belongs to the more general topic of CANN (constitutive artificial neural
network). In fact from input-output relations an artificial neural network is able to learn and replace
a mathematically consistent constitutive material model. Adding of additional information, like
thermomechanical restrictions, enhances the effectiveness and allows for training with less data.
Further information can be found, among others, in references [12–14].

Here an efficient way to store the constitutive relation based on a data-base of responses of
a representative volume element (RVE) is proposed through a construction of a neural network
constitutive surrogate model. Subsequently, usage of this surrogate within a nonlinear, upper level
finite element model, is straightforward.

For fitting in the backpropagation a model from the representative volume element has been
taken. The target and test data has been collected from the numerical experiments. The data set from
the responses of representative volume elements is divided into training (50%) and test data (50%).
In addition, a data set from a nonlinear polynomial constitutive model for hyperelastic materials is
tested. The numerical results obtained from the constructed neural network are compared with the
exact values at the predicted points.

An artificial neural network together with the method of automatic differential of Tensorflow-
scientific library in Python programming [15] is used here. The neural model includes the automatic
differentiation [16] for calculating partial derivatives of the ANN output, i.e. components of the
tangential stiffness tensor. Calculating stiffness matrix, i.e. partial derivatives of the stress function
helps to improve the results of an approximation of the stress function. The automatic differentiation is
performed through the chain rule, applied to the neural stress models and then in the residual model
except of fitting the data set of the stress tensor, fitting the given stiffness matrix, obtained from the
representative volume elements, is provided as well. That helps to get more accurate neural surrogate
models for the stress tensor components. The predicted results are compared with calculated data for
the stress tensor. The ANN is trained with different error loss functions. The Sobolev metrics [17] is
also tested in a minimization problem. The proposed neural model allows a prediction of the material
response from the strain effects. Numerical examples of creating the neural nonlinear model and
computing of stresses and its first derivatives, based on data set {εi,σi, i = 1, 2, ..., N} in composite
structures are considered.

2. Background of the Constitutive Metamodel, Based on Responses of
Representative Volume Elements

Analytical homogenization replaces a RVE with several materials (composite) or microstructure
with a continuum with homogenized properties [18,19]. In a nonlinear behavior this step must be
repeated for each level of stress resp. strain. Nevertheless, this approach has been followed and
gives a multi-scale technique, which has been called FEM2 [20]. The method is accurate, but requires
enormous resources, due to the need of solving the detailed model of the RVE for every different
combination of loadings that appear during incremental-iterative solution of the homogenized finite
element model.

Classical polynomial surrogates as well as a neural network and other ones have been proposed
and tested in [1,21–28].

A feedforward neural network has the ability to correlate vector inputs with vector outputs,
provided that the parameters involved have been suitably calculated. This step is done with the help
of data (examples) within a step called training. The topology of the neural network (number of layers
and neurons) as well as the activation functions (basis functions) at nodes in correlation with the
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number of examples define the ability of the network to approximate well an unknown target function.
Trial and error or optimal design principles can be used towards a satisfactory result [29].

A modern approach for introducing physics into the neural network metamaterial uses differential
equations of mechanics in combination with automatic differentiation of output of the neural network,
in order to train the network, without using specific input-output sample examples. This is so-
called physics-informed neural networks approach ([15,28,30–33], etc.). Within the homogenization
metamodel PINN could provide thermomechanicaly consistent approximations that are more stable
with respect to blind neural network ones.

Usage of artificial neural networks is able to simulate classical mechanical problems, if sufficient
samples of input-output data are provided for training. The concept is shown schematically in Figures
1 and 2 ([1]) for the stress-strain relation of the RVE. The RVE for every possible complexity is solved for
different combinations of stresses and the corresponding strains are calculated and used for training.
More refined approaches introduce additional physical restrictions on the corresponding constitutive
metamodel, so that thermomechanical principles are not violated [28]. Furthermore, loading sequences
can be used in a path-dependent problem, in order to train a corresponding neural network that will
provide the response based on previous loading sequences at a given point.

Input data  

Stress-strain  
constitutive  relations   

Displacement - deformation  
compatibility  relations  

Stress-loading  
equilibrium equations   

Mechanical material law  
(Elasticity, Plasticity etc. 

Material constitutive  
metamodel model  
(e.g. Neural  network)    

Nonlinear  finite element 
 analysis  

Experimental data or 
Homogenization  
Representative volume  
elements 

FEM results  

Figure 1. The concept of FEM multi-scale modeling.
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Figure 2. Replacing the σ → ε constitutive relation of the RVE by an artificial neural network.

The trained neural network can be integrated into a finite element program and replaces the
required constitutive response, as it is outlined in Figure 1 (see, among others, [1,2,34,35]). The material
constitutive law is based on experimental or RVE data. It is based either on an established mechanical
material law or a metamodel (interpolation), for example, a neural network one. This approach is close
to the classical usage of constitutive relations and can be integrated with existing commercial finite
element packages [36–39].

The results used here correspond to a masonry structure with different stones and mortar materials
and submected to various stress-strain levels. The Representative Volume Element has been discretized
by the finite element method. Results are collected in a data-base, which is used for training of the
neural network. A MATLAB implementation for multi-scale analysis of two-dimensional problems as
well as the database is available as supplementary material to reference [1]. The masonry RVE used for
the creation of the data-base. The plastic deformations calculated under one strain loading are shown
in Figure 3 ([1]), both taken from reference [40].

 

Figure 3. Plastic deformation of the masonry RVE.
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3. Feedforward and Backpropagation in the Neural Model with a Computation of
Tangential Stiffness Matrix

A computational approach initially proposed and presented in [1] uses two neural network
metamodels, one for the approximation of the constitutive relation and the second one for the approxi-
mation of it’s first derivative, i.e. the calculation of the tangential stiffness matrix. Here, following ideas
from PINN’s community, we construct a neural network on the base of scientific software Tensorflow
with possibilities of automatic differentiation for calculating partial derivatives as well.

The experimental data for the components of the stress and strain tensors are used in order
to construct a neural network model which expresses nonlinear constitutive relations σ = σ(ε).
Three neural surrogate models, intended for computing components of the stress tensor, σxx, σyy and
σxy (σyx = σxy) are proposed, respectively. Namely, there are three ANNs with three inputs, strain
components εxx, εyy and εxy (εyx = εxy) and one output which is a component of the stress tensor, i.e.
the first NN has output σNN

xx , the second one has output σNN
yy and the third one has output σNN

xy . The
architecture of the proposed bundle of NNs is presented in Figure 4.
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Figure 4. The architecture of the neural constitutive model ε → σ, ∂σ/∂ε with training data (εdata,σdata) and the
mean square error (MSE).

In feedforward of the neural network the output vector from each layer is calculated as follows

z0 = (ε11, ε22, ε12)
T , (1)

zk = f (WT
k zk−1 + bk), k = 1, 2, ..., NL − 1, (2)

σNN
ij = zNL = WT

NL
zNL−1 + bNL , i, j = 1, 2,

where ε11 = εxx, ε12 = ε21 = εxy = εyx, ε22 = εyy, WT
k is the matrix of the dimension (nk−1 × nk),

containing the weights between k − 1 and k hidden layers with nk−1 and nk neurons, respectively. The
WT

N is the matrix containing the weights between the last hidden layer and the output of the neural
network. The bk are biases. There is no activation function f for the output layer in Keras module, but
the tf.keras.layers.Activation function can be used to apply a custom activation function to the output,
for example, tf.keras.layers.Activation(tf.nn.relu)

The residual part MSE (mean square error) can be trained by two approaches. In the first approach
the error function for each output is minimized separately. This can be done because the components
of the stress tensor are computed independently. However, the residuals of the outputs can also be
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treated together, simultaneously. In the second approach the computations are less expensive, in terms
of time and number of iterations, in comparison to the first approach.

The residual parts are computed as

MSE = MSEσ + MSES, (3)

where MSEΣ is the loss error function while training the data for the strain and stress tensor and MSES

is the Sobolev loss error function [17], i.e error function for the derivatives if these data are available.
The residual MSEσ is written as

MSEσ =
1
N

N

∑
i=1

||σNN
i −σdata

i ||, (4)

where || · || is the Euclidean norm, σNN
i = σNN(εi) = [σNN

xx (εi), σNN
yy (εi), σNN

xy (εi)] are the output of
the neural network, namely, the values of the stress tensor which are computed by the composed
constitutive neural network of the variable data set εi = [εxx, εyy, εxy]i and N is the number of the
values for fitting the given data set for the stress tensor (samples). If the residuals for the surrogate
models, σNN

xx (εi), σNN
yy (εi), σNN

xy (εi) are treated separately then instead of (4) the following formulas
yield

MSEσij =
1
N

N

∑
k=1

|σNN
ij,k − σdata

ij,k |, i, j = 1, 2, (5)

σ11 = σxx, σ12 = σ21 = σxy = σyx, σ22 = σyy

and in Figure 4 we have three MSEσ11, MSEσ22 and MSEσ12 for each surrogate neural network,
respectively.

In case of the Sobolev metrics in the neural network [17] the derivative information can easily be
incorporated into training process of the neural network model for σ by making derivatives of the
neural network match the ones given by σ.

If we have access to the partial derivatives of the stress tensor σ with respect to the input ε till k
order.

{εi,σ(εi), D1
ε(σ(εi)), ..., DK

ε (σ(εi))}N
i ,

where Dk
ε(σ(εi)) =

(
∂kσ/∂εk

)
i
, k = 1, 2, ..., K and D1

εkl
σij = D1

εij
σkl then the Sobolev error loss

function MSES can be included as well in (4), i.e.

MSE =
1
N

N

∑
i=1

(
||σNN

i −σdata
i ||+

K

∑
k=1

N

∑
i=1

||Dk
ε(σ

NN
i (ε))− Dk

ε(σ
data
i )||

)
, (6)

or in virtue of (5),

MSEij =
1
N

N

∑
k=1

|σNN
ij,k −σdata

ij,k |+
K

∑
k=1

N

∑
i=1

|Dk
ε(σ

NN
ij,k (ε))− Dk

ε(σ
data
ij,k )|. (7)

The numerical experiments have shown that the results are improved after using the Sobolev
function. Since the process of numerical differentiation is not stable in order to get a good accuracy
for computations of the derivatives a lot of training iterations are needed. With small perturbations
(errors) in the output of the neural network (components of the stress tensor) one can get a quite large
error for the derivatives of the components. The Sobolev training can overcome these disadvantages
by matching the derivatives of the output of NN. Then the rate of convergence is higher and a good
accuracy can be reached quickly.

In backpropagation the chain rule from calculus is used to compute the gradients. The output
of a NN is considered as a composite function, therefore its derivative is equal to the product of
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the derivatives of its individual components. In the context of backpropagation, this means that the
gradients of the loss with respect to the weights of a given layer depend on the gradients of the loss
with respect to the weights of the subsequent layer. Once the gradients have been computed, they
are used to update the weights of the network using optimization algprithm (e.g. gradient descent).
The optimization method adjusts the weights in the direction that minimizes the loss, allowing the
network to improve its performance.

The target solution is presented through expansion from basis (sigmoid, hyperhyperbolic tangent
etc.) functions. The network is trained iteratively on a set of input-output (ε, σ) data, the weights are
updated, and the process is repeated until the network has learned to produce accurate outputs for a
wide range of inputs. One of the advantages of backpropagation is that it allows neural networks to
learn from their mistakes and improve their performance over time. This is particularly useful in ap-
plications where the relationship between the inputs and outputs is nonlinear (e.g. in macrostructures).
However, the procedure of backpropagation can be computationally expensive, particularly for large
networks and when the network becomes too complex and starts to fit the training data too closely,
leading to poor performance on new, unseen data.

Automatic differentiation (AD) method, built in Tensorflow library, computes exact gradients
using the chain rule, resulting in more accurate derivatives in comparison with finite differences.
In backpropagation the gradients are computed with respect to the weights and the biases. The
derivatives of the output function is also computed by using AD through chain rule with respect to
input variables. However, since the output of the neural network is an approximation of the exact
solution, i.e. the output data have some perturbation with the AD this perturbation (error) will not
decrease and more likely increases. The results of computing of the derivatives by the AD can be
compared with an numerical differentiation, e.g. FD approximation (forward, backward and central)
or with some other well known numerical methods for numerical differentiation. For the error of
approximation, for example, of the forward differences for the partial derivatives for the σ we have

D1
ε11

σij =
σij(ε11 + ∆ε11, ε22, ε12)− σij(ε)

∆ε11
+ O(∆ε11), (8)

D1
ε22

σij =
σij(ε11, ε22 + ∆ε22, ε12)− σij(ε)

∆ε22
+ O(∆ε22), (9)

D1
ε12

σij =
σij(ε11, ε22, ε12 + ∆ε12)− σij(ε)

∆ε12
+ O(∆ε12). (10)

If the output of the neural network has an error δNN = σNN −σ then

D1
ε11

σNN
ij − D1

ε11
σij =

δNN
ij (ε11 + ∆ε11, ε22, ε12)− δNN

ij (ε)

∆ε11
+ O(∆ε11), (11)

D1
ε22

σNN
ij − D1

ε22
σij =

δNN
ij (ε11, ε22 + ∆ε22, ε12)− δNN

ij (ε)

∆ε22
+ O(∆ε22), (12)

D1
ε12

σNN
ij − D1

ε12
σij =

δNN
ij (ε11, ε22, ε12 + ∆ε12)− δNN

ij (ε)

∆ε12
+ O(∆ε12). (13)

Thus,

||D1
εσ

NN − D1
εσ|| = O

(
||δNN ||∞

ϵ

)
+ O(||∆ε||∞), (14)

where ||D1
εσ

NN − D1
εσ|| is the Euclidean norm, ||δNN ||∞ = maxij |δNN

ij |, ϵ = minij |∆εij|, ||∆ε||∞ =

maxij |∆εij|. For the backward the same estimate is true. Analogously, for the central differences we
obtain

||D1
εσ

NN − D1
εσ|| = O

(
||δNN ||∞

ϵ

)
+ O(||∆ε||2∞). (15)
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Hence, one concludes that the error of numerical differentiation can increase much if the perturbation
||δNN ||∞ is big. One can compare the values of the derivatives, computed from the neural model with
the use of AD with the approximated derivatives, computed by the FD.

According to the results, presented in [41] for a common class of artificial neural networks with
one hidden layer, the mean integrated squared error between the estimated network and a target
function σ is bounded by

O
(

C2
σ

n

)
+ O

(
nd
N

log N
)

, (16)

where n is the number of neurons in the hidden layer, d is the input dimension, N is the number
of training observations (samples), and Cσ is the first absolute moment of the Fourier magnitude
distribution of the target function σ, i.e. Cσ quantifies the regularity of the function via an integral
involving the Fourier transform, (see Formula (2) [41]). There are the two contributions to this total
risk, the approximation error and the estimation error. The approximation error is the distance between
the target function and the closest neural network function of a given architecture and estimation error
refers to the distance between this ideal network function and an estimated network function. The
constant Cσ can be exponentially large in d for sequences of functions σ of increasing dimensionality.
The networks with many hidden layers may improve the accuracy in some cases.

From the formulas (14), (15) and the estimate (16) one concludes that the error of neural network
influences the total estimate of the error of computation of the derivatives of the output function.
However, with AD the computations are more accurate because of the derivatives are computed
exactly by the chain rule.

Since the tangent stiffness matrix is symmetric, only the components, located in the lower or
upper triangular parts of this matrix can be used and thereby decrease the time of computations. Here
in feedforward the nonlinear tahn activation function is used, which provides better approximation
in comparison with the other activation functions. In the backpropagation usually, the weights and
biases are updated using a stochastic optimizer, such as the Stochastic Gradient Descent (SGD) and
Adam’s method [42]. The residual network updates the surrogate networks’ weights and biases using
the residual obtained from the residual network. Here we use the Adam optimize algorithm.

4. Computational Procedure
In this section a computational algorithm for constructing a neural network constitutive meta-

model is presented. The procedure is implemented with the use of automatic differentiation of
Tensorflow and Keras library of Python [43]. In order to optimize weights and biases the Adam’s opti-
mization algorithm is applied and the training set is divided into butches. The flowchart summarizing
the process of constructing of a neural network is presented on Figure 5
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Define input variable e and target value s(e)  

Split the data into training (50%) and validation (50%) set  

• Initialize neural network parameters (weights and biases) 
•Set up hyperparameters ( number of layers and neurons, activation function, optimizer,  
learning rate, batch size, and epochs 

Train your neural model  

Define custom loss function 

Increase the number of epochs or change 
hyperparameters in order to get better accuracy 

If the training loss decreasing?  

If the overfitting happens? 

The neural network is ready for 
using. Evaluate predicted values 
s(e)  by the constructed NN for 
new values of e if it is needed 

yes 

If the accuracy is ok after the training?  

yes 

No 
Check the input and target data and 
try to: 
•Use another training method SGD, 
Adam etc.  
•Change the optimization method 
or hyperparameters  

yes 

Choose another optimizer or 
change the hyperparameters or 
check the data 

No 

No 

Figure 5. The flowchart for the neural network model used to predict components of the stress tensor based on
the data-set from the representative volume elements.

The steps of implementation of the procedure with some methods/functions of the Python
programming code are described below.1

1. Import all necessary Python’s libraries: import tensorflow as tf, import keras, import matplotlib.pyplot
as plt, import csv.
(There are three distinct parts that define the TensorFlow: workflow, preprocessing of data,
building the model, and training the model to make predictions.
The Keras library is an open-source library of the TensorFlow platform that provides a Python
interface for creation of artificial neural networks.
Matplotlib is a library for creating static, animated, and interactive visualizations in Python. With
Matplotlib.pyplot some plots are created in the code.
The library csv allows writing and reading data in the CSV (Comma Separated Values), preferred
by Excel.)

2. Set up an input for neural surrogate networks from the data set of the strain tensor. There are
three inputs, ε = [εxx, εyy, εxy] for each NN and each input is a vector of values.

3. Set up output, training and test samples for the neural networks, data-set of the stress tensor
σ = [σxx, σyy, σxy] for fitting while minimizing the error loss function.

4. Set up a number of training iterations, epochs and batches for the neural networks.
5. Read the data set, ε, σ and ∂σ/∂ε if are avalable, from txt/csv files with np.genfromtxt function.

A half of the data set are used for training and the other half for the test.
6. Normalize the ε and σ data set if it is necessary with

ε̂ = a + (b − a)
ε− ε

ε− ε
, σ̂ = a + (b − a)

σ−σ

σ−σ
,

1 The programming code is available from the supplemental material as an open source.
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where [a, b] is the new segment, ε = minij εij, ε = maxij εij, σ = minij σij and σ = maxij σij, and
use the chain rule for normalizing and computing derivatives, i.e.

∂σ̂

∂ε̂
=

∂σ̂

∂σ

∂σ

∂ε

∂ε

∂ε̂
=

ε− ε

σ−σ

∂σ

∂ε
.

7. Create a class/function object in Python allowing Automatic Differentiation using Tensorflow
tf.GradientTape module.

8. Set up a number of neurons and layers for the NNs.
9. Group layers (input, hidden and output), neurons into an object with training/inference features

for the surrogate net metamodels with dimensions, with three inputs and one output, based on
the Keras’ modules, tf.keras.Input, tf.keras.layers.Dense, tf. keras.models.Model, tf.keras.layers.Input.

10. Call the class/function for Automatic Differentiation, defined in Step 7.
11. Define the input and the output for the NNs using module tf. keras.models.Model for inputs and

training items in the list of outputs.
12. Create training and test data. The training variables for the inputs [εxx, εyy, εxy] and for the output

σxx, σyy, and σxy. In case of the Sobolev function D1
ε(σ(ε)), ..., DK

ε (σ(ε)) are also included if the
corresponding data are available.

13. Give a formulation for the residuals (4), (5), (6) or (7) for fitting the NNs to the data set for the
output for [σNN

xx , σNN
yy , σNN

xy ]i and the partial derivatives for them if available.

14. Choose an activation function. Here the tanh function is used.
15. Compile the residual neural models using Keras’ module keras.models.Model.compile with the help

of the built in Adam’s optimizer and Mean Square Error modules.
16. Train the neural metamodels (the residual with the surrogate models) with using keras.models.Model.fit

the training input and output data (backpropagation).
17. Go back to the true values from the normalized output results σ and the derivatives.
18. Plot graphs for the model accuracy, model loss and prediction results of the outputs of the NNs

with the use of plot and history() functions, readily available for use inside Python and save the
obtained data with, e.g. np.savetxt() and the figures with save plt.safefig().

5. Numerical Results
Example 1.

The proposed neural constitutive network with the architecture presented in Figure 4 has been
trained with different numbers of epochs, layers and neurons. The data for training and test with 9261
values for ε and σ from the representative volume elements are considered. For the ε we have

εm
ij = εm−1

ij + h, h = 0.001,

ε1
ij = −0.01, m = 2, 3, ...M, M = 21. (17)

In this example neural networks which consist from 4 hidden layers with [15, 20, 15, 20] neurons,
respectively. The batch size is 64 and from the data-set M = 168 values of the stress tensor (84 for the
training and 84 for the test validation) are used to construct the neural constitute models with compu-
tations of the partial derivatives for the stress tensor. Batch size, which is an important key in machine
learning and deep learning, refers to the number of training samples utilized in one iteration of model
training. It can influence time of training, the efficiency and the model performance. The batch size can
be chosen while training the model, e.g. in Keras library by the module "keras.models.Model.fit(xtrain,
ytrain, validationdata= (xtest,ytest), epochs=nepochs, batchsize=64, verbose=2,callbacks=callbacks)".

Here, the formula (5) is used for the loss function, i.e. each surrogate model is trained separately.
The results with 4000 training iterations are shown in Figure 6.
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Figure 6. The components of the stress tensor after training of the neural network (Figure 4) and the data-set
(M = 82), obtained from the representative volume elements.

Figure 6 shows a match between data set and NN stress components. In Table 1 the error loss
function

MSEσ = max{MSEσxx, MSEσyy, MSEσxy}

is given for different number of layers, neurons and epochs.

Table 1. The model loss error for different values of the training parameters.

Number of
Layers Neurons Epochs Training

samples MSEσ Time (min.)

2 [40,40] 2000 42 1.4 · 10−5 3
2 [40,40] 4000 42 1.2 · 10−6 6
3 [15,30,40] 2000 42 1.2 · 10−5 5
4 [15,20,15,20] 4000 84 4.7 · 10−6 8
4 [15,20,15,20] 8000 84 1.6 · 10−6 15.5

The time of computations can be decreased by using the three surrogate neural networks with
the residual neural model, which include the residual (4), i.e. the loss error function includes all three
components of the stress function. This approach is less expensive in sense of computation time and
gives almost the same results. Figure 7 shows the loss function (4) while training the neural network
to calculate the components of the stress tensor. The number of epochs is 4000. The neural network as
before has 4 hidden layers with [15, 20, 15, 20] neurons, respectively. The batch size is 64 and from
the data set we have taken the M = 82 (42 for the training and 42 for the test validation) values of the
stress tensor.
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Figure 7. The dynamics of the model loss function (4) while training the network with three surrogate neural
models and one residual model for computing the components of the stress tensor.

Example 2.

In this example the data set (M = 9261) has been trained for getting a neural constitute model
with computations of partial derivatives of the components of the stress tensor via the automatic
differentiation. In Figure 8 the components of the stress tensor are presented and in Figures 9, 10, 11
the partial derivatives obtained from the components are sketched, respectively. The Sobolev error
function (6) (K = 1) is also used to train the neural network with the use of AD for the computation
of the partial derivatives. Figures 9, 10, and 11 show that accuracy is better in the case of using the
Sobolev metrics with the same number of training iterations. In this example, the neural network,
which consists of 4 hidden layers with [15, 20, 15, 20] neurons with 5000 epochs, has been trained. The
batch size is 64 and the data set has 9261 values for the components of the stress tensor (from which
4631 are used for the training and 4630 are used for the test validation). The test data are used for the
comparison and validation of the results. In Table 2 the results of numerical experiments with different
numbers of layers, neurons, and epochs are presented. It is noted that the accuracy of computations
increase not only with increasing of number of epochs but also with increasing of number of layers
and neurons.

Table 2. The model loss error for different values of the training parameters.

Number of
Layers Neurons Epochs Batch size MSEσ Time (min.)

2 [15,15] 1000 64 2.0 · 10−4 13.64
2 [15,15] 2000 64 1.8 · 10−4 27.62
2 [40,40] 2000 64 6.3 · 10−5 27.30
2 [40,40] 2000 84 7.7 · 10−5 26.43
3 [15,30,15] 4000 84 4.7 · 10−5 52.48
4 [15,20,15,20] 2000 84 5.8 · 10−5 26.31
4 [30,40,30,40] 2000 84 3.8 · 10−5 26.79
5 [15,20,15,20,15] 2000 84 5.7 · 10−5 26.27
5 [15,20,15,20,15] 4000 84 3.6 · 10−5 52.57

The numerical experiments show that with larger number of epochs and hidden layers and
neurons the results are more accurate. In case that derivative data are not available or Sobolev’s error
is not included in the process, more training iterations are required in order to get a good accuracy for
the derivatives.
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Figure 8. The components of the stress tensor after training of the neural network (Figure 4) and from the data-set
(M = 9261), obtained from the representative volume elements.

Figure 9. The partial derivatives of the components of the stress tensor σxx after training of the neural network
(Figure 4) and from the data set M = 9261, obtained from representative volume elements.
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Figure 10. The partial derivatives of the components of the stress tensor σyy after training of the neural network
Figure 4 and from the data set M = 9261, obtained from representative volume elements.

Figure 11. The partial derivatives of the components of the stress tensor σxy after training of the neural network
Figure 4 and from the data set M = 9261, obtained from representative volume elements.

From Figures 9, 10, 11 we can see the decreasing error after using the Sobolev metrics in the
loss function of the training process. Thus, if the data for a stiffness matrix are available then the
computations of the components of the stress tensor and its derivatives are more accurate.
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Example 3.

In this example we consider uniaxial tension which is stretching along a single direction (or axis).
It is the common and useful method for the mechanical testing of materials. The experiments have
been done on hyperelastic materials with using polynomial model for nonlinear elastic deformations
in polymers and rubbers (e.g., [44]). The stress-strain relation in tension can be written in a polynomial
form for a nonlinear elastic material,

σ(ε) =
n

∑
i=1

= Eiε
i, (18)

where Ei are Young’s modulus. The case E2 = E3 = E4 = 0 corresponds to Hook’s law from
the linear elasticity theory. Tension has been tested for E1 = 2.14663 MPa, E2 = −0.646588 MPa,
E3 = −0.0697791 MPa, E4 = 0.566989 MPa (Dastjerdi [44]).

In (17) we have taken ε1
ij = −0.6, h = 0.05 and N = 50. The neural network has been trained with

a data set, M = 90 (45 for training and 45 for test validation) with 4 hidden layers and with [15,20,15,20]
neurons, respectively. The number of epochs is 8000 and batch size is 64. The stress function with
respect to the strain and its derivative are predicted on the data set {εi, i = 1, 2, ..., P}. The Sobolev
training function is included in the loss function. The stress-strain curve and the derivative of the
stress at the predicted points, P = 40 with the exact values of the stress from the equation (18) are
shown in Figure 12.

)(

 

)( 

Figure 12. The stress-strain curve and the derivative function of stress of the hyperelastic material from the
prediction of the neural network and from the data values.

The loss error MSE = 5.7e − 07 and the relative errors of the computed stress values and its
derivatives with respect to the strain at the predicted points are

δ1 =

∥∥∥∥σNN − σ

σ

∥∥∥∥
∞
= 0.000424, δ2 =

∥∥∥∥σNN
ε − σε

σε

∥∥∥∥
∞
= 0.008323.

Since the chain rule is used in the automatic differentiation the approximation of the derivatives can
be done with a high accuracy. As the numerical results have been shown with even a small number of
epochs we can get a good rate of convergences of the neural network to the data values if the stiffness
matrix is included in training of the neural network.

6. Conclusions
A constitutive nonlinear neural network metamodel is proposed for calculating the constitutive

relation in macrostructures. The components of the stress and strain tensor are used for training the
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neural network. The data set has been obtained after applying the representative volume elements.
The neural network is constructed, based on the open scientific software machine learning platform
Tensorflow and Keras library, written in Python. The values of components of stress tensor are
predicted by the neural model and compared with the data set. The residual model is constructed with
different loss function, including mean square error and the Sobolev function with the derivatives of
the components of the stress tensor if the data for them are available. The latter gives better results after
training the neural network. The proposed model allows to predict the stress tensor in macrostructures
where the relations between stress and strain tensor are nonlinear. The proposed techniques can
be applied to nonlinear structures and hyperelastic materials with large deflections. In these cases
stress-strain relations have nonlinear behavior and can be simulated by the proposed here neural
model, based on experimental or statistical data set in biological tissue (e.g aorta, blood vessels),
elastomers, rubbers, polymers etc.

Extensions of this work in order to take into account path-dependent constitutive relation of
the RVE and dynamic effects is possible on more complicated problems and constitute the subject of
current research investigation.
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