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Abstract 

We present an axiomatic construction of quaternionic probability, extending Kolmogorov’s classical 

framework to the noncommutative algebra of quaternions. The theory introduces quaternionic 

probability spaces, conditional probabilities, Bayes’ rules, independence, random variables, 

expectations, and transport equations, all formulated in a consistent manner. Classical probability is 

recovered through scalar projection, while restriction to complex subalgebras reproduces the 

standard quantum formalism. Uniquely quaternionic structures arise, including noncommutative 

conditional probabilities, inequivalent forms of independence, and quaternionic transport laws. The 

framework further develops quaternionic Markov chains, entropy, and divergence measures that 

separate scalar uncertainty from vectorial coherence. Several illustrative examples are provided to 

show how quaternionic probability captures order effects, hidden correlations, and orthogonal 

divergences—features invisible to both classical and complex approaches. These results establish 

quaternionic probability as a rigorous generalization of Kolmogorov’s axioms and as a potential 

foundation for future studies in noncommutative probability, integrable structures, and quaternionic 

extensions of mathematical physics. 

Keywords: quaternionic probability; noncommutative probability; Kolmogorov axioms; 

quaternionic random variables; conditional probability; quaternionic Markov chains; quaternionic 

information theory; Clifford algebras; quaternionic entropy; quaternionic Bayesian inference 

 

1. Introduction 

The foundations of modern probability theory were established by Kolmogorov [1], and 

subsequently developed in great detail in classical texts such as Billingsley [2], Doob [3], Feller [4], 

and Parthasarathy [5]. This framework, based on real-valued measures on sigma-algebras, has 

proven remarkably successful in describing a wide variety of stochastic phenomena. Nevertheless, 

over the past decades there has been increasing interest in extending the notion of probability beyond 

the real line, in order to model systems where interference, order-dependence, or non-commutativity 

play a fundamental role. 

Already in the mid-20th century, Feynman speculated on the role of negative probabilities in 

quantum theory [6], while Khrennikov and others explored generalized frameworks for probability, 

including non-Kolmogorovian and ppp-adic formulations [7,8]. In parallel, noncommutative 

probability theory emerged in operator algebras, with Accardi [9], Accardi–Cecchini [10], Voiculescu 

[11], Speicher [12], Wysoczański [13], and Kümmerer [14] among the leading contributors. These 

works highlighted that probabilistic notions such as independence and conditional expectation admit 

multiple, non-equivalent generalizations once the commutativity of real-valued measures is 

abandoned. 

Quaternions, introduced by Hamilton in the 19th century [15], have also played a fundamental 

role in mathematical physics. Quaternionic analysis [16], quaternionic quantum mechanics [17–19], 

and quaternionic differential operators [20] provided natural frameworks for describing rotations, 

spin, and field theories where complex numbers are not sufficient. More recently, Danielewski and 
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Jadczyk [21] have revisited the foundations of quaternionic quantum mechanics, and Colombo, 

Sabadini, and Struppa [22] developed a functional calculus for slice hyperholomorphic functions, 

reinforcing the modern analytic foundations of quaternion-valued mathematics. 

At the same time, practical applications of quaternionic probability and statistics have emerged 

in signal processing and image analysis. For instance, quaternionic Fourier transforms [25], principal 

component analysis [24], and augmented statistics of quaternion random variables [23] have shown 

how quaternion-valued frameworks can capture multi-dimensional correlations in ways that real or 

complex approaches cannot. Recent mathematical work, such as Wang and Zhang’s quaternionic 

Mahler measure [26], further illustrates that the study of measures with values in ℍ  is both 

mathematically natural and actively developing. 

Despite these advances, a systematic axiomatic theory of quaternionic probability—comparable 

in rigor to Kolmogorov’s framework, but extending it into the noncommutative domain of 

quaternions—has not yet been established. The goal of this work is to provide such a theory: to define 

quaternionic probability spaces, state coherent axioms, and develop the corresponding notions of 

conditional probability, independence, random variables, processes, and information measures. By 

doing so, we show how classical probability [1–5] and quantum complex probability [6,7,9] appear 

as special cases, while new phenomena—such as order-dependent conditional probabilities, 

noncommutative independence, and quaternionic transport equations—arise uniquely in the 

quaternionic setting. 

This paper is structured as follows. In Section 2 we introduce the axioms of quaternionic 

probability and establish their basic consequences. Sections 3 and 4 develop conditional probabilities, 

Bayes’ rules, and notions of independence in the noncommutative context. In Sections 5 and 6 we 

define quaternionic random variables, expectations, and observables. Sections 7 and 8 extend the 

theory to stochastic processes and derive quaternionic continuity and Fokker–Planck-type equations. 

Section 9 studies quaternionic Markov chains, while Section 10 develops a framework for 

quaternionic information theory. In Section 11 we compare the quaternionic framework to classical 

and complex probability, and in Section 12 we present illustrative examples and potential 

applications. Technical details are collected in Section 16. 

To the best of our knowledge, no complete axiomatization of probability over the quaternionic 

algebra has been established in the literature. Previous works have considered noncommutative 

probability in the context of operator algebras or complex Hilbert spaces, but a direct extension of 

Kolmogorov’s axioms to quaternions has not been systematically developed. The present work aims 

to fill this gap by constructing a rigorous quaternionic probability theory and by illustrating its 

distinctive features through both mathematical results and concrete examples. 

2. Quaternionic Probability Spaces and Axioms 

We begin by extending Kolmogorov’s axioms [1] to quaternion-valued measures. Throughout, 

let ℍ denote the skew field of quaternions, with scalar part 𝑆𝑐(𝑞) and vector part 𝑉𝑒𝑐⁡(𝑞).The 

set of unit quaternions is denoted by 𝕊3 = {𝑞 ∈ ℍ: |𝑞| = 1}. 

Definition 2.1 (Quaternionic probability space). 

A quaternionic probability space is a triple 

(Ω, ℱ, ℙℍ),  

where: 

• Ω a sample space, 

• ℱ is a 𝜎 -algebra of subsets of Ω, 

• ℙℍ:⁡ℱ → ℍ is a set function satisfying the axioms below. 

Axiom 2.1 (Normalization). 
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𝑆𝑐ℙℍ(Ω) = 1. 

Axiom 2.2 (Quaternionic 𝝈 -additivity). 

For any countable collection of pairwise disjoint sets 𝐸1, 𝐸2, … ∈ ℱ, 

ℙℍ (⋃𝐸𝑛

∞

𝑛=1

) = ∑ℙℍ(𝐸𝑛)

∞

𝑛=1

, 

where convergence is taken in the quaternionic norm. 

Axiom 2.3 (Scalar positivity). 

𝑆𝑐⁡ℙℍ(𝐸) ≥ 0 for all 𝐸 ∈ ℱ. 

Axiom 2.4 (Complement). 

⁡ℙℍ(𝐸
𝐶) = 1 − ⁡ℙℍ(𝐸). 

Axiom 2.5 (Boundedness). 

|⁡ℙℍ(𝐸)| ≤ 1 for all 𝐸 ∈ ℱ . 

Lemma 2.1 (Classical reduction). 

The scalar part 

𝑃(𝐸) ≔ 𝑆𝑐⁡ℙℍ(𝐸). 

defines a classical probability measure on (Ω,ℱ). 

Proof. Immediate from Axioms 2.1–2.3.  

Proposition 2.1 (Modulus–phase factorization). 

Every quaternionic probability can be uniquely written as 

⁡ℙℍ(𝐸) = 𝑃(𝐸)𝑈(𝐸), 

where ℙ(𝐸) ∈ [0,1] is the classical probability of 𝐸 and 𝑈(𝐸) ∈ 𝑆3 is a unit quaternion. 

Interpretation. The scalar component ℙ(𝐸) captures the usual frequency interpretation, while the unit 

quaternion 𝑈(𝐸) encodes an additional “phase” or orientation, absent in the classical case. 

This axiomatic structure establishes quaternionic probability as a genuine extension of Kolmogorov’s 

framework. In the next section we explore the consequences for conditional probabilities and Bayes’ 

rule in a noncommutative setting. 

3. Conditional Probabilities and Bayes’ Theorem. 

One of the main novelties of quaternionic probability is that conditionalization becomes 

inherently noncommutative. Because quaternionic multiplication does not commute, we must 

distinguish between right and left conditional probabilities. 

Definition 3.1 (Right conditional probability). 
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For events 𝐴, 𝐵 ∈ ℱ with ⁡ℙℍ(𝐵) ≠ 0, the right conditional probability of 𝐴 given 𝐵 is defined 

by 

⁡ℙ𝑅(𝐴|𝐵) ≔ ⁡ℙℍ(𝐴⋂𝐵)⁡(⁡ℙℍ(𝐵))
−1
. 

Definition 3.2 (Left conditional probability). 

For events 𝐴, 𝐵 ∈ ℱ with ⁡ℙℍ(𝐵) ≠ 0, the left conditional probability of 𝐴 given 𝐵 is defined 

by 

ℙ𝐿(𝐴|𝐵) ≔⁡ (⁡ℙℍ(𝐵))
−1
⁡ℙℍ(𝐴⋂𝐵). 

Proposition 3.1 (Scalar reduction). 

For both left and right conditionals, 

𝑆𝑐⁡ℙ𝑅(𝐴|𝐵) = 𝑆𝑐⁡ℙ𝐿(𝐴|𝐵) = 𝑃(𝐴|𝐵). 

where P 𝑃(𝐴|𝐵) is the classical conditional probability. 

Proof. Since scalar parts commute, the difference between left and right multiplications disappears 

when taking 𝑆𝑐(∙)⁡. 

Proposition 3.2 (Order-dependence). 

In general, 

ℙ𝑅(𝐴|𝐵) ≠ ℙ𝐿(𝐴|𝐵). 

Thus, conditional probabilities encode not only relative frequency but also the order of 

information update. 

Theorem 3.1 (Right Bayes’ rule). 

Let {𝐵𝑗} be a finite or countable partition of Ω with ⁡ℙℍ(𝐵𝑗) ≠ 0. Then, for any 𝐴 ∈ ℱ, 

ℙ𝑅(𝐵𝑘|𝐴) =
ℙ𝑅(𝐴|𝐵𝑘)⁡ℙℍ(𝐵𝑘)

∑ ℙ𝑅(𝐴|𝐵𝑗)⁡ℙℍ(𝐵𝑗)𝑗

. 

Theorem 3.2 (Left Bayes’ rule). 

Under the same assumptions, 

ℙ𝐿(𝐵𝑘|𝐴) = (∑ℙ𝑅(𝐴|𝐵𝑗)⁡ℙℍ(𝐵𝑗)

𝑗

)

−1

ℙ𝑅(𝐴|𝐵𝑘)⁡ℙℍ(𝐵𝑘). 

Remark 3.1. 

• Both Bayes’ rules reduce to the classical one when all quaternionic phases commute. 

• The distinction between left and right formulations reflects the noncommutative geometry of 

the quaternionic unit sphere 𝕊3. 

• This framework naturally accommodates order-sensitive inference, where updating on 𝐴 then 

𝐵 is not equivalent to updating on 𝐵 then 𝐴. 

This section demonstrates that conditionalization in quaternionic probability is fundamentally 

noncommutative, giving rise to two inequivalent but consistent Bayes’ rules. In the next section we 

will investigate how these asymmetries manifest in different notions of independence. 

4. Independence and Correlations. 
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In the quaternionic framework, the noncommutativity of multiplication implies that the notion 

of independence is no longer unique. We distinguish several types of independence and define 

quaternionic correlation. 

Definition 4.1 (Strong independence). 

Two events 𝐴, 𝐵 ∈ ℱ are said to be strongly independent if 

⁡ℙℍ(𝐴⋂𝐵) = ⁡ℙℍ(𝐴)⁡ℙℍ(𝐵). 

Definition 4.2 (Right independence). 

Events 𝐴, 𝐵 are right independent if 

⁡ℙℍ(𝐴⋂𝐵) = ℙ𝑅(𝐴|𝐵)⁡ℙℍ(𝐵). 

Definition 4.3 (Left independence). 

Events 𝐴, 𝐵 are left independent if 

⁡ℙℍ(𝐴⋂𝐵) = ℙℍ(𝐵)ℙ
𝐿(𝐴|𝐵). 

Definition 4.4 (Scalar independence). 

Events 𝐴, 𝐵 are scalar independent if 

𝑃(𝐴⋂𝐵) = 𝑃(𝐴)𝑃(𝐵), 

where 𝑃 = 𝑆𝑐⁡ℙℍ is the underlying classical probability. 

Proposition 4.1. 

Strong independence   ⟹   right independence, left independence, and scalar independence. The 

converses do not hold in general. 

Proof. Strong independence directly implies equality under both left and right conditional definitions 

and yields the scalar condition. However, the reverse implications fail when quaternionic phases do 

not commute.  

Definition 4.5 (Quaternionic correlation). 

The quaternionic correlation between two events 𝐴, 𝐵 is defined as 

⁡𝐶ℍ(𝐴, 𝐵) ≔ ⁡ℙℍ(𝐴⋂𝐵) − ⁡ℙℍ(𝐴)⁡ℙℍ(𝐵). 

Proposition 4.2 (Scalar reduction of correlation). 

The scalar part of quaternionic correlation is the classical covariance: 

𝑆𝑐⁡𝐶ℍ(𝐴, 𝐵) ≔ 𝑃(𝐴⋂𝐵) − 𝑃(𝐴)𝑃(𝐵). 

Remark 4.1. 

• In the classical case, independence is unique; here, different forms of independence reflect the 

underlying noncommutative structure. 

• The quaternionic correlation captures deviations not only in scalar probability but also in 

vectorial phase coherence. 
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• Order effects (left vs. right independence) provide a natural mathematical description of 

phenomena where the sequence of conditioning matters. 

This section shows that the richness of quaternionic probability emerges already at the level of 

independence. Multiple notions coexist, and correlations now carry both scalar and vectorial 

information. In the next section we will introduce quaternionic random variables and define 

expectations and moments. 

5. Quaternionic Random Variables and Expectation. 

Having defined quaternionic probability measures, we now extend the framework to random 

variables, expectations, and moments. The key novelty is that expectations become quaternion-

valued, and inequalities must be interpreted via their scalar components. 

Definition 5.1 (Quaternionic random variable). 

A quaternionic random variable is a measurable map 

X: Ω → ℍ. 

The distribution of 𝑋 is the quaternionic measure 

𝜇𝑋(𝐵) ∶= ⁡ℙℍ(𝑋
−1(𝐵)),  𝐵 ⊆ ℍ. 

Definition 5.2 (Expectation). 

The expectation of 𝑋 is defined by 

𝔼ℍ[𝑋] = ∫ 𝑋(𝜔)𝑑ℙℍ(𝜔)
Ω

. 

When ℙℍ is expressed in modulus–phase form ℙℍ = 𝑃𝑈, this integral can be interpreted as 

𝔼ℍ[𝑋] = ∫ 𝑋(𝜔)𝑈(𝜔)𝑑𝑃(𝜔)
Ω

 

with 𝑃 the scalar probability and 𝑈(𝜔) ∈ 𝕊3 a local quaternionic phase. 

Proposition 5.1 (Scalar expectation). 

The scalar part of the quaternionic expectation is the classical expectation: 

𝑆𝑐⁡𝔼ℍ[𝑋] = 𝔼[𝑋], 

where 𝔼[𝑋] is the usual expectation with respect to 𝑃 = 𝑆𝑐⁡ℙℍ. 

Definition 5.3 (Variance). 

The variance of 𝑋 is defined as 

𝑉𝑎𝑟ℍ(𝑋): = ⁡𝔼ℍ[|𝑋|
2] − |𝔼ℍ[𝑋]|

2 

Proposition 5.2 (Scalar variance). 

The scalar part of the quaternionic variance coincides with the classical variance: 

𝑆𝑐⁡𝑉𝑎𝑟ℍ(𝑋) = 𝑉𝑎𝑟(𝑋). 

Theorem 5.1 (Markov inequality, quaternionic form). 

Let 𝑋 ≥ 0 be a real-valued random variable on a quaternionic probability space. Then, for any 

𝛼 > 0, 

𝑃(𝑋 ≥ 𝛼) ≤
𝔼[𝑋]

𝛼
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where 𝑃 = 𝑆𝑐⁡ℙℍ. 

Remark. The inequality remains scalar because order in ℍ is not defined; only the real measure 

governs tail bounds. 

Theorem 5.2 (Chebyshev inequality, quaternionic form). 

For any real-valued 𝑋 with finite variance, 

𝑃(|𝑋 − 𝔼[𝑋]| ≥ 𝜀) ≤
𝔼[𝑋]

𝜀2
 

Again, the scalar distribution 𝑃  controls concentration, while the quaternionic components 

contribute through higher-order coherence rather than tail probabilities. 

Remark 5.1. 

• Expectations and variances carry quaternionic information, but inequalities remain scalar 

because order is defined only in ℝ. 

• The vector components of 𝔼[𝑋]  may encode directional or phase-like features of the 

distribution. 

This section establishes the basic theory of quaternionic random variables. In the next section we 

introduce projections onto complex subalgebras and observables, showing how real measurements 

can be extracted from quaternionic distributions. 

6. Transformations, Projections, and Observables. 

While quaternionic random variables may take values in the full noncommutative algebra ℍ, in 

practice one often measures or analyzes their behavior through projections onto real or complex 

subalgebras. This section formalizes such transformations and introduces the notion of observables. 

Definition 6.1 (Projection onto a subalgebra). 

For a fixed imaginary unit 𝑢 ∈ {𝑖, 𝑗, 𝑘}, define the projection 

𝜋𝑢: ℍ → ℂ𝑢 ≔ {𝑎 + 𝑏𝑢: 𝑎, 𝑏 ∈ ℝ} 

by 

𝜋𝑢(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑢. 

Proposition 6.1. 

For any quaternionic random variable 𝑋 , the projection 𝑋(𝑢) ≔ 𝜋𝑢(𝑋)  is a complex-valued 

random variable with respect to the underlying scalar probability measure 𝑃 = 𝑆𝑐⁡ℙℍ. 

Definition 6.2 (Observable). 

Let X: Ω → ℍ  be a quaternionic random variable and 𝑢 ∈ {𝑖, 𝑗, 𝑘} . The observable associated 

with direction uuu is defined as 

𝑂𝑢(𝑋): = 𝑆𝑐⁡(𝑋⁡𝑢∗).⁡ 

This extracts a real-valued random variable aligned with the chosen imaginary axis. 

Proposition 6.2 (Expectation of observables). 

For each uuu, the expectation of the observable satisfies 

𝔼[𝑂𝑢(𝑋)] = 𝑆𝑐⁡𝔼ℍ[𝑋⁡𝑢
∗]. 
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Theorem 6.1 (Reduction to classical/complex cases). 

• If U(E) ≡ 1 for all E, then quaternionic probability reduces to classical probability. 

• If all phases U(E) lie within a single complex subalgebra ℂu ⊂ ℍ, then quaternionic probability 

reduces to complex probability, structurally equivalent to standard quantum mechanics. 

Remark 6.1. 

• Projections and observables provide the link between quaternionic models and experimentally 

accessible quantities. 

• This mirrors the role of self-adjoint operators in quantum mechanics, but extended to the richer 

quaternionic setting. 

This section clarifies how quaternionic random variables can be connected to measurable 

outputs. In the next section we will extend the framework to stochastic processes and derive 

quaternionic versions of balance and continuity equations. 

7. Quaternionic Processes and Continuity Equations. 

In classical probability, stochastic processes are families of random variables indexed by time, 

whose evolution is described by balance or continuity equations. In the quaternionic setting, these 

structures generalize to quaternion-valued densities and currents. 

Definition 7.1 (Quaternionic stochastic process). 

A quaternionic stochastic process is a family of quaternionic random variables 

{𝑋𝑡𝑡: 𝛺 → ℍ}𝑡≥0,⁡ 

adapted to some filtration {ℱ𝑡}𝑡≥0. 

Definition 7.2 (Quaternionic probability density). 

A quaternionic-valued density is a function 

𝜌(𝑥, 𝑡) = 𝜌0(𝑥, 𝑡) + 𝜌1(𝑥, 𝑡)𝑖 + 𝜌2(𝑥, 𝑡)𝑗 + 𝜌3(𝑥, 𝑡)𝑘 

with 𝜌ℓ(𝑥, 𝑡) ∈ ℝ. Its scalar part 𝜌0 represents the classical probability density. 

Definition 7.3 (Quaternionic current). 

The probability current is a quaternionic vector field 

𝐽(𝑥, 𝑡) = 𝐽0(𝑥, 𝑡) + 𝐽1(𝑥, 𝑡)𝑖 + 𝐽2(𝑥, 𝑡)𝑗 + 𝐽3(𝑥, 𝑡)𝑘 

with 𝐽𝑚(𝑥, 𝑡) ∈ ℝ𝑑. 

Theorem 7.1 (Quaternionic continuity equation). 

For any region 𝑉 ⊂ ℝ𝑑, 

𝑑

𝑑𝑡
∫ 𝜌(𝑥, 𝑡)𝑑𝑥
𝑉

= −∫ 𝐽(𝑥, 𝑡) ∙ 𝑛⁡𝑑𝑆
𝜕𝑉

+∫ 𝑆(𝑥, 𝑡)𝑑𝑥,
𝑉

 

where 𝑆(𝑥, 𝑡) is a quaternionic source term. 

In differential form, 

𝜕𝑡𝜌(𝑥, 𝑡) + ∇ ∙ 𝐽(𝑥, 𝑡) = 𝑆(𝑥, 𝑡). 

Proof. Follows from quaternionic integration and the divergence theorem applied componentwise.  
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Proposition 7.1 (Scalar reduction). 

The scalar part of the continuity equation is 

𝜕𝑡𝜌0(𝑥, 𝑡) + ∇ ∙ 𝐽0(𝑥, 𝑡) = 𝑆0(𝑥, 𝑡). 

which is the classical continuity equation. 

Remark 7.1. 

• The scalar component governs ordinary conservation of probability. 

• The vectorial components describe additional degrees of freedom, such as orientation or phase 

transport in quaternionic space. 

• This structure allows for richer dynamics while ensuring that the real part remains a valid 

probability density. 

This section establishes the quaternionic continuity equation as the fundamental balance law of 

quaternionic probability. In the next section we derive transport equations and diffusion dynamics, 

including a quaternionic Fokker–Planck equation. 

8. Transport and the One-Dimensional Case. 

The quaternionic continuity equation provides the general balance law for probability densities. 

In this section, we introduce specific transport models and study their one-dimensional reduction. 

Definition 8.1 (Quaternionic drift–diffusion current). 

Given a velocity field 𝑣 ∈ ℍ𝑑 and diffusion coefficient 𝐷 > 0 , the quaternionic probability 

current is modeled as 

𝐽(𝑥, 𝑡) = 𝑣⁡𝜌(𝑥, 𝑡) − 𝐷∇𝜌(𝑥, 𝑡). 

Theorem 8.1 (Quaternionic Fokker–Planck equation). 

Substituting the drift–diffusion current into the continuity equation yields 

𝜕𝑡𝜌(𝑥, 𝑡) = −(𝑣 ∙ ∇)𝜌(𝑥, 𝑡) + 𝐷∇2𝜌(𝑥, 𝑡). 

Proof. Direct substitution and application of the divergence theorem.  

Proposition 8.1 (Component form). 

Writing 𝜌 = 𝜌0 + 𝜌1𝑖 + 𝜌2𝑗 + 𝜌3𝑘, each component satisfies 

𝜕𝑡𝜌𝑚(𝑥, 𝑡) = −(𝑣 ∙ ∇)𝜌𝑚(𝑥, 𝑡) + 𝐷∇2𝜌𝑚(𝑥, 𝑡), 𝑚 = 0,1,2,3. 

Corollary 8.1 (Scalar reduction). 

The scalar part 𝜌0 evolves according to the classical Fokker–Planck equation, while the vector 

parts 𝜌1, 𝜌2, 𝜌3 evolve as coupled drift–diffusion fields without affecting normalization. 

Definition 8.2 (One-dimensional transport). 

In one dimension, 

𝜕𝑡𝜌𝑚(𝑥, 𝑡) = −𝜕𝑥(𝑣𝜌𝑥(𝑥, 𝑡)) + 𝐷𝜕𝑥
2𝜌𝑥(𝑥, 𝑡). 

Proposition 8.2 (Solution structure in 1D). 

For constant 𝑣 and 𝐷, the solution takes the form 
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𝜌(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
exp (−

(𝑥 − 𝑣𝑡)2

4𝐷𝑡
)𝑈, 

where 𝑈 ∈ 𝕊3 is a unit quaternion encoding the initial phase orientation. 

Remark 8.1. 

• The one-dimensional case illustrates how quaternionic probability preserves the scalar Gaussian 

kernel while enriching it with quaternionic phase structure. 

• The evolution of vectorial components can be interpreted as rotational diffusion in quaternionic 

space. 

This section demonstrates how transport and diffusion extend naturally into the quaternionic 

setting, reducing to classical equations in the scalar component but enriching the dynamics with 

quaternionic phases. In the next section, we introduce quaternionic Markov chains and their 

generators. 

9. Quaternionic Markov Chains and Generators 

Markov processes describe systems evolving by local transitions between states. In the 

quaternionic setting, transition probabilities are replaced by quaternionic-valued entries, introducing 

order-dependence and noncommutativity. 

Definition 9.1 (Quaternionic stochastic matrix). 

A matrix 𝑃 = (𝑝𝑖𝑗) ∈ 𝑀𝑛(ℍ) is a quaternionic stochastic matrix if: 

1. 𝑝𝑖𝑗 ∈ ℍ, 

2. 𝑆𝑐(𝑝𝑖𝑗) ≥ 0⁡for all⁡𝑖, 𝑗, 

3. ∑ 𝑆𝑐(𝑝𝑖𝑗)𝑗 = 1for each row 𝑖, 

4. |𝑝𝑖𝑗| ≤ 1. 

Definition 9.2 (Quaternionic Markov chain). 

A process {𝑋𝑡}𝑡≥0⁡ with state space {1, … , 𝑛} is a quaternionic Markov chain if 

ℙℍ(𝑋𝑡+1 = 𝑗⁡|⁡𝑋𝑡 = 𝑖, ℎ𝑖𝑠𝑡𝑜𝑟𝑦⁡) = ⁡𝑝𝑖𝑗 , 

with (𝑝𝑖𝑗) a quaternionic stochastic matrix. 

Proposition 9.1 (Evolution of distributions). 

If 𝜋(0) ∈ ℍ𝑛 is the initial distribution, then 

𝜋(𝑡+1) = 𝜋(𝑡)𝑃 

Lemma 9.1 (Scalar reduction). 

The scalar part of 𝜋(𝑡) evolves as a classical Markov chain with transition matrix 𝑆𝑐(𝑃). 

Definition 9.3 (Quaternionic generator). 

In continuous time, a quaternionic generator is a matrix 𝑄 = (𝑞𝑖𝑗) ∈ 𝑀𝑛(ℍ) satisfying: 

5. 𝑆𝑐(𝑞𝑖𝑗) ≥ 0 for 𝑖 ≠ 𝑗. 

6. ∑ 𝑆𝑐(𝑞𝑖𝑗)𝑗 = 0 for each row 𝑖. 

The evolution is given by 

𝜋(𝑡) = 𝜋(0)𝑒𝑄𝑡  
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Theorem 9.1 (Semigroup property). 

The family 𝑇(𝑡) = 𝑒𝑄𝑡 forms a semigroup preserving scalar normalization: 

∑𝑆𝑐(𝜋𝑖(𝑡))

𝑖

= 1⁡⁡⁡for⁡all t ≥ 0. 

Definition 9.4 (Stationary distribution). 

A vector 𝜋 ∈ 𝐻𝑛 is stationary if 

𝜋𝑃 = 𝜋⁡(𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒⁡𝑡𝑖𝑚𝑒),⁡⁡⁡⁡⁡⁡⁡𝜋𝑄 = 0⁡(𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠⁡𝑡𝑖𝑚𝑒). 

Theorem 9.2 (Scalar stationarity). 

If 𝜋  is stationary in the quaternionic sense, then 𝑆𝑐(𝜋)  is a stationary distribution for the 

associated classical Markov chain. 

Remark 9.1. 

• The scalar structure ensures consistency with classical Markov theory. 

• Vectorial components enrich the model by introducing noncommutative order effects and 

quaternionic phase rotations. 

• Applications include systems where both transition frequencies and phase-like correlations are 

relevant. 

This section establishes quaternionic Markov processes, extending the classical theory with 

quaternion-valued transition structures. In the next section, we build on this framework to define 

entropy, divergence, and information measures in quaternionic probability. 

10. Quaternionic Information Theory 

Information theory provides a quantitative framework to study uncertainty, divergence, and 

coherence in probability distributions. Extending these notions to quaternionic probability requires 

separating scalar uncertainty from vectorial coherence. 

Definition 10.1 (Scalar entropy). 

For a quaternionic density 𝜌(𝑥), the scalar entropy is defined as 

𝐻(𝜌0) = −∫𝜌0(𝑥) log 𝜌0(𝑥) 𝑑𝑥, 

where 𝜌0 = 𝑆𝑐(𝜌). 

This coincides with the classical Shannon entropy. 

Definition 10.2 (Vector coherence functional). 

The vectorial coherence of 𝜌 is defined as 

𝐼𝑣𝑒𝑐(𝜌) = ∫‖𝑉𝑒𝑐(𝜌(𝑥))‖𝑑𝑥. 

• 𝐼𝑣𝑒𝑐 = 0: purely classical distribution. 

• 𝐼𝑣𝑒𝑐 > 0: quaternionic coherence beyond real probability. 

Definition 10.3 (Quaternionic entropy). 

The quaternionic entropy is defined by 
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𝐻ℍ(𝜌) = 𝐻(𝜌0) + 𝜆𝐼𝑣𝑒𝑐(𝜌) 

where 𝜆 > 0  is a weighting parameter. 

Definition 10.4 (Quaternionic divergence). 

For two densities 𝜌,𝜎, define 

𝐷ℍ(𝜌 ∥ 𝜎) = ∫[ 𝜌0(𝑥) log
𝜌0(𝑥)

𝜎0(𝑥)
+ ‖𝑉𝑒𝑐(𝜌(𝑥)) − 𝑉𝑒𝑐(𝜎(𝑥))‖

2
]𝑑𝑥.⁡ 

• The first term is the classical Kullback–Leibler divergence. 

• The second measures the mismatch of quaternionic vector phases. 

Theorem 10.1 (Non-negativity). 

𝐷ℍ(𝜌 ∥ 𝜎) ≥ 0, 𝑎𝑛𝑑⁡𝐷ℍ(𝜌 ∥ 𝜎) ⇔ 𝜌 = 𝜎 

Theorem 10.2 (Monotonicity under channels). 

If Φ is a linear map preserving scalar normalization, then 

𝐷ℍ(Φ⁡(𝜌) ∥ Φ⁡(𝜎)) ≤ 𝐷ℍ(𝜌 ∥ 𝜎) 

This extends the classical data-processing inequality. 

Remark 10.1. 

• The scalar entropy reflects classical uncertainty. 

• The coherence functional captures quaternionic information not visible in real probabilities. 

• Divergence in quaternionic probability simultaneously measures probabilistic and orientational 

mismatch. 

This section introduces entropy, coherence, and divergence in quaternionic probability, laying 

the foundation for a broader information-theoretic framework. In the next section, we compare the 

quaternionic model with its classical and complex counterparts. 

11. Comparison with Classical and Complex Cases. 

The quaternionic framework simultaneously generalizes both classical Kolmogorov probability 

and complex quantum probability. This section highlights how these theories are embedded as 

special cases. 

Proposition 11.1 (Classical reduction). 

If all quaternionic phases are trivial, 𝑈(𝐸) ≡ 1, then 

⁡ℙℍ(E) = ℙ(𝐸) ∈ [0,1] ⊂ ℝ. 

• Left and right conditional probabilities coincide. 

• Independence reduces to the classical definition. 

• The continuity and transport equations reduce to their classical forms. 

Thus, classical probability [1–5] is a subtheory of quaternionic probability. 

Proposition 11.2 (Complex reduction). 

If all phases 𝑈(𝐸) lie in a fixed complex subalgebra ℂ𝑢 ⊂ ℍ, then 

⁡ℙℍ(E) ∈ ℂ𝑢 
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• The theory reduces to complex probability, equivalent to quantum mechanics with amplitudes 

in 𝑈(1). 

• Conditional probabilities and Bayes’ rule become the complex-valued forms familiar in quantum 

inference. 

Proposition 11.3 (Strict quaternionic phenomena). 

There exist effects with no classical or complex analogue: 

1. Order dependence in conditionals: 

ℙ𝑅(𝐴|𝐵) ≠ ℙ𝐿(𝐴|𝐵), 

even when scalar probabilities coincide. 

2. Noncommutative independence: 

Strong, left, right, and scalar independence diverge in meaning. 

3. Quaternionic phase rotations: 

Phases evolve in 𝑆𝑈(2) ≃ 𝕊3 , a non-Abelian group, unlike the Abelian 𝑈(1 ) of complex 

quantum theory. 

Remark 11.1. 

• The real case corresponds to classical probability. 

• The complex case corresponds to standard quantum mechanics. 

• The quaternionic case yields a genuine noncommutative probability theory, where the order of 

updates, correlations, and transport laws are fundamentally enriched. 

12. Examples and Applications. 

Example 12.1 — Order dependence in medical diagnostics. 

Let 𝐴 =“test positive for marker 1” and 𝐵 = “test positive for marker 2”, with 

𝑃ℍ(𝐴) =
1

2
(1 + 𝑖),⁡⁡⁡𝑃ℍ(𝐵) =

1

2
(1 + 𝑗) 

Then 

𝑃ℍ(𝐴|𝐵)𝑙𝑒𝑓𝑡 ≠ 𝑃ℍ(𝐴|𝐵)𝑟𝑖𝑔ℎ𝑡 , 

although both have scalar part 1/2. 

As shown in Figure 1, the scalar components are equal, but the imaginary parts differ depending 

on conditioning order. This models order-sensitive diagnostic protocols, where the sequence of tests 

changes the inferred probability. 

Example 12.2 — Quaternionic correlation in orthogonal signals. 

Consider signals 𝑋 = 𝑠𝑖𝑛⁡(𝑡) and 𝑌 = 𝑐𝑜𝑠⁡(𝑡). Classically, 

𝐶𝑜𝑣(𝑋, 𝑌) = 0, 

so they appear independent. 

However, in the quaternionic framework, 𝑋 and 𝑌 form a circularly polarized pair: their joint 

trajectory lies on a circle in the sine–cosine plane. This reveals perfect coherence despite zero 

covariance. 

As illustrated in Figure 2, the classical view treats them as independent signals, while the 

quaternionic view identifies a circular correlation structure. 

Example 12.3 — Quaternionic diffusion in spintronics. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2025 doi:10.20944/preprints202509.2314.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2314.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 19 

 

The 1D diffusion equation gives 

𝜌(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−𝑥

2
∙ 𝑢(𝑡), 𝑢(𝑡) = 𝑒𝑗𝑡𝑖 

The scalar density follows the Gaussian law, while 𝑢(𝑡) rotates over time. 

In Figure 3, the Gaussian profiles broaden with increasing 𝑡 , while the quaternionic phase 

evolves, capturing joint density–spin dynamics relevant for spin-polarized currents. 

Example 12.4 — Market cycles with quaternionic Markov chains. 

For the transition matrix 

𝑀 = (
0 1
𝑒𝑖𝜃 0

), 

the scalar probabilities alternate deterministically (bull–bear). 

In Figure 4, the classical chain alternates states, while the quaternionic version introduces a 

rotating phase. This models cyclical market behavior with memory, adding structure beyond 

frequency counts. 

Example 12.5 — Divergence of orthogonal distributions. 

Consider two distributions with the same scalar Gaussian density but orthogonal quaternionic 

orientations: 

𝑃(𝑥) = 𝜌(𝑥) ∙ 𝑖, 𝑄(𝑥) = 𝜌(𝑥) ∙ 𝑗 

Classically, 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = 0, 

so they are indistinguishable. Quaternionically, 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) > 0, 

since 𝑖⁡and 𝑗 are orthogonal. 

As shown in Figure 5, the scalar view sees identical Gaussians, while the quaternionic view 

separates them as orthogonal distributions in phase space. This demonstrates the ability of 

quaternionic divergence to detect differences invisible to classical statistics. 

13. Conclusion and Outlook. 

This work introduces an axiomatic framework for quaternionic probability, extending 

Kolmogorov’s real-valued theory to measures and expectations taking values in ℍ  .The 

noncommutativity of quaternions manifests in two key ways: (i) left/right conditional probabilities 

and order-sensitive Bayes’ rules, and (ii) multiple, non-equivalent notions of independence (strong, 

left, right, scalar). We developed the associated calculus of random variables, expectation and 

variance, and we derived continuity and Fokker–Planck-type equations for quaternionic densities 

and currents. The framework accommodates quaternionic Markov chains and proposes a natural 

information theory separating scalar uncertainty from vectorial coherence. 

The scalar projection recovers classical probability, while restriction to a complex subalgebra 

recovers complex (quantum-like) probability; yet several phenomena are strictly quaternionic, 

including order-dependent conditioning and phase-rotational transport in 𝑆𝑈(2) . The examples 

show concrete scenarios where classical statistics is blind (identical scalars, zero KL) but quaternionic 

predictions differ in observables, divergences, or dynamics. 

Future directions include: (1) law of large numbers and central limit theorems with vectorial 

coherence; (2) martingales, filtrations, and Doob-type results in quaternionic settings; (3) ergodic 

theory and spectral gaps for quaternionic Markov generators; (4) inference algorithms and estimation 

of quaternionic phases from data; (5) applications to spin-polarized transport, orientation-aware 

sensing, and order-effects in decision pipelines. 
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The examples presented in Section 12 highlight practical scenarios where quaternionic 

probability provides information that classical and even complex-valued frameworks cannot capture. 

In medical diagnostics, it naturally models order effects in sequential tests; in signal analysis, it 

reveals hidden coherence between orthogonal channels; in spintronics, it describes coupled diffusion 

and spin precession within a single law; in financial Markov chains, it encodes cyclical memory 

beyond scalar transitions; and in communications, it distinguishes channels with identical power 

spectra but different polarization states. These applications show that quaternionic probability is not 

only a consistent mathematical generalization but also a tool with concrete advantages in modeling 

systems where orientation, coherence, and order-dependence play a fundamental role. 

Future directions include the exploration of connections between quaternionic probability and 

operator-algebraic approaches to noncommutative probability, its potential role in quaternionic 

quantum mechanics, and possible links with free probability and noncommutative geometry. These 

perspectives suggest that the present axiomatization may serve not only as a self-contained 

framework but also as a starting point for broader developments in mathematics and physics. 

14. Numerical Methods and Reproducibility. 

All figures were produced with Python and Matplotlib (no seaborn, one plot per figure, default 

color cycle). The code is deterministic and uses only elementary numerical routines. Source scripts 

are available upon request and can be deposited in a public repository. 

Computational environment. 

• Language: Python 3.x; plotting: Matplotlib. 

• No stochastic seeds are required; outputs are deterministic. 

• Hardware: standard laptop; no GPU or special libraries. 

15. Figure captions. 

 

Figure 1. Left vs. right conditional probabilities. Both share the same scalar part but differ in their imaginary 

components, capturing order-dependent effects relevant in diagnostic testing. 
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Figure 2. Classical vs. quaternionic correlation of sine and cosine signals. Classical covariance is zero 

(independence), while the quaternionic representation reveals perfect circular coherence. 

 

Figure 3. Scalar Gaussian diffusion at times 𝑡 = 1,2,3 The scalar density broadens with time, while the 

quaternionic phase evolves, modeling coupled density–spin dynamics. 
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Figure 4. Two-state Markov chain. Classical probabilities alternate deterministically between states, while 

quaternionic evolution introduces a rotating phase, modeling cyclical memory effects. 

 

Figure 5. Scalar view: two identical Gaussian distributions, indistinguishable with classical KL divergence 

(𝐷𝐾𝐿 = 0 ). Quaternionic view: orthogonal orientations in phase space, yielding positive quaternionic 

divergence (𝐷ℍ > 0). 

16. Technical Appendices 

This appendix collects mathematical foundations and technical proofs that support the 

quaternionic probability framework. 

16.1. Quaternionic measures 

Definition A.1 (Quaternionic measure). 

A function 𝜇: ℱ → ℍ is a quaternionic measure if: 

1. 𝜇(∅) = 0. 

2. For pairwise disjoint 𝐸1, 𝐸2, ⋯ ∈ ℱ, 

𝜇 (⋃𝐸𝑛

∞

𝑛=1

) = ∑𝜇(𝐸𝑛)

∞

𝑛=1

, 
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with convergence in the quaternionic norm. 

Lemma A.1 (Total variation). 

Define the total variation of 𝜇 by 

|𝜇|(𝐸) = sup{∑|𝜇(𝐸𝑗) ∶ {𝐸𝑗}⁡𝑓𝑖𝑛𝑖𝑡𝑒⁡𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝐸

𝑗

}. 

Then |𝜇| is a real-valued measure and 𝜇 is absolutely continuous with respect to |𝜇|. 

16.2. Quaternionic integration. 

Definition A.2 (Bochner–quaternionic integral). 

For a simple function 𝑓 = ∑ 𝑞𝑘𝜇(𝐸𝑘)𝑘 , define 

∫𝑓𝑑𝜇 =∑𝑞𝑘𝜇(𝐸𝑘)

𝑘

 

This extends by norm limits to all measurable functions 𝑓: 𝛺 → ℍ. 

Proposition A.1 (Norm inequality). 

For any 𝑓 ∈ 𝐿−1(𝜇), 

|∫ 𝑓𝑑𝜇| ≤ ∫|𝑓| 𝑑|𝜇| 

16.3 Functional calculus in ℍ. 

• Exponential: 

𝑒𝑞 = ∑
𝑞𝑛

𝑛!

∞

𝑛=0

,⁡⁡⁡⁡𝑞 ∈ ℍ. 

• Logarithm: defined on ℍ ∖ (−∞, 0], with multiple values corresponding to directions in⁡𝕊3. 

• S-spectrum: For operators on quaternionic Banach spaces, the S-spectrum (Colombo–Sabadini–

Struppa [22]) generalizes the classical spectrum and is essential for defining 𝑒𝑄𝑡 in Section 9. 

16.4. Proof sketches. 

A.4.1 Bayes’ rules. 

Noncommutativity requires distinguishing left and right multiplication. The denominator 

normalizes the scalar part to unity, ensuring consistency with Definition 3.1–3.2. 

A.4.2 Continuity equation. 

Derived by integrating the balance law over regions and applying Gauss’ theorem 

componentwise. 

A.4.3 Fokker–Planck equation. 

Obtained as a diffusion limit of jump processes with quaternionic increments, scaling ∆𝑥2~∆𝑡. 

16.5. Summary. 

• Quaternionic measures extend real measures consistently. 

• The Bochner integral provides a rigorous foundation for expectations. 

• Functional calculus guarantees the well-definedness of semigroups 𝑒𝑄𝑡. 

• Proofs of conditional probability, continuity, and transport equations ensure mathematical 

coherence of the quaternionic framework. 
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This appendix secures the mathematical foundations of quaternionic probability, completing the 

proposed theory. 

Data Availability Statement: This article is based entirely on mathematical derivations and theoretical 

reasoning. Therefore, no datasets were generated or analyzed, and data sharing is not applicable to this article. 
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