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Abstract

We present an axiomatic construction of quaternionic probability, extending Kolmogorov’s classical
framework to the noncommutative algebra of quaternions. The theory introduces quaternionic
probability spaces, conditional probabilities, Bayes’ rules, independence, random variables,
expectations, and transport equations, all formulated in a consistent manner. Classical probability is
recovered through scalar projection, while restriction to complex subalgebras reproduces the
standard quantum formalism. Uniquely quaternionic structures arise, including noncommutative
conditional probabilities, inequivalent forms of independence, and quaternionic transport laws. The
framework further develops quaternionic Markov chains, entropy, and divergence measures that
separate scalar uncertainty from vectorial coherence. Several illustrative examples are provided to
show how quaternionic probability captures order effects, hidden correlations, and orthogonal
divergences—features invisible to both classical and complex approaches. These results establish
quaternionic probability as a rigorous generalization of Kolmogorov’s axioms and as a potential
foundation for future studies in noncommutative probability, integrable structures, and quaternionic
extensions of mathematical physics.

Keywords: quaternionic probability; noncommutative probability; Kolmogorov axioms;
quaternionic random variables; conditional probability; quaternionic Markov chains; quaternionic
information theory; Clifford algebras; quaternionic entropy; quaternionic Bayesian inference

1. Introduction

The foundations of modern probability theory were established by Kolmogorov [1], and
subsequently developed in great detail in classical texts such as Billingsley [2], Doob [3], Feller [4],
and Parthasarathy [5]. This framework, based on real-valued measures on sigma-algebras, has
proven remarkably successful in describing a wide variety of stochastic phenomena. Nevertheless,
over the past decades there has been increasing interest in extending the notion of probability beyond
the real line, in order to model systems where interference, order-dependence, or non-commutativity
play a fundamental role.

Already in the mid-20th century, Feynman speculated on the role of negative probabilities in
quantum theory [6], while Khrennikov and others explored generalized frameworks for probability,
including non-Kolmogorovian and ppp-adic formulations [7,8]. In parallel, noncommutative
probability theory emerged in operator algebras, with Accardi [9], Accardi-Cecchini [10], Voiculescu
[11], Speicher [12], Wysoczaniski [13], and Kiimmerer [14] among the leading contributors. These
works highlighted that probabilistic notions such as independence and conditional expectation admit
multiple, non-equivalent generalizations once the commutativity of real-valued measures is
abandoned.

Quaternions, introduced by Hamilton in the 19th century [15], have also played a fundamental
role in mathematical physics. Quaternionic analysis [16], quaternionic quantum mechanics [17-19],
and quaternionic differential operators [20] provided natural frameworks for describing rotations,
spin, and field theories where complex numbers are not sufficient. More recently, Danielewski and
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Jadczyk [21] have revisited the foundations of quaternionic quantum mechanics, and Colombo,
Sabadini, and Struppa [22] developed a functional calculus for slice hyperholomorphic functions,
reinforcing the modern analytic foundations of quaternion-valued mathematics.

At the same time, practical applications of quaternionic probability and statistics have emerged
in signal processing and image analysis. For instance, quaternionic Fourier transforms [25], principal
component analysis [24], and augmented statistics of quaternion random variables [23] have shown
how quaternion-valued frameworks can capture multi-dimensional correlations in ways that real or
complex approaches cannot. Recent mathematical work, such as Wang and Zhang’s quaternionic
Mahler measure [26], further illustrates that the study of measures with values in H is both
mathematically natural and actively developing.

Despite these advances, a systematic axiomatic theory of quaternionic probability —comparable
in rigor to Kolmogorov’s framework, but extending it into the noncommutative domain of
quaternions—has not yet been established. The goal of this work is to provide such a theory: to define
quaternionic probability spaces, state coherent axioms, and develop the corresponding notions of
conditional probability, independence, random variables, processes, and information measures. By
doing so, we show how classical probability [1-5] and quantum complex probability [6,7,9] appear
as special cases, while new phenomena—such as order-dependent conditional probabilities,
noncommutative independence, and quaternionic transport equations—arise uniquely in the
quaternionic setting.

This paper is structured as follows. In Section 2 we introduce the axioms of quaternionic
probability and establish their basic consequences. Sections 3 and 4 develop conditional probabilities,
Bayes’ rules, and notions of independence in the noncommutative context. In Sections 5 and 6 we
define quaternionic random variables, expectations, and observables. Sections 7 and 8 extend the
theory to stochastic processes and derive quaternionic continuity and Fokker—Planck-type equations.
Section 9 studies quaternionic Markov chains, while Section 10 develops a framework for
quaternionic information theory. In Section 11 we compare the quaternionic framework to classical
and complex probability, and in Section 12 we present illustrative examples and potential
applications. Technical details are collected in Section 16.

To the best of our knowledge, no complete axiomatization of probability over the quaternionic
algebra has been established in the literature. Previous works have considered noncommutative
probability in the context of operator algebras or complex Hilbert spaces, but a direct extension of
Kolmogorov’s axioms to quaternions has not been systematically developed. The present work aims
to fill this gap by constructing a rigorous quaternionic probability theory and by illustrating its
distinctive features through both mathematical results and concrete examples.

2. Quaternionic Probability Spaces and Axioms

We begin by extending Kolmogorov’s axioms [1] to quaternion-valued measures. Throughout,
let H denote the skew field of quaternions, with scalar part Sc(q) and vector part Vec (q).The
set of unit quaternions is denoted by $3 = {q € H: |q| = 1}.

Definition 2.1 (Quaternionic probability space).
A quaternionic probability space is a triple
(‘Qr F y ]P)IHI)J

where:

e () asample space,
e F isa o -algebra of subsets of (Q,
e Py:F - H is a set function satisfying the axioms below.

Axiom 2.1 (Normalization).
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ScPy(Q) = 1.
Axiom 2.2 (Quaternionic ¢ -additivity).

For any countable collection of pairwise disjoint sets E;, E;, ... € F,

Py (LOOJ En) = i Py (Ey),

=1 =1

where convergence is taken in the quaternionic norm.
Axiom 2.3 (Scalar positivity).

ScPy(E) =0 forall E €F.
Axiom 2.4 (Complement).

Py(ES) = 1 — Py(E).

Axiom 2.5 (Boundedness).

| Py(E)] <1 forall E€F .
Lemma 2.1 (Classical reduction).

The scalar part
P(E) := Sc Py(E).

defines a classical probability measure on (Q, F).

Proof. Immediate from Axioms 2.1-2.3.

Proposition 2.1 (Modulus—phase factorization).

Every quaternionic probability can be uniquely written as

Py (E) = P(E)U(E),
where P(E) € [0,1] is the classical probability of E and U(E) € S? is a unit quaternion.
Interpretation. The scalar component IP(E) captures the usual frequency interpretation, while the unit
quaternion U(E) encodes an additional “phase” or orientation, absent in the classical case.
This axiomatic structure establishes quaternionic probability as a genuine extension of Kolmogorov’s
framework. In the next section we explore the consequences for conditional probabilities and Bayes’

rule in a noncommutative setting.

3. Conditional Probabilities and Bayes” Theorem.

One of the main novelties of quaternionic probability is that conditionalization becomes
inherently noncommutative. Because quaternionic multiplication does not commute, we must
distinguish between right and left conditional probabilities.

Definition 3.1 (Right conditional probability).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2314.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 September 2025 d0i:10.20944/preprints202509.2314.v1

4 of 19

For events 4,B € F with Py(B) # 0, the right conditional probability of A given B is defined
by
-1
PR(A|B) == Py(ANB) (Py(B)) .

Definition 3.2 (Left conditional probability).

For events A,B € F with Py(B) # 0, the left conditional probability of A given B is defined
by
PL(AIB) == (Py(B))  Py(ANB).

Proposition 3.1 (Scalar reduction).

For both left and right conditionals,
Sc PR(A|B) = Sc PL(A|B) = P(A|B).
where P P(A|B) is the classical conditional probability.
Proof. Since scalar parts commute, the difference between left and right multiplications disappears

when taking Sc(*) .
Proposition 3.2 (Order-dependence).

In general,
PR(A|B) = PL(A|B).
Thus, conditional probabilities encode not only relative frequency but also the order of
information update.

Theorem 3.1 (Right Bayes’ rule).

Let {Bj} be a finite or countable partition of Q with Py(B;) # 0. Then, forany A € F,
P*(A|By) Py(By)
%, PR(4]B;) Py (B;)

PR (B lA) =

Theorem 3.2 (Left Bayes’ rule).
Under the same assumptions,

-1

PL(B|A) = Z PR(A|B;) Pu(B;) | PR(AIBy) Pu(By).
j

Remark 3.1.
J Both Bayes’ rules reduce to the classical one when all quaternionic phases commute.
. The distinction between left and right formulations reflects the noncommutative geometry of

the quaternionic unit sphere S$3.

J This framework naturally accommodates order-sensitive inference, where updating on A then
B is not equivalent to updating on B then A.

This section demonstrates that conditionalization in quaternionic probability is fundamentally
noncommutative, giving rise to two inequivalent but consistent Bayes’ rules. In the next section we
will investigate how these asymmetries manifest in different notions of independence.

4. Independence and Correlations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In the quaternionic framework, the noncommutativity of multiplication implies that the notion
of independence is no longer unique. We distinguish several types of independence and define
quaternionic correlation.

Definition 4.1 (Strong independence).

Two events A,B € F are said to be strongly independent if
Py(ANB) = Py (A) Py(B).

Definition 4.2 (Right independence).

Events A, B are right independent if
Py (ANB) = PR(A|B) Py (B).

Definition 4.3 (Left independence).

Events A,B are left independent if
Py (ANB) = Py (B)PL(A|B).

Definition 4.4 (Scalar independence).

Events 4, B are scalar independent if
P(ANB) = P(A)P(B),
where P = Sc Py is the underlying classical probability.

Proposition 4.1.

Strong independence = right independence, left independence, and scalar independence. The
converses do not hold in general.

Proof. Strong independence directly implies equality under both left and right conditional definitions
and yields the scalar condition. However, the reverse implications fail when quaternionic phases do
not commute.

Definition 4.5 (Quaternionic correlation).

The quaternionic correlation between two events 4, B is defined as
Cu(A,B) == Py(ANB) — Py (A4) Py(B).

Proposition 4.2 (Scalar reduction of correlation).

The scalar part of quaternionic correlation is the classical covariance:
Sc Cy(A,B) == P(ANB) — P(A)P(B).

Remark 4.1.

. In the classical case, independence is unique; here, different forms of independence reflect the
underlying noncommutative structure.

. The quaternionic correlation captures deviations not only in scalar probability but also in
vectorial phase coherence.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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. Order effects (left vs. right independence) provide a natural mathematical description of
phenomena where the sequence of conditioning matters.

This section shows that the richness of quaternionic probability emerges already at the level of
independence. Multiple notions coexist, and correlations now carry both scalar and vectorial
information. In the next section we will introduce quaternionic random variables and define

expectations and moments.

5. Quaternionic Random Variables and Expectation.

Having defined quaternionic probability measures, we now extend the framework to random
variables, expectations, and moments. The key novelty is that expectations become quaternion-
valued, and inequalities must be interpreted via their scalar components.

Definition 5.1 (Quaternionic random variable).

A quaternionic random variable is a measurable map

X:Q- H.
The distribution of X is the quaternionic measure
ux(B) := Py(X~'(B)), B < H.

Definition 5.2 (Expectation).

The expectation of X is defined by

EylX] = fﬂ X(w)dPy(w).

When Py is expressed in modulus—phase form Py = PU, this integral can be interpreted as

Ey[X] = f X(0)U(0)dP ()
QO

with P the scalar probability and U(w) € $* a local quaternionic phase.
Proposition 5.1 (Scalar expectation).

The scalar part of the quaternionic expectation is the classical expectation:
Sc Ey[X] = E[X],
where E[X] is the usual expectation with respect to P = Sc Py.

Definition 5.3 (Variance).

The variance of X is defined as
Vary(X): = IEH[|X|2] - IIEIHI[X]IZ

Proposition 5.2 (Scalar variance).

The scalar part of the quaternionic variance coincides with the classical variance:
Sc Vary(X) = Var(X).

Theorem 5.1 (Markov inequality, quaternionic form).

Let X > 0 be a real-valued random variable on a quaternionic probability space. Then, for any
a >0,

E[X]
P(X>a)<—
a

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where P = Sc Py.

Remark. The inequality remains scalar because order in H is not defined; only the real measure
governs tail bounds.

Theorem 5.2 (Chebyshev inequality, quaternionic form).

For any real-valued X with finite variance,

P(X —E[X]| = ¢) < @

Again, the scalar distribution P controls concentration, while the quaternionic components
contribute through higher-order coherence rather than tail probabilities.

Remark 5.1.

e  Expectations and variances carry quaternionic information, but inequalities remain scalar
because order is defined only in R.

e The vector components of E[X] may encode directional or phase-like features of the
distribution.

This section establishes the basic theory of quaternionic random variables. In the next section we
introduce projections onto complex subalgebras and observables, showing how real measurements
can be extracted from quaternionic distributions.

6. Transformations, Projections, and Observables.

While quaternionic random variables may take values in the full noncommutative algebra H, in
practice one often measures or analyzes their behavior through projections onto real or complex
subalgebras. This section formalizes such transformations and introduces the notion of observables.

Definition 6.1 (Projection onto a subalgebra).

For a fixed imaginary unit u € {i, , k}, define the projection
m,:H - C, :={a+ bu:a,b € R}

by
my,(a+ bi+cj+dk) =a+ bu.

Proposition 6.1.

For any quaternionic random variable X, the projection X® :=m,(X) is a complex-valued
random variable with respect to the underlying scalar probability measure P = Sc Py.

Definition 6.2 (Observable).

Let X:Q — H be a quaternionic random variable and u € {i,j, k}. The observable associated
with direction uuu is defined as
0,(X):=Sc (X u").
This extracts a real-valued random variable aligned with the chosen imaginary axis.

Proposition 6.2 (Expectation of observables).

For each uuu, the expectation of the observable satisfies
E[0,(X)] = Sc Eyx[X u*].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Theorem 6.1 (Reduction to classical/complex cases).

e If U(E) =1 for all E, then quaternionic probability reduces to classical probability.
e Ifall phases U(E) lie within a single complex subalgebra C, c H, then quaternionic probability
reduces to complex probability, structurally equivalent to standard quantum mechanics.

Remark 6.1.

e  Projections and observables provide the link between quaternionic models and experimentally
accessible quantities.

e  This mirrors the role of self-adjoint operators in quantum mechanics, but extended to the richer
quaternionic setting.

This section clarifies how quaternionic random variables can be connected to measurable
outputs. In the next section we will extend the framework to stochastic processes and derive
quaternionic versions of balance and continuity equations.

7. Quaternionic Processes and Continuity Equations.

In classical probability, stochastic processes are families of random variables indexed by time,
whose evolution is described by balance or continuity equations. In the quaternionic setting, these
structures generalize to quaternion-valued densities and currents.

Definition 7.1 (Quaternionic stochastic process).

A quaternionic stochastic process is a family of quaternionic random variables
{Xet: 2 = H}exo,

adapted to some filtration {F,}¢s.
Definition 7.2 (Quaternionic probability density).

A quaternionic-valued density is a function

p(x, ) = po(x,t) + p1 (x, )i + po (x, )] + ps (x, )k
with p,(x,t) € R. Its scalar part p, represents the classical probability density.

Definition 7.3 (Quaternionic current).

The probability current is a quaternionic vector field

10, t) = Jo(x, 6) + J1(x, )i + [ (x, 8)j + J3(x, Dk
with J,,(x,t) € R4,

Theorem 7.1 (Quaternionic continuity equation).

For any region V c R?,

i p(x, t)dx = —j

J(x, t) -ndS+J S(x, t)dx,
at J, v v

where S(x,t) is a quaternionic source term.
In differential form,
atp(xl t) + \Y ..](xl t) = S(x) t)

Proof. Follows from quaternionic integration and the divergence theorem applied componentwise.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Proposition 7.1 (Scalar reduction).

The scalar part of the continuity equation is
0cpo(x, 1) + V- Jo(x, 1) = Sp(xx, ).

which is the classical continuity equation.

Remark 7.1.

e  The scalar component governs ordinary conservation of probability.

e  The vectorial components describe additional degrees of freedom, such as orientation or phase
transport in quaternionic space.

e  This structure allows for richer dynamics while ensuring that the real part remains a valid
probability density.

This section establishes the quaternionic continuity equation as the fundamental balance law of
quaternionic probability. In the next section we derive transport equations and diffusion dynamics,
including a quaternionic Fokker—Planck equation.

8. Transport and the One-Dimensional Case.

The quaternionic continuity equation provides the general balance law for probability densities.
In this section, we introduce specific transport models and study their one-dimensional reduction.

Definition 8.1 (Quaternionic drift-diffusion current).

Given a velocity field v € H? and diffusion coefficient D > 0, the quaternionic probability
current is modeled as

J(x, t) =vp(x,t) — DVp(x,t).
Theorem 8.1 (Quaternionic Fokker-Planck equation).

Substituting the drift-diffusion current into the continuity equation yields
0:p(x,t) = —(v-V)p(x,t) + DV?p(x, t).

Proof. Direct substitution and application of the divergence theorem.
Proposition 8.1 (Component form).

Writing p = po + p1i + p2j + psk, each component satisfies
0cpm(x,t) = —(v - V)p,,(x,t) + DV?p,, (x, 1), m=0,1,2,3.

Corollary 8.1 (Scalar reduction).

The scalar part p, evolves according to the classical Fokker—Planck equation, while the vector
parts py, p,, p3 evolve as coupled drift-diffusion fields without affecting normalization.

Definition 8.2 (One-dimensional transport).

In one dimension,
Otpm(x,t) = _ax(vpx(xr t)) + Da; py(x, t).

Proposition 8.2 (Solution structure in 1D).

For constant v and D, the solution takes the form

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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0 1 < (x — vt)2> U
x,t) = ——exp| ——— | U,
P Vampt P\ 4Dt

where U € $* is a unit quaternion encoding the initial phase orientation.

Remark 8.1.

e  The one-dimensional case illustrates how quaternionic probability preserves the scalar Gaussian
kernel while enriching it with quaternionic phase structure.

e  The evolution of vectorial components can be interpreted as rotational diffusion in quaternionic
space.

This section demonstrates how transport and diffusion extend naturally into the quaternionic
setting, reducing to classical equations in the scalar component but enriching the dynamics with
quaternionic phases. In the next section, we introduce quaternionic Markov chains and their
generators.

9. Quaternionic Markov Chains and Generators

Markov processes describe systems evolving by local transitions between states. In the
quaternionic setting, transition probabilities are replaced by quaternionic-valued entries, introducing
order-dependence and noncommutativity.

Definition 9.1 (Quaternionic stochastic matrix).

A matrix P = (p;;) € M,,(H) is a quaternionic stochastic matrix if:
p;; € H,

SC(pl]) > 0 for all i,j,

¥ Sc(pij) = 1for each row i,

|pij| <1

L NS

Definition 9.2 (Quaternionic Markov chain).

A process {X;};»o with state space {1,...,n} is a quaternionic Markov chain if
Py (Xer1 = | Xp = i, history ) = pyj,

with (p;;) a quaternionic stochastic matrix.
Proposition 9.1 (Evolution of distributions).

If 7(® € H" is the initial distribution, then
T[(t+1) = T[(t)P

Lemma 9.1 (Scalar reduction).
The scalar part of 7(®) evolves as a classical Markov chain with transition matrix Sc(P).
Definition 9.3 (Quaternionic generator).

In continuous time, a quaternionic generator is a matrix Q = (q;;) € M, (H) satisfying:
5. Sc(qij) =0 for i #j.
6. Y;Sc(q;;) =0 foreachrow i.
The evolution is given by
m(t) = n(0)e®t

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Theorem 9.1 (Semigroup property).

The family T(t) = e?" forms a semigroup preserving scalar normalization:

ZSc(ni(t)) =1 forallt=0.
i

Definition 9.4 (Stationary distribution).

A vector m € H" is stationary if

P = 7 (discrete time), mwQ = 0 (continuous time).
Theorem 9.2 (Scalar stationarity).

If m is stationary in the quaternionic sense, then Sc(m) is a stationary distribution for the
associated classical Markov chain.

Remark 9.1.

e  The scalar structure ensures consistency with classical Markov theory.

e  Vectorial components enrich the model by introducing noncommutative order effects and
quaternionic phase rotations.

e  Applications include systems where both transition frequencies and phase-like correlations are
relevant.

This section establishes quaternionic Markov processes, extending the classical theory with
quaternion-valued transition structures. In the next section, we build on this framework to define
entropy, divergence, and information measures in quaternionic probability.

10. Quaternionic Information Theory

Information theory provides a quantitative framework to study uncertainty, divergence, and
coherence in probability distributions. Extending these notions to quaternionic probability requires
separating scalar uncertainty from vectorial coherence.

Definition 10.1 (Scalar entropy).

For a quaternionic density p(x), the scalar entropy is defined as
H(po) = = [ po(@) g o) d,

where p, = Sc(p).
This coincides with the classical Shannon entropy.

Definition 10.2 (Vector coherence functional).

The vectorial coherence of p is defined as
Lyec(p) = f”VeC(P(x))”dx-

e I, = 0: purely classical distribution.
e I, > 0: quaternionic coherence beyond real probability.

Definition 10.3 (Quaternionic entropy).

The quaternionic entropy is defined by

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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H]HI(p) = H(Po) + Alvec(p)
where 1> 0 is a weighting parameter.

Definition 10.4 (Quaternionic divergence).

For two densities p,ag, define

po(x) 2
50 ) + ||Vec(p(x)) - Vec(a(x))” ]dx.

Dalp 1) = [ [po@) log

o  The first term is the classical Kullback-Leibler divergence.
e  The second measures the mismatch of quaternionic vector phases.

Theorem 10.1 (Non-negativity).
Duy(p l o) =0, and Dy(p llo) ®p=o0
Theorem 10.2 (Monotonicity under channels).

If @ is alinear map preserving scalar normalization, then

Dy (® (p) II @ (0)) < Du(p Il 0)
This extends the classical data-processing inequality.

Remark 10.1.

e  The scalar entropy reflects classical uncertainty.

e The coherence functional captures quaternionic information not visible in real probabilities.

e Divergence in quaternionic probability simultaneously measures probabilistic and orientational
mismatch.

This section introduces entropy, coherence, and divergence in quaternionic probability, laying
the foundation for a broader information-theoretic framework. In the next section, we compare the
quaternionic model with its classical and complex counterparts.

11. Comparison with Classical and Complex Cases.

The quaternionic framework simultaneously generalizes both classical Kolmogorov probability
and complex quantum probability. This section highlights how these theories are embedded as
special cases.

Proposition 11.1 (Classical reduction).

If all quaternionic phases are trivial, U(E) = 1, then
Py(E) = P(E) € [0,1] c R.

e  Left and right conditional probabilities coincide.
¢ Independence reduces to the classical definition.
e  The continuity and transport equations reduce to their classical forms.

Thus, classical probability [1-5] is a subtheory of quaternionic probability.
Proposition 11.2 (Complex reduction).

If all phases U(E) lie in a fixed complex subalgebra C, c H, then
Pu(E) € C,
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e  The theory reduces to complex probability, equivalent to quantum mechanics with amplitudes
in U(1).

e  Conditional probabilities and Bayes’ rule become the complex-valued forms familiar in quantum
inference.

Proposition 11.3 (Strict quaternionic phenomena).

There exist effects with no classical or complex analogue:
1.  Order dependence in conditionals:
PR(A|B) # P*(A|B),
even when scalar probabilities coincide.
2. Noncommutative independence:
Strong, left, right, and scalar independence diverge in meaning.
3. Quaternionic phase rotations:

Phases evolve in SU(2) ~S$*, a non-Abelian group, unlike the Abelian U(1) of complex
quantum theory.

Remark 11.1.

e  The real case corresponds to classical probability.

e  The complex case corresponds to standard quantum mechanics.

e  The quaternionic case yields a genuine noncommutative probability theory, where the order of
updates, correlations, and transport laws are fundamentally enriched.

12. Examples and Applications.
Example 12.1 — Order dependence in medical diagnostics.

Let A ="test positive for marker 1” and B = “test positive for marker 2”, with
1 . 1 .
Pa(A) =5 (1+D), Pu(B) =5(1+))

Then
Py(AIB)eft # Pu(AlB)righes
although both have scalar part 1/2.
As shown in Figure 1, the scalar components are equal, but the imaginary parts differ depending
on conditioning order. This models order-sensitive diagnostic protocols, where the sequence of tests
changes the inferred probability.

Example 12.2 — Quaternionic correlation in orthogonal signals.

Consider signals X = sin (t) and Y = cos (t). Classically,
Cov(X,Y) =0,
so they appear independent.

However, in the quaternionic framework, X and Y form a circularly polarized pair: their joint
trajectory lies on a circle in the sine—cosine plane. This reveals perfect coherence despite zero
covariance.

As illustrated in Figure 2, the classical view treats them as independent signals, while the
quaternionic view identifies a circular correlation structure.

Example 12.3 — Quaternionic diffusion in spintronics.
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The 1D diffusion equation gives

p(x,t) = e . u(t), u(t) = elti

1
VanrDt

The scalar density follows the Gaussian law, while u(t) rotates over time.
In Figure 3, the Gaussian profiles broaden with increasing t, while the quaternionic phase
evolves, capturing joint density—spin dynamics relevant for spin-polarized currents.

Example 12.4 — Market cycles with quaternionic Markov chains.

For the transition matrix
/0 1
M=(ew o)
the scalar probabilities alternate deterministically (bull-bear).
In Figure 4, the classical chain alternates states, while the quaternionic version introduces a
rotating phase. This models cyclical market behavior with memory, adding structure beyond
frequency counts.

Example 12.5 — Divergence of orthogonal distributions.

Consider two distributions with the same scalar Gaussian density but orthogonal quaternionic

orientations:
P(x)=px)-i, QM) =px)j
Classically,
D, (P11Q) =0,
so they are indistinguishable. Quaternionically,
D, (P 11Q) >0,

since i and j are orthogonal.

As shown in Figure 5, the scalar view sees identical Gaussians, while the quaternionic view
separates them as orthogonal distributions in phase space. This demonstrates the ability of
quaternionic divergence to detect differences invisible to classical statistics.

13. Conclusion and Outlook.

This work introduces an axiomatic framework for quaternionic probability, extending
Kolmogorov’s real-valued theory to measures and expectations taking values in H .The
noncommutativity of quaternions manifests in two key ways: (i) left/right conditional probabilities
and order-sensitive Bayes’ rules, and (ii) multiple, non-equivalent notions of independence (strong,
left, right, scalar). We developed the associated calculus of random variables, expectation and
variance, and we derived continuity and Fokker—Planck-type equations for quaternionic densities
and currents. The framework accommodates quaternionic Markov chains and proposes a natural
information theory separating scalar uncertainty from vectorial coherence.

The scalar projection recovers classical probability, while restriction to a complex subalgebra
recovers complex (quantum-like) probability; yet several phenomena are strictly quaternionic,
including order-dependent conditioning and phase-rotational transport in SU(2). The examples
show concrete scenarios where classical statistics is blind (identical scalars, zero KL) but quaternionic
predictions differ in observables, divergences, or dynamics.

Future directions include: (1) law of large numbers and central limit theorems with vectorial
coherence; (2) martingales, filtrations, and Doob-type results in quaternionic settings; (3) ergodic
theory and spectral gaps for quaternionic Markov generators; (4) inference algorithms and estimation
of quaternionic phases from data; (5) applications to spin-polarized transport, orientation-aware
sensing, and order-effects in decision pipelines.
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The examples presented in Section 12 highlight practical scenarios where quaternionic
probability provides information that classical and even complex-valued frameworks cannot capture.
In medical diagnostics, it naturally models order effects in sequential tests; in signal analysis, it
reveals hidden coherence between orthogonal channels; in spintronics, it describes coupled diffusion
and spin precession within a single law; in financial Markov chains, it encodes cyclical memory
beyond scalar transitions; and in communications, it distinguishes channels with identical power
spectra but different polarization states. These applications show that quaternionic probability is not
only a consistent mathematical generalization but also a tool with concrete advantages in modeling
systems where orientation, coherence, and order-dependence play a fundamental role.

Future directions include the exploration of connections between quaternionic probability and
operator-algebraic approaches to noncommutative probability, its potential role in quaternionic
quantum mechanics, and possible links with free probability and noncommutative geometry. These
perspectives suggest that the present axiomatization may serve not only as a self-contained
framework but also as a starting point for broader developments in mathematics and physics.

14. Numerical Methods and Reproducibility.

All figures were produced with Python and Matplotlib (no seaborn, one plot per figure, default
color cycle). The code is deterministic and uses only elementary numerical routines. Source scripts
are available upon request and can be deposited in a public repository.

Computational environment.

¢  Language: Python 3.x; plotting: Matplotlib.

e  No stochastic seeds are required; outputs are deterministic.
¢  Hardware: standard laptop; no GPU or special libraries.

15. Figure captions.
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Figure 1. Left vs. right conditional probabilities. Both share the same scalar part but differ in their imaginary

components, capturing order-dependent effects relevant in diagnostic testing.
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Figure 2. Classical vs. quaternionic correlation of sine and cosine signals. Classical covariance is zero

(independence), while the quaternionic representation reveals perfect circular coherence.
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Figure 3. Scalar Gaussian diffusion at times t = 1,2,3 The scalar density broadens with time, while the

quaternionic phase evolves, modeling coupled density—spin dynamics.
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Figure 4. Two-state Markov chain. Classical probabilities alternate deterministically between states, while

quaternionic evolution introduces a rotating phase, modeling cyclical memory effects.
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Figure 5. Scalar view: two identical Gaussian distributions, indistinguishable with classical KL divergence
(Dgr = 0). Quaternionic view: orthogonal orientations in phase space, yielding positive quaternionic
divergence (Dy > 0).

16. Technical Appendices

This appendix collects mathematical foundations and technical proofs that support the
quaternionic probability framework.

16.1. Quaternionic measures
Definition A.1 (Quaternionic measure).

A function u:F — H is a quaternionic measure if:

1. wu@) =0.
2. For pairwise disjoint Ey,E,,-- € F,

[z (CJ En) i 1(En),

n=1 n=1
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with convergence in the quaternionic norm.
Lemma A.1 (Total variation).

Define the total variation of u by

|u|(E) = sup Z |y(Ej) : {E]} finite partition of E ;.
J

Then |u| is a real-valued measure and u is absolutely continuous with respect to |u].
16.2. Quaternionic integration.
Definition A.2 (Bochner—quaternionic integral).

For a simple function f = Y}, qxu(Ey), define

[ rau=3 quo
k

This extends by norm limits to all measurable functions f:2 — H.
Proposition A.1 (Norm inequality).

For any f € L7'(),
|| rau = [1r1dlui

16.3 Functional calculus in H.

e  Exponential:

® n
el =Z%, q € H.
n=0 '

e Logarithm: defined on H \ (—oo, 0], with multiple values corresponding to directions in $>.
e  S-spectrum: For operators on quaternionic Banach spaces, the S-spectrum (Colombo-Sabadini-
Struppa [22]) generalizes the classical spectrum and is essential for defining e?* in Section 9.

16.4. Proof sketches.

A.4.1 Bayes' rules.

Noncommutativity requires distinguishing left and right multiplication. The denominator
normalizes the scalar part to unity, ensuring consistency with Definition 3.1-3.2.
A.4.2 Continuity equation.

Derived by integrating the balance law over regions and applying Gauss’ theorem
componentwise.
A.4.3 Fokker-Planck equation.

Obtained as a diffusion limit of jump processes with quaternionic increments, scaling Ax?~At.

16.5. Summary.

¢  Quaternionic measures extend real measures consistently.

e  The Bochner integral provides a rigorous foundation for expectations.

e Functional calculus guarantees the well-definedness of semigroups e?".

e  Proofs of conditional probability, continuity, and transport equations ensure mathematical
coherence of the quaternionic framework.
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This appendix secures the mathematical foundations of quaternionic probability, completing the
proposed theory.

Data Availability Statement: This article is based entirely on mathematical derivations and theoretical

reasoning. Therefore, no datasets were generated or analyzed, and data sharing is not applicable to this article.

References

1. Kolmogorov, A. N. (1933). Foundations of the theory of probability. Chelsea Publishing.

2.  Billingsley, P. (1995). Probability and measure (3rd ed.). Wiley.

3. Doob, J. L. (1953). Stochastic processes. Wiley.

4.  Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1, 3rd ed.). Wiley.

5. Parthasarathy, K. R. (1967). Probability measures on metric spaces. Academic Press.

6. Feynman, R. P. (1987). Negative probability. In B. J. Hiley & F. D. Peat (Eds.), Quantum implications: Essays

in honour of David Bohm (pp. 235-248). Routledge.

Khrennikov, A. (2009). Interpretations of probability. De Gruyter.

8. Khrennikov, A. (1999). Classical and quantum mechanics on p-adic trees of ideas. Doklady Mathematics,
59(3), 450—452.

9. Accardi, L. (1984). Non-Kolmogorovian probabilities and quantum physics. In Proceedings of the Conference

N

on Mathematical Problems in Theoretical Physics (pp. 147-159). Springer.

10. Accardji, L., & Cecchini, C. (1982). Conditional expectations in von Neumann algebras and a theorem of
Takesaki. Journal of Functional Analysis, 45(2), 245-273.

11. Voiculescu, D. V. (1992). Free probability theory: Random matrices and von Neumann algebras. Proceedings
of the International Congress of Mathematicians (pp. 227-241).

12.  Speicher, R. (2007). Lectures on free probability theory. Springer.

13. Wysoczanski, J. (2010). Non-commutative independence of algebras and applications to probability.
Operators and Matrices, 4(2), 253-270.

14. Kimmerer, B. (1985). Markov dilations and noncommutative processes. In Probability measures on groups
(pp- 216-236). Springer.

15. Hamilton, W. R. (1853). Lectures on quaternions. Hodges and Smith.

16. Sudbery, A. (1986). Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society,
85(2), 199-225.

17.  Adler, S. L. (1995). Quaternionic quantum mechanics and quantum field. Oxford University Press.

18.  Adler, S. L. (1996). Quaternionic quantum mechanics and noncommutative dynamics. arXiv preprint hep-
th/9607008. https://arxiv.org/abs/hep-th/9607008

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2314.v1
http://creativecommons.org/licenses/by/4.0/

