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Abstract

Heterogeneous Wireless Sensor Networks (HWSNs), which comprises super nodes and normal
sensors, offer a promising solution for monitoring diverse environments. However, their practical
deployment is constrained by the limited battery life of sensors. To address this issue, clustering and
routing techniques have been employed to conserve energy. Nevertheless, existing approaches often
struggle suboptimal energy distribution, limited network lifetime, and weak network coverage.
Additionally, they mostly failed to exploit other energy saving techniques such as sleep scheduling.
This paper proposes a novel Genetic Algorithm (GA)-based approach to optimize sleep scheduling,
routing, and clustering in HWSNs. The method comprises two phases, namely join sleep scheduling
and routing tree construction, and clustering of normal nodes. Inspired from the concept of unequal
clustering, the HWSN is split into some rings in the first phase, and the number of awake super nodes
in each ring keeps the same. This approach addresses the challenges of balancing energy
consumption, enhancing energy efficiency, and network lifetime. Furthermore, including network
coverage and energy-related criteria in the proposed GA yields long-lasting network operation.
Through rigorous simulations, we demonstrate that our proposed algorithm reduces energy
consumption and network coverage by 16.7% and 24.9%, respectively, and extends network lifetime
by 532 rounds.

Keywords: heterogeneous wireless sensor networks; genetic algorithm; sleep scheduling; routing;
clustering

1. Introduction

Wireless Sensor Networks (WSNs) have emerged as a cost-effective solution for monitoring
diverse environments, particularly in harsh conditions. However, their practical deployment is
significantly constrained by the limited energy of sensor nodes, which impacts network lifetime and
data delivery. To address this challenge, Heterogeneous Wireless Sensor Networks (HWSNSs) have
been proposed [1-3]. These networks consist of two types of nodes; namely, normal sensors and
super nodes [4,5]. Normal nodes, which have less energy are tasked to monitor the environment.
Super nodes, on the other hand, collect data from normal nodes, aggregate it, and transmit it to the
Base Station (BS). By incorporating more powerful super nodes as Cluster Heads (CHs), HWSNs can
enhance energy efficiency, extend network coverage, and improve data gathering capabilities.

As the assigned tasks of super nodes requires, these nodes experience significantly higher
energy consumption compared to their counterparts. Consequently, they often exhibit short lifetimes.
Therefore, achieving energy-efficient data gathering in HWSNSs, aiming energy saving of super
nodes, has been a central focus of research. Strategies such as clustering aim to minimize data
transmission volumes by consolidating data amount at CHs [6,7]. Conversely, routing protocols
prioritize network longevity by balancing workloads across super nodes to prevent individual
overload [2]. The other effective way to increase network lifetime is to apply sleep scheduling
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methods to super nodes [6]. This scheme decides that some nodes are awake and perform their tasks
while others go to sleep and save their energy for later uses. By alternating between awake and sleep
modes, sleep scheduling can significantly reduce energy consumption, prolonging the overall
network lifetime. Additionally, sleep scheduling makes it possible to maintain adequate normal node
coverage which ultimately results in enhancing network coverage even with a reduced number of
awake nodes.

While prior studies have investigated clustering, routing, and sleep scheduling methods in
HWSNs, these approaches have been examined in isolation, without exploring their potential
through an integrated framework. These works relied on simplistic or suboptimal strategies to
address energy conservation, with fragmented efforts targeting individual aspects: either clustering
[8], routing [9,10], clustering and routing [5,11,12], or sleep scheduling [13]. Notably, no existing
research has concurrently implemented all three methodologies for HWSNs. Additionally, clustering
algorithms frequently prioritize CH selection without adequately balancing normal node distribution
among CHs, leading to uneven energy consumption. Tree construction methods, while improving
connectivity, often neglect the strong interdependence between sleep scheduling and tree formation,
resulting in suboptimal structures that fail to maximize network lifetime. Metaheuristic-based
approaches, though effective, frequently rely on standard initialization schemes and generic
operators, limiting their adaptability to problem-specific constraints. These shortcoming leaves a
critical gap in the pursuit of holistic energy optimization. This gap underscores the novelty of our
contribution: a unified framework that combines clustering, routing, and sleep scheduling with
advanced optimization techniques, offering a robust and comprehensive solution to enhance energy
efficiency in HWSNS.

Based on the aforementioned cases, this paper proposes a data collection method in HWSNs
based on sleep scheduling, clustering, and routing. We address the challenges of determining sleep
or wake states for super nodes, constructing a tree on the awake super nodes, and clustering the
network by assigning awake super nodes as the CHs for normal nodes. To reduce the problem state
space and simplify problem-solving, we divide the process into two phases. In the first phase, we
simultaneously determine the awake super nodes and create a tree on these super nodes to deliver
data to the BS. In the second phase, for each normal node, we select a super node as its CH from the
awake super nodes that are adjacent to them. Both phases are modeled and solved using a Genetic
Algorithm (GA) to obtain optimal solutions in a short time. By employing GA with customized
initialization, problem-specific chromosome representation, and tailored genetic operators, our
algorithm achieves superior energy efficiency and network performance. The novel cost functions
introduced in both phases further enhance load balancing across super nodes, ensuring prolonged
network sustainability.

The innovations of this paper can be summarized as follows:

e  The proposed solution for reducing the state space effectively addresses the challenges of sleep
scheduling, clustering, and tree construction on awake nodes by dividing the process into two
phases, each optimized using a GA.

e  Considering the strong interdependence between the sleep scheduling of super nodes and the
construction of a tree on these nodes - since the tree must be built on awake super nodes -, these
two problems are tackled simultaneously through an innovative modeling approach.

e In the first phase, a novel cost function is employed to enhance environmental monitoring by
selecting a set of super nodes as awake ones while minimizing the energy consumption of super
nodes.

e  Network clustering is modeled and optimized using a GA in the second phase, with a new cost
function specifically designed to reduce energy consumption with distributing normal nodes
among the awake CHs.

e  Considering the pivotal role of initialization in the ultimate solution of GA, we propose a custom
initialization in the first phase which helps GA to converge more quickly. The proposed method
splits the HWSN into rings, and select equal number of awake super nodes per ring. This
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scheme, which is inspired from unequal clustering, helps balancing energy exhaustion of super
nodes and prolongs network lifetime.

e  We modify and customize the GA operators (crossover and mutation) to fit our problem and
help achieving better solutions.

e  The proposed solution has been rigorously evaluated in simulation environments, consistently
demonstrating its superiority over existing methods.

The remainder of this paper is organized as follows: Section 2 reviews the related work, while
Section 3 outlines the network model. Section 4 provides a comprehensive description of the
proposed method, and Section 5 presents the results obtained using this method. Finally, Section 6
concludes the paper.

2. Related Works

We review related research in three key areas. First, we explore sleep scheduling studies on
heterogenous and homogenous WSNs. The second part investigates clustering algorithms within the
field. Finally, in the last part, we consider research on tree construction and routing protocols. The
mentioned algorithms used different techniques for solving considered problems including greedy,
metaheuristic, and learning methods.

The literature on sleep scheduling and resource allocation in WSNs explored various approaches
to optimize energy efficiency. Alwasel et al. [13] considered HWSNs and proposed an energy-
efficient sleep-and-awake scheme to manage sleep states based on node resources, prioritizing
network lifetime. In their work, they proposed iterative local search strategy to construct disjoint
dominating sets, activating nodes of one dominating set each time instance. The algorithm prioritized
nodes with higher residual energy for being awake while transitioning others to sleep modes.
However, their method introduced computational complexity due to exhaustive search processes,
limiting scalability in large-scale HWSNs. Additionally, it did not consider clustering and routing
problems.

Sleep scheduling in homogenous WSNs was explored in [14-16]. Niyato et al. [14] used factors
like energy level of nodes, the number of packets in their buffers, and channel condition, to determine
sleep scheduling policies for solar-powered networks. The algorithm aimed to awaken nodes with
higher energies, less congested buffers, and better channel conditions. References [15-19] employed
Reinforcement Learning (RL) to determine the awake and sleep schedule of the nodes. Studies in [15—
17] developed RL-driven sleep scheduling for star topology networks. Among the mentioned
algorithms, references [16,19] focused on wireless body area networks, and considered criteria such
as energy level of nodes, emergency of gathered data by sensors, and transmission delay, to decide
on awake/sleep statuses of sensors. The algorithm proposed in [18] determined CHs and performed
clustering using a greedy approach, followed by applying RL for sleep scheduling.

Clustering is vital in WSNs for efficient data collection and transmission. Reference [20]
introduced a RL-based clustering model for IoT and HWSNs, aimed at optimizing resource
utilization and reducing energy consumption. In [21], a scheme was presented that categorized
sensors into normal and super nodes based on initial energy levels. Clusters were formed with
energy-efficient CH selection, which prioritize super nodes by assigning more weights to them.
Bhasker et al. [22] introduced a cluster-based data gathering technique for farm irrigation systems,
focusing on reducing sensor node energy use and balancing the workload on CHs. They proposed a
protocol that selects and rotates CHs near the energy centroid within clusters and designates gateway
nodes to assist CHs. In the proposed algorithm in [23], CH selection was guided by a fitness function
derived from multi-objective optimization. The objectives included minimizing energy usage and the
distance between CHs and their Cluster Members (CMs), and maximizing the coverage of the
network. The algorithm applied deep residual network to optimize number of clusters and CH
selection. Afterwards, the binary horse herd optimization algorithm was used for route selection and
data transmission.
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Energy-efficient routing is vital for WSNs. Therefore, the problem of clustering and routing in
homogenous WSNs has been studied in various research including [7,24-27]. Reference [26]
proposed a fuzzy logic-based CH selection method, which used the Mamdani inference engine to
evaluate factors such as residual energy, node centrality, and distance to the BS, mimicking human
decision-making for optimal CH selection. Authors in [24] presented an optimization approach for
CH selection in IoT-assisted WSNs. They used factors like energy, delay, and distance as fitness
criteria. Additionally, they employed tunicate swarm Gray Wolf Optimization (GWO) algorithm for
multipath routing. In [28], the authors introduced a hybrid Particle Swarm Optimization (PSO) and
artificial bee colony algorithm to reduce routing costs. Vijayan et al. [29] proposed a machine
learning-based routing system for IoT-connected sensor networks that considered energy usage and
traffic patterns. Shahid et al. [30] improved packet delivery and energy efficiency by using proper
links, where the criteria for link selection was the link quality, energy of nodes, and distance between
nodes. The quality of links was estimated using exponential moving average.

Metaheuristic algorithms have also been applied to HWSN optimization, including clustering
and routing [4,5,11,12,31-33]. In [4], PSO was used to assign super nodes as CHs and build a spanning
tree. The criteria in PSO-based clustering were network lifetime and distances between CMs and CHs,
while average energy of routes and distances between successive super nodes on routes were
considered for tree construction. Reference [11] also employed PSO for clustering and routing,
focusing on energy and reliability. Wang et al. [31] performed join clustering and tree construction
using bipartite chromosomes. The algorithm aimed to balance energy consumption of CHs while
reducing overall energy consumption. Additionally, an improved chaos logistic map was applied to
generate initial population to increase population diversity. In [5], a two-phase GA handled
clustering and tree construction for multi-channel HWSNs with normal and super nodes. The multi-
radio super nodes were designated as CH, while the single-radio normal nodes were assigned to one
of its neighboring CHs and connected to it using one of its assigned channels. In the tree construction
phase, the algorithm balanced energy of super nodes based on their distances to the BS, which
improved network lifetime considerably. Additionally, it offered a novel criterion for even
distribution of normal nodes among CHs, further balancing the energy consumption of super nodes.
The proposed algorithm in [32] was extended in [12], where authors employed GWO to optimize
Transmission Power Control (TPC) in a HWSN with TPC-enabled super nodes. Reference [33]
presented a novel algorithm for efficient data gathering in HWSNSs. The approach consisted of two
key phases: clustering, and spanning tree construction. GA was employed in both phases, utilizing a
problem-specific chromosome representation, a tailored population initialization scheme, and
customized genetic operators (i.e., mutation and crossover). Specifically, in the tree construction
phase, chromosomes were structured as trees, facilitating designing an effective initialization scheme
and GA operations.

Despite the advancements in sleep scheduling, clustering, and tree construction for HWSNSs,
existing methods often suffer from key limitations. Our proposed solution addresses these deficits
through an integrated two-phase approach that simultaneously optimizes sleep scheduling,
clustering, and tree construction. The proposed GAs for the phases includes customized initialization
methods and operators, and novel cost functions, yielding further energy efficiency and network
lifetime. Rigorous simulations confirm the robustness of our approach, demonstrating its superiority
over existing methods in key performance metrics.

3. Network Model

In the assumed network model, there are two types of nodes: super nodes and normal nodes
(Figure 1). We use S and N to show the set of super nodes and normal sensors, respectively. Super
nodes possess greater initial energy and a larger transmission range compared to normal nodes. The
initial energy and transmission range of super nodes are shown by es and tr, respectively. These
parameters are presented by ey and try for normal sensors. Additionally, there are fewer super
nodes compared to normal nodes in the network. Furthermore, we use e; as the remaining energy
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of a the i node, either super node or normal sensor. Finally, |.| shows the cardinality of an
assumed set.
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Figure 1. A sample HWSN. Super nodes are represented by octagons, where gray octagons denote sleeping

super nodes and green octagons indicate awake ones. Additionally, normal nodes are shown by circles.

Normal nodes are tasked with environmental monitoring. They collect data and send it to a
nearby super node, which serves as their CH. The potential CHs for a normal node n; are super
nodes within its transmission range. Each super node aggregates data of its assigned CMs. Since the
BS might not be directly reachable by all super nodes, data needs to be relayed. For a super node s;,
other super nodes closer to the BS and within its transmission range are considered as its potential
parents. One of these super nodes is selected as the parent for forwarding the data.

The network employs Time Division Multiple Access (TDMA) at the MAC layer which divides
channel into timeslots. The data exchange process includes intra-cluster communication, where
normal nodes transmit their collected data to their designated CHs during allocated timeslots, and
inter-cluster communication, where super nodes use multi-hop forwarding to relay the gathered data
toward the BS during their assigned timeslots.

All nodes of the network expend energy during communication. This energy consumption is
influenced by the size of the data packets transmitted or received. Reference [34] presents (1) and (2)
for calculating consumed energy needed for transmission (e;,s) and reception (e,.) based on packet
size (1), respectively. These formulas incorporate factors like internal circuit energy (e...) and signal
amplification energy. The amplification model varies with distance: the free space model for shorter
distances, and the multipath fading model for distances beyond the threshold d,. Amplifier energy
consumption is denoted by &, and &, for these models, respectively.

l €elec + 1 st d?r' dtr < dO
l,dy) = 1
etrs( tr) {l €elec + 1 smp d?r' dtr = dO ( )
erec(l) = legec ()

4. The Proposed Method

Figure 2 illustrates the workflow cycle during network lifetime. As shown in this figure, the
network lifetime is divided into multiple rounds, each consisting of several time slices. During each
time slice, data collected by normal nodes is first transmitted to super nodes via intra-cluster
communication. Subsequently, super nodes relay this data to the BS through inter-cluster
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communication. The proposed algorithm is executed at the start of each round, where the BS gathers
network information, such as the remaining energy of the nodes, to configure the network for optimal
performance. This configuration is then applied throughout the time slices of the round. At the end
of each round, the BS re-runs the algorithm to adjust for any changes in node characteristics, ensuring
continuous and efficient network operation.

Sleep Scheduling and
Tree Construction

H] |
| 2

3=} I
| «

= |
- |
| EE |

k=] ¢ |
<
g |
[ '
| £ !

-] |
| ~,

Clustering

Data Collection

Figure 2. Workflow cycle during network lifetime.

Our algorithm enhances data collection in HWSNs through integrating sleep scheduling,
clustering, and routing. Considering the wide solution space of the mentioned problems, we divide
the process into two phases to reduce complexity. Additionally, we employ a GA to obtain efficient
solutions for each phase within a reasonable time. In the first phase, GA is used to solve the problem
of selecting awake nodes and constructing a communication tree. The second phase focuses on
network clustering. The specific steps involved in each phase are detailed in Section 4.1 and Section
4.2, respectively.

4.1. Sleep Scheduling and Tree Construction

In WSNss, efficient energy management is crucial for prolonging the network lifetime,
particularly in heterogeneous environments where nodes have varying capabilities. Sleep scheduling
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plays a pivotal role in conserving energy by allowing nodes to enter a low-power sleep mode when
not actively transmitting or receiving data. This approach extends the lifetime of nodes, ensuring that
critical tasks such as data transmission and routing are handled thoroughly. Simultaneously, during
tree construction, it should be ensured that the network avoids overloading certain nodes, preventing
premature depletion of their energy resources. The process of tree construction is intrinsically linked
to the sleep scheduling, because the awake nodes form the backbone for data gathering within the
network. Therefore, the combined approach of optimal sleep scheduling and tree construction is
essential for maintaining a balanced load distribution, enhancing the overall efficiency, and
extending the longevity of the HWSN. Accordingly, we propose an innovative approach that
combines sleep scheduling and tree construction into a single-step process. This unified model,
optimized using a GA, is designed to efficiently find the best solution within a reasonable time. The
following sections will detail the chromosome representation, initial population construction, cost
function, and GA operators proposed in our approach.

4.1.1. Chromosome Representation

The proposed GA aims to simultaneously address the dual issues of sleep scheduling and tree
construction in HWSNSs. To achieve this, we design a chromosome structure represented as a matrix
with dimensions of 2 X |S|. Each column within this matrix corresponds to a specific super node in
the network. The first row of the matrix corresponds to sleep state of super nodes, while the second
row is dedicated to the tree construction problem. The values in the first row are binary: zero indicates
that a super node is in the sleep state, and one indicates that it is awake. Additionally, the second row
presents the selected parents for super nodes. In a chromosome, the super nodes are arranged
sequentially based on their distance to the BS. Thus, the super node closest to the BS occupies the first
column, while the one farthest away is positioned in the last column. Figure 3 shows an example
chromosome and its representative tree.

sng

SNig
sn;

snz /,/”.

sns

'shy

| Node | sn, | sn, | sny [sny [sns | sng [sn, |sny |sny [sny |
Awake 0 1 1 0 ©0 0 0 1 1 0 (€Y
Parent - BS BS - - - - SN; SN, = A

(a) (b)

Figure 3. A sample chromosome and its representative awake nodes and tree; (a) The chromosome; (b) The

resultant network configuration according to the chromosome.

4.1.2. Population Initialization

The elements of the proposed chromosome structure are populated according to the following
scheme. A critical consideration to construct a chromosome is to select proper awake nodes, ensuring
they are evenly distributed across the network. This distribution is essential for having at-least one
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super node within proximity to each normal node, allowing it to serve as the CH for gathering and
forwarding data to the BS.

We divide the network into concentric rings centered around the BS, and awaken ar super
nodes per ring (Figure 4). This unequal clustering idea was previously comprehensively discussed in
[35] and proved to be a good solution to hot-spot problem. Determining the optimal number of rings
is a complex process, refined through trial and error. Rings that are too narrow may limit the selection
of suitable nodes, while excessively large rings could lead to suboptimal configurations. Furthermore,
the value of ar is determined based on different parameters such as the number of normal nodes
and density of super nodes. The selection of awake nodes within each ring is carried out randomly,
based on a weighted probability that considers remaining energy of super nodes. Equation (3)
calculates pryyqke(S;), the probability of selecting s; to serve as awake nodes. In this equation, R(s;)
shows the ring which s; belongs to.

&
Plawake (i) = 3)

ZskeR(si) €k

~
~
N\
N
N
N\
sn;I Snm‘. \
hY
7 %
% . \
N \
“‘ - sns

Figure 4. The illustrated network in Figure 3 with rings.

Since the tree construction relies on awake nodes, columns corresponding to super nodes that
are in the sleep state do not process. However, for super nodes that are awake (with a value of one),
a subsequent step is required to construct the tree. This step involves selecting a random neighbor
for each awake super node s;, which must be both awake and positioned closer to the BS than s;, to
form the tree structure. If none of the neighbors of s; is awake, the chromosome is discarded. The
selection of the parent among the super nodes which fulfill these constraints is influenced by their
remaining energy, as shown in (4). According to this equation, super nodes with higher remaining
energy have a greater probability of being selected as the parents, thereby ensuring that the tree
construction process favors nodes with sufficient energy reserves. This approach not only helps in
balancing the energy consumption across the network but also enhances the overall robustness and
longevity of the HWSN.

€j

PTparent (Sj) =
ZskeN(si)/\dist(sk,BS)<dist(sL-,BS)/\si is awake €k

(4)

where N(s;) is the set of neighbor super nodes of s;, and dist is the distance function.
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4.1.3. Cost Function

GA uses a cost function to evaluate the acceptability of a particular solution (or chromosome).
This function assigns a numerical value to each solution that reflects its quality or fitness. Our
objective is to investigate two key factors: 1) the quality of the selection of awake nodes, and 2) the
quality of the constructed tree.

To evaluate the first factor, we examine the number of normal nodes that lack an awake super
node in their neighborhood, as defined by (5). In this equation, X stands for the j** chromosome.
Additionally, ON shows the set of orphan normal nodes that there is not an awake super node in
their vicinity. The smaller value of factor; indicates choosing better awake nodes, as it designates
that the selected awake nodes are distributed evenly in the network, ensuring each normal node has
at-least one awake super node nearby. The division by the total number of awake nodes is intended
to normalize this metric, making it comparable with other factors.

|ON |

factory (X]) = N ©)

Another factor for evaluating the chromosomes in this context is the quality of the constructed
tree. To assess this, we aim to increase the minimum remaining energy of the nodes, as described in
(6). In this equation, er;; demonstrates the remaining energy of super node s; atthe end of the round
assuming the proposed network configuration by X/. This approach ensures that tree structures
which route data through nodes with higher energy levels are considered more suitable.

ming, es €7y

factor,(X[") = ! (6)

eS
Finally, our cost function is defined by (7), and our objective is to minimize it.

cost;(X[) = wy X factory (X)) — w, X factor,(X]), wy+w, =1 7)

4.1.4. GA Operators

The key components of GA, including selection, crossover, and mutation operators, are
introduced in this section. We customize each of these operators to suit the specific problem at hand
and to align with the proposed chromosome structure model, which we will detail in the following.

Selection: The selection operator in GA is responsible for choosing which individuals from the
current population will contribute to the creation of the next generation. The idea is to select the fittest
individuals, those that are better suited to the problem according to a predefined fitness function, to
pass on their genes (chromosome information) to their offspring. We employ Roulette Wheel
Selection (RWS) as our selection operator, detailed in (8). In this equation, the term pop” refers to
the population of chromosomes. In the RWS method, the chance of each chromosome to being
selected as a parent is proportional to its cost. The lower the cost function value, the higher the
probability of selection, and conversely, chromosomes with higher cost values have a reduced chance
of selection. This approach increases the likelihood that superior chromosomes, which demonstrate
more effective network structures, will produce the next generation. However, we do not completely
eliminate the possibility of selecting weaker chromosomes. They are still given a chance to contribute
as parents, with the hope that some aspects of their structure might offer a valuable solution to the
problem.

1/costy (X])
8
ZXEEPOpT 1/cost (XD ®)

RWS(XT) =

Crossover: The crossover operator in GA is responsible for combining the genetic information of two
parent chromosomes to produce offspring. This process mimics biological reproduction and aims to
create new solutions (chromosomes) that inherit features from both parents, potentially leading to
better solutions. In this phase, we employ the single-point crossover operator. Accordingly, a point
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is selected on two chromosomes, and the genes on the left side of one chromosome are combined
with the genes on the right side of the other chromosome, and vice versa, resulting in two new
offspring.

It is crucial to note that this crossover operation may not always yield valid chromosomes. The
first issue is that a node may have no awake parent toward the BS. The other concern is that the
number of awake nodes may deviate from the desired quantity. To address these issues, a repair
procedure is proposed. The method ensures that the number of awake nodes in each ring is equal to
ar. Accordingly, the number of awake nodes in each ring is examined: if it matches ar, no action is
required. If there are more awake nodes than desired, we probabilistically reduce their number by
switching some of them to the sleep state, based on their remaining energy levels (Equation (9)).
Conversely, if there are fewer awake nodes than necessary, additional nodes from the sleep state are
selected, again probabilistically based on their remaining energy according to (10), and switched to
the awake state. Once the number of awake nodes has been adjusted, we proceed to validate the
offspring. For nodes whose have at-least one potential parent in the resultant offspring, no change is
required. Otherwise, one of the closer super nodes to the BS is activated probabilistically considering
their remaining energy, as shown in (11).

&
Plremove (5:) = 9
remove ZskeR(si)/\sk is awake €k ©)
(50 -
PTaaalSi) = 10
adai>t ZskER(si)Ask is sleep €k ( )
e;
PTparent (Sj) = . (11)

ZskeN(si)/\dist(sk,BS)<dist(sL-,BS)/\si is sleep €k

Figure 5 demonstrates an example of the proposed crossover operator. In this figure, s, is
selected as crossover point. Accordingly, the left-hand side genes of first chromosome (Figure 5(a))
and the right-hand side genes of the other chromosome (Figure 5(b)) are combined and result two
offspring. Here, we demonstrate one of their offspring in Figure 5(c). After production of the
offspring, we check for the validity of chromosome and change the structure of the chromosome to
produce a valid chromosome (Figure 5(d)).

Mutation: The mutation operator in GA introduces random changes to the genes of a
chromosome to maintain genetic diversity within the population. This operator is crucial because,
without it, GA might converge too quickly to a suboptimal solution, getting stuck in local optima.
According to the chromosome structure, we propose a customized mutation operator. In this
approach, the number of genes of adopted chromosomes undergoing mutation is higher in the initial
iterations of the algorithm and gradually decreases as the algorithm progresses. The number of genes
undergoing mutation at iteration t, m(t), is calculated as:

m(e) = My (1= —) (12)

tmax

where my,,, and t,,, are the initial number of genes undergoing mutation and the total number of
iterations, respectively. This strategy enables extensive exploration of the solution space in the early
iterations and shifts towards exploitation in the later ones.

The corresponding super nodes to the adopted genes are investigated, and the awake ones are
switched from the awake to the sleep state. For each of these asleep super nodes, a node in the same
ring must be wakened up. This activation is controlled by the given probabilistic function in (10).

Figure 6 demonstrates of an example of the mutation operator. In this figure, based on the
mutation operator, sg goes to the sleep mode. Accordingly, one other super node, for example s,
is wakened up in the ring and a parent is selected for this node from the awake super nodes.
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Figure 5. Crossover operation for sleep scheduling and tree construction; (a) The first parent; (b) The second
parent; (c) The first offspring before repairement; (d) The ultimate first offspring.
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Figure 6. Mutation operation for sleep scheduling and tree consrtruction; (a) The adopted chromosome before

mutation; (b) The mutated chromosome.

4.2. Clustering

After completing the first phase, which involves introducing awake nodes in the network and
constructing a tree on them, we proceed to the second phase, in which each normal node selects an
awake super node in their neighborhood to act as their CH. To achieve this aim, we employ a GA,
the details of which are outlined in the following.

4.2.1. Chromosome Representation and Population Initialization

The proposed chromosome structure for network clustering consists of an array of length |N]|.
Each gene of this chromosome corresponds to a normal node of the HWSN. To ensure a consistent
structure across all chromosomes, the normal nodes in each chromosome are sorted based on their
distance to the BS. Each gene presents the randomly selected CH for each corresponded normal node,
which is selected from the awake super nodes within its transmission range. Figure 7 illustrates an
example clustering chromosome and its corresponding network structure.

CH sn, sny sn, sn, sn, Sng Sng Sng SNg SNg SNhg SNg SNg SNg SNg SNg SNy SNg SNg S

(a)
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(b)

Figure 7. A sample chromosome and its resultant clustering scheme; (a) The chromosome; (b) The resultant

clusters.

4.2.2. Cost Function

A cost function is proposed to assess the quality of clustering chromosomes. In this context, we
consider two key criteria: The first metric promotes even clustering by ensuring an equal number of
CMs for each CH, and the second one aims to maximize the minimum energy of CHs. The former
helps to evenly distribute the load of the network, while the latter accounts for the energy levels of
the CHs to prevent any super node from depleting prematurely. Equation (13) describes the first
measure, where AS represents the set of awake super nodes selected in the previous phase, and
nm;; indicates the number of cluster members assigned to the super node s; according to clustering
chromosome X[ . Additionally, inm represents the ideal number of cluster members and is
calculated by dividing the number of available normal nodes by the number of awake super nodes.

nmﬁ

actors(XE) = std
f 3(Xf) s;€AS inm

(13)

Equation (14) describes factor,, which is similar to factor, in the tree construction phase. The
difference is that factor, relies solely on the structure of the proposed tree, without knowledge of
the number of CMs for each super node. On the other hand, factor, accounts for the exact number
of CMs per super node in the clustering phase, enabling more precise calculation of er;;.

ming, e €7y

factory(Xf) = ! (14)

eS
Finally, the energy level of normal nodes is balanced as described in (15).

ming, ey €7

factors(Xf) = ! (15)

en
Our cost function is defined by (16), and our objective is to minimize this function.

cost,(Xf) = ws X factors(Xf) — w, X factor,(Xf)

16
+ws X factor,(Xf), wy +w, +ws =1 (16)

4.2.3. GA Operators
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Our GA uses three core operators to iteratively refine the population and guide it towards high-
quality solutions including selection, crossover, and mutation. These operators are explored in the
following.

Selection: We use RWS as the selection operator, which selects chromosomes based on the value
returned by the cost function using a similar probability function to (8). Chromosomes with lower
costs (indicating better solutions) have a higher probability of being chosen to produce the next
generation.

Crossover: The crossover operator is employed to explore the solution space. In this case, a
single-point crossover is used. All offspring produced by this operator are valid solutions for the
clustering problem.

Mutation: In the proposed mutation process, for a random chromosome, a number of genes —
which are corresponded to CHs of normal nodes — are randomly selected. The CH of each chosen
normal node is changed from its current CH to another awake super node within its transmission
range.

5. Experimental Results and Discussions

In this section, we evaluate the performance of the proposed method and compare it with
HEDHMG [5], EFCRPSO [11], EFEBPSO [4], and CRCGA [31]. The performance metrics used for
comparison include area coverage, total energy consumption, First Node Die (FND), Last Node Die
(LND), and number of available super nodes. The algorithms are implemented using WSNSimPy, a
Python library for discrete event simulation of WSNs. The simulations are performed on networks
with dimensions of 200mx200m. Through experimentation, we identify that dividing the networks
into four rings provide the best outcomes. Additionally, the experimentation shows that to ensure
adequate coverage on normal nodes, keeping half of the super nodes awake provides an optimal
balance. We evaluate two different networks, WSN; and WSN,, which differ in node density. The
network WSN; consists of 60 super nodes and 200 normal nodes, with the BS positioned in the lower-
left corner of the area. The network WSN, is denser, featuring 80 super nodes and 250 normal nodes,
and also has the BS located in the corner, similar to WSN;. Table 1 outlines the parameters used in
the simulations. Additionally, Table 2 provides the GA parameters for the proposed method,
including the weights for the criteria used in the cost functions, the number of iterations, and the
population size.

Table 1. Simulation parameters.

Parameter Value
Network dimension 200m x 200m
ey 2]
es 10]
try 30m
trg 90m
€elec 50n]/bit
ers 10p]/bit/m?
emp 0.0013p]/bit/m*
dO ’efs/ emp
Time slices per round 50
Number of rings 4
Number of awake super nodes 50% of all the super nodes
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Table 2. GA parameters.

Parameter Value

Population size 30
Number of iterations 50
wy 0.5

Wy 0.5

W3 0.3

Wy 04

Ws 0.3

5.1. Normal Node Coverage

This metric quantifies the number of normal nodes that have a super node as their CH. It serves
as an indicator of how effectively the first phase of the algorithm selects awake super nodes. In this
way, the algorithm can ensure super nodes are evenly spread across the network which increases the
likelihood that normal nodes have an accessible awake super node nearby. Effective network
coverage is critical for achieving performance and efficiency goals.

Figure 8 illustrates area coverage for WSN; and WSN, using the proposed method. In the early
rounds, WSN, achieves almost full coverage, primarily because it contains a greater number of super
nodes compared to WSN;. This higher super node density facilitates finding an awake super node in
the neighborhood of normal nodes, supporting a strong coverage. Conversely, WSN,, which has
fewer super nodes, displays slightly lower coverage, as the reduced number of super nodes limits the
availability of CHs across the network. As time progresses, coverage decreases in both networks due
to the depletion of super nodes. The decrease in the network coverage over time can be attributed to
the energy consumption and eventual failure of super nodes, which reduces the ability of the HWSN
to maintain consistent communication routes. However, even with this gradual reduction, the area
coverage remains within acceptable thresholds in WSN; and WSN,.

s WSN,
100 WSN,
Q
o
@
5 80
>
o
O
g 60
o
=2
T 40
€
-
o
< 20
0

50 300 550 800 1050 1300 1550 1800
Time Slice

Figure 8. Normal node coverage of the proposed algorithm using WSN; and WSN,.

Figure 9 illustrates a comparison of normal node coverage between the proposed algorithm and
other considered approaches. As depicted in the figure, the proposed algorithm significantly
outperforms HEDHMG, EFCRPSO, EFEBPSO, and CRCGA in both WSN; and WSN,. Specifically,
in WSN;, the proposed algorithm achieves an average coverage improvement of 8.6%, 29%, 31.1%,
and 51.1% over HEDHMG, EFCRPSO, EFEBPSO, and CRCGA, respectively. Similarly, in WSN,, the
proposed algorithm surpasses these algorithms by 5.6%, 14.5%, 27.4%, and 33.4%, respectively.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0430.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2025 d0i:10.20944/preprints202509.0430.v1

16 of 22

130 140
120 W= Proposed Method 130 B Proposed Method
110 HEDHMG 120 HEDHMG
o = EFCRPSO v 110 W EFCRPSO
100 m EFEBPSO = m== EFEBPSO
© © 100
o 9% = CRCGA ] = CRCGA
g 80 z 90
O 70 O 80
2 2 70
S 60 o
= 50 = 60
E’ 10 ™ 50
5 g 40
= 30 Z 30
20 20
10 10
° 0-499 500-999 1000-1499 1500-1999 0 500-999 1000-1499 1500-1999
Time Slice Time Slice
(a) (b)

Figure 9. Normal node coverage comparison (a) WSNy; (b) WSN,.

This sustained coverage is largely due to the inclusion of factor; in the algorithm, which
optimizes the sleep scheduling of super nodes. Using factor; ensures that super nodes are cyclically
activated, balancing their load to delay energy depletion. By minimizing the extent of orphan nodes
through effective sleep scheduling, this factor contributes to prolonged network coverage and
functionality. Consequently, despite the inevitable death of super nodes, the proposed method
ensures that the network retains satisfactory coverage levels over time, supporting continued data
collection and communication within the HWSN. The other factor enhancing our algorithm is
proposing customized initialization, and crossover and mutation operators. According to these
schemes, the HWSNSs are divided into ring of equal width, and it is tried to keep the number of awake
super nodes in different rings the same. Therefore, the awake nodes distribute evenly throughout the
network.

5.2. Total Consumed Energy

The next metric under consideration is the total consumed energy, which calculates the
cumulative energy usage of super nodes that handle the primary task of data transmission and
delivery within the network. This metric is essential for evaluating the efficiency of the network, as
nodes have limited, non-rechargeable energy sources, and conserving this energy directly influences
network longevity. Figure 10 compares total energy consumption of the proposed method with its
competitive algorithms in WSN; and WSN,. In both networks, the proposed method outperforms
competing algorithms in terms of energy exhaustion. Specifically, for WSN,, it reduces energy
consumption by 10.5%, 14%, 16.4%, and 18.7% when compared to the HEDHMG, EFCRPSO,
EFEBPSO, and CRCGA algorithms, respectively. These values are equal to 10.7%, 16.9%, 20.7%, and
21%, for WSN,.
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3400 —— EFEBPSO =5 3 —— EFEBPSO
u:, —+— CRCGA qc, 4001 — CRCGA
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Figure 10. Total energy consumption comparison (a) WSNy; (b) WSN,.

The enhanced energy efficiency of our proposed approach in both network types highlights the
robustness of the proposed method under varying conditions. This superiority is achieved due to the
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integration of four critical factors that we apply within the tree construction and clustering phases.
The first factor, factor;, ensures that awake super nodes are distributed uniformly across the
network, which is particularly important for the tree construction phase. By spreading awake super
nodes evenly, factor; enables the formation of balanced communication routes. Without such
uniform distribution, awake super nodes could become concentrated in some areas, leaving other
sections without adequate awake super node coverage. This imbalance would limit the routing
options in those uncovered areas, leading to increased energy consumption as nodes are forced to
transmit data to distant parents. Furthermore, factor, prioritizes routes with higher remaining
energy in the tree construction phase, helping to balance energy consumption across the WSN.
Finally, proposing customized initialization method and GA operators enhances the performance of
the proposed algorithm and reduces energy consumption.

In the clustering phase, additional efficiency is achieved through factor; and factor,. The
third factor plays a critical role by distributing normal nodes among super nodes as evenly as
possible. This distribution balances the load across all super nodes, reducing the likelihood of any
single node being overwhelmed by a large number of connections. Such even distribution not only
conserves the energy of individual super nodes but also enhances the overall energy efficiency of the
network. By preventing excessive energy consumption in specific nodes, factor; contributes to a
more sustainable energy usage scheme throughout the network. Additionally, factor, focuses on
energy conservation of super nodes. This metric prevents premature exhaustion of any single super
node by distributing node responsibilities based on energy levels, similar to the prioritization strategy
in the tree construction phase. Finally, factors reduces energy consumption of normal nodes and
prevent choosing far super nodes as CHs, which required high energy levels for data transmission.

The employed factors in the cost functions create an energy management strategy that optimizes
the selection of awake super nodes. This approach not only conserves energy in individual nodes but
also maximizes overall network efficiency and ensures that HWSNs maintain robust coverage and
functionality over lengthy periods. Using customized initialization, crossover, and mutation in the
tree construction phase also improves energy efficiency. Even distribution of awake super nodes
avoids long distances between normal nodes and their CHs, reducing exhausted energy for intra-
cluster communication.

5.3. Network Lifetime

In this section we discuss two important factors: FND and LND, as shown in Figure 11. As the
figure illustrates, in our algorithm, both FND and LND occur significantly later compared to
competitive algorithms. Specifically, using the proposed method in WSN; results in improvement
of 56, 167, 293, and 402 rounds or FND compared to HEDHMG, EFCRPSO, EFEBPSO, and CRCGA,
respectively. For LND in WSN,, the improvements are 140, 620, 615, and 810 rounds regarding the
same algorithms. In WSN,, the proposed method yields FND improvements of 161, 311, 487, and 532
rounds, and LND improvements of 128, 508, 681, and 757 rounds compared to HEDHMG, EFCRPSO,
EFEBPSO, and CRCGA, respectively.

800 B Proposed Method 4500 mm Proposed Method
200 HEDHMG 4000 HEDHMG
W EFCRPSO s EFCRPSO
600, ™= EFEBPSO 35007 mmm EFEBPSO
= CRCGA 3000/ ™M CRCGA
8500 8
= = 2500
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£ é 2000
=
300 1500
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Figure 11. Network lifetime comparison; (a) FDN; (b) LDN.
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The enhancements in these results can be attributed to effective sleep scheduling and robust tree
construction in the first phase, and efficient clustering in the latter phase. To be more precise, factor
plays a crucial role in ensuring a uniform distribution of awake super nodes across the network,
which yields load-balanced trees and reduces the likelihood of energy depletion in concentrated
areas. The second factor, factor,, operating in the tree construction phase, focuses on maximizing
the minimum remaining energy of super nodes within the tree. This factor gives priority to choosing
super nodes with higher energy reserves, helping to avoid overusing specific nodes and thus
balancing energy consumption across the network. By distributing energy usage among super nodes
more evenly, factor, helps extend the lifetime of each node and mitigates the risk of network
segmentation due to energy depletion in specific regions. Additionally, the proposed initialization
method and GA operators balance the number of awake super nodes in the rings, yielding more even
energy exhaustion and longer network lifetime.

In the clustering phase, factor; and factor, aid in evenly distributing normal nodes among
awake super nodes, further contributing to energy efficiency by preventing any single super node
from becoming overloaded. Together, these factors significantly extend the operational lifetime of
nodes within the network, leading to delayed FND and LND. Furthermore, factors balances energy
consumption of normal nodes and prevents their early death.

5.4. Number of Available Super Nodes

We define available super nodes as those that are alive and have other super nodes in their
neighborhood capable of sending data toward the BS. Accordingly, a super node with a good amount
of energy is considered unavailable if the BS is out of its transmission range and there is no other
nearby super node to catch its data and forward it. The number of available super nodes is an
important factor. This is due to a higher number of available super nodes improves area coverage,
enabling the network to fulfill its primary goal of data delivery to the BS more efficiently. Figure 12
reports the number of available super nodes in each round. As shown in this figure, the proposed
method consistently demonstrates a higher number of available super nodes compared to
competitive algorithms in all rounds for both WSN; and WSN,. In WSN;, the proposed method
shows improvements of 5 super nodes over HEDHMG, 16 super nodes over EFCRPSO, 21 super
nodes over EFEBPSO, and 35 super nodes over CRCGA, after 1800 time slices. In WSN,, the
improvements are 5 super nodes over HEDHMG, 15 super nodes over EFCRPSO, 26 super nodes
over EFEBPSO, and 28 super nodes over CRCGA, after 1800 time slices.
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Figure 12. Number of available super nodes comparison (a) WSNy; (b) WSN,.

The main factor to achieve higher number of alive super nodes of our algorithm regarding the
competitive schemes is the even distribution of awake nodes. The proposed initialization scheme,
customized operators, and factor; in the first phase, ensures an even distribution of awake super
nodes throughout the network. This evenness reduces the chances of energy depletion in localized
areas and promotes better coverage, which increases the likelihood of data being successfully
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forwarded to the BS. The other factors used in cost; and cost, also play a significant role in achieved
results. The factor, prioritizes super nodes for more energy for tree construction, increasing the
chances of sustaining more alive super nodes, contributing to their availability. The third factor,
factors, used in the clustering, focuses on evenly distributing normal nodes among super nodes. This
balance prevents individual super nodes from becoming overloaded, allowing them to remain
operational and available for data forwarding. The application of customized initialization and GA
operators in the first phase for balancing the distribution of super nodes throughout the HWSN
increases the number of available super nodes.

6. Conclusion and Future Works

This paper proposed an algorithm for efficient sleep scheduling and data gathering in HWSNSs.
The algorithm consisted of two main phases, each utilizing a GA to optimize network performance.
In the first phase, sleep scheduling and tree construction were handled simultaneously, considering
their high dependency. Clustering of normal nodes using the awake super nodes as CHs was
performed in the second phase. The objectives of these phases focused on energy efficiency and
preserving network coverage. The first objective maximized normal node coverage by selecting
proper awake super nodes, ensuring each normal node had an awake super node within its
neighborhood. The second objective prioritized energy efficiency by balancing remaining energy of
super nodes, encouraging routes that have nodes with higher energy levels, prolonging network
lifetime. This energy-centric prioritization was also applied in the clustering phase, where normal
nodes were evenly distributed among the awake super nodes to prevent overloading and balance
energy use. The other advantage of our algorithm was proposing customized initialization scheme,
and crossover and mutation operators in its first phase. These schemes aimed at even distribution of
awake super nodes. For this purpose, the HWSN was divided into rings, and the initialization
method and GA operators tried to adopt equal number of awake super nodes in these rings.

For the future work, we aim to explore other energy saving techniques, such as dynamic
modulation scaling. Furthermore, the proposed sleep scheduling scheme can be integrated into the
multi-channel multi-radio HWSNs to improve both energy-efficiency and network capacity. Finally,
we will examine other metaheuristic algorithms to attain better network configurations. Swarm
intelligence algorithms, such as GWO, have been shown to generate high-quality solutions.
Therefore, combining these methods with GA can improve the performance.
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Abbreviations

The following abbreviations are used in this manuscript:

HWSNs  Heterogeneous Wireless Sensor Networks

GA Genetic Algorithm

BS Base Station

CH Cluster Head

GWO Gray Wolf Optimization
RL Reinforcement Learning
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M Cluster Member
PSO Particle Swarm Optimization
TPC Transmission Power Control
TDMA Time Division Multiple Access
RWS Roulette Wheel Selection
FND First Node Die
LND Last Node Die
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