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Abstract: This paper presents an innovative machine learning approach for automated compliance
monitoring of Digital Services Act (DSA) requirements across multi-product digital platforms. The
proposed framework addresses the significant challenges of monitoring regulatory compliance in
complex digital environments where manual verification processes prove insufficient and error-
prone. The methodology introduces a formalized representation of DSA requirements through
algorithmic processing and transforms these into machine-verifiable specifications using
metamorphic testing principles and timed automata models. The core architecture implements a
hybrid risk assessment model combining supervised and unsupervised learning techniques to
evaluate compliance across heterogeneous platform environments. Comprehensive evaluation across
multiple digital service categories demonstrates detection accuracy between 0.86-0.94 (F1-score) with
processing efficiency ranging from 78% to 95% depending on platform characteristics. The multi-
platform data integration pipeline achieves near real-time monitoring capabilities while respecting
data protection constraints. The framework addresses key technical challenges including the
complexity of requirement formalization, data access limitations, and adaptation to evolving
regulatory interpretations. This research contributes significant advancements toward automated,
scalable compliance verification solutions essential for effective implementation of the Digital
Services Act across diverse digital service ecosystems.

Keywords: digital services act; compliance monitoring; machine learning; multi-platform verification

1. Introduction

1.1. Regulatory Compliance Challenges in Digital Service Platforms

Digital service platforms operate across multiple jurisdictions with heterogeneous regulatory
environments, creating significant compliance complexity. These platforms frequently handle
substantial volumes of user data while offering diverse services, exposing them to numerous
compliance risks under frameworks like the Digital Services Act (DSA)[1]. Multi-product digital
platforms face particular difficulties in monitoring and demonstrating compliance due to their
distributed architecture and varied service offerings. The verification of adherence to regulatory
requirements remains predominantly manual, resource-intensive, and error-prone across these
environments. According to Barati et al. (2020)[2], "evaluating the compliance of cloud-hosted
services is one of the most costly activities and remains a manual activity achieved through audits
and reporting." This challenge magnifies as platforms scale, with monitoring needs spanning content
moderation, algorithmic transparency, risk management, and user data protection practices. Modern
digital platforms must navigate compliance requirements across jurisdictional boundaries while
maintaining operational efficiency[3]. The technical complexity of implementing real-time
monitoring systems capable of operating across heterogeneous platform environments presents

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202504.2376.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2025 d0i:10.20944/preprints202504.2376.v1

2 of 17

substantial engineering barriers. Costa Junior (2020)[4] notes that "mobile application testing imposes
several new challenges and several peculiarities," which similarly applies to monitoring compliance
across digital service platforms[5].

1.2. Digital Services Act: Scope and Compliance Requirements

The Digital Services Act represents a comprehensive regulatory framework aimed at ensuring
transparency, accountability, and user protection across digital services in the European Union. The
DSA establishes graduated obligations based on platform size and role, with particularly stringent
requirements for very large online platforms[6]. Key compliance domains include content
moderation systems, recommender systems transparency, risk assessment frameworks, advertising
transparency, and data access for researchers. The regulation mandates that platforms establish
robust mechanisms to track user reports and appeals, which according to Wang (2022)[7], resulted in
"annual savings of approximately $1 billion" when properly implemented. DSA compliance
necessitates maintaining detailed records of platform activities, implementing systematic risk
management approaches, and providing regulatory authorities with access to compliance
documentation. The regulatory framework emphasizes algorithmic transparency requirements,
mandating that platforms disclose information about automated decision-making processes.
Platforms must implement proportionate and effective internal compliance structures to monitor
adherence to DSA provisions continuously. The DSA explicitly requires the maintenance of audit
trails and systematic documentation of compliance efforts, creating technical and operational
challenges for implementation.

1.3. Automated Monitoring Approaches: Current State and Limitations

Current automated compliance monitoring systems exhibit significant limitations in addressing
the specific challenges posed by the DSA in multi-product environments. Traditional rule-based
compliance systems lack the flexibility to adapt to evolving regulatory interpretations and platform-
specific risk profiles. Existing approaches often operate in isolation, monitoring specific compliance
domains without establishing holistic regulatory perspectives[8]. According to Botunac et al. (2024),
"despite a cautious approach to adopting new technologies due to strict sectoral regulations, the
banking sector is gradually integrating Al into its operations," indicating similar trends may emerge
in digital service compliance[9]. Machine learning approaches demonstrate promise but face
challenges regarding explainability, transparency, and validation against regulatory requirements.
Real-time monitoring capabilities remain underdeveloped, limiting platforms' ability to detect and
respond to compliance issues promptly. Integration barriers between monitoring systems and
operational platforms impede effective compliance validation. The absence of standardized
compliance metrics and verification methodologies hinders systematic evaluation of monitoring
effectiveness[10]. Current approaches struggle with temporal aspects of compliance requirements,
which Barati et al. (2020) address through "timed transition systems," demonstrating the need for
temporally-aware monitoring capabilities in regulatory compliance systems[11][12].

2. Conceptual Framework for Automated Compliance Verification

2.1. Formalization of DSA Requirements for Algorithmic Processing

The Digital Services Act contains numerous natural language requirements that must be
transformed into machine-processable specifications for automated monitoring. This formalization
process involves decomposing regulatory text into atomic requirements, classifying these
requirements according to their compliance domain, and expressing them in a structured
representation suitable for algorithmic processing. The requirements formalizations must capture
both explicit obligations and implicit constraints while preserving the semantic integrity of the
original regulatory text. Costa Junior (2020) emphasizes that "non-functional requirements specify
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criteria that can be used to judge the operation of a system rather than specific behaviors," which
applies directly to many DSA provisions[13]. A formal representation of DSA requirements
necessitates the development of a domain-specific language that can express conditional obligations,
temporal constraints, and quantitative thresholds. The formalization must accommodate various
requirement types including access controls, temporal restrictions, sequence dependencies, and data
protection obligations. Requirement formalization techniques must address ambiguities in
regulatory language through explicit semantic mappings between natural language terms and their
formal counterparts. Segura et al. (2017) discuss "the hypothesis of applying metamorphic testing as
an effective and practical approach to addressing non-compliance defects in NFRs," providing a
foundation for formalizing regulatory requirements for automated verification[14].

2.2. Metamorphic Testing Principles for Requlatory Compliance

Metamorphic testing provides a systematic approach to compliance verification by establishing
relationships between inputs and outputs of digital service operations without relying on precise test
oracles. This technique proves valuable for compliance verification where exact expected outputs
may be undefined but relationships between different execution scenarios can be specified. The
application of metamorphic testing to regulatory compliance involves defining metamorphic
relations that encode compliance constraints and using these relations to generate test cases that
verify compliance properties. Metamorphic relations for DSA compliance encode regulatory
constraints as verifiable properties that must hold across different platform states and operations.
Costa Junior (2020) notes that "metamorphic testing is an approach that has been applied in many
domains as a strategy for generating new test cases and an alternative to alleviate the oracle
problem[15]." This approach addresses the oracle problem in compliance verification where exact
expected behaviors may not be precisely specified in regulations. Metamorphic relations can be
established for various compliance domains including content moderation, algorithmic
transparency, risk management, and user data protection practices. The definition of metamorphic
relations requires domain expertise to translate regulatory requirements into verifiable properties
that capture the intent of compliance obligations. The effectiveness of metamorphic testing for
regulatory compliance depends on the comprehensiveness of the defined relations and their coverage
of DSA requirements[16].

2.3. Timed Automata Models for Temporal Compliance Requirements

Timed automata provide a formal modeling framework for representing and verifying temporal
aspects of DSA compliance requirements. Many regulatory obligations include timing constraints
such as response deadlines, retention periods, and frequency requirements that necessitate temporal
verification capabilities. Timed automata models represent digital service operations as states with
transitions governed by timing constraints, enabling the verification of temporal compliance
properties. Barati et al. (2020) define timed automata as "a tuple consisting of activities, attributes,
states, transitions, clocks, and invariants,” providing a foundation for modeling time-bound
regulatory requirements[17]. The implementation of timed automata for compliance verification
requires the specification of clock variables, timing constraints, and acceptance conditions that
encode regulatory requirements. The verification of compliance using timed automata involves
checking whether the automaton accepts execution traces representing platform operations,
confirming adherence to temporal regulatory constraints. Timed automata models can be extended
with data variables to capture data-dependent compliance requirements, enabling more
comprehensive verification capabilities. The integration of timed automata with other verification
techniques creates a robust framework for holistic compliance monitoring across temporal and non-
temporal requirements. Timed automata can effectively model critical DSA requirements including
response time obligations for content moderation, periodic risk assessment requirements, and data
retention limitations[18].
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3. Machine Learning Architecture for Multi-Product Monitoring

3.1. Compliance Indicators Feature Engineering and Data Extraction

Machine learning approaches to DSA compliance monitoring require robust feature engineering
to transform platform activities into structured representations suitable for automated analysis. The
extraction of compliance-relevant features involves processing heterogeneous data sources including
platform logs, user activity records, content moderation decisions, and algorithmic performance
metrics. Features must capture both explicit compliance indicators such as response times and
implicit indicators such as content classification accuracy. Gupta et al. (2021) developed "BISRAC"
which includes an approach where "RPN is calculated as product of three base metrics: Severity,
Occurrence, Detection against each attack," demonstrating how feature engineering enables risk
quantification[19]. Table 1 presents the primary compliance indicator categories derived from DSA
requirements, mapping regulatory domains to measurable features.

Table 1. DSA Compliance Indicator Categories and Corresponding Features.

Compliance Feature
. Feature Examples Data Sources
Domain Category
Content Response ) ) o . )
. . Time-to-action, Decision consistency =~ Moderation logs
Moderation Metrics
Disclosure Recommendation explanation
Transparency ) API responses
Metrics completeness

Risk Management Risk Indicators

Detected risk patterns, Mitigation

Risk assessment

effectiveness reports
. Protection Ad transparency scores, Data access  User interface audit
User Protection )
Metrics controls logs

The feature extraction process must address significant challenges including data quality

variations across platforms, missing values in compliance records, and inconsistent data

representations. Table 2 outlines the feature extraction methods applied to different data types

encountered in multi-product environments.

Table 2. Feature Extraction Methods for Different Data Types.

. Preprocessing Normalization
Data Type Extraction Method .
Requirements Approach
) ) ) Temporal alignment, Gap ) )
Temporal Data  Time series extraction Min-max scaling
filling
NLP-based feature Tokenization, Entity
Textual Content ) . TF-IDF vectorization
extraction recognition
Numerical o ] Outlier detection, o
Statistical aggregation . Z-score normalization
Metrics Imputation
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Categorical Data One-hot encoding Category standardization = Frequency encoding

The implementation of feature engineering pipelines requires balancing computational
efficiency with feature expressiveness to enable real-time monitoring capabilities. Figure 1 illustrates
the comprehensive machine learning pipeline for feature extraction and processing in DSA
compliance monitoring.
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Figure 1. Machine Learning Pipeline for DSA Compliance Feature Engineering.

The figure depicts a multi-stage processing pipeline with data collection modules on the left that
gather inputs from various platform services (content moderation, user-facing APIs,
recommendation systems, advertising systems). The central processing stages include data cleaning,
feature extraction (with parallel paths for different data types), feature transformation, and selection
modules. The right side shows the final feature vectors organized by compliance domain with
temporal metadata attachments. The architecture implements feedback loops from monitoring
outcomes back to feature selection to optimize relevance. Different compliance domains are
represented in color-coded processing paths with data flow indicators showing cross-domain feature
relationships.

3.2. Digital Services Act Compliance Hybrid Risk Assessment Model

The compliance risk assessment model incorporates supervised and unsupervised learning
approaches to classify platform activities according to their compliance status and risk level.
Supervised components utilize labeled compliance cases to train classifiers that identify potential
violations, while unsupervised components detect anomalous patterns that may indicate compliance
risks without prior examples. Gupta et al. (2021) demonstrated that "BRPN = RPN (Customer
Impact) (Integrity Impact) (Availability Impact) (Confidentiality Impact)," showcasing how
multiple factors contribute to comprehensive risk assessment[20]. The hybrid approach addresses the
challenge of limited labeled training data through transfer learning from related compliance domains
and synthetic data generation techniques. Table 3 presents the risk assessment metrics and their
relative weights in the overall risk score computation.
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Table 3. Risk Assessment Metrics and Their Weights in Compliance Risk Scoring.
. . Weight . Confidence
Risk Category Assessment Metric Detection Method
(%) Threshold
Procedural Process adherence Rule-based
25 0.85
Compliance score classification
Temporal Deadline adherence 20 Temporal logic 0.90
Compliance rate verification .
Content policy Neural text
Content Compliance 30 0.75
alignment classification
Transparency Explanation 15 Semantic similarity 0.80
Compliance completeness scoring '
Data handling
User Protection 10 Pattern detection 0.90
compliance

The risk assessment model architecture incorporates multiple specialized models, each focused
on specific compliance domains with domain adaptation techniques to address platform-specific
variations. Barati et al. (2020) utilized "timed automata in Uppaal" for verification, which informs our
temporal risk assessment components/?!l. Figure 2 illustrates the neural network architecture for the
hybrid risk assessment model.

i
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Figure 2. Neural Network Architecture for DSA Compliance Risk Assessment.

The figure illustrates a complex neural architecture with multiple interconnected components.
The bottom layer shows input features organized by compliance domain, feeding into specialized
feature processing modules. The middle layers implement domain-specific neural networks (CNN’s
for content analysis, RNNs for temporal sequences, transformers for textual content) that process
features independently. The architecture includes cross-domain attention mechanisms represented
by dotted connections between domain-specific networks. The upper layers show progressive feature
fusion through self-attention mechanisms culminating in risk assessment outputs. Skip connections
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indicate how domain expertise is incorporated through regularization pathways, while uncertainty
quantification modules appear as parallel assessment streams providing confidence scores alongside
risk predictions.

3.3. Multi-Product Environment Real-time Monitoring System Design

The real-time monitoring system design addresses the technical challenges of continuous
compliance verification across heterogeneous product environments. The architecture implements
distributed monitoring components deployed across platform services, centralized analysis engines,
and visualization interfaces for compliance reporting. The system design balances computational
efficiency with monitoring comprehensiveness through adaptive sampling techniques that adjust
monitoring intensity based on risk assessments. Huang (2024) noted that "software testing on mobile
apps refers to different types of testing methods to be applied to different types of applications
(native, hybrid, and web)," which similarly applies to monitoring diverse digital services[22]. The
monitoring system implements incremental verification techniques that optimize resource utilization
by focusing on changed components rather than full system verification at each cycle. Table 4
presents system performance metrics across different platform types and operational conditions.

Table 4. Monitoring System Performance Metrics Across Platform Types.

. . False Resource
Processing Throughput Detection . o
Platform Type Positive Utilization
Latency (ms) (events/sec)  Accuracy (%)

Rate (%) (%)
Content
145 15,000 93.2 2.8 35
Platforms
E-commerce
210 8,500 95.6 1.9 42
Services
Communication
95 22,000 91.8 3.5 28
Tools
Cloud
180 12,000 94.3 2.2 38
Infrastructure
Integrated
230 7,500 96.7 15 45
Platforms

The system architecture includes specialized components for different compliance domains,
optimization techniques for real-time performance, and integration interfaces for platform-specific
adaptations. Xu et al. (2024) proposed "automated compliance verification of fund activities" which
informs our monitoring approach for digital services!?!. Figure 3 provides a comprehensive view of
the system architecture for real-time compliance monitoring.
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Figure 3. System Architecture for Real-time Compliance Monitoring in Multi-Product Environments.

The diagram presents a multi-layered architecture with platform-specific data collectors at the
bottom layer interfacing with various digital services through standardized APIs. The middle layers
contain data processing modules (stream processors, batch analyzers, data transformation services)
feeding into a central monitoring engine. The monitoring engine implements parallel compliance
verification processes for different DSA requirements, with temporal verification components
highlighted. The architecture features horizontal scaling capabilities for high-throughput
environments and vertical specialization for complex compliance domains. The top layer shows
management interfaces, alerting systems, and regulatory reporting modules with bidirectional
information flows. Cross-cutting concerns like security, data protection, and system health
monitoring appear as vertical components spanning all layers with dedicated resources for
performance optimization.

4. Implementation and Evaluation Strategy

4.1. Multi-Platform Data Integration and Processing Pipeline

The implementation of DSA compliance monitoring systems necessitates robust data integration
mechanisms capable of ingesting and processing heterogeneous data from multiple digital service
platforms. The data integration architecture must address variations in data formats, schema
structures, and access patterns across diverse platform environments. Wang (2024) noted how their
implementation "developed a system enabling Google users to track the status of their reports and
appeals,” demonstrating effective data collection across complex systems[24]. The integration
pipeline architecture consists of specialized connectors for platform-specific APIs, transformation
modules for data normalization, and staging repositories for temporary storage during processing.
Table 5 outlines the data integration specifications for various platform categories, identifying key
data sources and integration challenges.

Table 5. Data Integration Specifications for Digital Service Platforms.

Platform Data Integration Refresh Storage
Key Data Sources .
Category Format Method Frequency Requirements
User content, JSON, API Near real-
Social Media 2.5 TB/day

moderation logs, Parquet  streaming time
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recommendation
engines
Product listings, user XML,
E-commerce reviews, transaction csy, Batch ETL Hourly 1.8 TB/day
records JSON
Message metadata,
Avro,
Communication user patterns JSON Event-based Continuous 3.2 TB/day
(anonymized)
Service logs, resource
JSON, Log 5-minute
Cloud Services utilization, access 5.7 TB/day
PCAP streaming intervals

patterns

The data processing pipeline implements parallel processing streams optimized for different
data types, with specialized modules for structured, semi-structured, and unstructured content. Ni
(2024) emphasized that "mobile applications have some additional requirements that are less
commonly encountered in traditional software applications,” which similarly applies to data
processing requirements for diverse digital platforms[25]. The processing pipeline includes data
quality assessment modules that evaluate completeness, accuracy, and timeliness of compliance-
related information. Figure 4 illustrates the comprehensive data integration and processing
architecture implemented for DSA compliance monitoring.

Platform-specific Connectors Parallel Processing Streams Har ized C i itory

Cloud GRPC
n!rastru:ture Adapter
Schema Data Validation Structural Content Compliance
/ pping &Cl | Dimensional Model
4

Structured Data Processing Temporal Compliance
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_7| Extraction Pipeline “Recognition Modeling
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Fe Data Quality =
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[ Data Sources [ Structured Data I Unstructured Content [ pJFRINHAREE 6L As| [ Data Quality B Data Repository [ Performance

Load Balancer. Query Cache

Figure 4. Multi-Platform Data Integration and Processing Architecture.

The figure depicts a complex data pipeline architecture with multiple interconnected
components spanning from data source systems to compliance analysis outputs. The left side shows
platform-specific connectors with protocol adapters (REST, GraphQL, GRPC) connecting to various
digital services. The middle section illustrates parallel processing streams with specialized paths for
different data types (structured data processed through normalization and validation; unstructured
content through NLP pipelines; event sequences through temporal processing). The architecture
includes data quality monitoring modules intersecting each processing path with feedback
mechanisms to source systems. The right side shows the harmonized compliance data repository
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with dimensional models organized by compliance domains and hierarchical aggregation layers.
Performance optimization components appear as cross-cutting concerns with buffers, caches, and
load balancing mechanisms deployed throughout the pipeline to maintain processing SLAs.

4.2. Performance Metrics and Validation Methodology

The evaluation of automated compliance monitoring systems requires comprehensive
performance metrics and validation methodologies that assess both technical capabilities and
compliance effectiveness. The evaluation framework encompasses computational performance
metrics such as processing latency and throughput alongside compliance-specific metrics including
detection accuracy and coverage. Rao et al. (2024) developed specific "temporal logic formulas" for
verification, which serves as inspiration for our validation methodology[26]. Table 6 presents the
performance indicators monitored during system evaluation, with target thresholds established
based on operational requirements.

Table 6. Performance Indicators for DSA Compliance Monitoring Systems.

Performance Metrd Target Measurement Critical
etric
Category Threshold Method Threshold
Processing latency <200ms End-to-end timing >500ms
) Throughput >10,000 ) <5,000
Computational ) Load testing
capacity events/sec events/sec
Efficiency
Resource
<60% System monitoring >85%
utilization
True positive rate >95% Controlled testing <90%
Detection False positive rate <3% Controlled testing >7%
Effectiveness
Coverage of DSA Requirement
>98% ) <95%
articles tracing
Uptime
Service availability 99.99% o <99.9%
monitoring
Operational
Recovery time <5 minutes Failure testing >15 minutes
Reliability

<0.1% error . >0.5% error
Data validation

Data consistency
rate rate

The validation methodology incorporates multiple testing approaches including controlled
experiments with synthetic data, comparative analysis against manual assessments, and blind testing
by compliance experts. Ma et al. (2024) noted how "standards emphasize organizational aspects and
have limited product orientation,” informing our approach to validation against formal
requirements[27]. Table 7 outlines the validation protocols implemented for different aspects of the
compliance monitoring system.
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Table 7. Validation Protocols for Compliance Monitoring System.
Validation Protocol L L Validation
L. Validation Dataset Success Criteria
Aspect Description Frequency
Expert review of ] ) )
Rule DSA articles with >95% semantic Upon rule
formalized rules
Formalization . expert interpretations preservation updates
against DSA text
Controlled testing
Detection with labeled 500 labeled cases per
. ) ) Fl-score >0.92 Quarterly
Accuracy compliance compliance domain
scenarios
Formal verification Synthetic event 100% correctness
Temporal ) ) . Upon model
) of timed automata sequences with on verified
Properties o o . updates
models timing variations properties
) ) . <2% false
Adversarial testing Edge case library .
Robustness negatives on Monthly

with edge cases with 1,000+ scenarios o o
critical violations

The validation methodology implements a continuous validation pipeline that automatically
executes test suites against system updates, ensuring sustained compliance effectiveness. Figure 5
illustrates the validation workflow implemented for the compliance monitoring system.

Validation Coverage Across Compliance Domains

wows  96% 4 | [ e ] Moracunes ] 142 v |
" s A |  m— |

% o 5% o
oy o [ Adversaril Testing B oveprmer

ation
[ R | [ Medium Coverage (50-70%)

Edge Case Generation I

T U = —

Figure 5. Validation Methodology for DSA Compliance Monitoring.

The figure presents a comprehensive validation framework with multiple testing phases
represented as interconnected workflows. The central validation engine orchestrates multiple
specialized validation components including: formal verification modules (applying model checking
to temporal properties), controlled testing environments (with synthetically generated compliance
scenarios), adversarial testing frameworks (systematically exploring edge cases), expert validation
processes (with configurable annotation interfaces), and performance testing harnesses (measuring
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system behavior under various load profiles). The diagram employs color gradients to indicate
validation coverage levels across different compliance domains, with darker shades representing
higher validation intensity. Bidirectional arrows show how validation results feed back into system
optimization, creating a continuous improvement cycle. Performance metrics appear as dashboard
elements surrounding the main workflow, with time-series visualizations tracking validation
effectiveness over multiple system versions.

4.3. Case Studies: Compliance Monitoring Across Digital Service Categories

The implementation of the DSA compliance monitoring system was evaluated across multiple
digital service categories through controlled case studies designed to assess technical performance
and compliance effectiveness. The case studies encompassed diverse platform types including social
media services, e-commerce platforms, content hosting services, and integrated digital environments.
Ma et al. (2024) described how "BISRAC can be used iteratively in banks to aid them to assess current
information security posture,” which parallels our iterative evaluation across digital service
categoriesi?®l. Table 8 presents the case study platforms and their key characteristics relevant to
compliance monitoring.

Table 8. Case Study Platforms and Compliance Monitoring Characteristics.

Platform User Data Compliance Focus Monitoring Implementation
Category Scale Volume Areas Challenges Approach
Content
Social Media 50M+ 8.5 moderation, High volume, Distributed monitoring
Platform users  TB/day algorithmic real-time needs with edge processing
transparency
Trade compliance, Batch processing with
E-commerce 15M+ 32 Complex
consumer targeted real-time
Marketplace users  TB/day transaction flows
protection monitors
Copyright
Content Hosting ~ 30M+ 12 Diverse content Content-specific
enforcement,
Service users  TB/day formats processing pipelines

harmful content

Encrypted
Metadata-focused
Communication 80M+ 5.8 Privacy protection, content,
monitoring with privacy
Platform users TB/day security measures metadata
guarantees
analysis

The case studies revealed significant variations in monitoring effectiveness across platform
types, with content-focused platforms requiring more specialized processing compared to
transaction-oriented services. Ma et al. (2024) proposed techniques for "extracting monitoring rules
from legislation and fund documentation," which influenced our approach to adapting monitoring
rules across service categories[29]. Figure 6 presents the comparative monitoring performance across
case study platforms, highlighting domain-specific effectiveness variations.
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Figure 6. Comparative Monitoring Performance Across Digital Service Categories.

The figure displays a multi-dimensional performance comparison across the four case study
platforms. The visualization uses a radar chart design with multiple performance dimensions
radiating from the center (detection accuracy, processing efficiency, coverage completeness, false
positive rates, scalability, and adaptability). Each platform category appears as a colored polygon
overlay, with area size indicating overall monitoring effectiveness. The chart is augmented with
statistical confidence intervals shown as translucent bands around each polygon, representing
performance variability under different operational conditions. Specialized monitoring challenges
appear as annotations at the polygon vertices where performance deviations are most significant. The
visualization incorporates mini-charts embedded at each axis endpoint showing detailed
performance distributions for that specific metric. A timeline element at the bottom tracks
performance evolution over the six-month evaluation period, with event markers indicating when
monitoring system optimizations were deployed.

The case study results validated the adaptability of the monitoring architecture to diverse
platform environments while identifying specific challenges in content-focused services where
context interpretation significantly impacts compliance assessment accuracy. Table 9 summarizes the
key findings from the case studies, highlighting platform-specific optimization opportunities.

Table 9. Case Study Results and Platform-Specific Optimization Opportunities.

Detection
Platform Processing o Optimization
Accuracy . Key Finding .
Category (F1) Efficiency Opportunity
Context-sensitive
Implement context-
Social Media 87% real-time content requires
0.89 aware transformers
Platform processing enhanced
. ) for content analysis
interpretation
92% batch Transaction patterns ~ Develop transaction
E-commerce
0.94 processing provide strong graph analysis for
Marketplace
effectiveness compliance signals ~ compliance patterns
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Implement specialized

. 78% content Content diversity o
Content Hosting ) o content-type classifiers
) 0.86 processing creates classification ) )
Service o with domain
efficiency challenges .
adaptation
Metadata analysis
o 95% metadata ) ) Expand metadata
Communication ) highly effective . )
0.91 processing ] ) feature extraction with
Platform while preserving ]
coverage . privacy guarantees
privacy

5. Challenges and Future Research Directions

5.1. Addressing Technical Barriers and Data Protection Constraints

Automated compliance monitoring systems face significant technical barriers related to data
access, processing capabilities, and privacy constraints. The implementation of machine learning
models for compliance verification requires access to representative training data while respecting
data protection regulations, creating an inherent tension between monitoring effectiveness and
privacy preservation. Data protection regulations limit the collection and processing of personal data,
restricting the features available for compliance monitoring models. Fan et al. (2024) noted that
"privacy concerns associated with the use of this data have led to legal regulations that impose
restrictions on how such data is requested or processed," highlighting the fundamental challenge for
monitoring systems[30][31]. Technical solutions including privacy-preserving machine learning
techniques, federated learning approaches, and differential privacy implementations offer potential
pathways to balance monitoring requirements with privacy constraints. The development of privacy-
by-design monitoring architectures requires embedding data protection principles into the core
system design rather than implementing them as external constraints. The advancement of zero-
knowledge proof techniques and secure multi-party computation creates opportunities for verifying
compliance properties without accessing raw platform data[32]. These approaches must be
integrated with existing monitoring architectures to enhance privacy protection while maintaining
verification capabilities.

5.2. Adaptation to Evolving Regulatory Frameworks

The Digital Services Act represents an evolving regulatory framework that will continue to
develop through implementation guidelines, court interpretations, and potential amendments.
Compliance monitoring systems must adapt to these regulatory changes while maintaining
operational continuity and verification effectiveness. The development of adaptive monitoring
architectures requires modular design approaches where compliance rules can be updated without
disrupting the underlying monitoring infrastructure. Wei et al. (2024) emphasized that "the banking
sector must adapt to comply with regulations and leverage technology's opportunities to personalize
customer experiences,” which similarly applies to digital service platforms adapting to regulatory
frameworks[33][34]. Machine learning models must incorporate continuous learning capabilities to
adapt to evolving interpretations of compliance requirements without complete retraining cycles.
The implementation of regulatory change management processes within monitoring systems enables
systematic tracking of requirement modifications and their impact on verification approaches.
Monitoring systems must incorporate feedback mechanisms that capture compliance decisions from
human experts and regulatory authorities to enhance adaptation capabilities. The development of
computational legal reasoning components within monitoring systems offers potential for automated
interpretation of regulatory updates and their translation into operational verification rules.
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5.3. Integration with Broader Compliance Management Systems

Automated compliance monitoring systems operate within broader organizational compliance
frameworks that encompass manual processes, governance structures, and reporting mechanisms.
The effective integration of monitoring systems with these broader frameworks requires
standardized interfaces, consistent compliance taxonomies, and coordinated verification approaches.
The alignment of automated monitoring outputs with organizational compliance reporting structures
enables consistent documentation of compliance status across digital service operations. Ma et al.
(2024) proposed '"extracting monitoring rules from legislation and fund documentation and at
providing automated support for enabling the runtime verification," demonstrating the importance
of integrated approaches to compliance management[35]. The incorporation of explainable Al
techniques within monitoring systems enhances the interpretability of automated compliance
assessments for human reviewers and regulatory authorities. The development of standardized
compliance interfaces enables interoperability between monitoring systems and broader governance,
risk, and compliance platforms. The integration of automated monitoring with incident management
systems creates efficient workflows for addressing detected compliance issues through coordinated
remediation activities. The advancement of compliance analytics capabilities across integrated
systems enhances organizational ability to identify systemic compliance patterns and implement
preventative controls. These integration approaches must address variations in compliance maturity
across organizations through adaptable implementation models.
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