
Article Not peer-reviewed version

Positive Solutions for Fractional

Boundary Value Problems with

Fractional Conditions Using Induction

and Convolution of Lower-Order

Problemห

Jeffrey W. Lyons *

Posted Date: 2 April 2025

doi: 10.20944/preprints202504.0217.v1

Keywords: positive solutions; nonexistence; convolution; induction; right focal; fractional derivative

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3462993


Article

Positive Solutions for Fractional Boundary Value
Problems with Fractional Conditions Using Induction
and Convolution of Lower-Order Problems
Jeffrey W. Lyons

Department of Mathematical Sciences, The Citadel, 171 Moultrie Street, Charleston, SC 29409 USA; jlyons3citadel.edu

Abstract: This paper examines the conditions for the existence and nonexistence of positive solutions
to a class of nonlinear Riemann-Liouville fractional boundary value problems of order α + 2n, where
α ∈ (m − 1, m] with m ≥ 3 and m, n ∈ N. The problem’s nonlinearity is continuous and depends
on a positive parameter. We derive constraints on this parameter that dictate whether positive
solutions can be found. Our approach involves constructing a Green’s function by combining the
Green’s functions of a lower-order fractional boundary value problem and a right-focal boundary
value problem. Leveraging the properties of this Green’s function, we apply Krasnosel’skii’s Fixed
Point Theorem to establish our results. Several examples are presented to illustrate the existence and
nonexistence regions.
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1. Introduction
Let m, n ∈ N, m ≥ 3, with α ∈ (m − 1, m] and β ∈ [1, m − 1]. Consider the following Riemann-

Liouville fractional boundary value problem

Dα+2n
0+ u(t) + (−1)nλg(t) f (u) = 0, 0 < t < 1, (1)

subject to the right-focal inspired fractional boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0, (2)

Dα+2l
0+ u(0) = Dα+2l+1

0+ u(1) = 0, l = 0, 1, . . . , n − 1.

We assume that f : [0, ∞) → [0, ∞) and g : [0, 1] → [0, ∞) are continuous functions with g(t)
satisfying the condition

∫ 1
0 g(t) dt > 0 and λ > 0 is a positive parameter. This paper is concerned with

the existence and nonexistence of positive solutions to (1), (2).
We adopt the approach of Eloe et al. in [5] by constructing the Green’s function associated with

the given problem. This is done by convolving the Green’s function G0(t, s) for a lower-order problem
with the Green’s function of a right-focal boundary value problem. We then use an inductive process
to build the higher-order Green’s function corresponding to (1), (2). Additionally, we present key
properties of the lower-order Green’s functions, as established in [11], and show that these properties
extend to the higher-order Green’s function, providing proofs where necessary. Finally, we apply this
framework in an implementation of the Krasnosel’skii Fixed Point Theorem.

Our method involves the analysis of the operator defined by

Tu(t) = (−1)nλ
∫ 1

0
G(t, s)g(s) f (u(s)) ds,
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which is shown to have a fixed point under suitable conditions on the parameter λ. This fixed
point is a positive solution to (1), (2).

This study builds upon the existing literature on fractional boundary value problems that utilize
Krasnosel’skii’s Fixed Point Theorem. Previous research has employed various fixed point theorems to
establish the existence of positive solutions for similar problems, as seen in [1,2,6–9,11,13,15,16]. In
this work, we leverage these findings to determine both the existence and nonexistence of positive
solutions by deriving two distinct parameter constraints on λ formulated in terms of the liminf and
limsup of the nonlinearity. This approach is fundamentally reliant on the properties of the Green’s
function, which plays a crucial role in proving the existence of positive solutions.

Section 2 introduces key definitions related to the Riemann-Liouville fractional derivative and
offers directions for further study, along with a statement of Krasnosel’skii’s Fixed Point Theorem. The
following sections focus on constructing the Green’s function and analyzing its properties. In Sections
5 and 6, we determine parameter intervals for λ that ensure the existence or nonexistence of positive
solutions. Lastly, we provide examples to demonstrate the application of our main results.

2. Preliminaries and the Fixed Point Theorem
We begin by defining the Riemann-Liouville fractional integral which is used to define the

Riemann-Liouville fractional derivative used in this work.

Definition 1. Let ν > 0. The Riemann-Liouville fractional integral of a function u of order ν, denoted Iν
0+u, is

defined as

Iν
0+u(t) =

1
Γ(ν)

∫ t

0
(t − s)ν−1u(s)ds,

provided the right-hand side exists.

Definition 2. Let n denote a positive integer and assume n − 1 < α ≤ n. The Riemann-Liouville fractional
derivative of order α of the function u : [0, 1] → R, denoted Dα

0+u, is defined as

Dα
0+u(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds = Dn In−α

0+ u(t),

provided the right-hand side exists.

For the interested reader, we cite [3,10,12,14] for further study of fractional calculus and fractional
differential equations.

Now, we present Krasnosel’skii’s Fixed Point Theorem.

Theorem 1 (Krasnosel’skii Fixed Point Theorem). Let B be a Banach space, and let P ⊂ X be a cone in P .
Assume that Ω1, Ω2 are open sets with 0 ∈ Ω1, and Ω1 ⊂ Ω2. Let T : P ∩ (Ω2\Ω1) → P be a completely
continuous operator such that either

1. ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2; or
2. ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

3. The Green’s Function
Now, we construct the Green’s function used for (1), (2) by utilizing induction with a convolution

of a lower-order problem and a right-focal problem. The procedure is similar to that found in [13].
First, the right-focal boundary value problem

−u′′ = 0, 0 < t < 1, u(0) = 0, u′(1) = 0
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has Green’s function

G f oc(t, s) =

{
s, 0 ≤ s < t ≤ 1,
t, 0 ≤ t < s ≤ 1.

Let G0(t, s) be the Green’s function for

−Dα
0+u = 0, 0 < t < 1, u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ

0+u(1) = 0,

which is given by ([4])

G0(t, s) =
1

Γ(α)


tα−1(1 − s)α−1−β − (t − s)α−1, 0 ≤ s < t ≤ 1,

tα−1(1 − s)α−1−β, 0 ≤ t ≤ s < 1.

For k = 1, . . . , n − 1, recursively define Gk(t, s) by

Gk(t, s) = −
∫ 1

0
Gk−1(t, r)G f oc(r, s)dr.

Then,

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)G f oc(r, s)dr,

is the Green’s function for
−Dα+2n

0+ u(t) = 0, 0 < t < 1,

with boundary conditions (2), and Gn−1(t, s) is the Green’s function for

−Dα+2(n−1)
0+ u(t) = 0, 0 < t < 1,

with boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0,

Dα+2l
0+ u(0) = Dα+2l+1

0+ u(1) = 0, l = 0, 1, . . . , n − 2.

To see this, for the base case k = 1, consider the linear differential equation

Dα+2
0+ u(t) + h(t) = 0, 0 < t < 1,

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0,

Dα
0+u(0) = 0, Dα+1

0+ u(1) = 0.

Make the change of variable
v(t) = Dα+2−2

0+ u(t).

Then,
D2v(t) = D2Dα+2−2

0+ u(t) = Dα+2
0+ u(t) = −h(t),

and since v(t) = Dα
0+u(t),

v(0) = Dα
0+u(0) = 0 and v′(1) = Dα+1

0+ u(1) = 0.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2025 doi:10.20944/preprints202504.0217.v1

https://doi.org/10.20944/preprints202504.0217.v1


4 of 15

Thus, v satisfies the right-focal boundary value problem

v′′ + h(t) = 0, 0 < t < 1,

v(0) = 0, v′(1) = 0.

Also, u now satisfies a lower order boundary value problem,

Dα
0+u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0.

So,

u(t) =
∫ 1

0
G0(t, s)(−v(s))ds

=
∫ 1

0
G0(t, s)

(
−

∫ 1

0
G f oc(s, r)h(r)ds

)
dr

=
∫ 1

0

(∫ 1

0
−G0(t, s)G f oc(s, r)ds

)
h(r)dr.

Therefore,

u(t) =
∫ 1

0
G1(t, s)h(s)ds,

where

G1(t, s) = −
∫ 1

0
G0(t, r)G f oc(r, s)dr.

For the inductive step, the argument is similar. Assume that k = n − 1 is true, and consider the
linear differential equation

Dα+2n
0+ u(t) + k(t) = 0, 0 < t < 1,

satisfying boundary conditions (2).
Make the change of variables

v(t) = Dα+2(n−1)
0+ u(t)

so that
D2v(t) = Dα+2n

0+ = −k(t)

and
v(0) = Dα+2(n−1)

0+ u(0) = 0 and v′(1) = Dα+2(n−1)+1
0+ v(1) = 0.

Similar to before, v(t) satisfies the right-focal boundary value problem

v′′ + k(t) = 0, 0 < t < 1,

v(0) = 0, v′(1) = 0

while u(t) satisfies the lower order problem

Dα+2(n−1)
0+ u(t) = v(t), 0 < t < 1,

u(0) = 0, Dβ
0+u(1) = 0,

Dα+2l
0+ u(0) = Dα+2l+1

0+ u(1) = 0, l = 0, 1, . . . , n − 2.
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By induction,

u(t) =
∫ 1

0
Gn−1(t, s)(−v(s))ds

=
∫ 1

0

(
−

∫ 1

0
Gn−1(t, s)G f oc(s, r)ds

)
k(r)dr

=
∫ 1

0
Gn(t, s)k(s)ds.

Therefore,

u(t) =
∫ 1

0
Gn(t, s)k(s)ds,

where

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)G f oc(r, s)dr.

So, the unique solution to

Dα+2n
0+ u(t) + k(t) = 0, 0 < t < 1,

satisfying boundary conditions (2) is given by

u(t) =
∫ 1

0
Gn(t, s)k(s)ds.

4. Green’s Function Properties
We now discuss properties for Gn(t, s) that are inherited from G0(t, s) and G f oc(t, s). The results

of the first lemma regarding G f oc(t, s) are well-known and easily verifiable.

Lemma 1. For (t, s) ∈ [0, 1]× [0, 1], G f oc(t, s) ∈ C(1) and G f oc(t, s) ≥ 0.

The following lemma regarding G0(t, s) is Lemma 3.1 proved in [11].

Lemma 2. The following are true.

(1) For (t, s) ∈ [0, 1]× [0, 1), G0(t, s) ∈ C(1).
(2) For (t, s) ∈ (0, 1)× (0, 1), G0(t, s) > 0 and ∂

∂t G0(t, s) > 0.
(3) For (t, s) ∈ [0, 1]× [0, 1), tα−1G0(1, s) ≤ G0(t, s) ≤ G0(1, s).

Finally, we prove inherited properties for Gn(t, s) from Lemma 2.

Lemma 3. The following are true.

(1) For (t, s) ∈ [0, 1]× [0, 1), Gn(t, s) ∈ C(1).
(2) For (t, s) ∈ (0, 1)× (0, 1), (−1)nGn(t, s) > 0 and (−1)n ∂

∂t Gn(t, s) > 0.
(3) For (t, s) ∈ [0, 1]× [0, 1),

(−1)ntα−1Gn(1, s) ≤ (−1)nGn(t, s) ≤ (−1)nGn(1, s).

Proof. We proceed inductively for each part.
For (1) with (t, s) ∈ [0, 1]× [0, 1), we have the base case k = 1

G1(t, s) = −
∫ 1

0
G0(t, r)G f oc(r, s)ds

so by Lemmas 1 and 2, G1(t, s) ∈ C(1).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2025 doi:10.20944/preprints202504.0217.v1

https://doi.org/10.20944/preprints202504.0217.v1


6 of 15

Now, assume that k = n − 1 is true. Then,

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)G f oc(r, s)ds

so by induction and Lemma 1, Gn(t, s) ∈ C(1).
For (2) with (t, s) ∈ (0, 1)× (0, 1) and using Lemmas 1 and 2, we have the base case k = 1

(−1)1G1(t, s) = −
(
−

∫ 1

0
G0(t, r)G f oc(r, s)dr

)
> 0

and

(−1)1 ∂

∂t
G1(t, s) = −

(
−

∫ 1

0

∂

∂t
G0(t, r)G f oc(r, s)dr

)
> 0.

Now, assume that k = n − 1 is true. Then, by induction and Lemma 1

(−1)nGn(t, s) = (−1)n
(
−

∫ 1

0
Gn−1(t, r)G f oc(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)G f oc(r, s)dr

)
> 0,

and

(−1)n ∂

∂t
Gn(t, s) = (−1)n

(
−

∫ 1

0

∂

∂t
Gn−1(t, r)G f oc(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1 ∂

∂t
Gn−1(t, r)G f oc(r, s)dr

)
> 0.

For (3) with (t, s) ∈ [0, 1]× [0, 1) and using Lemma 2 (3), we have the base case k = 1

(−1)1tα−1G1(1, s) = −tα−1
(
−

∫ 1

0
G0(1, r)G f oc(r, s)dr

)
= −

(∫ 1

0
−tα−1G0(1, r)G f oc(r, s)dr

)
≤ −

(∫ 1

0
−G0(t, r)G f oc(r, s)dr

)
= −

(
−

∫ 1

0
G0(t, r)G f oc(r, s)dr

)
= (−1)1G1(t, s),

and

(−1)1G1(t, s) = −
(
−

∫ 1

0
G0(t, r)G f oc(r, s)dr

)
=

∫ 1

0
G0(t, r)G f oc(r, s)dr

≤
∫ 1

0
G0(1, r)G f oc(r, s)dr

= −
(
−

∫ 1

0
G0(1, r)G f oc(r, s)dr

)
= (−1)1G1(1, s).
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Now, assume that k = n − 1 is true. Then,

(−1)ntα−1Gn(1, s) = (−1)ntα−1
(
−

∫ 1

0
Gn−1(1, r)G f oc(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1tα−1Gn−1(1, r)G f oc(r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)G f oc(r, s)dr

)
= (−1)n

(
−

∫ 1

0
Gn−1(t, r)G f oc(r, s)dr

)
= (−1)nGn(t, s),

and

(−1)nGn(t, s) = (−1)n
(
−

∫ 1

0
Gn−1(t, r)G f oc(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)G f oc(r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(1, r)G f oc(r, s)dr

)
= (−1)n

(
−

∫ 1

0
Gn−1(1, r)G f oc(r, s)dr

)
= (−1)nGn(1, s).

5. Existence of Solutions
We are now in position to demonstrate the existence of positive solutions to (1), (2) based upon

the parameter λ using the Krasnosel’skii Fixed Point Theorem and our constructed Green’s function
and properties.

Define the constants

AGn =
∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds, BGn =

∫ 1

0
(−1)nGn(1, s)g(s)ds,

F0 = lim sup
u→0+

f (u)
u

, f0 = lim inf
u→0+

f (u)
u

,

F∞ = lim sup
u→∞

f (u)
u

, f∞ = lim inf
u→∞

f (u)
u

.

Let B = C[0, 1] be a Banach space with norm

∥u∥ = max
t∈[0,1]

|u(t)|.

Define the cone

P = {u ∈ B : u(0) = 0, u(t) is nondecreasing, and

tα−1u(1) ≤ u(t) ≤ u(1) on [0, 1]
}

.

Define the operator T : P → B by

Tu(t) = (−1)nλ
∫ 1

0
Gn(t, s)g(s) f (u(s))ds.
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Lemma 4. The operator T : P → P is completely continuous.

Proof. Let u ∈ P . Then, by definition,

Tu(0) = (−1)nλ
∫ 1

0
Gn(0, s)g(s) f (u(s))ds = 0.

Also, for t ∈ (0, 1) and by Lemma 3 (2),

∂

∂t
[Tu(t)] = (−1)nλ

∫ 1

0

∂

∂t
Gn(t, s)g(s) f (u(s))ds > 0

which implies that Tu(t) is nondecreasing.
Next, for t ∈ [0, 1] and by Lemma 3,

tα−1Tu(1) = tα−1(−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(t, s)g(s) f (u(s))ds

= Tu(t),

and

Tu(t) = (−1)nλ
∫ 1

0
Gn(t, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

= Tu(1).

Therefore, Tu ∈ P . A standard application of the Arzela-Ascoli Theorem yields that T is com-
pletely continuous.

Theorem 2. If
1

AGn f∞
< λ <

1
BGn F0

,

then (1), (2) has at least one positive solution.

Proof. Since F0λBGn < 1, there exists an ϵ > 0 such that

(F0 + ϵ)λBGn ≤ 1.

Also since

F0 = lim sup
u→0+

f (u)
u

,

there exists an H1 > 0 such that

f (u) ≤ (F0 + ϵ)u for u ∈ (0, H1].
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Define Ω1 = {u ∈ B : ∥u∥ < H1}. If u ∈ P ∩ ∂Ω1, then ∥u∥ = H1, and

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(1, s)g(s)(F0 + ϵ)u(s)ds

≤ (F0 + ϵ)u(1)λ
∫ 1

0
(−1)nGn(1, s)g(s)ds

≤ (F0 + ϵ)∥u∥λBGn

≤ ∥u∥.

Since Tu ∈ P , ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1.

Next, since f∞λ >
1

AGn

, there exists a c ∈ (0, 1) and an ϵ > 0 such that

( f∞ − ϵ)λ >

(
(−1)n

∫ 1

c
sα−1Gn(1, s)g(s)ds

)−1

.

Since

f∞ = lim inf
u→∞

f (u)
u

,

there exists an H3 > 0 such that

f (u) ≥ ( f∞ − ϵ)u for u ∈ [H3, ∞).

Define

H2 = max
{

H3

cα−1 , 2H1

}
,

and define Ω2 = {u ∈ B : ∥u∥ < H2}.
Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2. Notice for t ∈ [c, 1],

u(t) ≥ tα−1u(1) ≥ cα−1H2 ≥ cα−1 H3

cα−1 = H3.

Therefore,

|(Tu)(1)| ≥ (−1)nλ
∫ 1

c
Gn(1, s)g(s) f (u(s))ds

≥ λ
∫ 1

c
(−1)nGn(1, s)g(s)( f∞ − ϵ)u(s)ds

≥ λ( f∞ − ϵ)u(1)(−1)n
∫ 1

c
sα−1Gn(1, s)g(s)ds

≥ ∥u∥.

Hence, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2. Notice since H1 < H2 we have Ω1 ⊂ Ω2. Thus, by Theorem 1 (1),
T has a fixed point u ∈ P . By the definition of T, this fixed point is a positive solution of (1), (2).

Theorem 3. If
1

AGn f0
< λ <

1
BGn F∞

,

then (1), (2) has at least one positive solution.
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Proof. Since f0λAGn > 1, there exists an ϵ > 0 such that

( f0 − ϵ)λAGn ≥ 1.

Then, since

f0 = lim inf
u→0+

f (u)
u

,

there exists an H1 > 0 such that

f (u) ≥ ( f0 − ϵ)u, t ∈ (0, H1].

Define Ω1 = {u ∈ B : ∥u∥ < H1}. If u ∈ P ∩ ∂Ω1, then u(t) ≤ H1 for t ∈ [0, 1]. So,

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≥ (−1)nλ
∫ 1

0
Gn(1, s)g(s)( f0 − ϵ)u(s)ds

≥ λ( f0 − ϵ)u(1)
∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds

≥ λ( f0 − ϵ)∥u∥AGn

≥ ∥u∥.

Thus, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω1.
Next, since F∞BGn λ < 1, there exists an ϵ ∈ (0, 1) such that

((F∞ + ϵ)BGn + ϵ)λ ≤ 1.

Since

F∞ = lim sup
u→∞

f (u)
u

,

there exists an H3 > 0 such that

f (u) ≤ (F∞ + ϵ)u, u ∈ [H3, ∞).

Define
M = max

u∈[0,H3]
f (u).

Now, there exists a k ∈ (0, 1) with

(−1)n
∫ k

0
Gn(1, s)g(s)ds ≤ ϵ

M
.

Let

H2 = max
{

2H1,
H3

kα−1 , 1
}

,

and define Ω2 = {u ∈ B : ∥u∥ < H2}. Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2 and so,

u(1) = H2 ≥ H3

kα−1 > H3.

Now, u(0) = 0. So, by the Intermediate Value Theorem, there exists a γ ∈ (0, 1) with u(γ) = H3.
But, for t ∈ [k, 1], we have

u(t) ≥ tα−1u(1) = tα−1H2 ≥ kα−1 H3

kα−1 = H3.
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So, γ ∈ (0, k]. Moreover, since u(t) is nondecreasing, this implies

0 ≤ u(t) ≤ H3, t ∈ [0, γ)

and
u(t) ≥ H3, t ∈ (γ, 1].

Therefore,

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

= λ

(
(−1)n

∫ γ

0
Gn(1, s)g(s) f (u(s))ds + (−1)n

∫ 1

γ
Gn(1, s)g(s) f (u(s))ds

)
≤ λ

(
M

∫ γ

0
(−1)nGn(1, s)g(s)ds + (−1)n

∫ 1

γ
Gn(1, s)g(s)(F∞ + ϵ)u(s)ds

)
≤ λ

(
M

ϵ

M
+ (F∞ + ϵ)u(1)

∫ 1

γ
(−1)nGn(1, s)g(s)ds

)
≤ λ(ϵ + (F∞ + ϵ)∥u∥ BGn)

≤ λ(ϵ∥u∥+ (F∞ + ϵ)∥u∥ BGn)

= λ∥u∥(ϵ + (F∞ + ϵ)BGn)

≤ ∥u∥

Thus, ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω2. Notice that since H1 < H2 we have Ω1 ⊂ Ω2. Thus, by
Theorem 1 (2), T has a fixed point u ∈ P . By the definition of T, this fixed point is a positive solution
of (1), (2).

6. Nonexistence Results
Now, we provide two nonexistence of positive solutions results based upon the size of the

parameter λ. First, we need the following Lemma.

Lemma 5. Suppose Dα+2n
0+ u ∈ C[0, 1]. If (−1)n(−Dα+2n

0+ u(t)) ≥ 0 for all t ∈ [0, 1] and u(t) satisfies (2),
then

(1) u′(t) ≥ 0, 0 ≤ t ≤ 1, and
(2) tα−1u(1) ≤ u(t) ≤ u(1), 0 ≤ t ≤ 1.

Proof. Let 0 ≤ t ≤ 1.
For (1), by Lemma 3 (2),

u′(t) =
∫ 1

0

∂

∂t
Gn(t, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)n ∂

∂t
Gn(t, s)(−1)n(−Dα+2n

0+ u(s))ds

> 0.
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For (2), by Lemma 3 (3),

tα−1u(1) = tα−1
∫ 1

0
Gn(1, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)ntα−1Gn(1, s)(−1)n(−Dα+2n

0+ u(s))ds

≤
∫ 1

0
(−1)nGn(t, s)(−1)n(−Dα+2n

0+ u(s))ds

=
∫ 1

0
Gn(t, s)(−Dα+2n

0+ u(s))ds

= u(t),

and

u(t) =
∫ 1

0
Gn(t, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)nGn(t, s)(−1)n(−Dα+2n

0+ u(s))ds

≤
∫ 1

0
(−1)nGn(1, s)(−1)n(−Dα+2n

0+ u(s))ds

=
∫ 1

0
Gn(1, s)(−Dα+2n

0+ u(s))ds

= u(1).

Theorem 4. If
λ <

u
BGn f (u)

for all u ∈ (0, ∞), then no positive solution exists to (1), (2).

Proof. For contradiction, suppose that u(t) is a positive solution to (1), (2). Then, (−1)n(−Dα+2n
0+ u(t)) =

λg(t) f (u(t)) ≥ 0. So by Lemma 5,

u(1) = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

< (−1)n(BGn)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds

≤ u(1)(BGn)
−1

∫ 1

0
(−1)nGn(1, s)g(s)ds

= u(1),

a contradiction.

Theorem 5. If
λ >

u
AGn f (u)

for all u ∈ (0, ∞), then no positive solution exists to (1), (2).
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Proof. For contradiction, suppose that u(t) is a positive solution to (1), (2). Then, (−1)n(−Dα+2n
0+ u(t)) =

λg(t) f (u(t)) ≥ 0. So by Lemma 5,

u(1) = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

> (−1)n(AGn)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds

≥ u(1)(AGn)
−1

∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds

= u(1),

a contradiction.

7. An Example
Finally, we calculate approximate bounds of the parameter λ for the existence and nonexistence

of positive solutions for specific example. We use Theorems 2, 4, and 5. Examples constructed using
Theorems 3, 4, and 5 are found similarly.

Set n = 2, m = 3, α = 2.5, β = 1.5, and g(t) = t. We note that that g(t) ≥ 0 is continuous for
0 ≤ t ≤ 1 and

∫ 1
0 g(t)dt > 0. Now, we have that

G0(1, s) =
1

Γ(2.5)

11.5(1 − s)0 − (1 − s)1.5, 0 ≤ s < t ≤ 1,

11.5(1 − s)0, 0 ≤ t ≤ s < 1

=
1 − (1 − s)1.5

Γ(2.5)
,

and we compute

AG2 =
∫ 1

0
(−1)2s1.5G2(1, s)(s)ds

=
∫ 1

0

[
−

∫ 1

0
G1(1, r1)G f oc(r1, s)dr1

]
s2.5ds

=
∫ 1

0

[
−

∫ 1

0

(∫ 1

0
−G0(1, r2)G f oc(r2, r1)dr2

)
G f oc(r1, s)dr1

]
s2.5ds

≈ 0.03071,

and

BG2 =
∫ 1

0
(−1)2G2(1, s)(s)ds

=
∫ 1

0

[
−

∫ 1

0
G1(1, r1)G f oc(r1, s)dr1

]
sds

=
∫ 1

0

[
−

∫ 1

0

(∫ 1

0
−G0(1, r2)G f oc(r2, r1)dr2

)
G f oc(r1, s)dr1

]
sds

≈ 0.04749.

Now that we have AG2 and BG2 , applying the Theorems is much simpler as they are based on the
liminfs and limsups of choice of f (u).

Example 1. We demonstrate an example for Theorems 2, 4, and 5. Set f (u) = u ln(u + 1) + 2u. We note that
f (u) ≥ 0 is continuous for u ≥ 0. Thus, the fractional boundary value problem is

D6.5
0+ u(t) + λt(u ln(u + 1) + 2u) = 0, 0 < t < 1, (3)
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u(0) = u′(0) = 0, D1.5
0+ (1) = 0 (4)

D2.5
0+ u(0) = D3.5

0+ (1) = 0, D4.5
0+ (0) = D5.5

0+ (1) = 0.

We compute the liminfs and limsups for f (u)/u = ln(u + 1) + 2.

f∞ = lim inf
u→∞

(ln(u + 1) + 2) = ∞, F0 = lim sup
u→0+

(ln(u + 1) + 2) = 2

f0 = lim inf
u→0+

(ln(u + 1) + 2) = 2, F∞ = lim sup
u→∞

(ln(u + 1) + 2) = ∞.

Then, we have
1

AG2 f∞
≈ 1

0.03031 · ∞
= 0

and
1

BG2 F0
≈ 1

0.04749 · 2
≈ 10.52853.

Next, for u ∈ (0, ∞), we investigate

u
BG2 f (u)

=
1

BG2(ln(u + 1) + 2)
.

We calculate

inf
u∈(0,∞)

1
BG2(ln(u + 1) + 2)

=
1

BG2

inf
u∈(0,∞)

1
ln(u + 1) + 2

≈ 1
0.04749

(0) = 0.

Finally, for u ∈ (0, ∞), we investigate

u
AG2 f (u)

=
1

AG2(ln(u + 1) + 2)
.

We calculate

sup
u∈(0,∞)

1
AG2(ln(u + 1) + 2)

=
1

AG2

sup
u∈(0,∞)

1
ln(u + 1) + 2

≈ 1
0.030307

(
1
2

)
≈ 16.49784.

Therefore, by Theorems 2 and 5, if 0 < λ < 16.49, then (3), (4) has at least one positive solution, and if
λ > 16.49, then (3), (4) does not have a positive solution. We note that Theorem 4 did not yield a meaningful
result here which was expected as a solution exists for small positive λ.

Remark 1. Lastly, we note that to find a meaning λ range for both nonexistence results and either existence
results simultaneously with g(t) = t, we could choose rational function f (u) with a quadratic numerator and
linear denominator. Thus, f (u)/u is a rational function with a linear numerator and denominator leading to
finite values for each liminf and limsup.

8. Conclusions
In this article, we studied Riemann-Liouville fractional differential equations with order α + 2n

with n ∈ N that includes a parameter λ. The two-point boundary conditions are influenced by standard
right-focal conditions. We established the Green’s function for the boundary value problem by utilizing
a convolution of a lower-order problem and standard right-focal problem by making a change of
variables. Then, we inductively defined the Green’s function for the higher order problem.

Next, we inductively proved many properties inherited by the Green’s function from the lower-
order problems. These properties permitted an application of the Krasnosel’skii Fixed Point Theorem
to establish the existence of positive solutions based upon the size of λ. We also established the
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nonexistence of positive solutions based upon choice of λ via contradiction. Finally, we discussed a
specific example and proved existence and nonexistence based on the choice of λ.

Future research may be to use the approach in this work to establish existence and nonexistence
of positive solutions for other types of boundary conditions. Another avenue could be considering a
singularity at f (0).
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