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Abstract: This research focuses on exploring gravitational lensing of the wormhole in
Einstein-bumblebee gravity with an antisymmetric tensor. The Gibbons and Werner technique
based on the Gauss-Bonnet theorem is utilized to calculate the bending angle of light. The effects of
non-plasma and plasma medium on the bending angles are investigated. Furthermore, we examine
the deflection angle & in relation to the impact parameter ¢ and minimal radius r( in both non-plasma
and plasma mediums. Our findings indicate that the deflection angle is positively correlated with g,
meaning that larger values of rg result in larger deflection angles and smaller values of r( result in
smaller deflection angles. On the other hand, the deflection angle & is inversely related to the impact
parameter .
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1. Introduction

The exploration of Wormhole (WH) solutions traces its origins to Flamm's investigations in 1916,
conducted within the framework of General Relativity [1]. Similar to black holes (BHs), wormholes
also emerge as solutions to Einstein’s field equations. The simplest representation of the gravitational
field surrounding a static and spherically symmetric mass is provided by the Schwarzschild metric [2].
When the density reaches sufficiently high levels, this solution characterizes a black hole known as the
Schwarzschild BH. Additionally, Flamm made another significant finding in the realm of Einstein’s
equations, leading to what we now call a white hole. These solutions for black holes and white holes
delineate separate areas of spacetime that are connected by a conduit referred to as a spacetime tube.
In 1935, Einstein and Rosen [3] delved into the concept of interconnections between different universes.
Their objective was to elucidate elementary charged particles through the lens of spacetime conduits
that are traversed by electromagnetic force lines. Subsequently, these pathways within spacetime were
labeled as Einstein-Rosen Bridges. Later, in 1957, Wheeler introduced the term wormhole to describe
these bridges [4].

In 1988, the terminology traversable wormhole was introduced by Morris and Thorne [5], denoting
a situation where the throat of a wormhole is enlarged. A traversable wormhole, devoid of horizons,
permits bidirectional travel by linking two separate spacetime regions within Lorentzian geometry.
Through a traversable wormhole, it becomes feasible to journey between distinct universes [6-24].
Morris, Thorne, and Yurtsever [6] established the existence of flat traversable wormholes featuring
exotic matter that deviates from the null energy conditions. They further demonstrated the stabilization
of such traversable wormholes utilizing the Casimir effect. In 1989, Matt-Visser introduced an
alternative form of traversable wormhole known as the thin shell wormhole [1]. This variant arises by
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connecting two spacetimes to create a geodesically complete manifold housing a shell situated at the
connecting interface.

The phenomenon of light deflection by the Ellis wormhole was initially pinpointed by Chetouani
and Clement [25]. The intricate and mild deflection limits exhibited by Ellis wormholes have been
recently scrutinized by Tsukamoto [27-29], who also examined gravitational lensing by these structures.
Nakajima and Asada [30] conducted a study on the gravitational lensing effects induced by the Ellis
wormbhole. Bhattachary and Potapov [31] adopted diverse techniques, including direct integration,
perturbation analysis, and invariant angle methodologies, to compute the deflection angle within the
context of Ellis spacetime. In the realm of the Einstein-dilaton-Gauss-Bonnet theory, Cuyubamba et al.
demonstrated the absence of stable wormhole solutions [32].

In the 20th century, Einstein’s General Relativity put forth a prediction that as light traverses
through massive celestial entities, its trajectory becomes curved owing to the gravitational attraction
exerted by these entities. This occurrence, recognized as Gravitational Lensing (GL), has garnered
substantial attention over the last two decades, primarily aimed at probing the potential presence of
WHs and discerning their differentiation from BHs [33]. A multitude of investigations, documented
in references [34-103], have undertaken a comprehensive exploration of the gravitational lensing
phenomena exhibited by both BHs and WHs.

Recently, Gibbons and Werner introduced an innovative approach for calculating the deflection
angle of light. This technique leverages the Gauss-Bonnet theorem (GBT) applied to the optical
geometry [104]. The application of GBT involves the utilization of the DR space, which is confined
by a light beam and a circular boundary curve Cr within the focal region where the photon beam
intersects both the light source and the observer. This setup assumes that both the light source and the
observer are situated at a distance from the focal area. Particularly in scenarios of weak gravitational
fields, the Gauss-Bonnet theorem furnishes a mathematical formulation for determining the deflection
angle [104]:

[ kas f kdt + Y 0; = 277X (Dg).
[, Kas+d + 10 = 27X(D)

The formula for the asymptotic deflection angle can be obtained by incorporating the Gaussian
optical curvature (K), the surface element of the optical geometry (dS), and the DR region
encompassing the light source, observer, and lens center. As a simplification, it is presumed that
the sum of external angles 0i approaches 7t for the observer as the radial distance R tends towards
infinity [105]. Utilizing this context, Gibbons and Werner derived the subsequent mathematical
expression via the Gauss-Bonnet theorem under the conditions of weak gravitational fields [104]:

// /Cds+;( kdt = 71,
Dg Jopg

Moreover, the technique introduced by Gibbons and Werner has been independently extended to
stationary black holes by Werner in his work [105]. Additionally, studies have demonstrated the
applicability of this approach for calculating the deflection angle of light in the context of charged
wormholes within the framework of the Einstein-Maxwell-dilation theory. This computation involves
the use of the Gauss-Bonnet theorem and the spacetime of a rotating monopole [107-110]. Furthermore,
Sakalli and Ovgiin examined the bending angle of light in the infrared spectrum concerning the Rindler
modified Schwarzschild black hole [111].

The notion of Lorentz symmetry breaking at the Planck scale finds support in certain foundational
theories, including string theory [112,113]. A theoretical framework capable of describing the
low-energy repercussions stemming from such symmetry breaking is the Standard-Model Extension
(SME), originally proposed by Colladay and Kostelecky in the late 1990s [114,115]. Within the SME,
CPT- and Lorentz-symmetry-violating terms are integrated across all the customary sectors of the
standard model. Later, it was extended to incorporate gravity as an effective theory, enabling it to
provide predictions that can be assessed or confirmed through observational means within the confines
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of current technological capabilities [116]. Since its inception, the SME has undergone numerous
theoretical analyses and experimental tests that have enabled the imposition of stringent constraints
on Lorentz invariance in the natural world [117-120].

In this context, there is a significant interest in investigating the implications of Lorentz violation
within the gravitational realm, particularly concerning compact entities such as black holes and
wormbholes [45,60,121-128].

In this research paper, our primary focus centers on the examination of the deflection angle
experienced by light when encountering diverse mediums, encompassing plasma and non-plasma
substances. This investigation specifically pertains to wormhole in Einstein-bumblebee gravity with
an antisymmetric tensor (WHs). To comprehensively analyze this phenomenon, we employ two
distinct methodologies, with the Gauss-Bonnet theorem being one of them. This approach enables us
to precisely calculate the deflection angle within this context.

The structure of the paper is organized as follows: Section 2 provides a concise introduction
to wormhole in Einstein-bumblebee gravity with an antisymmetric tensor, offering an initial
understanding of the topic. Section 3 is dedicated to the calculation of the deflection angle of light for
wormbholes in a non-plasma medium. This is achieved through the application of the Gauss-Bonnet
theorem. Section 4 delves into a thorough analysis of the influence exerted by the presence of a plasma
medium on gravitational lensing. Finally, Section 5 provides a discussion of the outcomes and findings
obtained from the study.

2. Wormhole in Einstein-bumblebee gravity with an antisymmetric tensor

In this section, we briefly review the fundamental components of the model that underpins this
study. The adopted framework encompasses the Einstein-Hilbert term of general relativity, augmented
by the inclusion of an antisymmetric 2-tensor denoted as By, = —By, [1]. The expression for this
model is succinctly expressed as follows [127]:

1 1
S = /al‘lxw /=g {Z{R - EHWHW —V+ %B”BWRWV + Ly, 1)

In this equation, ¥ = 87tGy, with Gy being the Newtonian gravitational constant. The coupling
constant & (with mass dimension [¢;] = M2 in natural units) signifies a nonderivative gravitational
connection to By, characterized by linearity in the curvature. The field-strength tensor H, 5, linked to
By, is defined as follows:

H]W/\ = ame+8ABW+8UBM, 2)

where Hyy) remains invariant in the face of gauge transformations By, — Byy + 9y — dy/\y.
Moreover, the potential V serves as the catalyst for instigating spontaneous Lorentz violation, resulting
in a non-zero vacuum expectation value (B, ) = by,. The term £y encompasses the description of
conventional matter content, which will be elucidated in subsequent details.

The goal is to ascertain the presence of a wormhole solution that has been influenced by the
&1 coupling, which is responsible for generating a non-zero vacuum value for #**#V. By varying the
expression (1) with respect to g, while holding other fields constant, we can derive the equations
governing gravity. This leads us to:

GH = x(Tan)" + 5 (Tp)™ + (T, ). ®)

In equation (3), the left-hand side features the conventional Einstein tensor denoted as G, = Ryy —
%R guv- On the right-hand side, we encounter the energy-momentum tensors attributed to the matter
content, denoted as (TM)W/ as well as contributions arising from the BW field. These contributions
emanate from both the kinetic and potential terms, represented as (Tp),y, and the effects originating
from the nonminimal coupling, denoted as (Tg, ) ;v
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1 1
(Tp)" = EH‘X'BVHVaﬁ - ﬁgﬂvH“MHaﬁv
_ g™V 4+ 4BYBV, )

For the sake of simplicity, we have considered the potential V to depend on By, and this dependence
is expressed by the form:
V =V(BuwB" —x), ®)

Here, the variable x denotes a real number, signifying the vacuum value of the invariant

X = <B‘uvB’W> = <g1"l4> <gﬁv> btxﬂbyw (6)

In this context, the prime (') signifies differentiation concerning the potential argument. It's worth
noting that (g"") denotes the vacuum value of the inverse metric. For our current objective, we can
consider that both the By, field and the metric remain in their vacuum states, leading to:

Byv = byv/ Euv = <gyv> ’ 7)
This also ensures that the vacuum conditions V = V' = 0 are fulfilled. Lastly, the effects stemming
from the nonminimal gravitational coupling are:

1 3
(Te)™ =& (ZgWB“ﬁBWRam(s + EBMBWRVam

3
+ 5 BPYBYR g + Vo VBB

+ VaVBYBH) . 8)

The equations that govern the behavior of the antisymmetric tensor field are derived from the
action (1). To obtain these equations, we perform a variation of the action with respect to By, while
keeping the metric and matter fields constant. This leads us to:

V H* = 4V'BM — %Baﬁmﬁw )

It’s important to highlight that in this context, we are intentionally excluding any form of interaction
between the matter fields and By,,. The inclusion of such a coupling might introduce alterations to
the conservation of conventional matter currents, a topic that lies outside the scope of our current
investigation.

Within the realm of physics, a wormhole represents a theoretical construct in spacetime that holds
the intriguing possibility of serving as a shortcut for travel across both space and time. If realized,
it could facilitate transportation between different universes. The passage through a wormhole
is envisioned to require only a brief duration, with travelers experiencing a slightly diminished
gravitational force while traversing it. Nonetheless, it's important to acknowledge that the existence of
wormholes currently remains unverified, standing as a concept rooted in mathematical theory.

An illustration of a hypothetical solution that characterizes a static and spherically symmetric
wormbhole is the Morris-Thorne geometry, as outlined by references [6,130]:

-1
ds? = —2®(gs? 4 (1 - Qir)) dr® + 12(d6? + sin® 0d¢?). (10)

The shape function of a wormhole, denoted as Q)(r), and its corresponding redshift function,
represented by ®(r), play a pivotal role in defining the properties of the wormhole. Especially
crucial for describing a traversable wormhole, these functions, ®(r) and Q(r), must adhere to specific
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conditions. Among these requirements, one involves the existence of a minimal radius denoted as g,
where Q)(ry) = ry signifies the radius of the wormhole’s throat. Another significant constraint is the
flare-out condition at the throat, where Q(r) < 1 and Q' (ry) < 1. Furthermore, the wormhole must
display exceedingly weak tidal gravitational forces, translating to |®| < 1. For the sake of simplifying
our analysis, we will consider ®(r) = 0 to disregard the effects of tidal forces.

Regarding the matter-energy distribution, our approach involves considering a perfect
fluid. Consequently, the energy-momentum tensor for this matter is characterized by (Ty)", =
diag(—p, pr, pe, pp)- It's essential to underscore that the perfect fluid is not presumed to exhibit
isotropy, as the radial and lateral pressures are not assumed to be equal beforehand.

Let’s now establish the setup for the Lorentz-violating field. Drawing inspiration from References
[128,129], we will confine our focus to the pseudo-electric configuration. In this arrangement, the field
By, assumes its vacuum expectation value by, the explicit expression of which is provided by:

by = byg = —bp = ————=. (11)

By adopting this approach, the background field b, assumes a constant norm, namely b,,,b"" =
—2a%, where a is a real and positive parameter. Importantly, this arrangement preserves the spacetime’s
spherical and static symmetry. Additionally, referencing relations (2) and (11), the field strength Hyyx
becomes inherently null. It can be explicitly verified that the equations governing the behavior of By,
as depicted in (9), are inherently satisfied under these circumstances.

Certainly, when considering the vacuum conditions (V' = 0 = V) and the vacuum expectation
value (11) for By, the pertinent components derived from Equation (9) manifest as — %bm RO,

Subsequently, the Einstein field equations can be solved by considering the Bumblebee field,
leading to the determination of the shape function as elucidated in [131].

1 1-Aw

- —2/\wr~|—(1+w)ro(r0)m , (12)

O = 1A= T

Here, w is a dimensionless real parameter, and A represents an affine parameter. It's evident that the

radial metric component g, = (1 — @)’1 diverges at r = r(, which is a characteristic feature of any
wormhole.

For the sake of reducing the intricacy in calculations, one can streamline the expression in Eq. (12)
by selecting A = 3 and w = _Tl With these chosen values, the shape function can be succinctly
represented as:

Qr) 1 7
== =i (13

The spacetime metric can be expressed in a general format as follows:

ds® = —gudt? + g, dr? 4 r*d6* + 1 sin” 0d¢?, (14)

where g4 = —1and g = (1 —

3. Weak deflection angle in Non-plasma Medium

In this section, we will delve into the analysis of the deflection angle of wormhole in
Einstein-bumblebee gravity with an antisymmetric tensor using the method of Gibbons and Werner
[104]. To describe the optical path, we employ the null geodesic condition ds?> = 0 in conjunction with
Eq. (14). This facilitates the representation of the optical path metric as follows:

We proceed with the analysis of the deflection angle for wormhole in Einstein-bumblebee gravity
with an antisymmetric tensor in this section. To describe the optical path, we employ the null geodesic
condition ds? = 0 together with Eq. (14). This allows us to represent the optical path metric as:


https://doi.org/10.20944/preprints202210.0280.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 August 2023 d0i:10.20944/preprints202210.0280.v3

60of 13
dr? = gijdxidxj = g_rrdi’z +g¢¢d¢2. (15)
By situating the metric in the equatorial plane with (§ = %), the corresponding expression
becomes:
dr?
2 _ 2742

r

The Gaussian curvature can be defined using the Ricci scalar R as

K= (17)

We can evaluate the Gaussian curvature as follows:
K~ ——. (18)

The parameter K is a bivariate function dependent on the radial coordinate r and the minimal radius 7

of the wormhole throat. Given that we are working with weak gravitational fields, the most appropriate

approach for calculating the deflection angle involves employing the Gauss-Bonnet theorem (GBT).
As the light rays come from a source at infinity up to such radial distance, the rays becomes nearly

straight. So, we can use the straight line approximation r = ﬁ, where ¢ is the impact parameter
T [e<)
= — / / Kds, (19)
0 £
sin(¢)

where the term dS is surface element and calculated as
dS = /3, drdp ~ 2rdrdgp + Olry]2. (20)

After substituting the values of Gaussian curvature and 4S5, the expression for the deflection angle
& in non-plasma medium can be simplified as follows

4
37tr

3204

A= (21)

The weak deflection angle in non-plasma medium is plotted in Figure 1.

It is evident that the deflection angle & of wormhole in Einstein-bumblebee gravity with an
antisymmetric tensor depends on two parameters: the impact parameter ¢ and the minimal radius of
the WH throat ry. An increase in 7 leads to a larger deflection angle &, while a decrease in rg results
in a smaller deflection angle. Conversely, the deflection angle & shows an inverse relation with the
impact parameter o, as its value decreases with an increase in ¢, and vice versa.

Here we examine the graphical representation of the light bending angle in a non-plasma medium.
We will also demonstrate the influence of the minimal radius ry and impact parameter ¢ on the
deflection angle.
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Figure 1. Figure shows the graphical behaviour of deflection angle & w.r.t impact parameter c when
0 < ¢ < 10. We noticed that the deflection angle decreases when ry — 0 and o — o0 and shows the
same behaviour for the small and larger values of r.

4. Deflection angle in Plasma Medium

The aim of this section is to analyze the gravitational lensing of the wormhole in
Einstein-bumblebee gravity with an antisymmetric tensor in the presence of a plasma medium using
the method defined in [53]. To achieve this, we describe the refractive index n of the plasma medium
as follows [53]

_ wi(r)

W (r)

n(r) =

f(r), (22)

where f(r) =1 — @ In refractive index n(r), w, represents the plasma frequency of electron
while we denotes the frequency of photon which is noticed by an observer at infinity. The optical
metric in plasma medium can be defined as

= gPdxldx™ = n?(r) L _drﬁ + r2dg? 1 (23)

One can find the Gaussian curvature (17). The calculated Gaussian curvature in plasma medium can
be written as

9r3w2 5r0
B 32r6w? 816 +0 (we, r0> (24)

and the surface element is dS = 8r — ZM" +0 ( ) .

By using GBT (19), we calculate the deflection in plasma medium as
3nrgw?  157rg
324wl 320

&= (25)

The effect of the plasma medium is plotted in Figure 2. When the influence of plasma is
disregarded, it’s noticeable that the resulting expression for the deflection angle (25) will transform
into the deflection angle obtained within a non-plasma medium.
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Figure 2. Figure shows the graphical behaviour of deflection angle & w.r.t impact parameter o by
2

varying = Z;—f when 0 < ¢ < 5in the presence of plasma medium. We observe that the graph of &

increases asymptotically as we increase the value of g with the decrease in impact parameter ¢.

5. Conclusion

In this research, we have delved into the weak deflection angle of a wormhole within the
framework of Einstein-bumblebee gravity coupled with an antisymmetric tensor. Employing the
method devised by Gibbons and Werner, we’ve ascertained the deflection angle of the wormhole
in Einstein-bumblebee gravity with an antisymmetric tensor under the weak field approximation.
We’ve extended our analysis to encompass different mediums, including both plasma and non-plasma
environments. Our findings underscore that the deflection angle is influenced by two key parameters:
the impact parameter ¢ and the minimal radius rg. Notably, the deflection angle manifests a direct
correlation with rg while exhibiting an inverse relationship with ¢. Our observations reveal that the
graph depicting the deflection angle & against ¢ follows an asymptotic increase with higher values of
ro and a decrease in 0. Additionally, the presence of a plasma medium amplifies the weak deflection
angle.

To summarize, the deflection angle of light in a wormhole under the context of Einstein-bumblebee
gravity coupled with an antisymmetric tensor solution hinges on the parameters of impact (¢) and
minimal radius (rg). The outcomes suggest that a wormhole with a larger throat radius wields a
more substantial gravitational pull, consequently leading to a more pronounced bending of light.
Conversely, a smaller radius corresponds to a weaker gravitational pull and a lesser angle of light
bending. The deflection angle also displays an inversely proportional relation to the impact parameter,
implying that a higher value of ¢ corresponds to a reduced deflection angle and vice versa.

The results of this study open up intriguing possibilities for future research in the field of
wormhole lensing. The investigation could be extended to encompass more intricate scenarios, such as
the deflection angle in the presence of gravitational waves. Furthermore, the influence of parameters
like the minimal radius and impact parameter could be further scrutinized. By exploring factors like
the wormhole’s shape and curvature, we could gain deeper insights into how these aspects impact the
gravitational lensing phenomenon.

Acknowledgments: A.QO.and R. P. would like to acknowledge networking support by the COST Action CA18108
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