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Abstract 

Anaerobic codigestion of organic residues is a proven strategy for enhancing methane recovery. 
However, the complexity of microbial interactions and variability in operational conditions make it 
difficult to estimate methane concentration in real time, particularly in rural contexts. This study 
developed a multiple linear regression model to predict methane concentration using operational 
data and microbial community profiles derived from 16S rRNA gene sequencing. The system 
involved the codigestion of cassava by-product and pig manure in a two-phase anaerobic reactor. 
Predictor variables were selected through a hybrid approach combining statistical correlation with 
microbial functional relevance. The final model, trained on 70% of the dataset, demonstrated 
satisfactory generalization capability on the 30) test set, achieving a coefficient of determination (R²) 
of 0.92 and a mean absolute error (MRE) of 6.50%. Requiring only a limited set of inputs and minimal 
computational resources, the model offers a practical and accessible solution for estimating methane 
levels in decentralized systems. The integration of microbial community data represents a 
meaningful innovation, improving prediction by capturing biological variation not reflected in 
operational parameters alone. This approach can support local decision-making and contribute to 
Sustainable Development Goal 7 by promoting reliable and affordable technologies for clean energy 
generation in rural and resource-constrained settings. 

Keywords: codigestion; metagenomics; biogas; MLR 
 

1. Introduction 

The Valle del Cauca region is one of Colombia’s most active agro-industrial areas, combining 
high agricultural productivity with unique ecological richness. The territory is sustained by 
ecosystems that range from coastal plains to montane forests, which support both biological diversity 
and productive capacity. It ranks as the third-largest producer and consumer of pork in the country, 
with a reported output of 88105 tons in 2023, equivalent to 15.6% of national production, and an 
average pig population exceeding 396000 animals [1,2]. This sector generates large volumes of pig 
manure (PM) that require appropriate handling to prevent environmental and public health risks. 
Another productive activity with growing regional relevance is cassava cultivation, which covered 
approximately 564 hectares in 2020, yielding a total of 9888 tons of fresh roots [1]. During starch 
extraction, each kilogram of cassava generates about 0.2 kilograms of starch, 0.65 kilograms of fibrous 
residue (cassava dregs (CD)), and between five and seven liters of wastewater [3]. Based on these 
ratios, the estimated annual generation of by-products in the region reaches nearly 6427 tons, most 
of which are not currently valorized [4–6]. 
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To address the increasing accumulation of organic residues from pig farming and cassava 
processing, anaerobic digestion (AD) has been promoted in rural areas of Valle del Cauca as a 
strategy for energy recovery and waste management. In these settings, one phase tubular biodigesters 
are commonly employed due to their affordable construction, ease of installation and minimal 
infrastructure requirements, making them particularly attractive to smallholder producers [7,8]. AD 
is a biologically mediated process in which organic matter is sequentially transformed into methane 
through four main stages, each driven by specific microbial groups. In the hydrolysis phase, 
hydrolytic bacteria degrade complex macromolecules such as carbohydrates, proteins and lipids into 
soluble monomers. These compounds are then metabolized by acidogenic bacteria during 
acidogenesis, producing volatile fatty acids (VFA), alcohols and gases like hydrogen and carbon 
dioxide. In the subsequent acetogenesis stage, acetogenic microorganisms convert these 
intermediates into acetate, which, along with hydrogen and carbon dioxide, is used by methanogenic 
archaea in the final phase to generate methane [9].  

For the process to remain stable and efficient, environmental conditions such as pH and 
temperature must be kept within optimal ranges, typically between 6.5 and 7.5 for pH and 30 to 38 °C 
under mesophilic conditions [10–13]. In addition, maintaining a C:N ratio between 20:1 and 30:1 is 
considered ideal for AD, as it ensures sufficient nitrogen for microbial growth without leading to 
ammonia inhibition or carbon limitation [14–17]. However, most rural systems lack monitoring tools 
and operate through empirical practices, without clear understanding of internal conditions or 
microbial dynamics [7]. This limitation frequently leads to process imbalance, reduced performance 
and early system failure. 

To overcome the performance limitations of conventional digesters, several strategies have been 
developed to improve substrate biodegradability and enhance biogas production. Among them, 
mechanical pre-treatments, codigestion, and multiphase configurations have proven to be 
particularly effective in increasing system efficiency [18–22]. Mechanical pre-treatments have proven 
effective in enhancing the hydrolysis of lignocellulosic substrates by reducing particle size and fiber 
crystallinity, thus increasing surface area and enzymatic accessibility [23,24]. Depending on specific 
conditions, methane production improvements of 16% to 99% have been reported with mechanical 
treatments [25]. These results highlight the potential of simple mechanical treatments to enhance 
biodegradability and biogas productivity, especially during the hydrolysis and acidogenesis phases, 
which are often rate-limited in solid waste digestion. 

Codigestion has emerged as a robust strategy to address the nutrient imbalances and low 
biodegradability often associated with single-substrate digestion. By combining complementary 
feedstocks, this approach improves the carbon to nitrogen (C:N) ratio, dilutes inhibitors, and 
stimulates microbial activity, allowing for higher energy yields [26]. For instance, it has been reported 
that co-digesting PM with cassava pulp at inclusion levels of up to 60% of the incoming volatile solids 
(VS) can increase the specific methane yield by around 41% compared with PM alone [27]. Similarly, 
results have also shown that mixtures containing 66% PM, 16% cassava pulp, and 16% bagasse 
achieve higher methane yields than those with high bagasse content alone, which led to pH 
imbalances and process failure [28]. Likewise, experimental trials combining sewage sludge with 
food waste reported an increase in methane yield from 159 to 799 mL CH4/gVS, along with a 
reduction in hydraulic retention time (HRT) to less than four days [29]. These improvements are 
attributed to enhanced microbial synergy and substrate availability, which accelerate volatile solids 
degradation. 

Multiphase AD systems have been developed to address the limitations of single-stage 
configurations by creating distinct operational environments for each metabolic phase. In two-phase 
systems, the acidogenic and methanogenic stages are physically separated, which enables more 
efficient substrate conversion, greater resilience to organic shocks, and better pH control [30,31]. This 
structural decoupling has led to increases in methane yields, improved volatile solids removal, and 
significant reductions in HRT without compromising performance [31]. Compared to single-stage 
systems, which often suffer from suboptimal compromises between the needs of different microbial 
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groups, two-phase configurations facilitate the coexistence of specialized communities under more 
stable conditions [31,32]. Although three-phase systems further refine process compartmentalization 
by isolating hydrolysis, acidogenesis, and methanogenesis, they often entail higher operational 
complexity, energy consumption, and maintenance requirements [33]. These drawbacks have limited 
their scalability, particularly in low-resource contexts. Consequently, two-phase systems strike a 
practical balance between performance enhancement and technical feasibility, making them a more 
accessible alternative for decentralized applications. 

Among the strategies developed to improve AD performance, the integration of real-time 
monitoring systems has become increasingly relevant for enhancing process oversight and 
operational efficiency [34,35]. Basic and key variables such as pH, temperature, and methane 
concentration can be considered to infer the internal state of the reactor and anticipate potential 
imbalances. The use of cost-effective IoT platforms such as ESP32 microcontrollers coupled with 
sensor has proven suitable for real-time tracking, achieving deviations below 2% for CH4 and 1.7% 
for pH when compared to laboratory-grade methods [34–36]. Systems incorporating the MQ-4 sensor 
(200–10,000 ppm CH4) and platforms like ThingSpeak facilitate continuous data acquisition, cloud 
visualization, and automatic alerts, offering a practical solution to reduce manual intervention and 
increase system reliability [35,37,38]. 

In parallel, greater attention should be given to the microbial community (MC) involved in AD, 
as they are rarely considered in routine operation despite being responsible for driving the entire 
process [9]. Recent studies have highlighted that variations in microbial structure are strongly 
influenced by substrate type, operational parameters such as temperature and organic loading rates 
(OLR), and reactor configuration [39,40]. However, most operational strategies still rely exclusively 
on physicochemical parameters, overlooking microbial signals that often precede system imbalances 
[41]. Sequencing platforms like Illumina MiSeq and NextSeq have revealed both dominant and low-
abundance taxa with key metabolic roles, including members of Euryarchaeota involved in 
methanogenesis and syntrophic bacteria mediating VFA conversion [40]. Understanding microbial 
shifts under stress conditions has provided valuable insights into process behavior and system 
dynamics, reinforcing the need to integrate microbial data into process understanding, particularly 
to elucidate how shifts in community structure and function impact methane levels [42,43]. 

Despite their central role in AD, MLR models have traditionally been developed using 
operational variables that capture external system conditions, parameters that are directly 
measurable or predefined during setup, while MC have often been treated as secondary inputs or 
excluded altogether. For example, recent studies have used MLR to predict specific methane 
production from dry AD of the organic fraction of municipal solid waste in pilot-scale plug-flow 
reactors. Six significant, mostly operational predictors were prioritized (VS, OLR, HRT, C/N ratio, 
lignin content, and VFA) via Pearson correlation and PCA. Simple regression showed low 
performance (R2= 0.3), while the full MLR reached R2= 0.91. A reduced model with four uncorrelated 
variables (VS, OLR, C/N ratio, lignin content) maintained strong accuracy (R2= 0.87) with fewer 
inputs. [44]. Similarly, MLR has been applied to predict VFA concentrations in AD of primary and 
secondary sludge using operational and physicochemical inputs. The model achieved R2 values 
above 0.85 in several scenarios, offering high interpretability and low computational demand. 
Although less accurate than leading ensemble methods, MLR remains suitable for applications that 
require clear interpretation of variable influence [45]. 

Unlike models based solely on operational parameters, an MLR model using the relative 
abundances of archaeal and bacterial OTUs predicted methane production rates in 149 anaerobic 
digesters, explaining 66% of the variance with a standard error of 0.12 LCH4/L·day. Through the 
integration of PCA, ANOVA, and cubic smoothing, it captured operational effects such as ammonia 
toxicity and achieved R2 values of 0.93 for biogas generation and 0.95 for COD removal across 
laboratory, pilot, and industrial scales, underscoring its worth in translating complex MC data into 
scalable process predictions. [46]. 
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Building on emerging evidence supporting the integration of microbial data into statistical 
modeling, this study evaluates the potential of MLR to predict methane concentrations in a low-cost, 
two-phase anaerobic digester treating PM and CD at laboratory scale. The work aligns with 
Sustainable Development Goal 7 by promoting accessible tools for energy recovery from organic 
waste.  

This article is structured into four main sections. The Introduction outlines the context of AD in 
the Valle del Cauca region, highlighting environmental and operational challenges from agro-
industrial organic waste, reviewing strategies to improve biogas systems, and emphasizing the need 
to integrate microbial data into predictive models. The Materials and methods detail the system 
setup, monitoring, sequencing, and the MLR approach used for variable selection and model 
construction. The Results and discussion section presents the modeling outcomes, identifies relevant 
predictors, and interprets their contribution to system behavior. The Conclusion summarizes the key 
findings and future perspectives for incorporating microbiota into data-driven frameworks for 
sustainable energy transitions. 

2. Materials and Methods 

This study aims to develop a predictive model for methane concentration based on a set of 
measurable variables, including VFAs, microbial populations, and operational parameters. This 
section first describes the dataset and the preprocessing steps undertaken. Subsequently, it details 
the initial linear modeling approach, followed by a feature selection process based on variable 
weighting to derive a simplified, yet robust, model. Finally, it presents the development of an 
adaptive predictive model using a moving window technique combined with a regularization 
method to prevent overfitting. 

2.1. Substrate Selection 

The substrates used in this study were fresh PM and CD. The inoculum, obtained from the same 
source as the manure, was included to ensure microbial compatibility with the feedstock. Both were 
collected at a small-scale pig farm located in the municipality of Florida, Valle del Cauca, where 
approximately 20 pigs are kept under semi-intensive conditions. Animal pens are washed twice daily, 
and the resulting wastewater, rich in organic matter, drains into a static open-air tank that served as 
the inoculum source. Fresh manure was manually collected after excretion using sanitized tools. CD 
were obtained from a medium-sized cassava starch-processing facility located in the rural area of 
Mandiba, Santander de Quilichao, Cauca. Processing nearly eight tons of cassava per day, the plant 
generates over two tons of lignocellulosic residue each week. This material was delivered in dry, 
milled form. 

All samples were stored at 4 °C until physicochemical characterization, which included 
proximate analysis by gravimetric methods and determination of the carbon-to-nitrogen (C:N) ratio 
via high-temperature combustion. These procedures followed the Standard Methods for the 
Examination of Water and Wastewater (APHA, AWWA, WEF), ensuring analytical consistency as 
summarized in Table 1 [47]. 

Table 1. Substrate characerization. 

Substrate C(%) N(%) C:N %Hum. %TS %VS %VS/%TS %FS 
I 32.9 3.2 10.3 98.0% 2.2% 1.3% 60.8% 0.9% 

CD 43.1 0.9 45.9 11.0% 89.0% 85.4% 96.0% 3.6% 
PM 12.9 1.9 7.0 72.0% 28.0% 21.0% 75.0% 7.0% 

I: Inoculum; CD: Cassava dregs; PM: Pig manure; C: Carbon content: N: nitrogen content. 
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2.2. Experimental Setup 

The experimental setup consisted of a two-phase laboratory-scale anaerobic digester designed 
to operate without integrated control systems Figure 1. The system was constructed using 110 mm 
sanitary-grade PVC tubing due to its low cost, durability, and ease of assembly. Phase 1 (D1F1) (3 L) 
was expected to perform hydrolysis and acidogenesis, while phase 2 (D1F2) (4 L) supposedly 
supported acetogenesis and methanogenesis. Each chamber was operated at 80% of its total volume, 
2.4 L in phase 1 and 3.2 L in phase 2, leaving the remaining headspace for biogas accumulation. To 
enable real-time monitoring, a low-cost IoT module was incorporated into the digester, integrating 
an Arduino UNO microcontroller with sensors for pH, temperature, and methane concentration. 
Data were transmitted through a mobile network to the ThingSpeak platform for remote 
visualization [38]. This setup allowed continuous monitoring without the need for sophisticated 
instrumentation. 

 
Figure 1. Two-phase digester made of PVC. 

2.3. Operational Parameter 

To establish an active MC, both phases were fed inoculum for five days, until its working 
volume. The inoculum had a C:N ratio of 10.3 and 2.2% TS. During start-up, the OLR, estimated with 
a five-day HRT, was 8.37 gVS/L·day. Thereafter, feeding used a 73:27 blend of PM and CD. The daily 
feed was 35 g fresh PM and 13 g CD, plus 166 g water to achieve 10% TS (214 g/day total). The 
theoretical C:N ratio was 21.55. With the defined working volumes, HRTs were 12 days for D1F1 and 
15 days for D1F2. Corresponding OLRs were 7.7 and 5.7 gVS/L·day. VS inputs were 18.46 g/day 
(D1F1) and 18.45 g/day (D1F2). Daily manual feeding with graduated containers and isolation valves 
ensured accurate dosing and anaerobiosis. 

The IoT-instrumented digester (D1) enabled incremental, data-driven feed adjustments in both 
phases (D1F1, D1F2) using real-time pH, temperature, and methane concentration. These signals 
guided when to lower the OLR and TS and when to apply temporary pH control, moving the reactors 
toward consistent operating conditions. Five feed formulations were implemented (Table 2). In D1F1, 
pH was briefly corrected with lime and then NaOH to keep it within 6.5–7.5; by mixture 5, 
recirculated digestate from D1F2 maintained pH without further chemicals. Mixture 4 used inoculum 
from an anaerobic digester at a university in Colombia treating food waste. Across mixtures, TS was 
reduced from 10% to 8–9%, OLR decreased from 12.4 gVS/L·day (inoculum step) to 5–6 gVS/L·day, 
and the C:N ratio increased in the final mixture due to recirculation while the contributions of PM 
and CD were reduced. 
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Table 2. Adjusted feeding regime. 

D1F1 
Mix OLR (gVS/L·day) Mix load (g) I (g) PM (g) CD (g) H2O added (g) Daily load (g) %TS C:N %I %PM %CD HRT (day) Period (day) pH treatment 

I 12.40 329 329   152 481 10% 10.3 100% 0% 0% 5 0-.5  
1 7.67 48  35 13 166 214 10% 21.6 0% 73% 27% 11 6-27 Lime 
2 7.66 54  43 11 164 218 10% 18.3 0% 80% 20% 11 28-49  
3 6.60 48  39 9 162 210 9% 17.5 0% 81% 19% 11 50-89 NaOH 
4 5.90 46 14 25 7 165 211 8% 15.7 30% 54% 15% 11 90-118 NaOH 
5 5.87 71 35 26 10 136 207 8% 20.7 50% 36% 14% 11 119-161  

D1F2 
I 12.40 439 439   202 641 10% 10.3 100% 0% 0% 5 0-.5  
1 5.75 48  35 13 166 214 10% 21.6 0% 73% 27% 15 6-38  
2 5.74 54  43 11 164 218 10% 18.3 0% 80% 20% 15 39-60  
3 4.95 48  39 9 162 210 9% 17.5 0% 81% 19% 15 61-100  
4 4.41 46 14 25 7 165 211 8% 15.7 30% 54% 15% 15 101-127  
5 4.40 71 35 26 10 136 207 8% 20.7 50% 36% 14% 15 128-161  

I = inoculum; PM = pig manure; CD = cassava dreg; OLR = organic loading rate; TS = total solids; HRT = hydraulic retention time. 
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2.4. Steady-State 

Identifying steady-state periods was essential to build a reliable dataset, define representative 
operating conditions, and guide downstream variable prioritization and modeling. pH, temperature, 
and methane concentration were monitored continuously for 161 days (24/7). The IoT system logged 
three readings per minute for each variable and was routinely cross-checked against bench 
measurements to validate operational reliability. 

Data volume was substantial, D1F1 recorded 694110 samples per variable and D1F2 573215. 
Processing followed six steps: 1) splitting timestamp into date and time; 2) validity filtering (e.g., pH 
3–12; 10–45 °C; CH₄ within instrument bounds) with out-of-range values set to blank; 3) multivariate 
imputation by chained equations (MICE) to preserve temporal continuity [48]; 4) resampling to 
hourly means (2893 rows in D1F1; 2389 in D1F2) and 5) to daily means (152 and 147, respectively), 
retaining trends while reducing computational load as shown in Table 3. 

Table 3. Data processing. 

D1F1 
Steps pH T(°C) CH4 Total % 

All data 694110 694110 694110 2082330 100% 
Day-hour 694110 694110 694110 2082330 100% 

Filters 635953 635953 635953 1907859 92% 
MICE 694110 694110 694110 2082330 100% 

Data per hour 2893 2893 2893 8679 0.42% 
Data per day 152 152 152 456 0.02% 

D1F2 
All data 573215 573215 573215 1719645 100% 

Day-hour 573215 573215 573215 1719645 100% 
Filters 518897 518897 518897 1556691 91% 
MICE 573215 573215 573215 1719645 100% 

Data per hour 2389 2389 2389 7167 0.42% 
Data per day 147 147 147 441 0.03% 

Stable windows were then identified via rolling windows using relative standard deviation 
thresholds (<15%) around moving means for pH, temperature, and methane concentration, with a 
minimum continuous duration and compliance with predefined operating limits [49]. D1 showed 
extended steady windows, typically with pH 6.5–7.5, facilitated by high-frequency data and the 
ability to adjust operating conditions in real time. 

2.5. VFA Quantification 

Samples were collected every three days in 5 ml Eppendorf tubes and stored at -20°C until 
analysis. The final selection of samples for analysis was made considering the periods of system 
stabilization under IoT monitoring and budgetary constraints, prioritizing those most representative 
of the overall process behavior. Sampling was carried out during the active operation of the digester. 

The quantification of VFAs was performed by gas chromatography, following the procedure 
described in section 5560D of the Standard Methods for the Examination of Water and Wastewater 
(APHA) [50], in the laboratory of the Department of Chemical Engineering and Analytical Chemistry 
at the University of Barcelona. Prior to chromatographic analysis, the samples were centrifuged and 
filtered through 0.45 µm nylon membranes to remove suspended solids. Each analysis vial contained 
1 ml of sample, diluted or not depending on the estimated concentration level, along with 0.1 ml of 
15% orthophosphoric acid containing a known concentration of 2-ethylbutyric acid (~500 mg/L) as an 
internal standard. This compound allowed verification of injection consistency and facilitated 
calibration of the equipment through the ratio of analyte to standard peak areas. 
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Analyses were carried out on a Shimadzu GC-2010 Plus gas chromatograph with a flame 
ionization detector, using a DB-FFAP capillary column (Agilent Technologies, 30 m × 0.25 mm × 0.25 
µm). The oven temperature program started at 60°C with a two-minute hold, followed by an increase 
of 20°C/min up to 240°C, maintained for an additional two minutes. The total analysis time was 13 
minutes. 

The injector (SPL-1) operated at 220°C in split mode, with a split ratio of 50:1. Helium was used 
as the carrier gas at a pressure of 42.6 kPa, with a total flow of 233.4 ml/min, a column flow of 8.86 
ml/min, and a linear velocity of 60 cm/s. The purge flow was set at 3 ml/min, and the makeup gas 
flow (nitrogen) at the detector was 10 ml/min. The injection volume was 2 ml, using helium, air, 
hydrogen, and nitrogen as auxiliary gases. 

For equipment calibration, a commercial VFA standard (Supelco CRM46975) containing defined 
concentrations of acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic, caproic, 
hexanoic, and heptanoic acids was used. Serial dilutions were prepared in 1:1, 1:2, 1:4, 1:8, 1:16, and 
1:32 ratios, to which orthophosphoric acid and the internal standard were also added. For alcohol 
analysis (ethanol, propanol, and butanol), defined-concentration standard solutions were prepared, 
applying the same dilutions and analytical conditions. 

This procedure allowed precise and reproducible determination of VFAs in the samples, 
essential for evaluating the performance of the AD system and its relationship with operating 
conditions and microbiota. 

2.6. Metagenomic Analysis 

Samples for metagenomic analysis were collected directly from operational biodigester using 
50 ml Falcon tubes. Sampling was performed every three days throughout the process, following the 
same prioritization criteria used for the quantification of VFAs, focusing on periods of greatest 
microbiological representativeness and considering the availability of resources. Once collected, 
samples were immediately frozen at -20°C and stored until further processing. 

To analyse the MC, Falcon tubes were sent to Omega Bioservices (U.S.A) for DNA extraction 
using the kit E.Z.N.A.® Universal Pathogen Kit, library preparation and for sequencing the V3–V4 
hypervariable region of the 16S rRNA gene using the primers 341F (CCTACGGGNGGCWGCAG) 
and 806R (GACTACHVGGGTATCTAATCC) which was conducted on an Illumina Miseq 
sequencing platform (Paired-end sequencing 300 bp). Illumina reads were then analysed using 
BaseSpace app (version 1.1.3) [51]. Thus, raw sequence data were demultiplexed and then quality 
filtered, denoised, merged, and chimera removed using the DADA2 [52] to generate amplicon 
sequence variants (ASVs). Taxonomic assignment was conducted using the SILVA database (version 
138.2) [53]. 

To structure the analysis of microbial interactions, a subset of phyla of interest was defined from 
the general metagenomic dataset, considering the sequencing reads obtained for each taxonomic 
group. The selection was based on two main criteria. First, the sustained presence of each phylum 
throughout the monitoring period was evaluated, excluding those with very low or intermittent 
representation, as their variability would hinder the detection of consistent associations in the 
relational analysis. Second, functional relevance reported in previous studies on anaerobic digestion 
was reviewed, prioritizing phyla whose involvement in fermentative, acetogenic, or methanogenic 
pathways has been extensively documented in similar systems [9,54]. 

Once the representative periods were defined, the results from VFA quantification and 
metagenomic analysis were integrated, extending the characterization to the biochemical and 
microbiological components of the system. In several cases, the observed patterns were consistent 
with those reported in the specialized literature, which supported the robustness of the approach. 
The dataset included operational, biochemical, and microbiological variables [55–59]. 

Since the biochemical and microbiological measurements were less frequent than the operational 
records, imputation techniques were applied within the selected periods to expand the dataset 
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without distorting the relationships among variables. Methods such as KNN imputation, iterative 
imputation, and MICE were employed [56,60]. 

The analysis focused on the period between days 97 and 154, which, although not representing 
a fully stabilized phase, shows a trend toward stabilization and coincides with the selected VFA and 
microbiological samples. This ensured consistency between the experimental data and the 
operational conditions. 

2.7. Preprocessing and Unified Database 

Once the representative periods were defined, the results from VFA quantification and 
metagenomic analysis were incorporated to extend the characterization of the system to its 
biochemical and microbiological dimensions. The patterns obtained aligned with those reported in 
specialized literature, reinforcing the validity of the approach [55–59]. The unified dataset combined 
operational, biochemical, and microbiological variables. 

Because biochemical and microbiological measurements were less frequent than operational 
records, imputation method MICE was applied to harmonize the dataset without altering the 
underlying relationships among variables [56,60]. 

The analysis focused on the period between days 97 and 154, which, while not fully stabilized, 
displayed a clear trend toward steady performance and coincided with the VFA and microbiological 
samples selected. This ensured coherence between experimental observations and operational 
conditions. The resulting dataset comprised daily averages over 58 days, which were further refined 
through linear interpolation to increase temporal resolution. This process expanded the series to 1000 
points, enabling the application of moving window analyses, as illustrated in Figure 2. 

 

Figure 2. Original (58 points) vs. interpolated (1000 points) time-series data for CH4 concentration. 

The interpolation was validated for all variables, yielding R² values close to 1 and MRE values 
around 0.1%, confirming a high-fidelity representation of the original data. 

2.8. Linear Modeling 

To simplify the proposed equations and procedure, the suffixes associated with each fatty acid 
(Table 4) microorganism (Table 5), and operating condition (Table 6) are shown below. 
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Table 4. List of associated suffixes for fatty acids (a). 

Acetic 1  Caproic 5 
Propionic 2  Heptanoic 6 

Butyric 3  Ethanol 7 
Valeric 4  Propanol 8 

Table 5. List of associated suffixes for microorganisms (m). 

Firmicutes 9  Tenericutes 19 
Bacteroidetes 10  Armatimonadetes 20 

Actinobacteria 11  Cyanobacteria Chloroplast 21 
Proteobacteria 12  Acidobacteria 22 
Planctomycetes 13  Lentisphaerae 23 

Synergistetes 14  BRC1 24 
Spirochaetes 15  Candidatus Saccharibacteria 25 

Euryarchaeota 16  Parcubacteria 26 
Verrucomicrobia 17  Chloroflexi 27 
Cloacimonetes 18    

Table 6. List of associated suffixes for operating conditions (p). 

phi 28  pho 30 
Ti 29  To 31 

The equation (1) that linearly approximates CHସ  concentration as a function of the 
microorganisms, fatty acids, and operating conditions was proposed in the following linear form, 
based on the suffixes from Tables 4–6. ሺ𝐶𝐻ସሻ௔௣௥௢௫ = 𝐶ଵሺ𝑎ଵሻ + 𝐶ଶሺ𝑎ଶሻ + … + 𝐶ଶହሺ𝑚ଶହሻ + 𝐶ଶ଺ሺ𝑚ଶ଺ሻ + … + 𝐶ଷ଴ሺ𝑝ଷ଴ሻ + 𝐶ଷଵሺ𝑝ଷଵሻ (1) 

In its matrix form (matrix 𝐴), equation (1) can be expressed as follows (equation (2)): 

⎣⎢⎢
⎢⎢⎡ሺ𝐶𝐻ସሻଵሺ𝐶𝐻ସሻଶ...ሺ𝐶𝐻ସሻ௡⎦⎥⎥

⎥⎥⎤ =  ⎣⎢⎢
⎢⎢⎡(𝑎ଵ)ଵ (𝑎ଶ)ଵ … (𝑚ଶ଺)ଵ … (𝑝ଷଵ)ଵ(𝑎ଵ)ଶ (𝑎ଶ)ଶ … (𝑚ଶ଺)ଶ … (𝑝ଷଵ)ଶ...(𝑎ଵ)௡

...(𝑎)௡
...… (𝑚ଶ଺)௡ … (𝑝ଷଵ)௡⎦⎥⎥

⎥⎥⎤ ⎣⎢⎢⎢
⎢⎡ 𝐶ଵ𝐶ଶ...𝐶ଷଵ⎦⎥⎥

⎥⎥⎤ (2) 

where the constants 𝐶௜ are the approximation coefficients. This matrix form from equation (2) can be 
written more compactly as shown in equation (3): 𝐶𝐻ସ =  𝐴 𝑥 (3) 

The matrix 𝐴  contains data collected from fatty acids, microorganisms, and operating 
conditions, the vector 𝐶𝐻ସ represents the collected methane production data, while the vector 𝑥 
contains the approximation coefficients that must be determined to formulate the model. The vector 𝑥, can be solved by rearranging equation (3) as follows: 𝑥 =  [ 𝐴் 𝐴  ]ିଵ  𝐴் 𝐶𝐻ସ (4) 
where 𝐴்is the transpose of matrix 𝐴. 

2.8.1. Assessing Variable Importance 

To determine the relative importance of each variable in the approximation, and subsequently 
define a smaller, more practical subset (as working with all 31 variables can be impractical and costly 
in terms of laboratory testing), a variable weighting method was used. Therefore, equation (5) 
appears as a modification of the equation (3) considering the minimal error 𝜖. 𝐶𝐻ସ =  𝐴 𝑥 + 𝜖 (5) 
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To quantify how much each variable "contributes" to the 𝐶𝐻ସ  production within the 
approximation, it is necessary to measure the relevance of each variable in the linear model. Since 
each variable may be measured on a different scale (e.g., microorganism abundance vs. fatty acid 
concentration in mg/L), directly comparing the raw coefficients 𝐶௜ in vector 𝑥 can be misleading. 
Therefore, it is necessary to standardize the input data. In the same way, to compare the relative 
importance of each variable, the coefficients 𝐶௜  that form the vector 𝑥  were standardized (as z-
scores). The standardized coefficient 𝐶௜∗ for each variable 𝐶௜ was calculated as: 𝐶௜∗ = 𝐶௜  𝜎஼೔𝜎஼ுସ  (6) 

where 𝜎஼೔  and 𝜎஼ுସ  are the standard deviations of the approximation coefficient 𝐶௜  and the 
response variable 𝐶𝐻ସ, respectively. 

2.8.2. Proposing a Predictive Model 

To capture the evolutionary nature of the anaerobic digestion process, a dynamic predictive 
model was developed based on a moving windows approach. The model operates iteratively. At each 
time step 𝑡, a linear regression model is trained using a window containing the last 𝑘 observations 
(in this case, 𝑘 = 10 was chosen). This model is then used to make a one-step-ahead prediction of 𝐶𝐻ସ (denoted as 𝐶𝐻ସ෢ ), as a function of the weighted variables previously described. 

However, the use of small data windows can lead to overfitting. To address this problem and 
improve the model's generalization capability, Ridge Regression was used instead of ordinary least 
squares. This regression introduces a penalty term into the least squares cost function. For each time 
window, the objective is to find the coefficient vector 𝑥 that minimizes the following function: 𝑚𝑖𝑛௫ ൬ቛ𝐶𝐻ସ −  𝐴 𝑥ቛଶଶ + 𝜆ฮ𝑥ฮଶଶ൰ (7) 

where ቛ𝐶𝐻ସ −  𝐴 𝑥ቛଶଶ  is the sum of squared errors (the data fit term at time 𝑡 ), 𝜆ฮ𝑥ฮଶଶ  is the 

regularization term applied at time 𝑡 , 𝜆  is the regularization hyperparameter that controls the 
balance between the data fit and the model simplicity, and 𝑥  contains the coefficients 𝐶௜ . The 
hyperparameter 𝜆  was selected to improve the model predictive performance ( 𝜆 = 2 ). Thus, 
equation (4) is rewritten to obtain the predictive parameters (𝑥ො) by solving the following equation:  ൫𝑥ො൯௧ାଵ = ቀ[ 𝐴் 𝐴  +  𝜆 𝐼 ]ିଵ  𝐴்  𝐶𝐻ସቁ௧   (8) 
where 𝐼 is the identity matrix. The goal of equation (8) is to find the value of the coefficients in vector 𝑥 at time 𝑡 + 1 using the data available at time 𝑡. Using equation (8), it is possible to find the 𝐶𝐻ସ෢  
values for a subsequent window, given a defined window size of 𝑘 = 10. In this way, equation (3) 
becomes a prediction equation as follows: ቀ𝐶𝐻ସ෢ ቁ௧ାଵ =  (𝐴)௧ାଵ ( 𝑥ො )௧ାଵ (9) 

2.8.3. Model Performance Evaluation 

The precision of the predictive model was quantified using three standard statistical metrics. 
These metrics evaluate the divergence between the real observed values of 𝐶𝐻ସ  and the values 
predicted by the model, 𝐶𝐻ସ෢ . On one hand, the Coefficient of Determination (𝑅ଶ ) indicates the 
proportion of the variance in methane production that is predictable from the independent variables. 
A value close to 1 indicates an almost perfect fit. Equation (10) shows how it was calculated for this 
case. 𝑅ଶ = 1 −  ∑ ቂ(𝐶𝐻ସ)௜ −  ൫𝐶𝐻ସ෢ ൯௜ቃଶ௡௜ୀଵ∑ ൣ൫(𝐶𝐻ସ)௜ −  𝐶𝐻ସ൯൧ଶ௡௜ୀଵ  (10) 

Next, the Root Mean Square Error (RMSE) represents the standard deviation of the prediction 
residuals. It is a measure of the average error of the model in the same units as the response variable 
(ppm of 𝐶𝐻ସ), which facilitates its interpretation and is expressed in equation (11). 
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𝑅𝑀𝑆𝐸 =  ඩ1𝑛  ෍ቂ(𝐶𝐻ସ)௜ −  ൫𝐶𝐻ସ෢ ൯௜ቃଶ௡
௜ୀଵ  (11) 

Finally, the Mean Relative Error (MRE) measures the average error in relative or percentage 
terms with respect to the real value is defined in equation (12). The absolute value was used to prevent 
positive and negative errors from canceling each other out. 𝑀𝑅𝐸 =  1𝑛  ෍อ(𝐶𝐻ସ)௜ −  ൫𝐶𝐻ସ෢ ൯௜(𝐶𝐻ସ)௜ อ௡

௜ୀଵ   (12) 

In equations (10), (11), and (12), (𝐶𝐻ସ)௜ is the real value of the i-th observation, ൫𝐶𝐻ସ෢ ൯௜ is the 
value predicted by the model for the i-th observation, 𝐶𝐻ସ is the mean value of all real values, and 
n is the total number of observations used for the evaluation. 

3. Results and Discussion 

3.1. Digester Performance 

During the implementation of the two-phase biodigester, one of the main technical challenges 
was controlling gas leaks and internal pressure, which required multiple structural adjustments and 
caused delays in the early stages of operation. The installed manometers failed, likely due to H2S-
induced corrosion, while the valves progressively stiffened with use, in some cases requiring 
replacement. In addition, certain PVC weld joints developed fractures, compromising system 
integrity. The manual stirring mechanism did not improve process performance but was associated 
with gas leaks, leading to its deactivation and reinforcement of seals. After several corrective 
interventions, continuous and functional operation was achieved for the duration of the experiment.  

3.1.1. IoT Monitoring Advantages 

Although low-cost systems might be unsuited for long-term use or high-precision data 
collection, these biodigesters provide a practical alternative for experimental applications at 
laboratory scale when resources are limited. The estimated cost of assembling a two-phase 
biodigester without IoT monitoring was 300 USD, while the addition of a digital monitoring system 
increased the total to 420 USD per unit. Although some sensors required replacement during 
operation, the IoT system performed reliably, providing consistent readings comparable to manual 
instruments. Its implementation enabled real-time, continuous data acquisition, which was essential 
for detecting operational variations, making timely adjustments, and improving process 
understanding. 

Figure 3 (D1F1) and Figure 4 (D1F2) show the 24-hour profiles of pH, temperature, and CH4 
concentration during different operational stages. The days were randomly selected from both phases 
to provide representative snapshots of system behaviour under varying conditions. In all cases a 
consistent inverse relationship was observed, where pH increased during early morning hours as 
ambient temperature declined and then decreased progressively as temperature rose throughout the 
day. In D1F1 this trend was stronger and more reproducible, with correlation coefficients between -
0.84 and -0.94, while in D1F2 the association was weaker (between -0.49 and -0.66) and accompanied 
by larger fluctuations in methane concentrations. These results highlight the direct effect of ambient 
thermal oscillations on microbial activity, especially on pH dynamics. 

This behaviour may be linked to phases of microbial adaptation or to the accumulation of 
internal self-regulation mechanisms. As temperature dropped during the night and metabolic 
activity slowed, nitrogenous compounds likely continued decomposing and releasing ammonia 
(NH3). This ammonia could react with dissolved CO2, which is more soluble at low temperatures, to 
form ammonium bicarbonate (NH4HCO3). The resulting increase in alkalinity buffered pH 
variations, preventing excessive acidification and contributing to system resilience [17,61]. 
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Such dynamics are rarely captured in conventional laboratory-scale digesters where data are 
typically restricted to discrete measurements. In this case the use of IoT-based continuous monitoring 
provided hourly resolution and made it possible to identify fine-scale responses such as the rise in 
pH at lower nighttime temperatures that would otherwise remain unnoticed. This approach delivers 
a more realistic picture of system performance under environmental conditions and emphasizes the 
value of continuous monitoring strategies for interpreting anaerobic digestion behaviour beyond the 
limits of punctual sampling. 

 

Figure 3. D1F1 operation during 24 hours on random days. 
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Figure 4. D1F2 operation during 24 hours on random days. 

3.1.2. Stabilization of Anaerobic Codigestion 

Achieving a steady-state is a critical milestone in AD, as it reflects the convergence of operational 
and microbial conditions that support sustained methanogenic activity [62,63]. In system D1, specific 
time segments were identified where pH, temperature, and methane concentration aligned within 
the functional ranges expected for AD. Figure 5 integrates these three variables across the full 
operational period, providing a comprehensive view of the transitions from unstable to stabilized 
phases. This visualization not only highlights the progression of the system under different operating 
conditions but also illustrates how corrective measures and phase-specific dynamics gradually 
steered the reactor toward a functional equilibrium. 
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Figure 5. a) Mixture feeding over time b) Steady-state identification. 

In Figure 5a, a shift becomes evident after day 120, when pH consistently remained above 6.5 
while methane rose steadily, surpassing 8000 ppm by day 132. These conditions coincided with stable 
temperatures between 30 and 32 °C, an optimal mesophilic range that favours methanogenic activity 
[49,55]. The segmentation into D1F1 and D1F2 reveals the influence of each phase under a combined 
HRT of 27 days. During early mixtures (Mix1-Mix2), high OLR and the absence of adapted inoculum 
produced irregular methane signals dominated by acidogenesis. From Mix3 onwards, corrective 
measures such as alkalinization promoted higher CH4 concentrations, although fluctuations beyond 
±15% prevented these periods from being classified as steady. Toward Mix4 and Mix5, adjustments 
including higher inoculum input and recirculation from D1F2 likely increased microbial density and 
functional diversity, progressively creating conditions more favourable to methanogenesis [64,65]. 

Figure 5b highlights two segments where the system approached steady-state behaviour. The 
first, between days 126 and 136, was characterized by pH values between 6.5 and 7.5, methane above 
8000 ppm, and stable temperatures (30-32 °C), all within functional ranges and with fluctuations 
below ±15%. A temporary decline in methane around day 137 disrupted this stage, but from day 139 
onwards the system recovered, initiating a second steady segment that persisted until the end of the 
experiment. 

Overall, the convergence of pH, CH4, and temperature, demonstrates that the steady-state 
achieved in D1 was not the result of a single correction but the cumulative effect of progressive 
adjustments. This sequence of changes allowed the system to transition from acidogenic 
predominance to a consolidated methanogenic phase, representing a functional stabilization 
consistent with the goals of two-phase anaerobic digestion [65]. 

3.2. Volatile Fatty Acids (VFAs) and Metagenomic Analysis 

Once stabilization was established from IoT-monitored variables, VFAs and microbiota were 
analyzed during the transition toward optimal operation (days 97-154, Mix 4 and Mix 5). Thirteen 
samples were taken, and missing data were inputted through MICE to ensure continuity.  

Figure 6 shows that cumulative VFA concentrations dropped sharply after day 100, from above 
14000 mg/L to 5800 mg/L, before oscillating between 5000 and 7000 mg/L. This decline reflects the 
mitigation of acidogenic pressure and the progressive adjustment of the microbial community, 
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setting conditions increasingly suitable for methanogenesis and linking metabolite dynamics with 
microbial responses in the path toward functional balance (Figure 8) [66,67]. 

 

Figure 6. VFA and alcohol concentration in D1. 

The individual analysis of VFAs confirmed that the steep decline after day 100 was largely 
driven by the reduction of acetic and butyric acids, both tied to early fermentative pathways [66]. 
Between days 103 and 118, however, propionic acid and medium-chain carboxylates (C5-C8), 
including caproic, heptanoic, and valeric, increased notably, reaching averages of 140 mg/L, 218 
mg/L, and 820 mg/L, respectively [68]. These less common metabolites are typically linked to 
secondary fermentation processes or to transitional phases of temporary accumulation [69–71]. Their 
persistence, together with measurable levels of propanol (134 mg/L) and the absence of ethanol, 
suggests a fermentative stage dominated by chain-elongation routes, potentially hindered by 
propanol’s inhibitory effect on methanogenic consortia [69,72,73]. After day 119, these acids 
gradually declined (e.g., caproic down to 109 mg/L, valeric to 758 mg/L), while ethanol reappeared 
(20 mg/L) and propanol rose to 191 mg/L. This pattern may indicate that, despite higher alcohol 
concentrations, microbes capable of degrading medium-chain acids regained activity, backing a 
functional shift toward methanogenesis [74,75]. 

Regarding microbial analysis, a total of 1815465 high-quality reads, with an average of 201718 ± 
103945 reads per sample. Rarefaction analysis based on Shannon index showed that sequencing 
depth was adequate to capture most of the bacterial diversity across samples as shown in Figure 7. 
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Figure 7. Alpha rarefaction curves of the alpha diversity (Shannon) of the 16S rRNA gene. 

The microbial dynamics based on the phylum level aggregate counts (Supplementary Table S1) 
reflected in Figure 8 provide insights into the links between dominant phyla and the VFA and 
methane concentration profiles presented in Figures 6 and 5. During days 97 and 154, Firmicutes 
remained the prevailing group, averaging 49235 reads (64.2% of the total), underscoring its central 
role in the early stages of the process, particularly in hydrolysis and acidogenesis [9]. This activity 
likely promoted the production of fermentative precursors, consistent with the elevated provide 
insights into the links between dominant acids recorded at the beginning of this interval [66]. 

 

Figure 8. Temporal dynamics of microbial phyla in D1. 

Along with Firmicutes, Bacteroidetes (15%) and Actinobacteria (7.5%) contributed to medium-chain 
fatty acids such as valeric and caproic during the accumulation phase (days 103-118) [69,73]. This 
functional diversity points to a bacterial consortium engaged in degrading complex polymers and 
extending fermentative pathways, buffering intermediates before methanogenic activity resumed 
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[76,77]. Toward the end, Firmicutes declined while Euryarchaeota increased to 1.5%, coinciding with 
reduced VFAs and steadier methane, suggesting activation of acetoclastic and hydrogenotrophic 
routes [9,78]. 

Minor groups might have played complementary roles, with Planctomycetes (3.9%) likely 
coupling sulfide oxidation to methanogenesis, Proteobacteria (1.9%) contributing to propionate and 
acetate turnover, and Synergistetes (1.9%) participating in syntrophic H2 transfer [9,79]. 

Unexpectedly, Verrucomicrobia appeared in the community profile, a phylum typically restricted 
to volcanic habitats dominated by acidophilic methanotrophs [80]. These bacteria can oxidize 
methane as their main substrate and, to a lesser extent, hydrogen, carbon dioxide, ammonium and 
hydrogen sulfide, functioning as natural biofilters in extreme ecosystems. Their presence in a 
mesophilic anaerobic digester is unusual and may reflect residual inoculum or localized microredox 
niches rather than an active role in methanogenesis [80,81]. Alongside other low-abundance phyla 
such as Lentisphaerae, Candidatus saccharibacteria, and Parcubacteria, their detection expands the 
taxonomic spectrum and raises questions about potential ecological roles still unexplored in 
anaerobic bioenergy systems [82]. Many of these groups remain unresolved at the species level, even 
after advanced genomic assembly, forming part of the so called microbial dark matter. This hidden 
fraction highlights one of the major challenges in deciphering the functional complexity of anaerobic 
microbiomes [83,84]. 

3.3. Multiple Linear Regression (MLR) 

Modelling phase was based on the Supplementary Table S2. he values in Table 7 show the 
coefficients C୧ obtained by finding the vector x after applying equation (4).  

Table 7. Approximation coefficients. 𝐶1 -0.25 𝐶16 84.58 𝐶2 0.72 𝐶17 152.94 𝐶3 4.86 𝐶18 -154.01 𝐶4 18.20 𝐶19 -112.07 𝐶5 -61.33 𝐶20 165.65 𝐶6 -22.60 𝐶21 60.94 𝐶7 -12.08 𝐶22 15.47 𝐶8 14.33 𝐶23 -302.56 𝐶9 7.39 𝐶24 159.10 𝐶10 -18.99 𝐶25 -450.57 𝐶11 -21.21 𝐶26 81.69 𝐶12 -161.69 𝐶27 116.88 𝐶13 -58.79 𝐶28 -1562.95 𝐶14 67.72 𝐶29 6.72 𝐶15 123.17 𝐶30 68.50 
  𝐶31 242.54 

This method of finding the approximation coefficients is known by some authors as inverse 
modeling and can be considered a linear regression. When the vector 𝑥 was obtained, equation (1) 
was applied to generate the approximation curve. Figure 9 shows the resulting approximation. 
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Figure 9. Approximation result. 

3.3.1. Data Prioritization 

While Figure 9 shows the overall approximation result, it is important to determine the 
contribution of each fatty acid, microorganism, or operating condition to the 𝐶𝐻ସ production. As 
previously mentioned, a direct comparison of the 𝐶௜coefficients can be misleading, so it is important 
to perform a variable weighting process using equation (6). The values obtained from this process 
are shown in Table 8 and plotted in Figure 10. 

Table 8. Weighting parameters 𝐶௜∗. 𝐶10
∗  66.48 𝐶5

∗ 2.21 𝐶12
∗  50.51 𝐶27

∗  1.79 𝐶17
∗  38.48 𝐶3

∗ 1.53 𝐶13
∗  36.87 𝐶4

∗ 1.43 𝐶15
∗  36.06 𝐶26

∗  0.88 𝐶11
∗  34.35 𝐶8

∗ 0.67 𝐶20
∗  30.92 𝐶6

∗ 0.57 𝐶14
∗  28.37 𝐶22

∗  0.37 𝐶9
∗ 15.61 𝐶21

∗  0.34 𝐶16
∗  14.37 𝐶1

∗ 0.17 𝐶19
∗  12.25 𝐶28

∗  0.15 𝐶18
∗  7.87 𝐶2

∗ 0.13 𝐶23
∗  7.63 𝐶31

∗  0.11 𝐶25
∗  4.04 𝐶7

∗ 0.11 𝐶24
∗  2.30 𝐶30

∗  0.01 
  𝐶29

∗  0.01 

To define how many variables are needed to achieve a good fit without a significant loss of 
precision, two limits were established, as can be seen in Figure 11 : an Rଶ Coefficient greater than 0.9 
and an MRE lower than 15%. Based on Table 8 and Figure 10, the 12 variables with the highest values, 
or greatest impact on 𝐶𝐻ସ production, were selected. There are 𝐶ଵ଴∗ , 𝐶ଵଶ∗ , 𝐶ଵ଻∗ , 𝐶ଵଷ∗ , 𝐶ଵହ∗ , 𝐶ଵଵ∗ , 𝐶ଶ଴∗ , 𝐶ଵସ∗ , 𝐶ଽ∗ , 𝐶ଵ଺∗ , 𝐶ଵଽ∗  and 𝐶ଵ∗଼ . According to Table 5, these correspond to Bacteroidetes, Proteobacteria, 
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Verrucomicrobia, Planctomycetes, Spirochaetes, Actinobacteria, Armatimonadetes, Synergistetes, Firmicutes, 
Euryarchaeota, Tenericutes, and Cloacimonetes, respectively.  

 
Figure 10. Relative variable importance with defined cut-off. 

 
Figure 11. a) 𝑅ଶ, b) MRE and c) RMSE vs Number of included variables in the approximation. 

Thus, equations (1) and (2) can be rewritten in terms of the 12 variables that were found to be 
most important according to the weighting performed. This leads to equation (13): (𝐶𝐻ସ)ௐ௘௜௚௛௧௘ௗ஺௣௥௢௫ = 𝐶ଵ଴(𝑚ଵ଴) + 𝐶ଵଶ(𝑚ଵଶ) + 𝐶ଵ଻(𝑚ଵ଻) + 𝐶ଵଷ(𝑚ଵଷ) +𝐶ଵହ(𝑚ଵହ) +  𝐶ଵଵ(𝑚ଵଵ) +  𝐶ଶ଴(𝑚ଶ଴) + 𝐶ଵସ(𝑚ଵସ) + 𝐶ଽ(𝑚ଽ) +  𝐶ଵ଺(𝑚ଵ଺) +𝐶ଵଽ(𝑚ଵଽ) + 𝐶ଵ଼(𝑚ଵ଼)                         

(13) 

In its matrix form, equation (13) can be expressed as follows: 
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⎣⎢⎢
⎢⎢⎡(𝐶𝐻ସ)ଵ(𝐶𝐻ସ)ଶ...(𝐶𝐻ସ)௡⎦⎥⎥

⎥⎥⎤ =  ⎣⎢⎢
⎢⎢⎡(𝑚ଵ଴)ଵ (𝑚ଵଶ)ଵ … (𝑚ଵ଼)ଵ(𝑚ଵ଴)ଶ (𝑚ଵଶ)ଶ … (𝑚ଵ଼)ଶ...(𝑚ଵ଴)௡

...(𝑚ଵଶ)௡
...… (𝑚ଵ଼)௡⎦⎥⎥

⎥⎥⎤ ⎣⎢⎢⎢
⎢⎡𝐶ଵ଴𝐶ଵଶ...𝐶ଵ଼⎦⎥⎥

⎥⎥⎤ (14) 

Table 9 shows the new values found for the approximation coefficients, calculated using 
equation (13) in conjunction with equation (4). These results in the weighted approximation shown 
in Figure 12. 

Table 9. New weighted approximation coefficients. 𝐶10 -4.64 𝐶20 63.94 𝐶12 -42.40 𝐶14 16.20 𝐶17 -94.76 𝐶9 1.70 𝐶13 -7.66 𝐶16 -7.10 𝐶15 64.88 𝐶19 -22.13 𝐶11 -4.02 𝐶18 251.39 

Table 10 shows a comparison of the metrics used to compare the fits discussed previously. While 
the general behavior is replicated by both curves, the 𝑅ଶ coefficient for the approximation curve 
using equation (1) is 0.989, whereas with the weighted approximation from equation (13), the 𝑅ଶ 
value is 0.979. 

 

Figure 12. Weighted approximation. 

Meanwhile, the mean relative error (MRE) for the approximation with equation (1) is around 
12.59%, while for the weighted approximation with equation (13), it is 14.94%. Finally, the errors 
evaluated by the RMSE are below 450 ppm, which, considering the scale of Figure 5, are within an 
acceptable range. This approach successfully developed a simplified, dynamic model for predicting 
methane (𝐶𝐻ସ) production in an anaerobic digestion process. The key achievement was the ability to 
reduce a complex system of 31 variables to a robust predictive model based on only the 12 most 
influential factors, without a significant loss of precision.  
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Table 10. Precision metrics for approximations and real data. 

 𝐑𝟐 𝐌𝐑𝐄 [%] 𝐑𝐌𝐒𝐄 [ppm] 
All variables 0.989 12.59 319.94 

Weighted aproximation 0.979 14.94 435.82 

The primary finding of this work is the overwhelming importance of microbial populations as 
indicators of 𝐶𝐻ସ  concentration compared to VFAs and operational parameters. The variable 
weighting analysis revealed that the 12 most significant variables were exclusively microorganisms, 
with groups like Bacteroidetes and Proteobacteria showing the highest importance scores. This 
suggests that, within the context of this study, the state of the microbial community is a more direct 
and powerful predictor of methanogenic activity than the concentration of intermediate substrates 
(VFAs) or the operational conditions measured. While VFAs are essential for methanogenesis, their 
concentrations can be transient. In contrast, the abundance of specific microbial groups likely 
represents the metabolic potential of the system, making them more robust indicators for modeling 
purposes. 

3.3.2. Predictive Model 

The simplification of the model from 31 variables to 12 demonstrates the practical value of the 
feature selection process. The weighted approximation model, using only the selected 
microorganisms, achieved an 𝑅ଶ of 0.979, a negligible decrease from the 0.989 𝑅ଶ of the full model. 
By focusing only on the most critical microbial indicators, laboratory testing and data analysis efforts 
can be substantially reduced while still maintaining a high degree of accuracy. The slight increase in 
MRE and RMSE is an acceptable trade-off for the considerable reduction in model complexity. 

In this context, using equation (13), it was possible to develop a predictive model to predict the 
components of the vector 𝑥ො and, subsequently, the behavior of the 𝐶𝐻ସ෢  production by applying 
equations (8) and (9), respectively. This was done by using 70% of the dataset to train the model and 
the remaining 30% to test its performance. Thus, Figure 13 shows how, by applying equation (8), it is 
possible to obtain a prediction for the behavior of each of the coefficients for the weighted variables 𝑥ො (originally listed in Table 9). 

 

Figure 13. Behavior of the coefficients associated with the weighted variables. 

By applying equation (9), the prediction for CHସ෢  was obtained, as shown in Figure 14. This was 
derived from the coefficients 𝑥ො obtained via equation (8). 
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The development of the dynamic predictive model using a moving window approach combined 
with Ridge Regression proved to be highly effective. This strategy was designed to capture the 
evolutionary nature of the biological process and to prevent overfitting that can occur with small data 
windows. The performance of the final predictive model on the test data was excellent, with an 𝑅ଶ 
of 0.920 and an MRE of 6.50%. This confirms that the model not only fits the training data well but 
also generalizes effectively to make accurate short-term predictions on unseen data. The use of Ridge 
Regression (𝜆 = 2) was crucial in stabilizing the coefficients and ensuring the model's robustness. 

Despite the promising results, this study has several limitations that should be acknowledged. 
First, the model was developed using a dataset from a single anaerobic digestion process spanning 
58 days. Its performance and the relative importance of the selected variables may not be directly 
transferable to other digesters with different feedstock or operating conditions. Second, the initial 
dataset was expanded through linear interpolation to facilitate the moving window analysis. While 
this is a valid mathematical procedure, it does not generate new experimental information and could 
potentially mask high-frequency dynamics not captured by the daily sampling rate.  

 
Figure 14. Methane prediction and training data. 

The analysis of the data from the training and prediction curves is recorded in Table 11. The 𝑅ଶ 
fit values show a strong correlation (greater than 0.9), and the MRE errors are considerably low (less 
than 7%), with a comparatively low RMSE for the prediction.  

Table 11. Evaluation of the training model and predictive model. 

 𝐑𝟐 𝐌𝐑𝐄 [%] 𝐑𝐌𝐒𝐄 [ppm] 
Training Fit 0.999 0.35 20.77 
Prediction 0.920 6.50 139.84 

Future research should focus on addressing these limitations. Validating the simplified model 
on long-term datasets from diverse anaerobic digesters is a critical next step to assess its 
generalizability. Further investigation into the specific metabolic roles of the top 12 identified 
microorganisms could provide deeper biological insights to complement the model statistical 
findings. Finally, exploring non-linear modeling techniques, such as gradient boosting or recurrent 
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neural networks, could potentially capture more complex relationships within the data and further 
improve predictive accuracy. The ultimate goal would be to integrate such a validated, simplified 
model with online monitoring sensors for the key microbial populations, paving the way for 
advanced real-time control and optimization of anaerobic digesters. 

4. Conclusions 

This study successfully developed a multiple linear regression model to predict methane 
concentration in anaerobic codigestion using integrated microbial and operational data. The model 
demonstrated high predictive accuracy (R2 = 0.92, MRE = 6.50%) while requiring only 12 key 
predictors, substantially reducing complexity compared to the initial 31 variable set. Among the 
relevant findings, the identification of Verrucomicrobia as a significant predictor was particularly 
noteworthy, as this phylum is typically associated with extreme environments rather than mesophilic 
digesters, suggesting previously unrecognized ecological adaptations. The overwhelming 
dominance of microbial indicators over conventional process parameters highlights the critical 
importance of community dynamics in driving methanogenic performance. Furthermore, the moving 
window approach with Ridge regularization effectively captured the system's biological evolution 
while maintaining robustness against overfitting. This modeling approach demonstrates significant 
potential for practical implementation in rural and resource-limited settings, offering a viable method 
for methane prediction without sophisticated computational requirements. 

Future work should focus on validating this model across diverse reactor configurations and 
feedstock types to assess its generalizability. Additionally, developing cost-effective molecular 
monitoring tools for the identified key microbial groups could enable real-time implementation of 
this predictive approach in practical applications.  

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Table S1: Phylum level aggregate counts with no imputed data; Table S2: Cleaned 
database for initial modelling. 
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